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ABSTRACT

Bayesian graphical models are a useful tool for understanding dependence relationships among many
variables, particularly in situations with external prior information. In high-dimensional settings, the space
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of possible graphs becomes enormous, rendering even state-of-the-art Bayesian stochastic search com-

putationally infeasible. We propose a deterministic alternative to estimate Gaussian and Gaussian copula
graphical models using an expectation conditional maximization (ECM) algorithm, extending the EM
approach from Bayesian variable selection to graphical model estimation. We show that the ECM approach
enables fast posterior exploration under a sequence of mixture priors, and can incorporate multiple sources
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1. Introduction

For high-dimensional data, graphical models (Lauritzen 1996)
provide a convenient characterization of the conditional
independence structure among variables. In settings where the
rows in the data matrix X € R"*P follow an iid multivariate
Gaussian distribution, Normal(0, X), the zeros in off-diagonal
elements of the precision matrix = X~! correspond to
pairs of variables that are conditionally independent. Standard
maximum likelihood estimators of the sparse precision matrix
behave poorly and do not exist when n < p, leading to extensive
work on algorithms (and their properties) for estimating 2
(e.g., Meinshausen and Bithlmann 2006; Yuan and Lin 2007;
Friedman, Hastie, and Tibshirani 2008; Rothman et al. 2008;
Friedman, Hastie, and Tibshirani 2010; Cai, Zhang, and Zhou
2010; Witten, Friedman, and Simon 2011; Mazumder and
Hastie 2012, etc.).

In the Bayesian literature, structure learning in high-
dimensional Gaussian graphical models has also gained pop-
ularity in the past decade. Broadly speaking, two main classes
of priors have been studied for inference of the precision matrix
in Gaussian graphical models, namely the G-Wishart prior and
shrinkage priors. The G-Wishart prior (Roverato 2002) extends
the Wishart distribution by restricting its support to the space
of positive definite matrices with zeros specified by a graph. It
is attractive in Bayesian modeling due to its conjugacy with the
Gaussian likelihood. Posterior inference under the G-Wishart
distribution, though computationally challenging, can be
carried out via various algorithms, including shotgun stochastic
search (Jones et al. 2005), reversible jump MCMC (Lenkoski
and Dobra 2011; Dobra, Lenkoski, and Rodriguez 2011;
Wang and Li 2012), birth-death MCMC (Mohammadi et al.
2017), etc. More recently, shrinkage priors for precision
matrices have gained much popularity, as they provide Bayesian
interpretations to some of the widely used penalized likelihood
estimators. As a Bayesian analogy to graphical lasso (Yin and

Li 2011; Witten, Friedman, and Simon 2011; Mazumder and
Hastie 2012), Bayesian graphical lasso was proposed in Wang
(2012) and Peterson et al. (2013). Wang (2015) later drew the
connection between the Bayesian variable selection (George
and McCulloch 1993) and Bayesian graphical model estimation,
and proposed a new class of spike-and-slab prior for precision
and covariance matrices. This class of priors was also later
explored in Peterson, Stingo, and Vannucci (2015) to estimate
the dependence structures among regression coeflicients, and
in Lukemire et al. (2017) to estimate multiple networks. This
type of spike-and-slab prior enables a fast block Gibbs sampler
that significantly improves the scalability of the model, but
such flexibility is at the cost of prior interpretability since the
implied marginal distribution of each elements in the precision
matrix is intractable due to the positive definiteness constraint.
Wang (2015) provided some heuristics and discussions on
prior choices, but it is still not clear how to choose the
hyperparameters for practical problems or how those choices
affect parameter estimation.

In this article, we introduce a new algorithm to estimate
sparse precision matrices with spike-and-slab priors (Wang
2015) using a deterministic approach, EM graph selection
(EMGS), based on the expectation conditional maximization
(ECM) algorithm (Meng and Rubin 1993). We also show that a
stochastic variation of the EMGS approach can be extended to
copula graphical model estimation. Our work extends the EM
approach to variable selection (EMVS) (Roc¢kova and George
2014) to general graphical model estimation.

