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Abstract

Question Answering (QA) requires understanding of queries expressed in natural languages and identification of relevant
information content to provide an answer. For closed-world QAs, information access is obtained by means of either context
texts, or a Knowledge Base (KB), or both. KBs are human-generated schematic representations of world knowledge. The
representational ability of neural networks to generalize world information makes it an important component of current
QA research. In this paper, we study the neural networks and QA systems in the context of KBs. Specifically, we focus
on surveying methods for KB embedding, how such embeddings are integrated into the neural networks, and the role such
embeddings play in improving performance across different question-answering problems. Our study of multiple question
answering methods finds that the neural networks are able to produce state-of-art results in different question answering
domains, and inclusion of additional information via KB embeddings further improve the performance of such approaches.

Further progress in QA can be improved by incorporating more powerful representations of KBs.

Keywords Knowledge base - Question answering - Neural networks

1 Introduction

Neural Question Answering (NQA) has led to significant
interest in question answering, especially due to the ability
of modeling to incorporate multimodal information sources.
To serve as a question-answering system, a typical neural
network is capable of: leveraging text information via
word or character embeddings (Mikolov et al. 2013);
image representation (Wu et al. 2017) via pretrained
representations; textual information using unsupervised
large-scale language models (Devlin et al. 2019; Radford
et al. 2019; Howard and Ruder 2018); and/or KBs using
embedding methods similar to word embeddings (Bordes
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et al. 2013). NQAs systems largely follow a three-stage
process, comprised of (a) information retrieval based on the
question understanding; (b) answer extraction to generate an
answer; and, optionally, (c) a ranking module, to rank the
answers (Kratzwald et al. 2019).

Knowledge Graphs (KGs) are the simpler representa-
tional form of Knowledge Bases (KBs), expressed in the
form of triples of - entity, relation, entity -. Unlike KBs
which represent a richer hierarchy and structure symbolic
to the real-world model, KGs are much less constrained.
The simpler representations of KGs have given rise to meth-
ods for the representation learning of entities and relations
present in a KG. This is in line with advances in embed-
ding methods for multimodal data representation. Most
KBs are written in formats (e.g., OWL Antoniou and Van
Harmelen 2004), which makes them accessible via query
languages such as SPARQL (Seaborne and Prud’hommeaux
2006). This itself is a significant research area and con-
tributes to reasoner systems such as HermiT (Shearer et al.
2008), which can be used to generate an answer from large
knowledge graphs based on SPARQL query formulation.
While KBs, which are often represented in structured for-
mat, are challenging to integrate into the neural network
paradigms, KG embeddings are significantly easier to inte-
grate into the existing systems. This leads to a multitude of
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applications including factoid question answering, visual
question answering, reading comprehension, and open-
world question answering, all using KGs as an auxiliary data
source for improved performance. A KB is also interchange-
ably called KG as in Ehrlinger and W68 (2016).

Several KBs (and their triple-based variant KGs) are
readily available, with huge amount of information and facts
structured within. Some widely used KBs include Freebase
(Bollacker et al. 2008), DBPedia (Auer et al. 2007),
YAGO (Suchanek et al. 2007), Gene Ontology (Ashburner
et al. 2000), Wordnet (Miller 1995), ConceptNet (Liu
and Singh 2004), and Google Knowledge Graph (Singhal
2012). Semantic parsing (Berant et al. 2013) approach to
the factoid question answering parse a natural language
question into a structured query, which is executed into KBs.
A major limitation of a KG is its completeness - no KB
exists with all the world’s information content incorporated
into it. NELL (Mitchell et al. 2018; Carlson et al. 2010)
is an example system incorporating semi-automatic KBs,
which are reliable in effective context understanding and
information-extracting frameworks.

In this survey, we study neural question-answering meth-
ods applied to a wide range of question-answering prob-
lems including factoid question-answering, visual question-
answering, and reading comprehension. We primarily
explore the usability and contribution of KGs to neural
question-answering. While several methods have been pro-
posed to embed KBs, their usage is rather limited due to
the current representation limitations of embedding meth-
ods along with the lack of incorporation of improvements in
embeddings methods into question answering problems due
to the differences in research area. Moreover, we explore
neural network based methods for question answering, how
knowledge bases are incorporated into neural networks,
and what is the state of performance of such methods in
comparison to other existing methods.

Specifically, we study the benefit of incorporating KBs
as a source of knowledge in the context question answering
using neural networks. The recent surge of incorporating
large scale pretrained language models (Devlin et al.
2019) with billions of parameters have lead to state-
of-art performance across multiple question answering
datasets, even obtaining human-level performance across
some datasets (e.g., Rajpurkar et al. 2016). The usage of
pretrained language models as global knowledge into the
neural networks can be considered a form of an unstructured
KB. We hypothesize a more precise filtering of knowledge
obtained from KBs should be a viable (and also more
energy-efficient) alternative to the current trend of the
incorporating large-scale language models, especially in
the context of QAs where the knowledge incorporation
is more straight-forward in comparison to other areas
requiring more subtle and hard to quantify knowledge
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(e.g.; text generation). We explore key differences in
the KB embeddings methodology in comparison to other
pretraining methods, and also understand differences
between the neural networks based on non-KB context
as some form of “general knowledge” and the neural
architectures incorporating KBs.

Some of our findings can be summarized as:

1. KB embedding is the primary method for incorporating
KBs into the neural architecture.

2. The performance improvements across multitude of
question answering tasks on introduction of large
pretrained language models hints towards the inefficient
nature of knowledge compression by neural networks
and the need to have larger-sized models to obtain better
performance.

3. While there is a trend towards incorporating more
parameters into the language models, KB methods are
more scalable in comparison and are much simpler
and efficient. This difference in focus is likely to
be a key reason behind KB incorporation being not
as powerful as pretrained language models, especially
in the context of larger-sized pretrained models
obtaining significant improvement over smaller-sized
models.

4. We also hypothesize that a KB-embedding represen-
tation with greater number of parameters or even the
incorporation of more KB-suitable embeddings (e.g.;
hierarchical ) into the neural networks could result in
more improvements.

This journal paper is an extensions of our conference
paper on the same subject (Kafle et al. 2019). In addition to
covering everything covered by the conference paper, this
journal paper:

— Evaluates newer KB embedding methods including
quaternion-based methods, which are the new state-of-
art, along with multiple other KB embedding methods.

