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Abstract

In this paper, we aim to develop a scalable al-
gorithm to preserve differential privacy (DP) in
adversarial learning for deep neural networks
(DNNs), with certified robustness to adversarial
examples. By leveraging the sequential composi-
tion theory in DP, we randomize both input and
latent spaces to strengthen our certified robustness
bounds. To address the trade-off among model
utility, privacy loss, and robustness, we design an
original adversarial objective function, based on
the post-processing property in DP, to tighten the
sensitivity of our model. A new stochastic batch
training is proposed to apply our mechanism on
large DNNs and datasets, by bypassing the vanilla
iterative batch-by-batch training in DP DNNs. An
end-to-end theoretical analysis and evaluations
show that our mechanism notably improves the
robustness and scalability of DP DNNs.

1. Introduction

The pervasiveness of machine learning exposes new vulner-
abilities in software systems, in which deployed machine
learning models can be used (a) to reveal sensitive infor-
mation in private training data (Fredrikson et al., 2015),
and/or (b) to make the models misclassify, such as adversar-
ial examples (Carlini & Wagner, 2017). Efforts to prevent
such attacks typically seek one of three solutions: (1) Mod-
els which preserve differential privacy (DP) (Dwork et al.,
20006), a rigorous formulation of privacy in probabilistic
terms; (2) Adversarial training algorithms, which augment
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training data to consist of benign examples and adversar-
ial examples crafted during the training process, thereby
empirically increasing the classification accuracy given ad-
versarial examples (Kardan & Stanley, 2017; Matyasko &
Chau, 2017); and (3) Certified robustness, in which the
model classification given adversarial examples is theoreti-
cally guaranteed to be consistent, i.e., a small perturbation
in the input does not change the predicted label (Cisse et al.,
2017; Kolter & Wong, 2017; Salman et al., 2019).

On the one hand, private models, trained with existing
privacy-preserving mechanisms (Abadi et al., 2016; Shokri
& Shmatikov, 2015; Phan et al., 2016; 2017a;b; Yu et al.,
2019; Lee & Kifer, 2018), are unshielded under adversarial
examples. On the other hand, robust models, trained with
adversarial learning (with or without certified robustness to
adversarial examples), do not offer privacy protections to the
training data (Song et al., 2019). That one-sided approach
poses serious risks to machine learning-based systems; since
adversaries can attack a deployed model by using both pri-
vacy inference attacks and adversarial examples. To be safe,
a model must be i) private to protect the training data, and
ii) robust to adversarial examples. Unfortunately, there still
lacks of study on how to develop such a model, which thus
remains a largely open challenge (Phan et al., 2019).

Simply combining existing DP-preserving mechanisms and
certified robustness conditions (Cisse et al., 2017; Kolter
& Wong, 2017; Raghunathan et al., 2018) cannot solve the
problem, for many reasons. (a) Existing sensitivity bounds
(Phan et al., 2016; 2017a;b) and designs (Yu et al., 2019;
Lee & Kifer, 2018; Phan et al., 2019; Wu et al., 2019; Xu
et al., 2020) have not been developed to protect the training
data in adversarial training. It is obvious that using adversar-
ial examples crafted from the private training data to train
our models introduces a previously unknown privacy risk,
disclosing the participation of the benign examples (Song
etal.,, 2019). (b) There is an unrevealed interplay among DP
preservation, adversarial learning, and robustness bounds.
(c) Existing algorithms cannot be readily applied to address
the trade-off among model utility, privacy loss, and robust-
ness. (d) It is challenging in applying existing algorithms to
train large DNNs given large data (i.e., scalability); since,
they employ the vanilla iterative batch-by-batch training,
in which only a single batch of data instances can be used
at each training step, such that the privacy loss can be es-
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timated (Lee & Kifer, 2018; Phan et al., 2019; Yu et al.,
2019; Wu et al., 2019; Xu et al., 2020). That prevents us
from applying scalable methods, e.g., distributed adversar-
ial training (Goyal et al., 2017), to achieve the same level
of DP on large DNNs and datasets. Therefore, bounding the
robustness of a model (which both protects the privacy and
is robust against adversarial examples) at scale is nontrivial.

Contributions. Motivated by this open problem, we de-
velop a novel stochastic batch (StoBatch) mechanism to: 1)
preserve DP of the training data, 2) be provably and practi-
cally robust to adversarial examples, 3) retain high model
utility, and 4) be scalable to large DNNs and datasets.

e In StoBatch, privacy-preserving noise is injected into in-
puts and hidden layers to achieve DP in learning private
model parameters (Theorem 1). Then, we incorporate en-
semble adversarial learning into our mechanism to improve
the decision boundary under DP protections, by introducing
a concept of DP adversarial examples crafted using benign
examples in the private training data (Eq. 8). To address
the trade-off between model utility and privacy loss, we pro-
pose a new DP adversarial objective function to tighten the
model’s global sensitivity (Theorem 3); thus, we reduce the
amount of noise injected into our function, compared with
existing works (Phan et al., 2016; 2017a;b). An end-to-end
privacy analysis shows that, by slitting the private train-
ing data into disjoint and fixed batches across epochs, the
privacy budget in our StoBatch is not accumulated across
gradient descent-based training steps (Theorems 3, 4).

o After preserving DP in learning model parameters, we es-
tablish a new connection between DP preservation in adver-
sarial learning and certified robustness. Noise injected into
different layers is considered as a sequence of randomizing
mechanisms, providing different levels of robustness. By
leveraging the sequential composition theory in DP (Dwork
& Roth, 2014), we derive a generalized robustness bound,
which is a composition of these levels of robustness in both
input and latent spaces (Theorem 5 and Corollary 1), com-
pared with only in the input space (Salman et al., 2019) or
only in the latent space (Lecuyer et al., 2018).

e To bypass the iterative batch-by-batch training, we de-
velop a stochastic batch training. In our algorithm, disjoint
and fixed batches are distributed to local trainers, each of
which learns DP parameters given its local data batches. A
synchronous scheme can be leveraged to aggregate gradients
observed from local trainers; thus enabling us to efficiently
compute adversarial examples from multiple data batches
at each iteration. This allows us to scale our mechanism to
large DNNs and datasets, under the same DP guarantee. Rig-
orous experiments conducted on MNIST, CIFAR-10 (Lecun
et al., 1998; Krizhevsky & Hinton, 2009), and (TinyIma-
geNet) datasets show that our mechanism notably enhances
the robustness and scalability of DP DNNs.