The proposed ECM algorithm is closely connected to
frequentist penalized likelihood methods. Similar to the
algorithms with concave penalized regularization, such as
SCAD (Fan, Feng, and Wu 2009), the spike-and-slab prior
used in our method yields sparse inverse covariance matrix
where large values are estimated with less bias (see Figure 1).
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Figure 1. Comparing partial correlation path using EMGS and graphical lasso, on a 10-node graph. The red dashed line at 0.5 is the true value for the nonzero negative
partial correlations. The nonzero off-diagonal elements are plotted with blue solid lines. The vertical line indicates the tuning parameter selected with cross-validation.

Similar work has been concurrently developed by Deshpande,
Rockova, and George (2017) using spike-and-slab lasso prior
in the multivariate linear regression models. The proposed
approach in this article differs from Deshpande, Rockova, and
George (2017) in two ways: First, we use a mixture of Gaussian
distributions instead of the Laplace distributions as the prior
on the off-diagonal elements of the precision matrix, which
allows us to construct a closed-form conditional maximization
step using coordinate descent, rather than relying on additional
algorithms solving a graphical lasso problem at each iteration.
Second, and more importantly, our work also differs in scope,
as we extended the algorithm to non-Gaussian outcomes, the
scenarios where informative priors exist, and to incorporate the
imputation of missing values.

The rest of the article is organized as follows: In Section 2,
we describe the spike-and-slab prior we use for the precision
matrix. Section 3 presents the main ECM framework and
algorithms for Gaussian graphical model estimation, and
Section 4 proposes the extension to the copula graphical model
and the modified stochastic ECM algorithm. Then in Section 5
we explore the incorporation of informative prior knowledge
into the model. We discuss briefly about single model selection
in Section 6. Section 7 examines the performance of our
method through numerical simulations. Sections 8 and 9
further illustrate our model using two examples from scientific
settings. Section 8 compares our method and alternatives in
terms of structure learning and prediction of missing values
in a dataset of hourly bike/pedestrian traffic volumes along
a busy trail in Seattle. Section 9 discusses our method in the
context of learning latent structures among binary symptoms
from a dataset of verbal autopsy (VA) surveys, which are used
to estimate a likely cause of death in places where most deaths
occur outside of medical facilities. Finally, in Section 10 we
discuss the limitations of the approach and provide some future
directions for improvements.

2. Spike-and-Slab Prior for Gaussian Graphical Model

First, we review the stochastic search structure learning (SSSL)
prior proposed in Wang (2015) for sparse precision matrices.

Consider the standard Gaussian graphical model setting, with
observed data X € R"*?, Each observation follows a multivari-
ate Gaussian distribution, that is, x; ~ Normal(0, 2 '), where
x; is the ith row of the X, and R is the precision matrix. Given
hyperparameter vy, v1, and g, the prior on €2 is defined as

p(®18) = G5 [ Normal(wilo, vgjk)

j<k
x [ [ Exp@jlr/2)1gen+ (1)
j
p@lms) oc Cs [ [ (1 — )~ )
j<k

where dj; are latent indicator variables, and 75 is the prior
sparsity parameter. The Cs term is the normalizing constant
that ensures the integration of p(2|§) on M™ is one. This
formulation places a Gaussian mixture prior on the oft-diagonal
elements of 2, similar to the spike-and-slab prior used in the
Bayesian variable selection literature. By setting v; > vy, the
mixture prior imposes a different strength of shrinkage for ele-
ments drawn from the “slab” (v;) and “spike” (vo), respectively.
This representation allows us to shrink elements in € to 0 if
they are small in scale, while not biasing the large elements
significantly.

The spike-and-slab formulation of £ provides an efficient
computation strategy via block Gibbs sampling. However, a
main limitation is that parameter estimation can be sensitive
to the choice of prior parameters. Unlike the variable selection
problem in regression, information on the scale of the elements
in the precision matrix typically cannot be easily solicited from
domain knowledge. As shown in Wang (2015), there is no
analytical relationship between the prior sparsity parameter
s and the induced sparsity from the joint distribution. This
complexity results from the positive definiteness constraint on
the precision matrix. Thus even if the sparsity of the precision
matrix is known before fitting the model, additional heuristics
and explorations are required to properly select the prior 5.
Similarly, the induced marginal distribution of the elements in
 is intractable as well. The supplementary materials contain
an simple illustration of such differences. Thus although the



fully Gibbs sampler is attractive for high-dimensional problems,
in practice researchers will usually need to evaluate the model
fit under multiple prior choices, adding substantially to the
computational burden.