— Adds analysis of KB embeddings in comparison to
symbolic representations, the need for improvements
and the current state.

— Includes experimental evaluation for KB embeddings,
along with data-set introduction and result from the
current highly relevant methods.

— Adds question answering using language models
(which are the state of art methods for almost all
QA except for KB-based QA datasets) since language
models have been shown to be a somewhat noisy
version of a knowledge base.

— Expands the KB usage methodologies into three distinct
frameworks - translation-based, tensor factorization,
and complex-hyperplanes for better categorization of
methodology.
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The rest of the paper is organized as follow. We
survey the KG embedding methods after briefly defining
the Knowledge Base (Section 2), which are -crucial
for incorporating KGs into neural question answering
systems, followed by a brief survey of question answering
specific neural architectures (Section 3). We then dive
into factoid question answering problem and the role
of KBs in those methods (Section 4), followed by
the discussion of attention-based question answering
methodology (Section 5) and the conclusion.

2 Knowledge Base

A Knowledge Base (KB) comprises of a structured database
with a schema, such as an ontology, describing entities, rela-
tions, and attributes, which form the foundation of metadata
comprising the structural information (Krétkiewicz et al.
2018). Facts are then added to the KB in accordance with
the metadata description, forming the entirety of a KB. Facts
are often added as a triples, with either an isA relation to
describe the instance type of a fact, or with any other rela-
tion described in the KB itself. A KB can also be represented
as a graph of facts, with entities representing the nodes of
the graph, and with the relationships among entities being
described by edges. For the rest of the survey, we treat
Knowledge Base and Knowledge Graph as the same entity.
The reason for such treatment is the simple possibility of
potential transformation of KB into graphs by transforming
all metadata into the triple form. Also, the existing neural
network literature does not draw any distinction between the
two terms and often uses them interchangeably.

An ontology is a collection of definitions which model a
domain using classes, attributes, and relationships (Gruber
2009). The collection of facts, their attributes, and the
relationships containing the discourse of a particular
domain, together with its ontology, constitutes a KB.
A KB is also a type of Knowledge Graph (KG); and
thus, a KB is richly structured, based on its ontology.

Adjective
Synset

Adjective

I5A Synset

Embedding

subClassOf
Embedding

Vector

Fig.1 An example of an ontology embedding model

A KB can be simplistically interpreted as a database
system with the schema analogous to ontology, and its
tuples can be considered facts. A KB, though, is capable
of incorporating a much richer set of information, such
as logical relationships among facts, and can also be
inferred using a formal logic reasoner, both for inference
and validation purposes. KBs are specifically useful
for representing a domain that involves a rich set of
relationships among different classes (Chandrasekaran et al.
1999), e.g., Word Net (Miller 1995), UMLS meta thesaurus
(Bodenreider 2004).

Knowledge Graphs are typically stored as directed
graphs of multi-relational data, whose nodes correspond to
entities, and whose edges correspond to relations among
them. KBs are represented as a triplet of form (k,1,1)
or (head, label, tail), which indicates that there exists
a relationship of name label between the entities head
and rail. The most widely used Knowledge Base is
Freebase (Bollacker et al. 2008). It is a structured KB
in which entities are connected by predefined predicates
(a.k.a relations). All predicates are directional, connecting
from subject to object. A triple (subject, predicate, object)
denoted by (A, p, t) describes a fact; e.g; (Nepal, capital,
Kathmandu) refers to the fact that Kathmandu is the
capital of Nepal. The usage of knowledge graphs is
limited by two issues - completeness (Socher et al.
2013; West et al. 2014) and compatibility. The issue of
completeness arises from the fact that no KB can ever
be exhaustively completed without any form of conflict
simply due to the vast amount of world knowledge that
exist along with the very large magnitude of relationships
between the entities that represent that knowledge. This
inadequacy can lead to error in a query-based system,
which completely relies on KBs. Another challenge in
usage of KBs lies in its compatibility. Each KB has
their own design decisions, and thus, even for the same
concepts and relations, different naming conventions are
preferred, which presents a challenge in applying more
than one KB to a problem. However, application of more
than one KB could potentially decrease the incompleteness
of KBs (Bordes et al. 2013). A common solution is
preferred to both problems: embedding of knowledge
bases (Fig. 1).

The conversion of Knowledge Bases (KBs) entities and
relations into a numeric structure, whose geometry can
then be considered a partial representation of the structure
of ontological constraints defined within the KB itself.
Conversion of entities and relations into numeric vectors
present an interesting perspective into the KB itself, with
multiple KBs being potentially used jointly due to their
similarity in the structure as opposed to the naming and
terminologies consistencies which varies across different
Knowledge Bases.
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inversing the score or using non-margin training paradigms
(e.g. logistic regression). Due to the size of knowledge base
(or the number of triples, along with negative triples), the
optimization algorithm is characterized by gradient-based
techniques.

2.2.1 Mathematical Model

The pioneer work in translation-based embedding models
is TransE (Bordes et al. 2013). It assumes all relations
and entities can be represented by vectors of uniform size.
One issue with the TransE model lies in its inability to
differentiate among different relation mappings, such as
one-to-one, many-to-one, and one-to-many, which makes
the model unsuitable for representing such relations. TransH
(Wang et al. 2014) treats each relation to be on a different
plane. Figure 2 shows the geometrical contrast between
TransH and TransE. Other translation methods, TransD (Ji
etal. 2015) and TransX (Lin et al. 2015b), consider diversity
of both entity and relation.

In addition, there are several tensor factorization methods
for relational learning that generate embeddings for KBs
(Nickel et al. 2011, 2012, 2013, Krompal} et al. 2015;
Socher et al. 2013). Bayesian Clustering methods have also
been successfully applied to embed a KB (Sutskever et al.
2009). Distance-based embedding methods (Bordes et al.
2013; Wang et al. 2014; Guu et al. 2015; Nguyen et al.
2016a; 2016b) have simpler frameworks, making them
preferable for usage in underlying applications.