2. Background

In this section, we revisit DP, adversarial learning, and cer-
tified robustness. Let D be a database that contains [NV
tuples, each of which contains data z € [—1,1]¢ and a
ground-truth label y € Zy (one-hot vector), with K pos-
sible categorical outcomes y = {y1,...,yx}. A single
true class label y, € y given x € D is assigned to only
one of the K categories. On input x and parameters 6,
a model outputs class scores f : R? — RX that maps
x to a vector of scores f(z) = {fi(x),..., fx(x)} st
Vk € [1,K] : fi(z) € [0,1] and S, fr(x) = 1. The
class with the highest score value is selected as the pre-
dicted label for z, denoted as y(z) = maxpex fr(x). A
loss function L( f(x),y) presents the penalty for mismatch-
ing between the predicted values f(x) and original values
y. The notations and terminologies used in this paper are
summarized in Table 1 (Appendix A). Let us briefly revisit
DP DNNS, starting with the definition of DP.

Definition 1 (¢, 0)-DP (Dwork et al., 2006). A random-
ized algorithm A fulfills (e, §)-DP, if for any two databases
D and D’ differing at most one tuple, and for all O C
Range(A), we have:

Pr[A(D) =0] <ePrlA(D')=0]+§ (1)

€ controls the amount by which the distributions induced by
D and D’ may differ; 6 is a broken probability.

DP also applies to general metrics p(D,D’) < 1, where
p can be [,-norms (Chatzikokolakis et al., 2013). DP-
preserving algorithms in DNNs can be categorized into three
lines: 1) introducing noise into parameter gradients (Abadi
et al., 2016; 2017; Shokri & Shmatikov, 2015; Yu et al.,
2019; Lee & Kifer, 2018; Phan et al., 2019), 2) injecting
noise into objective functions (Phan et al., 2016; 2017a;b),
and 3) injecting noise into labels (Papernot et al., 2018).

Adversarial Learning. For some target model f and inputs
(2, Yz ), the adversary’s goal is to find an adversarial exam-
ple 2% = 2 4 o, where « is the perturbation introduced by
the attacker, such that: (1) 22" and z are close, and (2) the
model misclassifies 229, i.e., y(z*%) # y(z). In this pa-
per, we consider well-known lye (1 2 o0} (1t)-norm bounded
attacks (Goodfellow et al., 2014), where p is the radius
of the p-norm ball. To improve the robustness of models,
prior work focused on two directions: 1) Producing correct
predictions on adversarial examples, while not compromis-
ing the accuracy on legitimate inputs (Kardan & Stanley,
2017; Matyasko & Chau, 2017; Wang et al., 2016; Papernot
et al., 2016b;a; Gu & Rigazio, 2014; Papernot & McDaniel,
2017; Hosseini et al., 2017); and 2) Detecting adversarial
examples (Metzen et al., 2017; Grosse et al., 2017; Xu et al.,
2017; Abbasi & Gagné, 2017; Gao et al., 2017). Among
existing solutions, adversarial training appears to hold the
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greatest promise for learning robust models (Tramer et al.,
2017). A well-known algorithm was proposed in (Kurakin
et al., 2016b). At every training step, new adversarial exam-
ples are generated and injected into batches containing both
benign and adversarial examples (Alg. 2, Appendix C).

Certified Robustness and DP. Recently, some algorithms
(Cisse et al., 2017; Kolter & Wong, 2017; Raghunathan
etal., 2018; Cohen et al., 2019; Li et al., 2018; Salman et al.,
2019) have been proposed to derive certified robustness, in
which each prediction is guaranteed to be consistent under
the perturbation ¢, if a robustness condition is held. Given
a benign example x, we focus on achieving a robustness
condition to I,,(x)-norm attacks, as follows:

Vo € ly(p) : fr(z +a) > g;;ggfi(x + ) (2)

where k = y(x), indicating that a small perturbation « in the
input does not change the predicted label y(z). To achieve
the robustness condition in Eq. 2, (Lecuyer et al., 2018)
introduce an algorithm, called PixelDP. By considering an
input x (e.g., images) as databases in DP parlance, and
individual features (e.g., pixels) as tuples, PixelDP shows
that randomizing the scoring function f(z) to enforce DP on
a small number of pixels in an image guarantees robustness
of predictions. To randomize f(x), random noise o, is
injected into either input x or an arbitrary hidden layer,
resulting in the following (¢, d,-)-PixelDP condition:

Lemma 1 (e,,0,)-PixelDP (Lecuyer et al., 2018). Given
a randomized scoring function f(x) satisfying (e, d,)-
PixelDP w.rt. a l,-norm metric, we have:

Vk,Va € l,(1) :Efy(z) < e“Efp(zr+a)+d ()

where E fi, () is the expected value of fi(x), €, is a prede-
fined budget, §, is a broken probability.

At the prediction time, a certified robustness check is imple-
mented for each prediction, as follows:

Epp fr(z) > €2 %i)éﬁubfi(m) +(14e")o, @
where I@lb and ]Eub are the lower and upper bounds of the
expected value Ef (z) = LN f(@)n, derived from the
Monte Carlo estimation with an n-confidence, given n is
the number of invocations of f(z) with independent draws
in the noise o,. Passing the check for a given input guar-
antees that no perturbation up to {,(1)-norm can change
the model’s prediction. PixelDP does not preserve DP in
learning private parameters 6 to protect the training data.