3. Fast Deterministic Algorithm for Graph Selection

Consider spike-and-slab priors on €2 as described in the previ-
ous section and let the hyperprior on the sparsity parameter to
be s ~ Beta(a, b), the complete-data posterior distribution can
be expressed as
p(R,8,751X) = p(X|R)p(K8, v, v1, 1)p(8|7s)p(ms|a, b).

To perform posterior sampling in the fully Bayesian fashion,
the block Gibbs algorithm in Wang (2015) reduces the problem
to iteratively sampling from (p — 1)-dimensional multivariate
Gaussian distributions for each column of €, which can still
be computationally expansive for large p or if the sampling
needs to be repeated for multiple prior setups. Inspired by the
EM approach for variable selection proposed in Rockova and
George (2014), we propose a EMGS algorithm to identify the
posterior mode of p(£2, 75| X) directly without the full stochastic
search. We iteratively maximize the following objective function

Q(®, 75127, 7"

= Eam”),n;”,x(logp(ﬂ’5’776|X)|52(l),n(1)’x)
= constant + — 10g 1R — —tr(XTXQ)
! A
e WA
]24; J |: 0 - (Sjk) + V%Sjk] 2 ;
-1
+Xk:log< EI [5; ]> P(P2 )log(l—ns)
J<

+ (a — 1) log(ms) + (b — 1) log(1 — ms),
here E.|.[-] denotes E
where E.|.[-] denotes 8\52(”,n§”,x

be easily estimated using ECM algorithm, and the algorithm
can naturally handle missing values in the E-step. We present
the details of the proposed algorithm in the next subsection
and then compare the algorithm with the coordinate ascent
algorithm for solving graphical lasso problem in Section 3.2.

[-]. This objective function can

3.1. The ECM Algorithm

3.1.1. TheE-Step
We start by computing the conditional expectations E

(851 and Egi00 0 205,057,
lar fashion as the standard EMVS,

31207 x
]. This proceeds in the simi-

ajk

L 3
Ajk + bjk ®

ok
Eajkm(l),n&(l),x[‘sjk] =pp=

I
where aj = p(wilsj = Dy’ and by = p(wjlsix = 0)(1 —
JTél)), and

_ l_p;ﬁk ka *
- 2 += 2o ke

1
E 1
3120, X [v%(l — 8jk) + vidjk vy 1
4
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3.1.2. Modified E-Step With Missing Data

When missing data exist in the data matrix X, the E-step can
be easily extended to find the expectation of the missing values
as well. In that case, the conditional expectations of § remains
unaffected, and we only need to additionally obtain the expec-
tation for the X7 X term as

n
Eg,Xm(XTXQ) = Es x|e ((Z x,-xiT) SZ)
i
n
= (Z Ex,-,m|x,-,0,Sl (xl'x;'r)) Q
i

where x;, and x;,, denote the observed and missing cells in x;
respectively. Without loss of generality, if we let x] = [x] , x] b
we know

10’

—1
Ex,;mlx,;o,ﬂ (Xim) = _Szg() ﬂmnxi,o

0, O
Ex,pixip2(®ix}) = E|.(x)E..(x)" + <0 " szo—rq ) ’
mo mm

where 2, 2,0, and ,,,,, are the corresponding submatrices of

Q.

3.1.3. The CM-Step

After the E-step is performed, the CM-step performs the max-
imization of (R, s) in a coordinate ascent fashion. First, the
maximization of 7 has the close-form solution

7 =@+ sk —D/(@a+b+pp—1)/2-2). (5)
j<k

The joint maximization of €2 has no closed-form solution, but if

we denote
Q- (9%1 w12> xTX — <S%1 Sn))
W), 0 S12 S22
Wang (2015) showed that the conditional distribution of the last
column satisfies
12 ~ Normal(—Csyy, C), C=((s22 +)»)SZ_1 +diag(V512))_l,

where v;,, are the inclusion indicators for w;, and

ni+s
w2 — “’12911 w12 ~ Gamma (1 + = > 22) .