The neural tensor model (Socher et al. 2013) uses bilinear
tensor operator to represent each relation. A bilinear score
function without any non-linearity to learn embeddings is
used by Yang et al. (2015). Quadratic forms are used to
model entities and relations in He et al. (2015), Trouillon
et al. (2016), and Garcia-Duran et al. (2016). Such methods
are similar due to the three-way interactions between
relation, head and tail entities during the score computation.
ProjE (Shi and Weninger 2017) uses diagonal matrix and
linear interaction to combine entity and relations. A circular
correlation operation while learning embedding which can

Fig.2 Geometrical modeling of A
TransE (Bordes et al. 2013) and
TransH (Wang et al. 2014).
TransE translated head entity to
tail entity using relation as a
vector, while TransH projects
the entity embeddings into a
relation plane where the actual
translation is performed. Such
geometric innovations are often
the defining factors in improving
KB embedding benchmarks

be interpreted as compression of tensor product is used in
the approach proposed by Nickel et al. (2016).

Additionally, relation paths between entities in Knowl-
edge Graphs provide richer context information, which
enables learning more structured embeddings (Luo et al.
2015; Garcia-Durédn et al. 2015; Guu et al. 2015; Liang
and Forbus 2015; Lin et al. 2015a; Toutanova et al. 2016;
Nguyen et al. 2016a). Path queries, to obtain a relational
transformation, which is then integrated into a translation
model, such as TransE, are used by Guu et al. (2015). The
approach in Lin et al. (2015a) extends the TransE method
by the additional objective of learning scoring from a dif-
ferent relation path representation, which is a summation
over all relation paths that are termed reliable. Toutanova
et al. (2016) proposed a dynamic algorithm to enable effi-
cient incorporation of relation paths of bounded length in
compositional path models. The authors of Neelakantan
et al. (2015) propose a KB completion method using RNNSs,
which are able to infer multi-hop relationships. An external
text corpus for correlating KBs with text is used by Wang
and Li (2016).

We discuss three major mathematical formulation in
more detail. Let us consider a Knowledge Graph (KG)
consisting of components (subject, predicate,
object).

2.2.2 Tensor Factorization

RESCAL (Nickel et al. 2011) represents a KG as using
a three-way tensor X with a tensor entry Ajj; = 1
when there exists a relation (i-th entity, k-th
predicate, j-th relation).For non-existing and
unknown relations, the entry is set to zero. This method
factorizes each relation slice of the tensor as

X~ AR AT fork=1,...m (1)

where A is n X r matrix containing latent component
representation of entities, and Ry is an asymmetric r X r
matrix that models the interactions of the latent components
in the k-th predicate. The factor matrices A and Ry

\J
\j

(a) TransE (b) TransH
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can be computed by solving the regularized minimization
formulation. The asymmetry of Rj takes into account
whether the latent component occurs as a subject or an
object. Nickel et al. (2011) further explore how RESCAL
is related to other tensor factorization methods of rank-r
DEDICOM and Tucker3 (Balazevic et al. 2019b).

For similarly related bilinear models (e.g., (Yang et al.
2015)), the input for a KG embedding consists of relation
triplets of fort (eq, r, e2) with e; being the subject and
entity e» the object that are in a certain relation r.
Denoting the x,; as the input for entity e; and W as the first
neural network parameter, the scoring function for the triplet
(e, r, e2) can be written as

Ster,rer) = Gr(Yeys Yer) )

where y.,, = f(Wx,,) and y.,, = f(Wx,,). The scoring
function § available is characterized by either a basic-linear
transformation of form

Ye
g;l(yel v Yer) = ArT (Ye;)
and a bilinear transformation of the form

gf(Yel Yer) = yng B.ye,

DistMult (Yang et al. 2015) proposes a diagonal bilinear
formulation of form

Ster.re) = YZI B:ye, 3

where B, is diagonal and thus Eq. 3 can be reformulated as

Sterres) =D Ye; O Yer) o

where b, is the vector comprising of diagonal entries of B,
and © is the element-wise product.

Another approach for tensor factorization is possible
via circular correlation, which provides a transition of
tensor factorization method into the complex space i.e. with
anti-symmetry relations. HOLE (Nickel et al. 2016) is a
compositional embedding method based on composition
operation o.

P(¢y(h, 1) = 11©) = o (qrs) = 0 (r} (s 0 €,)) &)

where ¢, (h, t) is the probability of relation between &
and h, with 5, the full tensor product, represented as
composition of head and tail entities (e; o e;) vector and
transformed by the relation matrix r,\.

The composition operation o between two entities can
be either a full tensor product, concatenations, or even
a circular correlation [a ® bl;j = a;b;. Additionally,
it can also be of concatenations [V (W(a & b))]; =
v (Z/ wiiaj+ 32, wf.’jbj) It can be intuitively thought
of as an or gate where the feature is on if at least one
corresponding feature is on. Here ¥ means non-linearity.
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The holographic embedding method comprises of
the following scoring objective based on the circular
correlation.

d—1
[axbli =) aibgti) mod d (6)
i=0

The probability of triples can then be modeled as
Pr(¢, (s, 0) = 1|©) = o (r} (e * €,)) (N

2.2.3 Translation-based methods

Most translation based methods are related to TransE
in terms of their optimization, with differences being in
the representation of the entities and relations. STransE
(Nguyen et al. 2016b) is comprised of a triples scoring
function as

fr(h,t) = ||Wr,1h+r_wr,2t||11/z ®)

where W is the embedding matrix and r is the relation
vector. TransR (Lin et al. 2015b) is comprised of a triples
scoring function of the form

fr(h, 1) = [|hM, + 1 — tM, |3 ©)

Furthermore, Cluster-based TransR (CTransR) is proposed
as well, where for each relation, the entity pairs (h, t) are
clustered based on their distance (h — t) where h and t are
obtained through TransE.

Afterward, the relation vector and transformation matrix
are learned separately for each cluster. The scoring function
consists of a constraint to limit the divergence of the cluster
specific relation vector from the central relation vector.