3. Stochastic Batch (StoBatch) Mechanism

StoBatch is presented in Alg. 4 (Appendix D). Our DNN
(Fig. 1la) is presented as: f(z) = g(a(z,01),02), where

a(x, 61) is a feature representation learning model with x as
an input, and g will take the output of a(x, 61 ) and return the
class scores f(x). Ata high level, there are four key compo-
nents: (1) DP a(z, 61 ), which is to preserve DP in learning
the feature representation model a(x, 61 ); (2) DP Adversar-
ial Learning, which focuses on preserving DP in adversarial
learning, given DP a(z, 0;); (3) Certified Robustness and
Verified Inferring, which are to compute robustness bounds
given an input at the inference time; and (4) Stochastic
batch training (Fig. 1b). To establish theoretical results in
DP preservation and in deriving robustness bounds, let us
first present our mechanism in the vanilla iterative batch-by-
batch training (Alg. 1). The network f (Lines 2-3, Alg. 1)
is trained over 7 training steps. In each step, a disjoint and
fixed batch of m perturbed training examples and a disjoint
and fixed batch of m DP adversarial examples, derived from
D, are used to train our network (Lines 4-12, Alg. 1).

3.1. DP Feature Representation Learning

Our idea is to use auto-encoder to simultaneously learn DP
parameters ¢, and ensure that the output of a(x, 6) is DP,
since: (1) It is easier to train, given its small size; and (2) It
can be reused for different predictive models. A typical data
reconstruction function (cross-entropy), given a batch B, at
the training step ¢ of the input x;, is as follows: Rp, (61) =
S ien, Sy [wijlog(1 + e~ %) 4 (1 — @) log(1 +

e?17h4)], where h; = 67 z;, the hidden layer h; of a(z, 6,)
given the batch B is denoted as hy g, = {07 x;},,eB,, and
T; = 01 h; is the reconstruction of x;.

To preserve €1-DP in learning 6; where ¢; is a privacy bud-
get, we first derive the 1st-order polynomial approximation
of R g, (61) by applying Taylor Expansion (Arfken, 1985),
denoted as R g, (61). Then, Functional Mechanism (Zhang
et al., 2012) (revisited in Appendix B) is adapted to in-
ject noise into coefficients of the approximated function

= d (0)

RBt(el) = ineBt Zj:l 212:1 Zi (Gth) >
where Flj(Z) = T4 log(l + e_Z), F2]( ) =
(I — x;)log(l + e*), we have that: Rp,(01) =

Zz EBfZ |:10g2+91]( x’LJ) :| In RBt(el) pa-

rameters 61 derlved from the function optimization need
to be e1-DP. To achieve that, Laplace noise %Lap(%z)

l‘ij)hi, where Ay is the

is injected into coefficients (5 —

sensitivity of Rz, (1), as follows:

ﬁBt(el): Z Z [913( x”)h + lL (Aef)ﬂ

T, €B¢ j=1

> [Z 501h:) - widi] 5)

z;€By  j=1

To ensure that the computation of Z; does not access the
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Figure 1. Stochastic Batch mechanism.

original data, we further inject Laplace noise %Lap(%z)
into x;. This can be done as a preprocessing step for all the
benign examples in D to construct a set of disjoint batches
B of perturbed benign examples (Lines 2 and 5, Alg. 1).
The perturbed function now becomes:

R, (0h) = Z [Zd: (=601;h; mﬁ%} (6)

7,€B, J=1

where Z; = z; + X Lap(A Y.hi = 01T, by = hy +
2 Lap( Af ), and Z; = 01 h;. Let us denote [3 as the number
of neurons in hy, and h; is bounded in [—1, 1], the global

sensitivity Ax is as follows:

Lemma 2 The global sensitivity of R over any two neigh-
boring batches, By and By, is: Ar < d(5 + 2).

All the proofs are in Appendix. By setting Ag = d(5 + 2),
we show that the output of a(-), which is the perturbed
affine transformation h, 5 = {677; + %Lap(%)}@eﬁ’

2Ax — . .
TR and ||61|1 1 is the maxi

mum 1-norm of #;’s columns (Operator norm, 2018). This
is important to tighten the privacy budget consumption in
computing the remaining hidden layers g(a(x, 61),63). In
fact, without using additional information from the original
data, the computation of g(a(x, ), 02) is also (€1 /7)-DP.

is (€1/7)-DP, given y =

Similarly, the perturbatlon of each benign example z turns
By = {%; + x; + 2 Lap(8%)},,ep, into a (e1/7x)-DP
batch, with v, = Ag / m. We do not use the post-processing
property of DP to estimate the DP guarantee of HlE based
upon the DP guarantee of By, since €1/ < €1/7x in prac-
tice. So, the (€1 /7)-DP h, 3, provides a more rigorous DP
protection to the computation of g(-) and to the output layer.

Lemma 3 The computation of the batch B, as the input
layer is (e1/7vx)-DP, and the computation of the affine trans-
formation h, 5 is (€1/7)-DP,

Departing from the vanilla Functional Mechanism, in which
only grid search-based approaches can be applied to find
DP-preserving 0 with a low loss Ry ,(01), our following
Theorem 1 shows that gradient descent based optimizing

ﬁgt (01) is (e1/7x+e€1)-DP in learning 6, given an (&1 /7x)-
DP B; batch. In fact, in addition to h;, h;, Z;, based on
Lemma 3, we further show that the computation of gra-
6Ry, (61 m T _
7539*15 = S (- ).
and descent operations given the (€1 /7y )-DP B, batch are
(e1/7x)-DP, without incurring any additional information
from the original data. As a result, gradient descent-based
approaches can be applied to optimize ﬁgt (61) in Alg. 1,
since all the computations on top of B, are DP, without
using any additional information from the original data.

dients, i.e., Vj € [1,d] :

Theorem 1 The gradient descent-based optimization of
Rz, (6h) preserves (e1/7x + €1)-DP in learning 6.