This enables us to perform conditional maximization (Meng
and Rubin 1993) for the last column holding the rest of €2 fixed.
That s, starting with D = Q) we iteratively permute each
column to the last and update it with

05 = (522 + M@ + diag(d)) ! (6)
and
(l+1) (1+1) T, ol+Dy—1_ (+1) n
Q ® + . 7
= (w1 ) (2 ) o, T (7)

Finally, be iterating between the E-step and the CM-steps until
convergence, we obtain our estimator of the posterior mode €2
and 75.
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3.2. Connection to the Graphical Lasso

This column-wise update resembles the penalized likelihood
approach in frequentist settings. In the graphical lasso algo-
rithm (Mazumder and Hastie 2012), for example, the goal is to
minimize the /;-penalized negative log-likelihood

f(R) = —log |82 + tr(SR) + 1R[],

which can be solved via a block coordinate descent that itera-
tively solves the lasso problem

w1 = argminocTSll_llot +alsy +allal;.
acRm-1

The updates at each iteration in the EMGS framework solve the
optimization problem for @1, under an adaptive ridge penalty

m—1
_ T * 2
w12 = argmin o SZH o+als,+ d
acRm—1 j=1

The penalty parameters d]* are the corresponding d estimated
from the E-step and are informed by data. That is, instead
of choosing a fixed penalty parameter for all precision matrix
elements, the EMGS approach learns the element-wise penal-
ization parameter at each iteration based on the magnitude of
the current estimated 2 and the hyperpriors placed on 6. Thus,
as long as the signal from data is not too weak, the EMGS pro-
cedure can estimate large elements in the precision matrix with
much lower bias than graphical lasso, as the adaptive penalties
associated with large wjx are small. To illustrate the diminished
bias, we fit the EMGS algorithm to a simple simulated example,
where n = 100, p = 10 and € is constructed by w; =
1, and wjx = 05 it |j — k| = 1. We fix v = 100 and
compare the regularization path with various vy values with
graphical lasso, as shown in Figure 1. This simple example
illustrates two main advantages of EMGS. First, it identifies
the set of nonzero elements quickly and estimates the partial
correlations correctly around 0.5 under all values of vy. The
clear separation of the truly nonzero edges regardless of vy also
makes it straightforward to threshold |@j| to recover the true
graph structures. Graphical lasso, on the other hand, shrinks the
nonzero partial correlations significantly under large penalties,
and thus lead to worse graph selection if the tuning parameter
is not properly chosen. Second, to select and compare a single
model, we also identified the optimal tuning parameter using 5-
fold cross-validation for both methods, and it can be seen that
the graphical lasso estimator suffers from the weak penalty and
contains more noise than using EMGS.

4. ECM Algorithm for Copula Graphical Models

In this section, we extend the framework to non-Gaussian data
with Gaussian copulas (Nelsen 1999). Denote the observed
data X € R"™P, and each of the p variables could be either
continuous, ordinal, or binary. We model each observation as
following a Gaussian copula model, that is, there exists a set of
monotonically increasing transformations f = {f1,...,f,} such
that Z = f(X) ~ Normal(0, R), where R is a correlation matrix.
Following the same setup as before, we let R be the induced

correlation matrix from  with the spike-and-slab prior defined
as before, that is,

Uk]/ 2 szl

The explicit form of f is typically unknown, thus we impose no
restrictions on the class of marginal transformations. Instead, we
follow the extended rank likelihood method proposed in Hoft
(2007), decomposing the complete data likelihood into

PX|R,f)

where § is the support of Z induced by the ranking of X defined
by

= Pr(Z € SIR)p(X|Z € S,R,f), (8)

Sij = [max{zyy : xyy < xi3}, min{zyy : xpp > xij}].

Since our goal is to recover the structure in 2, we can estimate
the parameters using only the first part of (8) without estimating
the nuisance parameter f. Moreover, since the latent Gaussian
variable Z is constructed to be centered at 0, the rank likelihood
remains unchanged when multiplying columns of X by any con-
stant. Thus, inference could be performed without restricting R
to be an correlation matrix (Hoff 2007). In this way, the target
function to maximize is the extended rank likelihood function

P(R.8, 75, ZIX) = p(Z € S|, )p(RA$)p(8|75).