2.2.4 Complex-space embeddings

ComplEx (Trouillon et al. 2016) is very closely related to
HOLE mathematically, where complex embedding is used
to solve the problem through latent factorization. The dot
product in complex space involves the conjugate transpose
of one of the vectors, thus making it non-symmetric
and anti-symmetric. Relations can receive different scores,
depending on the ordering of the entities involved. The
tensor of KG can be learned in simple manner using
Eigenvalue decomposition

X =EWE™! (10

But for cases where the relations can be anti-symmetric,
using eigenvalue decomposition is not possible as it is
symmetric in real space. With complex numbers, the dot
product is also called Hermitian product or sesquilinear
form and is defined as

<Uu,v>:= il (1)
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where u = Re(u) + Im(x) and # = Re(u) — Im(u). Eigen
decompositions is computationally expensive task except
for the space of normal matrices where XX = XTX.
The spectral theorem for normal matrices state that a matrix
X is normal if and only if it is unitarily diagonalizable i.e.
X = EWE'" where W € C"*" is the diagonal matrix of
eigen values with decreasing modulus and E € C"™" is
a unitary matrix of eigen vectors, with E representing its
complex conjugate. The set of purely real normal matrices
includes all symmetric, anti-symmetric sign matrices as well
as orthogonal matrices and many other matrices that are
useful to represent binary relations. However the score of
the product must be real number, so only the real part of the
decomposition is kept.

X =Re(EWE) (12)

The above factorization shows that the head entity is the
complex conjugate of its tail entity in vector space.

For multiple relations, the scoring function can be
extended into different formulations as

¢(r,s,0; ®) = Re(< wy, e, €, >) (13)
K

= Re (Z wrkeskéok) (14)
k=1

= < Re(wy), Re(es), Re(ey) >
+ < Re(wy), Im(ey), Im(e,) >
+ < Im(w,), Re(ey), Im(ey) >
— < Im(w,), Im(ey), Re(e,) > (15)

where w, € CX is a complex vector. Equation 13 is
DistMult (Yang et al. 2015) with real embeddings but
handles asymmetry due to complex conjugate.

The Knowledge Graph embedding must be capable
of leveraging the symmetry/asymmetry, inversion, and
composition relations from the observed data in order to
predict missing links.

ROTATE (Sun et al. 2019) maps the entities and relations
to the complex vector space and defines each relation as a
rotation from the source entity to the target entity. Given a
triplet (h, r, t), we expect t = h or where o is element-wise
productand |r;| = 1,and h, r, t € C*. The distance function
is ROTATE, which can be defined as

d.(h,t) = [hor— t| (16)

The objective for optimization is based on negative
sampling loss

L= —logo(y —dy(h,t) = Y0, Llogo(d (), ) —y) (17)

where y is the fixed margin, and (h},r,t)) are negative
samples.

The negative samples are sampled based on the
probability

exp af,(h’j, t’j)
Y iexpafr(h), t)

which is then taken as probability of the negative samples in
order to update (17) as

(18)

p(h/'vr9 t}l{(l’li,ri,t,’)}) =

L = —logo(y —dr(h, 1))

=Y p(h).r. 1) log o (dy (b, ) — ¥) (19)

i=1

In addition to the above mentioned three paradigms of
KB embedding using tensor factorization, translation-based
methods, and complex spaces, the more recent embedding
methods focus on variable geometry of embedding space,
such as hyperbolic geometry (Thurston 1982), leading
to learning multiple models of embedding in hyperbolic
space (Nickel and Kiela 2017, 2018; Ganea et al.
2018; Sala et al. 2018), which shows much promise for
both learning compact representation and using smaller
dimensions for learning embeddings. Another research
direction is along learning ordered embeddings (Vendrov
et al. 2016), which are capable of representing hierarchy
and order within the geometrical structures (Vilnis et al.
2018). In addition, hyper-complex embeddings (Zhang
et al. 2019) extend the generalization of Knowledge
Base embedding from complex geometrical space into
the hyper-complex space which offer better geometrical
interpretations. Quaternion embeddings, which are the
embeddings in hyper-complex spaces, are the current state-
of-art in the KB embedding space. Additionally, Ebisu
and Ichise (2018) learns KB embeddings in Lie Group
manifolds, which is a generalization of translation based
embedding methods into the tourus shaped manifolds.
The relation between manifold learning and its alignment
with respect to the real nature of the geometry of the
KB is currently unexplored, though (Sala et al. 2018)
learn embeddings across different manifolds by means
of product of mixture. Such mixtures are capable of
offering better performance gains due to greater freedom
into structure induction. Hierarchical embeddings are often
learned in geometrical spaces which are generalizations of
tree including hyperbolic spaces (Nickel and Kiela 2018)
where the learned embeddings are highly dependent upon
the optimization methods since the space is very restricted
and can lead to inefficient local space.

Additionally, Zhang et al. (2018) learns KB embedding
by explicit encoding of relations in a form of hierarchy such
that closely related relations form a relation cluster, and
sub-relation hierarchy. This enables encoding a hierarchy
above the defined relations, along with an explicit defined
hierarchy of relations which better models the relationship
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between relations in the symbolic schema. (Ma et al. 2019)
learns embedding via composition from word embeddings.
This enables leveraging pretrained information into the KB
embeddings, while at the same time also makes the model
capable of generalizing to unknown entities.

2.3 Evaluation of Knowledge Base Embedding
methods

Knowledge Base (KB) embedding methods are evaluated
mostly on the link prediction problem i.e., given the head
entity and relation, predict the tail entity. The evaluation
is performed based on the rank of the correct entity with
respect to the other entities which are shown to be relevant.
There is some inconsistencies regarding how to rank a
correct entity when it has a similar score to an incorrect
entity. The idea of using random or lexicographic ordering
(Sun et al. 2019) to compensate for simple baseline where
all entities are scored equally but correct triples is ranked
at the top resulting in lower (and better) rank score is
commonly used in more recent experiments (e.g., Zhang
et al. 2019).

2.3.1 Datasets

—  WordNet

WordNet is a structured lexicon designed for the
generation of an ordered dictionary and thesaurus. It is
popular with applications in Natural Language Process-
ing tasks, such as augmenting data with words replaced
by synonyms and antonyms from the WordNet. The
WordNet KB consists of two major classes - synsets and
wordsense - with a hierarchy of classes generated from
two of them. There are four basic types of properties
defined in WordNet - Transitive, Symmetric, DataType
and Object Property. All the instances are derived from
either synset or wordsense class hierarchy. The word-
net KB dataset defined in Bordes et al. (2013), called
WNI18, comprises of 18 relations and 40,943 entities,
and 151,442 triples predominantly of hyponym and
hypernym relations. The WNI18 dataset suffers from
test leakage, leading to creation of WN18RR (Dettmers
et al. 2018) containing 93,003 triples with 40,943 enti-
ties and 11 relations. The reduction in number of triples
is needed to eliminate test leakages which can lead to
noisy performances.