3.2. Adversarial Learning with Differential Privacy

To integrate adversarial learning, we first draft DP adversar-
ial examples T7 7% using perturbed benign examples T, with
an ensemble of attack algorithms A and a random pertur-
bation budget u; € (0, 1], at each step ¢ (Lines 6-11, Alg.
1). This will significantly enhances the robustness of our
models under different types of adversarial examples with
an unknown adversarial attack size p.

7 =75+ - sign (Va, £(£(35,0),0(7,)) ) (D)
with y(T;) is the class prediction result of f(Z;) to avoid
label leaking of x; during the adversarial example crafting.
Given a set of DP adversarial examples E:dv, training the

auto-encoder with Eidv preserves (€1 /vx + €1)-DP.

Theorem 2 The gradient descent-based optimization of
Rgus (01) preserves (€1/7x + €1)-DP in learning 6.
t

The proof of Theorem 2 is in Appendix J, Result 4. It can
be extended to iterative attacks as: fj‘da’ =Ty,

2, =7+ Tﬁ sign (Vs £(£(@,0),9(@)) ) )
where y(*adv) is the prediction of f (*E‘dtv ,0),te (0,7, —1].

Second, we propose a novel DP adversarial objective func-
tion L, (A2), in which the loss function £ for benign exam-
ples is combined with an additional loss function T for DP
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Algorithm 1 Adversarial Learning with DP

Input: Database D, loss function L, parameters 6, batch
size m, learning rate g, privacy budgets: €; and eo, robust-
ness parameters: €,, AY, and Af, adversarial attack size fi,,

the number of invocations 7, ensemble attacks A, parame-
ters ¢ and &, and the size |h,| of h,

22)]4, xo = [Lap(£2))?,

1: Draw Noise x; < [Lap(
Xs < [Lap(5£2)]1P|

2: Randomly Initialize 0 = {61,62}, B =

{Bi1,...,By/m} st. VB € B : Bis a batch with the
sizem, BiN...NBy/py =0,and By U...UBy/,, =
D, B = {By,...,Bnm} where Vi € [I,N/m] :

B ={Z+ x+X},cp,

3: Construct a deep network f with hidden layers {h; +
%, ..., hy}, where h; is the last hidden layer

4 forte[T]do o

5:  Take abatch B; € B where i = t%(N/m), By +

B;

6. Ensemble DP Adversarial Examples:

7:  Draw Random Perturbation Value 1, € (0, 1]

8

9

Take a batch B, € B, Assign Eidv 0
for/ € Ado

10 Take the next batch B, C B, with the size m/|A|

11: VZ; € B,: Craft T *adv by using attack algorithm
Al with log (p12), Baclv « B Uz
12:  Descent: 6, < 6; — gtV91RB UBad\(Gl) Oy <
02 — 0V, L B, Udev(Gg) with the noise X2

Output: € = (1 + 61/%: + €1/ + €2)-DP parameters
6 = {61, 05}, robust model with an ¢, budget

adversarial examples, to optimize the parameters 6. The
objective function L g, (02) is defined as follows:

( Z E f(@;,02), )

T;€B;

+£ZT

Tve B"d‘

LB UBad\ (02)

T, 0).05)) )

where £ is a hyper-parameter. For the sake of clarity, in Eq.
9, we denote y; and y; as the true class labels y,;; and y,;; of

examples x; and x; mad" and x; share the same label .

Now we are ready to preserve DP in objective functions
L(f(Ti,02),y:) and T (f (T 72" 65), y;) in order to achieve
DP in learning 6s. S1nce the objective functions use
the true class labels y; and y;, we need to protect the
labels at the output layer. Let us first present our ap-
proach to preserve DP in the objective function £ for be-
nign examples. Given h,; computed from the Z; through
the network with W, is the parameter at the last hid-
den layer h,. Cross-entropy function is approximated

as: Lg (02) = S 1 2z, [MriWar — (Wi W )yir. —
S Wosl + SeWo?) = Ly, (62) — Lo, 00)
where £, 5 (92) =Y, >z [haeiWai — 5|hai Wk | +
é(thﬂk)z] , and L‘Qﬁt (92) = Z?:l ZEI (Wi ) Wik
Based on the post-processing property of DP (Dwork &
Roth, 2014), h, 5 = {hx}; 5, is (€1/7)-DP, since the
computation of h, 5, is (¢1/7)-DP (Lemma 3). Hence, the

optimization of £, 5 B, (92) does not disclose any informa-

Pr(Lyp,(02)) _ Pr(h.g,)
tion from the training data, and - PrL B’(02)) = Prbg)

<

e“1/7, given neighboring batches B, and F;. Thus, we only
need to preserve €3-DP in the function £, (62), which ac-
cesses the ground-truth label y;5. Given coefficients h;y;x,
the sensitivity Az of £, (62) is computed as:

Lemma 4 Let B, and E; be neighboring batches of benign
examples, we have the following inequality: Aps <
where |h| is the number of hidden neurons in h,.

The sensitivity of our objective function is notably smaller
than the state-of-the-art bound (Phan et al., 2017b), which
is crucial to improve our model utility. The perturbed func-
tions become: ZE (62) = L5, (92) — Lyp 5, (02), where

L = Zszl Zﬁ ( milik + Lap( ALQ ))Wﬂ-k.

ﬁzﬁt (‘92)
Theorem 3 Algorithm 1 preserves (€1/7 + €2)-DP in the
gradient descent-based optimization of Lg(@g).