This is immediately analogous to the EMGS framework with
latent Gaussian variable Z as additional missing data. That is,
we maximize the objective function defined as

Q(®, 75127, ;")

=E

1
32100 20 x 108 (2 8,75, ZX) |20, 7", X)
= constant + Q; —

1 ) 1
= wi E..
2Z i |:v(2)(1—6jk)+v%6jk:|
A
—3 E wii

j<k
-1
+Zlog<—E[5 ]) p(p2 )log(l—n,;)
j<k

+ (a — 1) log(ms) + (b — 1) log(1 — m5),

where E.|.[-] denotes E [-], and the only term different

85,2190,z x
from the standard EMGS objective function is

Qi =E g0, 0 xogp(Z]R, S))

= constant + — log || — 1 Z\Sl(” X[tr(Z Z)].
Exact computation for this expectation is intractable as Z|X is a
Gaussian random matrix where each row is conditionally Gaus-
sian and the within column ranks are fixed by S. Alternatively,
posterior samples of Z are easy to obtain from the conditional
truncated Gaussian distribution (Hoff 2007), so we can adopt
stochastic variants of the EM algorithm (Wei and Tanner 1990;
Delyon, Lavielle, and Moulines 1999; Nielsen 2000; Levine and
Casella 2001). We present one such algorithm in the subsequent
subsection.



4.1. The SAE-Step for Non-Gaussian Variables

Among the many variations of the EM with stochastic approx-
imation, we discuss estimation steps using stochastic approxi-
mation EM (SAEM) algorithm (Delyon, Lavielle, and Moulines
1999). SAEM calculates the E-step at each iteration as a weighted
average of the current objective function and new stochastic
samples using a decreasing sequence of weights for the stochas-
tic averages, in a similar fashion as simulated annealing. In the
stochastic E-step, we compute an additional term Q(Sl(l)) =
Eyqu x12"Z] as

By
U}
b=1

where t;is an decreasing step-size sequence such that ) #; = oo,
> 17 < 00, and B; is the number of stochastic samples drawn at
each iteration. The rank constrained Gaussian variables can be
drawn using the same procedure described in Hoff (2007).

The CM-step then proceeds as before, except that the empiri-
cal cross-product matrix § is replaced by its expectation Q(2).
For the numerical examples in this article, we set fixed B; and
1 = 1/1. Other weighting schemes could also be explored and
may yield different rates of convergence.

5. Incorporating Edge-Wise Informative Priors

The exchangeable beta-binomial prior discussed so far assumes
no prior structure on 2 and prior sparsity controlled by a single
parameter for all off-diagonal elements. For many problems in
practice, informative priors may exist for pairwise interactions
of the variables. For example, Peterson et al. (2013) infer cellular
metabolic networks based on prior information in the form of
reference network structures. Bu and Lederer (2017) improve
estimation of brain connectivity network by incorporating the
distance between regions of the brain. In problems with small
sample sizes, such prior information can help algorithms iden-
tify the high probability edges more quickly and provide more
interpretable model. More generally, we can consider a situation
where certain groupings exist among variables. For example,
when the variables represent log sales of p products on the
market, one might expect that the products within the same
brand are more likely to be more strongly correlated. If we define
a fixed index function g; € {1,...,G},j € {1,...,p}, where G
denotes the total number of groups, we can modify the prior into

V2_
p(®18) = C;' [ Normal (a)jk|0, i)

j<k ‘nggk

x [ [ Expwjjlr/2)1gem+ )
j
p(3lms) o Cs [ [ ey (1 — )~
j<k
p(r) = 1_[ Gamma(az, b;).
g<g¢'

The block-wise rescaling parameter 7g, of the variance param-
eter allows us to model within- and between-block elements of
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2 adaptively with different scales. This is particularly useful in
applications where block dependence structures have different
strengths. Take the example of sales of products for example.
Products within the same brand or category are more likely to
be conditional dependent, yet the within group sparsity and the
scale of the off-diagonal elements may differ for different brands.
In the special case where the full edge-level prior probabilities of
connection are known, as considered by Peterson et al. (2013)
and Bu and Lederer (2017), we can also equivalently let G = P
and parameterize p(7) with the edge-specific priors.