— Freebase
Freebase is a large collaborative knowledge graph
of general facts (Bollacker et al. 2008) with FB15k
(Bordes et al. 2013), which is a relatively dense
subgraph of Freebase where all entities are present
in Wikilink database. FB15k contains about 14,951
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entities with 1,345 different relations. Kadlec et al.
(2017) showed issues with the FB15k dataset due to
the test leakages into the test set and how it impacts
the overall performance of the models by designing a
sample baseline bilinear model (Yang et al. 2015) which
outperformed other state-of-art models. This resulted
in the newer refinement of the dataset to FB15k-237
(Dettmers et al. 2018), a subset of FB15k where inverse
relations are removed e.g., (hyponym, hypernym) to
obtain 237 relations and 272k triples out of 483k triples.

2.3.2 Evaluation Protocol

For each test triple, the head entity is replaced with every
entity of same type in the knowledge base and a similarity
score is computed for the corrupted triple. The rank of the
original correct triple is obtained after ordering the scores
in an ascending order. A similar ranking is also obtained
for the triple with the corrupted tails. Aggregating over all
the test triples, three metrics are most commonly used for
evaluation:

1. MR - The mean rank of average rank of the test dataset
is calculated by averaging the rank of all the correct
triples. Smaller the rank, better the performance. M R =
% Z,N=1 rank; where rank; is rank of the correct triple.

2. MRR - The mean reciprocal rank is multiplicative
inverse of rank of the correct triple with higher
value representing better performance. MRR =
% ZlN: 1 mllkl_ where rank; is the rank of correct triple.

3. Hits@n- It is the count of number of triples whose
correct entity is ranked within the first-n entities
with higher number representing better performance.
Hits@n = % vazl L, (rank;) where I, (rank;) = 1 if
rank; < n else 0.

The performance of the most popular KB embedding
methods for improved version of Word Net and Freebase
data set is given in Tables 2 and 3 respectively.

The study of results presented in Tables 2 and 3 illustrate
the current limitations into the KB embedding methods.
The Mean Rank (MR) can be used to throw some light
into the current challenges in the KB embedding methods
since the effective triple prediction ability of KB-embedding
methods is still very limited which can be partly attributed
to the incomplete nature of the KB with many triples being
assigned as false negatives.

2.4 Comparison to symbolic KB

KB embeddings are simpler to use in neural networks and
deep learning frameworks due to the breakdown of complex
relations as vectors. Embedding methods have been found
to be extremely informative for usage as semantic informa-
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Table 2 Link prediction results on WN18RR
WNI18RR

Model MR MRR Hit@10 Hit@3 Hit@1
TransE Bordes et al. (2013) 3384 0.226 0.501 - -
DistMult Yang et al. (2015) 5110 0.43 0.49 0.44 0.39
ComplEx Trouillon et al. (2016) 5261 0.44 0.51 0.46 0.41
ConvE Dettmers et al. (2018) 4187 0.43 0.52 0.44 0.40
RotatE Sun et al. (2019) 3277 0.470 0.565 0.488 0.422
a-RotatE Sun et al. (2019) 3340 0.476 0.571 0.492 0.428
QuatE! Zhang et al. (2019) 3472 0.481 0.564 0.500 0.436
QuatE? Zhang et al. (2019) - 0.482 0.572 0.499 0.436
QuatE? Zhang et al. (2019) 2314 0.488 0.582 0.508 0.438

Results are taken from the respective papersBest results are in bold, and second best are underlined. a-RotatE (Sun et al. 2019) describe method
with adversarial sampling while RotatE refers without adversarial sampling training. (Zhang et al. 2019) have different implementation for
Quaternion embeddings, with QuatE! being without type constraints, QuatE? with regularization and reciprocal learning, and QuatE? comprising

of type constraints

Bold signify best performance value

tion in both work embeddings and language model methods
(Devlin et al. 2019). Hence, it is important to evaluate the
geometry, structure, and inference information pertained
within the embeddings to compare the embedding methods
with the symbolic representations. There exist a few works
that evaluate the geometry and structure of embeddings
learned by KB embedding methods (Chandrahas and Taluk-
dar 2018; Gutiérrez-Basulto and Schockaert 2018; Kazemi
and Elqursh 2017) which give a more detailed exploration
of the geometry of the embeddings. The geometry induced
by different embedding methods differ due to their explicit
geometrical assumption (Chandrahas and Talukdar 2018).
For example, translation based embedding methods are dif-
ferent from tensor decomposition, while the embeddings in

Table 3 Link prediction results on FB15K-237

complex and hyperbolic spaces are often different from the
regular Euclidean spaces, since each geometry impacts the
distance and norm computation which are crucial in under-
standing and reasoning about the learned embedding points.
Moreover, distribution based embedding methods are often
difficult to evaluate due to their geometrical spaces lying in
probabilistic domain as opposed to a point in geometry.
Chandrahas and Talukdar (2018) study the embedding
space of translation and tensor factorization based embed-
ding methods in terms of first and second order moments
(mean and variance) and find that, it is difficult to obtain
an insight related to the spread of the embeddings and their
performance in evaluation tasks. While different methods of
embeddings learn vector space with distinct properties, their

FB15K-237

Model MR MRR Hit@10 Hit@3 Hit@1
TransE Bordes et al. (2013) 357 0.294 0.465 - -
DistMult Yang et al. (2015) 254 0.241 0.419 0.263 0.155
ComplEx Trouillon et al. (2016) 339 0.247 0.428 0.275 0.158
ConvE Dettmers et al. (2018) 244 0.325 0.501 0.356 0.237
RotatE Sun et al. (2019) 185 0.297 0.480 0.328 0.205
a-RotatE Sun et al. (2019) 177 0.338 0.533 0.375 0.241
QuatE! Zhang et al. (2019) 176 0.311 0.495 0.342 0.221
QuatE? Zhang et al. (2019) - 0.366 0.556 0.401 0.271
QuatE? Zhang et al. (2019) 87 0.348 0.550 0.382 0.248

Results are taken from the respective papers. Best results are in bold, and second best are underlined. a-RotatE (Sun et al. 2019) describe method
with adversarial sampling while RotatE refers without adversarial sampling training. Zhang et al. (2019) have different implementation for
Quaternion embeddings, with QuatE! being without type constraints, QuatE? with regularization and reciprocal learning, and QuatE3 comprising

of type constraints

Bold signify best performance value
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performance in general is independent of the organization
of vector within the geometry.