We apply the same technique to preserve (61 /7 + €2)-DP
in the optimization of the function Y ( f ( Y, 62),y;) over

. As the perturbed
functions £ and Y are always optimized given two disjoint

the DP adversarial examples 75" € Bt

batches B, and E:dv, the privacy budget used to preserve DP
in the adversarial objective function L, (02) is (e1/7 + €2),
following the parallel composition property (Dwork & Roth,
2014). The total budget to learn private parameters =
{91 N 92} = arg min{91792} (RB UBadv (91) + L ﬁd» (02))
ise=(e1+€1/7x +€1/7+ €2) (Llne 12, Alg. 1).

DP at the Dataset Lezf(gl. Our mechanism achieves DP at
the batch level B, U B,  given a specific training step ¢. By
constructing disjoint and fixed batches from D, we leverage
both parallel composition and post-processing properties of
DP to extend the result to e-DP in learning {01, 05} on D
across T training steps. There are three key properties in our
model: (1) It only reads perturbed inputs B; and perturbed
coefficients h;, which are DP across 7 training steps with a
single draw of Laplace noise (i.e., no further privacy leak-
age); (2) Given N/m disjoint batches in each epoch, VZ,
7 is included in one and only one batch, denoted B, € B.
As aresult, the DP guarantee to Z in D is equivalent to the
DP guarantee to = in B,; since the optimization using any
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other batches does not affect the DP guarantee of Z, even the
objective function given B, can be slightly different from
the objective function given any other batches in B; and
(3) All the batches are fixed across T training steps to pre-
vent additional privacy leakage, caused by generating new
and overlapping batches (which are considered overlapping
datasets in the parlance of DP) in the typical training.

Theorem 4 Algorithm I achieves (e1 +¢€1/vx+€1/7+€2)-
DP parameters 6 = {01, 02} on the private training data D
across T gradient descent-based training steps.

3.3. Certified Robustness

Now, we establish the correlation between our mechanism
and certified robustness. In the inference time, to derive the
certified robustness condition against adversarial examples
z + a, ie., Va € 1,(1), PixelDP randomizes the function
f(x) by injecting robustness noise o into either input x or a
2) or b’ = h+ Lap(2+),
where AZ and A" are the sen51t1v1t1es of z and h, measuring
how much z and h can be changed given the perturbation
a € Iy(1) in the input . Monte Carlo estimation of the
expected values Ef(x), H:Zlbfk(x), and ]]:Zubfk(x) are used
to derive the robustness condition in Eq. 4.

hidden layer, i.e., ' = x+Lap(

On the other hand, in our mechanism, the privacy noise
op includes Laplace noise injected into both input z,
ie., Lap(AR), and its affine transformation h, i.e

%Lap(éf). Note that the perturbation of Z2§t (62)

is equivalent to £2§t(02) = Ziil ZE (hrsyix Wk +
1 Lap(A“ YWrk). This helps us to avoid injecting the
noise dlrectly into the coefficients h,;y;x. The correlation
between our DP preservation and certified robustness lies
in the correlation between the privacy noise o, and the
robustness noise o;..

We can derive a robustness bound by projecting the privacy
noise o, on the scale of the robustness noise o,. Given

the input z, let k = TE
that: T = x + Lap(K;A* / er By applying a group privacy
size k (Dwork & Roth, 2014; Lecuyer et al., 2018), the
scoring function f(x) satisfies €,-PixelDP given «v € 1,,(k),
or equivalently is ke,-PixelDP given a € [,(1), 6, = 0. By
applying Lemma 1, we have

VEVa € l,(k) : Efy(z) < e Efi(z + a),
or YE,Ya € 1,(1) : Efy(z) < "B fi(z + )

With that, we can achieve a robustness condition against
I, (k)-norm attacks, as follows:

Eup fr(z) > e ?ﬁ% B fi(x) (10

with the probability > n,-confidence, derived from the
Monte Carlo estimation of Ef(z). Our mechanism also

perturbs h (Eq. 6) Given ¢ =

meq
ho=h+ Lap(2= ) Therefore, the scoring function f(x)
also satisfies e,n-PlxelDP given the perturbation a € 1,(¢).
In addition to the robustness to the [,,(x)-norm attacks, we
achieve an additional robustness bound in Eq. 10 against
l,(p)-norm attacks. Similar to PixelDP, these robustness
conditions can be achieved as randomization processes in
the inference time. They can be considered as two indepen-
dent and certified defensive mechanisms applied against two
l,-norm attacks, i.e., {,,(x) and [, ().

One challenging question here is: “What is the general ro-
bustness bound, given k and p?” Intuitively, our model is
robust to attacks with a € ,(k + ¢). We leverage the the-
ory of sequential composition in DP (Dwork & Roth, 2014)
to theoretically answer this question. Given .S indepen-
dent mechanisms M, ..., Mg, whose privacy guarantees
are €1, ...,es-DP with o € [,,(1). Each mechanism M,
which takes the input « and outputs the value of f(z) with
the Laplace noise only injected to randomize the layer s (i.e.,
no randomization at any other layers), denoted as f*(x), is
defined as: Vs € [1,5], M f(z) : R? — f3(z) € RE.
We aim to derive a generalized robustness of any composi-

tion scoring function f(My, ..., M;|z) : HS 1 M f(x)
bounded in [0, 1], defined as follows:
fMy, . Mglz) iR = T @) eRE D

s€1,5]

Our setting follows the sequential composition in DP
(Dwork & Roth, 2014). Thus, we can prove that the ex-
pected value Ef(My,..., Mg|z) is insensitive to small
perturbations @ € 1,(1) in Lemma 5, and we derive our
composition of robustness in Theorem 5, as follows:

Lemma 5 Given S independent mechanisms Mai, ...,
Mg, which are €1, . . ., e5-DP w.r.t a l,-norm metric, then
the expected output value of any sequential function f of
them, i.e., f(M1,...,Mg|z) € [0,1], satisfies:

Va € l,(1) :Ef(Mq,..., Mglz) <

6(2?:1 Es)Ef(Mh s Mslr +a)

Theorem 5 (Composition of Robustness) Given S inde-
pendent mechanisms My, ..., Mg. Given any sequen-
tial function f(Mq,...,Mgl|z), and let Ky, and By,
are lower and upper bounds with an n-confidence, for

the Monte Carlo estimation of Ef(M, ..., Mg|z) =
T M M) = 3 (T 2 (@)a).
Va,if 3k € K : By fr.(My, ..., Mglz) >
ez(Ef:leS)mi}éﬁubfi(/\/ll,...,/\/lsu), (12)
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then the predicted label k = argmaxy k fe(My,
..., Mglz), is robust to adversarial examples
x + a Ya € 1,(1), with probability > n,

by satisfying: Efe(My,... ., Mglz + a) >
max;.iz Bfi(My,...,Mglz + «), which is the tar-
geted robustness condition in Eq. 2.

There is no ns-confidence for each mechanism s, since we
do not estimate the expected value B fs () independently.
To apply the composition of robustness in our mechanism,
the noise injections into the input x and its affine transforma-
tion h can be considered as two mechanisms M, and M,
sequentially applied as (My,(x), M (z)). When My (x)
is applied by invoking f(z) with independent draws in the
noise Y2, the noise x; injected into x is fixed; and vice-
versa. By applying group privacy (Dwork & Roth, 2014)
with sizes & and ¢, the scoring functions f%(x) and f"(z),
given M, and M,,, are re,-DP and @e,-DP with a € [,,(1).
With Theorem 5, we have a generalized bound as follows:

Corollary 1 (StoBatch Robustness). Vx, if 3k € K :
B fr.(Mp, Mg|z) > €*r max;iz, Eup fi( My, My |z)
(i.e., Eq. 12), then the predicted label k of our function
f(Mp, Mg|x) is robust to perturbations o € l,(k + ¢)
with the probability > n, by satisfying

Vo€ ly(k + @) : BEfs(My, M|z + ) >
miilﬁlfi(/\/lm/\/lm\x—i-a)

Compared with state-of-the-art robustness analysis (Salman
et al., 2019; Lecuyer et al., 2018), in which either the input
space or the latent space are randomized, the advantage of
our robustness bound is the composition of different levels
of robustness in both input and latent spaces.

3.4. Verified Inference

At the inference time, we implement a verified inference
(Alg. 3, Appendix D) to return a robustness size guarantee
for each example z, i.e., the maximal value of xk + ¢, for
which the robustness condition in Corollary 1 holds. Max-
imizing k + ¢ is equivalent to maximizing the robustness
epsilon €,, which is the only parameter controlling the size
of k + (; since, all the other hyper-parameters, i.e., Ag,
m, €1, €, b1, 02, AT, and Aﬁ are fixed given a well-trained
model f(x):

ARET 1 2
("i + (p)maw = InE?JX me (E + ILL)

s.t. By fro(x) > e mi’gﬁub fi(z) (e, Eq. 12) (13)

The prediction on an example x is robust to attacks up to
(k+©)maz- The failure probability 1-r) can be made arbitrar-
ily small by increasing the number of invocations of f(x),

with independent draws in the noise. Similar to (Lecuyer
et al., 2018), Hoeffding’s inequality is applied to bound the
approximation error in I f; () and to search for the robust-
ness bound (K + ¢)maz. We use the following sensitivity
bounds A" = 3|0, || Where |61 | is the maximum 1-
norm of #;’s rows, and AT = ud for [, attacks. In the
Monte Carlo Estimation of I f (z), we also propose a new
method to draw independent noise to control the distribution
shifts between training and inferring, in order to improve
the verified inference effectiveness, without affecting the
DP protection and the robustness bounds (Appendix N).

3.5. Distributed Training

In the vanilla iterative batch-by-batch training for DP DNNGs,
at each step, only one batch of examples can be used to train
our model, so that the privacy loss can be computed (Lee &
Kifer, 2018; Yu et al., 2019; Wu et al., 2019; Xu et al., 2020).
Parameters #; and 6, are independently updated (Lines
4-12, Alg. 1). This prevents us from applying practical
adversarial training (Xie et al., 2019; Goyal et al., 2017),
in which distributed training using synchronized SGD on
many GPUs (e.g., 128 GPUs) is used to scale adversarial
training to large DNNs. Each GPU processes a mini-batch
of 32 images (i.e., the total batch size is 128 x 32 = 4, 096).

To overcome this, a well-applied technique (Yu et al., 2019)
is to fine-tune a limited number of layers, such as a fully con-
nected layer and the output layer, under DP of a pre-trained
model, i.e., VGGI16, trained over a public and large dataset,
e.g., ImageNet, in order to handle simpler tasks on smaller
private datasets, e.g., CIFAR-10. Although this approach
works well, there are several utility and security concerns:
(1) Suitable public data may not always be available, espe-
cially for highly sensitive data; (2) Trojans can be implanted
in the pre-trained model for backdoor attacks (Liu et al.,
2018); and (3) Public data can be poisoned (Shafahi et al.,
2018). Fine-tuning a limited number of layers may not be
secure; while fine-tuning an entire of a large pre-trained
model iteratively batch-by-batch is still inefficient.