The ECM algorithm discussed above only requires minor
modifications to include the additional scale parameter so that
the penalties for each block are allowed to vary (e.g., Ishwaran
and Rao 2003; Wakefield, De Vocht, and Hung 2010). The
new objective function could be similarly estimated with ECM
algorithm by including this additional update in the CM-step

1 .
4y G —1+3 2i<k Likgg

= , (10)
1 2
& br + 3 2k @i likgg

where 1300 = 1if g = g, gk = g.org =g.g =g To
illustrate the behavior of this block rescaled prior, we simulate
data with n = 200, p = 60, with the precision matrix to be block
diagonal with three equal-sized blocks. We simulate the three
block sub-matrices of € to correspond to random graphs with
sparsity 0.4, as described in Section 7. Figure 2 shows the effect
of the structured prior. It can be seen that the estimated 1/7y
are much larger where g = g/, which leads to weaker shrinkage
effects for within cluster cells. Accordingly the resulting graph
using the structured prior shows fewer false positives for the off-
diagonal blocks, and better discovery of the true positives within
blocks.

6. Posterior Summary of the ECM Output

One of the main computational advantage of the ECM approach
over stochastic search is that the posterior mode is fast to obtain.
Thus it provides a more efficient alternative to experiment-
ing multiple choices of priors with full MCMC, as discussed
before. In practice, we fix v; to be a large constant and vary the
choice of vy to reflect different levels of shrinkage on the oft-
diagonal elements of €2 that are close to 0. Intuitively, a larger vo
increases the probability of small parameters being drawn from
the spike distribution and thus leads to sparse models. By fitting
a sequence of vy, we can create regularization plots, for example,
Figure 1, similar to that used in penalized regression literature
to visually examine the influence of the prior choices. Choosing
a single tuning parameter vy is possible with standard model
selection criterion, such as AIC (Akaike 1998), BIC (Schwarz
1978), RIC (Lysen 2009), StARS (Liu, Roeder, and Wasserman
2010), etc., or K-fold cross-validation using the average log-
likelihood of the validation sets. In the rest of the article, we
select a single tuning parameter v using 5-fold cross-validation.
In the case of non-Gaussian data or data with missing values,
the likelihood on test data can be evaluated by the average of
the expected covariance % ZVO EX o5t | Xtgainsvo (XtTestXtest) under
the sequence of m tuning parameters. This term can be easily
calculated by plugging in the test data in the E-step of the
algorithm. It is worth noting that since the mixture of Gaussian
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Figure 2. Comparing the estimated and true precision matrix using graphical lasso, EMGS with exchangeable prior, and with structured prior for block-wise rescaling.
In each plot of the precision matrix comparison, the upper triangle shows the estimated matrix and the lower triangle shows the true precision matrix. All the tuning
parameters are selected by cross-validation. The presented edges are further thresholded to have the same number of edges compared to the true graph. The forth plot
shows the change of 1 /fgg/ over different choices of vg. The blocks are labeled 1 to 3 from top left to bottom right.

prior does not lead to exact sparsity, in scenarios where graph
structure is of direct interest, we further determining the graph
structure by thresholding the off-diagonal elements, |wj|, as
the posterior inclusion probability p]’.kk conditional on wj is a
monotone function of wj.

7. Simulation

We follow a similar simulation setup to Mohammadi et al.
(2017) with different graph structures. We compare the perfor-
mance of our method with graphical lasso for Gaussian data
and graphical lasso with nonparanormal transformation (Liu,
Lafferty, and Wasserman 2009), and the rank-based extension
proposed in Xue and Zou (2012) for non-Gaussian data. We
consider the following sparsity patterns in our simulation:

+ AR(1): A graph with ojx = 0.70=H,

« AR(2): A graph with wj; = 1, wjj—1 = wj-1; = 0.5, and
wjj-2 = wj—2; = 0.25, and wjk =0 otherwise.

« Random: A graph in which the edge set E is randomly gen-
erated from independent Bernoulli distributions with proba-
bility 0.2 and the corresponding precision matrix is generated
from & ~ Wg(3, ).

o Cluster: A graph in which the number of clusters is
max{2, [p/20]}. Each cluster has the same structure as
a random graph. The corresponding precision matrix is
generated from & ~ Wg(3,1,).