A fundamental difference between the symbolic repre-
sentation of ontology and Knowledge Base (KBs) lies in
the restriction placed on the data points. The hard-coded
restrictions presented as rules in the symbolic interpretation
enables a more powerful inference mechanism to generate
and validate newer relations, while the embedding represen-
tation often do not offer a faithful obedience to the rules that
are universally true, due to the noisy nature of point rep-
resentation as a result of generalization. Gutiérrez-Basulto
and Schockaert (2018) explore the representation of rules
learned by KB embeddings. Their evaluation is based on
the rules described by the ontology of KB and using those
rules to access the alignment of KB embeddings to those
rules in a subset of geometric space manner. For example;
If one relation is a subset of another, then it is likely that the
space describing such relation has some geometric regular-
ities which the embedding space exploits. Unfortunately, a
lot of KBs are incomplete and they play a significant role
in creating a noisy sub-spaces making it difficult to infer
the spatial relation in parallel to the symbolic rule-based
coding. Kazemi and Poole (2018) and Kazemi and Elqursh
(2017) also show the limitation of expressiveness of trans-
lation based methods in a manner similar to dimensionality
reductions where the expressiveness is limited but regular-
ity is stronger with smaller number of dimensions. From
this view, it is plausible to see more further improvements
are necessary to be able to use KB embeddings as a knowl-
edge encoding representation. Such insights are also able
to explain the performance of tensor factorization methods
in KB embeddings such as Tucker factorization (Balazevic
et al. 2019b; 2019a).

3 Question-Answering Architectures

We briefly review some of the neural networks widely
used for question answering. Neural networks (LeCun
et al. 2015) enable learning of representation of data with
multiple levels of abstraction. These levels of abstrac-
tions enable deep learning methods to generalize infor-
mation, while also being able to narrow down to a
specific aspect of information. Different architectures of
neural networks, including Convolutional Neural Net-
works (CNNs), Recurrent Neural Networks (RNNs), and
more recently, transformer networks (Vaswani et al.
2017), are widely used for challenging learning tasks
(Devlin et al. 2019), including question answering (Iyyer
et al. 2014; Antol et al. 2015). Additionally, smaller
models are widely used for unsupervised pretraining
(Mikolov et al. 2013; Pennington et al. 2014). Atten-
tion mechanisms (Bahdanau et al. 2015) have proven
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useful for filtering useful content for retrieval tasks in
NQAs.

Memory Networks (Weston et al. 2015) and related
architectures including Neural Turing Machines (Graves
et al. 2014; Sukhbaatar et al. 2015) are neural networks
with external memory. They represent an extremely useful
paradigm for solving factoid question answering (Bordes
et al. 2015) and question answering involving reasoning
(Weston et al. 2015). Their novelty lies in their ability
to manipulate external memory locations, such as a
Knowledge Base (KB) or a Universal Schema (Riedel et al.
2013). Another advantage lies in their different level of
guidance applied (i.e, additional information incorporation
is easier than in standard neural architectures (Weston et al.
2015)). We show a simple architecture used for general
question-answering systems in Fig. 3.

3.1 Discussion

The general architecture of neural network based methods
with knowledge bases for question answering shows some
of the challenges along with the advantages offered by
the current architecture. The biggest bottleneck in both
performance and model’s scalability lies in the relation
to the KG since KGs are represented as independent
representation of entities and relations. The incorporation
of millions of entities is often infeasible and therefore a
filtering mechanism is often used. A pairwise similarity
metric (e.g., cosine similarity) is a simple choice for such
filtering but this leads to the problem of a large-number of

Question

[ Neural Question Answering System ]

Answer
Ranking

Machine
Comprehension

Information
Retrieval

Knowledge
Graph

Answer

Fig. 3 A general architecture for neural question answering,
comprised of three components: Information Retrieval, which
often interacts with Knowledge Graph in embedded form,
for generating answer candidates; Machine Comprehension and
Answer Ranking, which are mostly model-dependent. The
Machine Comprehension component is comprised of attending
over multiple layers of information to generate answer candidates.
The Answer Ranking is based on relevance to the question,
while the machine comprehension is focused on validating the
answer by attending over information sources. Memory networks
enable Machine Comprehension to interact directly with KB by
performing multi-stage retrieval in an iterative manner
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relevant entities being excluded from the problem context
and also the subset of KG being selected is already quite
similar to the current context and as such may not have
as much information value as other components of KG.
An ideal scenario would be a more compact representation
of the entire KG itself as provided by graph neural
network based methods (Wu et al. 2020) though a more
conditional filtering approach is preferable. Overall, graph
neural networks should be helpful in overcoming some of
the limitations of current KB-incorporated neural network
approaches.

4 Factoid Question Answering

Factoid Question Answering (FQA) refers to questions
which can be answered effectively by a phrase or an entity
of a KG. There are mainly two approaches to FQAs -
answering questions over a KG or obtaining answer from
natural text using open information extraction mechanisms.
Few approaches exist which attempt to combine both
resources or use multiple KBs (Fader et al. 2014). In this
section, we explore the factoid question answering methods
in the context of neural networks. Diefenbach et al. (2018)
is a more specific survey of factoid question answering
methods including non-neural network based method.

A Knowledge Graph-based factoid question answering
involves mapping the question in natural language into
triples of Knowledge Graphs. The distinction is made
between FQA systems mapping to just one triples and
mapping to multiple triples. The system which maps
to a single triple is called Simple Question Answering
(SimpleQA). Simple QA is a relatively easy problem
compared to other factoid and non-factoid QAs. They are
also the most frequent type of questions asked (Fader et al.
2013). A SimpleQA task involves answering a question such
as “What is the hometown of Obama?” which asks for a
direct topic of an entity “Obama” which is “hometown”.
The challenges to SimpleQA systems lie in how to
formulate a question in multiple ways, making the mapping
process hard to generalize. Another highly successful
paradigm to factoid question is semantic parsing (Berant
et al. 2013; Yih et al. 2014; Yao and Durme 2014). The
semantic parser transforms natural language into logical
form. It is capable of solving tricky questions involving
multiple relations and questions involving ordering.