To address this bottleneck, we leverage the training recipe
of (Xie et al., 2019; Goyal et al., 2017) to propose a dis-
tributed training algorithm, called StoBatch (Fig. 1b), in
order to efficiently train large DP DNNss in adversarial learn-
ing, without affecting the DP protection (Alg. 4, Appendix
D). In StoBatch, fixed and disjoint batches B are distributed
to N/(2m) local trainers, each of which have two batches
{Bi1, Bia} randomly picked from B with i € [1, N/(2m)]
(Line 4, Alg. 4). Ateach training step ¢, we randomly pick N
local trainers, each of which gets the latest global parameters
0 from the parameter server. A local trainer ¢ will compute
the gradients V;6; and V ;65 to optimize the DP objective
functions R and L using its local batch B;; and ensemble
DP adversarial examples crafted from B;, (Lines 5-14, Alg.
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4). The gradients will be sent back to the parameter server
for a synchronized SGD (Lines 15-16, Alg. 4), as follows:
6‘1 — 01—% Zie[l,N] V,-Gl, 92 — 92—% Zie[l,N] Vzeg
This enables us to train large DNNs with our DP adversarial
learning, by training from multiple batches simultaneously
with more adversarial examples, without affecting the DP
guarantee in Theorem 4; since the optimization of one batch
does not affect the DP protection at any other batch and at
the dataset level D across T training steps (Theorem 4).

In addition, the average errors of our approximation func-
tions are always bounded, and are independent of the num-
ber of data instances NV in D (Appendix O). This further
ensures that our functions can be applied in large datasets.

Our approach can be extended into two different comple-
mentary scenarios: (1) Distributed training for each local
trainer 4, in which the batches {B;;, B2} can be located
across M GPUs to efficiently compute the gradients V;6; =
ﬁ Zje[l,M] Vmﬂl and Vzeg = ﬁ Zje[l,M] Vi’]ﬂg; and
(2) Federated training, given each local trainer can be con-
sidered as an independent party. In this setting, an indepen-
dent party can further have different sizes of batches. As
long as the global sensitivities Az and A5 are the same
for all the parties, the DP guarantee in Theorem 4 does hold
given D be the union of all local datasets from all the parties.
This can be achieved by nomalizing all the inputs x to be in
[—1, 1] This is a step forward compared with the classical
federated learning (McMahan et al., 2016). We focus on
the distributed training setting in this paper, and reserve the
federated learning scenarios for future exploration.

4. Experimental Results

We have conducted an extensive experiment on the MNIST,
CIFAR-10, and Tiny ImageNet datasets. Our validation fo-
cuses on shedding light into the interplay among model util-
ity, privacy loss, and robustness bounds, by learning 1) the
impact of the privacy budget € = (€1 + €1 /v« +€1/7 + €2),
2) the impact of attack sizes p,, and 3) the scalability of our
mechanism. We consider the class of [,,-bounded adver-
saries. All statistical tests are 2-tail t-tests. Please refer to
the Appendix Q for a complete analysis of our experimen-
tal results, including Figures 2 - 9. The implementation of
our mechanism is available in TensorFlow'.

Baseline Approaches. Our StoBatch mechanism is evalu-
ated in comparison with state-of-the-art mechanisms in: (1)
DP-preserving algorithms in deep learning, i.e., DP-SGD
(Abadi et al., 2016), AdLM (Phan et al., 2017b); in (2)
Certified robustness, i.e., PixelDP (Lecuyer et al., 2018);
and in (3) DP-preserving algorithms with certified robust-
ness, i.e., SecureSGD given heterogeneous noise (Phan
et al., 2019), and SecureSGD-AGM (Phan et al., 2019)

1https ://github.com/haiphanNJIT/StoBatch

given the Analytic Gaussian Mechanism (AGM) (Balle &
Wang, 2018). To preserve DP, DP-SGD injects random
noise into gradients of parameters, while AALM is a Func-
tional Mechanism-based approach. PixelDP is one of the
state-of-the-art mechanisms providing certified robustness
using DP bounds. SecureSGD is a combination of PixelDP
and DP-SGD with an advanced heterogeneous noise distri-
bution; i.e., “more noise” is injected into “more vulnerable”
latent features, to improve the robustness. The baseline
models share the same design in our experiment. Four
white-box attacks were used, including FGSM, I-FGSM,
Momentum Iterative Method (MIM) (Dong et al., 2017),
and MadryEtAl (Madry et al., 2018). Pure robust training
and analysis can incur privacy leakage (Song et al., 2019);
thus, in this study, similar algorithms to (Salman et al., 2019)
do not fit as comparable baselines, since they may not be
directly applicable to DP DNNs.

Model Configuration (Appendix P). It is important to note
that € [—1,1]% in our setting, which is different from a
common setting, = € [0, 1]%. Thus, a given attack size j, =
0.3 in the setting of z € [0, 1]¢ is equivalent to an attack
size 2/, = 0.6 in our setting. The reason for using z €
[~1,1]% is to achieve better model utility, while retaining
the same global sensitivities to preserve DP, compared with
x € [0,1]%. As in (Lecuyer et al., 2018), we apply two
accuracy metrics:

el isCorrect(x;)

conventional acc = E
test|

i=1
|test|
certified acc = E

i=1

isCorrect(x;) & isRobust(x;)
|test]

where |test| is the number of test cases, isCorrect(-) re-
turns 1 if the model makes a correct prediction (else, returns
0), and isRobust(-) returns 1 if the robustness size is larger
than a given attack size p, (else, returns 0).