4.1 Simple Question Answering (SimpleQA)

A common approach to solving a SimpleQA problem is
to extract a set of candidate answers from Knowledge
Base using relation extraction (Yao and Durme 2014,
2015; Yih et al. 2014; Bast and Haussmann 2015) or

distributed representation (Bordes et al. 2014; Dong et al.
2015; Xu et al. 2016).WikiAnswers (Fader et al. 2013) is
introduced as a paraphrasing dataset which helps generalize
for unseen words and question patterns. Another dataset,
SimpleQuestions, is introduced by (Bordes et al. 2015).
SimpleQA involves embedding of a knowledge base to
find the entity of the knowledge base which is closest to
the question’s representation as the answer. The general
framework for factoid question answering is: Given an input
question sentence S = {wj, wy, .., wp} and a sentence
representation s € R¥, we find the entity e in KB E such
that f(s,e) > f(s,e), e Ue=E.

A CNN-based approach can be applied to factoid QAs
(Yin et al. 2016b) with a two-step pipeline: entity linking,
and fact selection. Memory networks are applied in Bordes
et al. (2015) to simple question answering. The memory
network consists of a memory, and of a neural network
which is trained to query that memory, given some inputs.
It consists of four components: Input map (I); Output map
(O); Generalization (G); and Response (R). The workflow
is to store Freebase into memory and then train the model
to answer questions. A KB triplet is represented by a
bag-of-words model, with subject and relationship having
value 1 and object entries set to 1/k, where k is the
number of objects. The answer ranking is based on cosine
similarity. Lukovnikov et al. (2017) encode questions using
GRUs, and a word is represented as a concatenation of
Glove vectors (Pennington et al. 2014) with character level
encoding. He and Golub (2016) propose a character-level
approach based on the attention-enhanced encoder-decoder
architecture (Bahdanau et al. 2015). The model of He
and Golub (2016) consists of a character-level RNN-based
question encoder and an attention-enhanced RNN decoder,
coupled with two separate character-level CNN-based entity
label and predicate URI encoders.

A word-level RNN-based approach with emphasis on
possible paraphrases of questions is proposed by Dai et al.
(2016). The task of predicting subject and relation is
factorized into two sub-tasks: prediction of relation first,
followed by entity given the relation and question. Both (Dai
et al. 2016) and Yin et al. (2016b) improve the performance
of their approaches using a BILSTM-CRF tagging model
which is separately trained to label parts of the question as
entity mention or context (relation pattern).

4.2 Multi-Relation Question Answering

The formulation of multi-relation question answering is
driven by the necessity to map questions in natural
text to more than one triple in a knowledge base. For
challenging questions, such as “What mountain is the
highest in North America?,” which requires learning a
representation for mathematical function ‘“highest”, Xu
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et al. (2016) use textual data to filter out wrong answers.
A dependency parser-based query node expansion is
devised in Yao and Durme (2014) where ClueWeb text
is used to learn correlation between KB relations and
words using co-occurrence statistics with the alignment
model. Dong et al. (2015) uses multi-column CNNs to
understand questions from three different aspects: answer
path, answer context, and answer type. Then it learns
their distributed representations. Yang et al. (2014) maps
natural language to knowledge base by semi-automatically
generating mappings between knowledge base triples and
natural text, using information extraction methods.

Yin et al. (2016a) propose an encoder-decoder frame-
work model for factoid question answering, with ability to
query a KB. Jain (2016) pre-process Freebase to remove
dummy entities and to obtain more direct triples. An L-hop
factual memory network is constructed for computational
layers, where each layer accesses candidate facts and ques-
tion embedding.

A major constraint on factoid question answering models
is the data limitation. While there are multiple ways to
phrase a single question, the dataset size suffers from
sparseness and is unable to work with methods that
require a larger training datasize. SimpleQA have made
substantial progress recently, due to the introduction of the
SimpleQuestions (Bordes et al. 2015) dataset, making larger
neural network models trainable until convergence without
overfitting. While the focus on the SimpleQA task is to
generalize mapping of questions to facts, non-simple QA
tasks and multi-resource open domain QA tasks require
learning the mathematical and functional dependencies
required to answer the question. This makes the problem
considerably more complex, while at the same time, limited
training data constrains the model to use lesser parameters.
There are also very few methods which attempt to leverage
multiple knowledge sources.

4.3 Discussion

Factoid question answering relies on KBs for problem
formulation and are therefore tightly coupled with the role
of KBs in neural question answering. The incompleteness
of KBs is aggravating to factoid question answering systems
since the training data itself is dependent on KBs, and
incompleteness often leads to a larger uncertainty within
the models predictions framework. A viable alternative
is to consider usage of multiple KBs or pretrained
language model as a more general form of representation
to such problems. Such systems should be capable of
handling ambiguities often encountered in factoid question
answering.
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5 Attention-based Question Answering

Attention-based QA are extremely popular approaches
for multi-modal data problems such as Visual Question
Answering (VQA) and problems requiring deeper under-
standing of input data, such as Reading Comprehension
(RC) (also called Machine Comprehension). A common
approach to VQA concatenates visual and textual repre-
sentations obtained from CNN and RNN respectively, to
perform joint inference. This approach can be improved
upon by introduction of attention maps for input image, each
with embedding for a certain section of image, which are
then attended over using attention mechanism for learning a
joint embedding which then performs the final classification
or sequence generation task. Multimodal bilinear compact
pooling (Fukui et al. 2016) proposes an efficient but highly
optimized bilinear pooling over two data sources, enabling
a robust embedding for visual question answering.