Results on the MNIST Dataset. Figure 2 illustrates the
conventional accuracy of each model as a function of the
privacy budget € on the MNIST dataset under I, (g, )-norm
attacks, with p, = 0.2. Our StoBatch outperforms AdLM,
DP-SGD, SecureSGD, and SecureSGD-AGM, in all cases,
with p < 1.32e — 4. When the privacy budget ¢ = 0.2 (a
tight DP protection), there are significant drops, in terms of
conventional accuracy, given the baseline approaches. By
contrast, our StoBatch only shows a small degradation in the
conventional accuracy. At e = 0.2, our StoBatch achieves
82.7%, compared with 11.2% and 41.64% correspondingly
for SecureSGD-AGM and SecureSGD. This shows the abil-
ity to offer tight DP protections under adversarial example
attacks in our model, compared with existing algorithms.

e Figure 4 presents the conventional accuracy as a func-
tion of y,, under a strong DP guarantee, e = 0.2. It is
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clear that our StoBatch mechanism outperforms the base-
line approaches in all cases. On average, our StoBatch
model improves 44.91% over SecureSGD, a 61.13% over
SecureSGD-AGM, a 52.21% over AdLM, and a 62.20%
over DP-SGD. More importantly, thanks to the composition
robustness bounds in both input and latent spaces, and the
random perturbation size y; € (0, 1], our StoBatch model is
resistant to different attack algorithms with different attack
sizes [ , compared with baseline approaches.

o Figure 6 demonstrates the certified accuracy as a function
of . The privacy budget is set to 1.0, offering a reason-
able privacy protection. In PixelDP, the construction attack
bound e, is set to 0.1, which is a pretty reasonable defense.
With (small perturbation) u, < 0.2, PixelDP achieves better
certified accuracies under all attacks; since PixelDP does
not preserve DP to protect the training data, compared with
other models. Meanwhile, our StoBatch model outperforms
all the other models when p, > 0.3, indicating a stronger

defense to more aggressive attacks.

Results on the CIFAR-10 Dataset further strengthen our
observations. In Figure 3, our StoBatch outperforms base-
line models in all cases (p < 6.17e — 9), especially with
small privacy budget (e < 4), yielding strong DP protections.
On average conventional accuracy, our StoBatch mechanism
has an improvement of 10.42% over SecureSGD, 14.08%
over SecureSGD-AGM, 29.22% over AdLM, and 14.62%
over DP-SGD. Furthermore, the accuracy of our model is
consistent given different attacks with different adversarial
perturbations i, under a rigorous DP protection (e; = 2.0),
compared with baseline approaches (Figure 5). In fact, when
the attack size p, increases from 0.05 to 0.5, the conven-
tional accuracies of the baseline approaches are remarkably
reduced, i.e., a drop of 25.26% on average given the most ef-
fective baseline approach, SecureSGD. Meanwhile, there is
a much smaller degradation (4.79% on average) in terms of
the conventional accuracy observed in our StoBatch model.
Figure 7 further shows that our StoBatch model is more
accurate than baseline approaches (i.e., €, is set to 0.1 in
PixelDP) in terms of certified accuracy in all cases, with a
tight privacy budget set to 2.0 (p < 2.04e — 18).

Scalability and Strong Iterative Attacks. First, we scale
our model in terms of adversarial training in the CIFAR-
10 data, i.e., the number of iterative attack steps is in-
creased to T,,=200 in training, and to T,,=2,000 in test-
ing. The iterative batch-by-batch DP adversarial train-
ing (Alg. 1) is infeasible in this setting, taking over 30
days for one training with 600 epochs. Thanks to the dis-
tributed training, our StoBatch takes = 3 days to finish
the training (N = 1, M = 4). More importantly, our
StoBatch achieves consistent accuracies under strong it-
erative attacks with T,={1,000;2,000}, compared with
the best baseline, i.e., SecureSGD (Figure 8). On average,

across attack sizes p, € {0.05,0.1,0.2,0.3,0.4,0.5} and
steps T, € {100, 500, 1000, 2000}, our StoBatch achieves
45.254+1.6% and 42.59+1.58% in conventional and certified
accuracies, compared with 29.08+11.95% and 19.5845.0%
of SecureSGD (p < 2.75e¢ — 20).

e We achieve a similar improvement over the Tiny Ima-
geNet with a ResNet18 model, i.e., a larger dataset on a
larger network, (N = 1, Ml = 20) (Figure 9). On average,
across attack sizes u, € {0.05,0.1,0.2,0.3,0.4,0.5} and
steps T,, € {100, 500, 1000, 2000}, our StoBatch achieves
29.78+4.8% and 28.31+1.58% in conventional and certi-
fied accuracies, compared with 8.9945.95% and 8.72+5.5%
of SecureSGD (p < 1.55e — 42).

Key observations: (1) Incorporating ensemble adversarial
learning into DP preservation, tightened sensitivity bounds,
arandom perturbation size p; at each training step, and com-
position robustness bounds in both input and latent spaces
does enhance the consistency, robustness, and accuracy of
DP model against different attacks with different levels of
perturbations. These are key advantages of our mechanism;
(2) As a result, our StoBatch model outperforms baseline
algorithms, in terms of conventional and certified accuracies
in most of the cases. It is clear that existing DP-preserving
approaches have not been designed to withstand against ad-
versarial examples; and (3) Our StoBatch training can help
us to scale our mechanism to larger DP DNNs and datasets
with distributed adversarial learning, without affecting the
model accuracies and DP protections.

5. Conclusion

In this paper, we established a connection among DP preser-
vation to protect the training data, adversarial learning, and
certified robustness. A sequential composition robustness
was introduced to generalize robustness given any sequential
and bounded function of independent defensive mechanisms
in both input and latent spaces. We addressed the trade-off
among model utility, privacy loss, and robustness by tight-
ening the global sensitivity bounds. We further developed a
stochastic batch training mechanism to bypass the vanilla
iterative batch-by-batch training in DP DNNs. The average
errors of our approximation functions are always bounded
by constant values. Last but not least, a new Monte Carlo
Estimation was proposed to stabilize the estimation of the
robustness bounds. Rigorous experiments conducted on
benchmark datasets shown that our mechanism significantly
enhances the robustness and scalability of DP DNNs. In
future work, we will test our algorithms and models in the
Baidu Fedcube platform (Baidu, 2020). In addition, we will
evaluate our robustness bounds against synergistic attacks,
in which adversarial examples can be combined with other
attacks, such as Trojans (Gu et al., 2017; Liu et al., 2018), to
create more lethal and stealthier threats (Pang et al., 2020).
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