R-Net (Wang et al. 2017) obtain significant performance
gains on RC dataset, SQUAD (Rajpurkar et al. 2016).
The difference between VQA and RC lies in decoding
stage of inference, where VQA decoding is done based
upon preset vocabulary. RC datasets require sampling
of input text to generate answer phrases or sequences.
This requires probabilistic decoding, using a combination
of language decoding and pointer networks (Vinyals
et al. 2015) to obtain answer effectively. R-Net uses
GRUs to learn embeddings for the input question and
sentence, which are then passed to gated attention-
based recurrent networks to determine importance of
information in the passage regarding a question. Each
passage representation incorporates aggregating matching
information from the whole question. Another gate is added
to determine the importance of passage parts relevant to
the question. Another attention to match over itself is used
to incorporate context into question-aware embeddings. A
Pointer Network is used to predict the start and end position
of the answer. The success of R-Net has given rise to
Reasonet (Shen et al. 2017), Fusionnet (Huang et al. 2018),
QA-Net (Yu et al. 2018), Macnet (Pan et al. 2018), and
S2-Net (Park et al. 2019).

While there are many different variants of visual question
answering and reading comprehension methods in literature
(see Antol et al. (Antol et al. 2015) for more details),
the underlying mechanism entails learning the fixed vector
representation for both question and input data (either
image or text), then using the attention or bilinear pooling
to learn joint embeddings. The learned vectors are used
for making predictions. We do not attempt to cover the
entire attention-based question-answering methods, due to
space and time constraints. Recently, it was found that
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using transfer-learning approaches (Devlin et al. 2019) often
significantly improves the performance of the model in their
introduction of BERT. This was utilized in multiple novel
works.

CoQA (Reddy et al. 2019) was adapted to BERT by Zhu
et al. (2018) to show superior results. BERT was proven to
be efficient for reading comprehension in multi-hop (Min
et al. 2019) and visual question answering (Li et al.
2019). Usage of BERT in the domain of Artificial Social
Intelligence (ASI) was shown by Zadeh et al. (2019).

The incomparable score issue of BERT which is caused
by the fact that original version of the algorithm considers
passages corresponding to the same question as independent
has been solved in the extension by Wang et al. (2019).
There are two specialized BERT models in the biology
domain question answering which start with the original
BERT model: BioBERT (Lee et al. 2019) is pre-trained
on biomedical articles from PMC full text articles and
PubMed abstracts, ClinicalBERT (Huang et al. 2019) is
pre-trained on clinical notes from the MIMIC-III data-
set. Alsentzer et al. (2019) extended the BioBERT model
by pre-training it on the full set of MIMIC-III notes and
a subset of discharge summaries. A merger of BERT
and Anserini (Yang et al. 2018) was created by Yang
et al. (2019) under the name BERTserini to facilitate the
ability to identify answers in an end-to-end fashion from
a large corpus of Wikipedia articles. A variation of BERT
on OpenBookQA (Mihaylov et al. 2018) was attempted

Table 4 Comparative analysis of attention-based question answering

by Banerjee et al. (2019) and was shown to have an 11.6%
improvement over the contemporary state of the art. On
the matter of optimization, ROBERTa (Liu et al. 2019)
and ALBERT (Lan et al. 2019) attempt to optimize BERT
in different ways. RoBERTa focuses on the pre-training
of BERT while ALBERT incorporates two parameter-
reduction techniques for the purpose of lower memory
consumption and faster training speed. We summarize the
attention-based question answering methods in Table 4.

5.1 KB incorporation in attention-based question
answering

The attention-based question answering approach is based
upon the neural-networks and is designed mostly in
an end-to-end fashion where using a Knowledge Base
(KB) is challenging primarily due to the overall size
of the KB. There exists some alternatives for using
KBs in attention based question answering, namely graph
networks (Schlichtkrull et al. 2018), and Memory Networks
(Weston et al. 2015). Another challenge still exists for
using KBs with attention-based question answering in the
form of filtering. Since neural networks rely on non-
linear transformation of input features, the size of input
features is limited. KBs are represented in terms of
entities and relations embeddings, which is intractable to
be incorporated as features into the neural networks. This
requires the QA model to limit the number of entities and

Study

Method

Problem Domain

Fukui et al. (2016)

R-Net (Wang et al. 2017)
Reasonet (Shen et al. 2017)
Fusionnet (Huang et al. 2018)
QANet (Yu et al. 2018)
Macnet (Pan et al. 2018)
S2-Net (Park et al. 2019)
SDNet (Zhu et al. 2018)

Min et al. (2019)

Liet al. (2019)

Zadeh et al. (2019)

BioBERT (Lee et al. 2019)
Clinical BERT (Huang et al. 2019)
Alsentzer et al. (2019)
BERTserini (Yang et al. 2019)
Banerjee et al. (2019)

RoBERTa (Liu et al. 2019)
ALBERT (Lan et al. 2019)

Bilinear pooling

GRUs

Multi-turn inference

Fusion of levels of abstraction
Self-attention

Transfer Learning
Self-matching networks
Attention Mechanism
Question Decomposition
Image to text transformation
BERT

BERT

BERT

BioBERT

BERT and IR

BERT and IR

BERT pretraining
Parameters reduction on BERT

Visual Question Answering
Reading Comprehension
Reading Comprehension
Reading Comprehension
Reading Comprehension
Abstractive Summarization
Reading Comprehension
Conversational Question Answering
Reading Comprehension
Visual Question Answering
Visual Question Answering
Biomedical Text

Clinical Text

Clinical Text

Reading Comprehension
Open Question Answering

NLP (multi-domain)
NLP (multi-domain)
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relations which can be considered as features, often done via
simple linear similarity measure (e.g., cosine similarity). It
is one of the primary factor for currently limited success of
KBs incorporation into attention-based QA models, where
using pre-trained language models (e.g., BERT) provides a
tractable model which contains some aspect of knowledge
in the form of its internal representations (Devlin et al.
2019).

6 Conclusion

In this paper, we surveyed multiple areas of neural question
answering, including Knowledge Base embeddings, neural
networks architecture, and various advances in factoid
and attention-based question answering. While Knowledge
Base (KB) embeddings methods are advanced enough to
be relied upon as information resources, we observe that
multitudes of works on question answering still rely on
older approaches. This leads to suboptimal performance
from KBs, making a proper evaluation difficult. We believe
this paper serves as an important milestone in syncing up
the progress across different fields, in order to leverage
strong, connected components for building richer sets of
question answering models. The advancements in research
in KB embeddings toward different geometrical spaces,
including hyperbolic spaces, suggests that neural networks
with representational capacity in such spaces with curvature
may be the next application for building question-answering
models.
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