We simulate data with sample size n € {100, 200, 500}, and of
dimension p € {50, 100,200}, using the each types of precision
matrices above that are rescaled to have unit variances. We
generate both Gaussian and non-Gaussian data for each con-
figuration. For the non-Gaussian case, we perform the marginal
transformation of the latent Gaussian variables so that the vari-
ables follow a marginal distribution of Poisson(f), with 6 = 10
or 2.

For each generated graph, we fit our ECM algorithm with a
sequence of 40 increasing vo’s, and fix v; = 100,A = 1, and
a = b = 1. We select the final vy using 5-fold cross-validation.
We also select the tuning parameter for graphical lasso using
cross-validation (GL-CV). We then evaluate the bias of EMGS
and graphical lasso estimator of precision matrices compared to
the truth in terms of the matrix Frobenius norm, ||fl — Q| =

\/Zj >k l@jk — wjk|?. Because of the excess biased induced by a

single penalty parameter, cross-validation tend to choose small
penalties for graphical lasso, leading to massive false positives in
edge discovery. Thus to allow a fair comparison, we compare the
area under the ROC curve (AUC) by increasingly thresholding
elements in € obtained by cross-validation for both EMGS and
graphical lasso. Besides selecting tuning parameter by cross-
validation for graphical lasso and the nonparanormal trans-
formed estimator, we also consider € selected using two popular
model selection criterion: rotation information criterion (GL-
RIC) (Lysen 2009), and stability approach (GL-StARS) (Liu,
Roeder, and Wasserman 2010). For the copula graphical model,
we also compare the rank-based extension proposed in Xue
and Zou (2012) of graphical lasso (GL-rank) with the tuning
parameter selected with cross-validation.

The simulation results are summarized in Figures 3 and 4.
Less bias in parameter estimation are indicated by smaller F-
norm values and better graph learning is indicated by larger
AUC values. In almost all cases of our simulation study, we
observe significantly reduced biases in the estimator from
EMGS estimators, as well as better graph selection performance
in most cases. We also include additional comparisons in
the supplementary materials that examine the bias in matrix
spectral norms, the F;-score for graphical lasso estimators at
the selected penalty levels, as well as the Fj-score when all
estimators are thresholded to have the correct number of edges.

All computation are conducted in the R statistical pro-
gramming environment (R Core Team 2018). The graphs
are simulated using the R packages BDgraph (Mohammadi
and Wit 2015) and tmvtnorm (Wilhelm and Manjunath
2015). EMGS is implemented with the Rcpp package (Eddel-
buettel and Frangois 2011). The graphical lasso estimation
is implemented with the R package huge (Zhao et al.
2012) and glasso (Friedman, Hastie, and Tibshirani 2018).
Visualizations are created with ggplot2 (Wickham 2016)
and corrplot (Wei and Simko 2017). The AUC values are
calculated with the ROCR package (Sing et al. 2005).

8. Traffic on the Burke Gilman Trail

In this section, we consider graph estimation and prediction for
the hourly traffic on the Burke Gilman Trail in Seattle. We use
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Figure 3. Comparing estimation of the precision matrix for both the Gaussian and Gaussian copula case under different simulation setups. Five estimators are considered:
the proposed method (EMGS), Gaussian and nonparanormal graphical lasso with penalty selected by cross-validation (GL-CV), RIC (GL-RIC), stability approach (GL-StARS),
and rank-based extension of graphical lasso proposed in Xue (2012) selected by cross-validation for the copula case (GL-rank). EMGS shows lower bias in almost all cases.
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Figure 4. Comparing estimation of the graph structure for both the Gaussian and Gaussian copula case under different simulation setups. EMGS shows higher AUC in

almost all cases.

the hourly counts of bikes and pedestrians traveling on the trail
through north of NE 70th Street using data from the Seattle
Open Data program.!

The data are captured by sensors that detect both bikes and
pedestrians, and their directions of travel. At each hour, the
sensors record four counts of travelers: by bike or foot, and
toward north or south. We used all the data from 2014 that
contain n = 365 observations of 24 x 4 = 96 measurements.
We first performed a log transformation on the raw counts, and
subtracted the hourly average from the log counts. The data

http://www.seattle.gov/tech/initiatives/open-data/

are reformatted from the original format with the R package
reshape2 (Wickham 2007).

We estimated the joint distribution of the 96 measurements
using EMGS with both the beta-binomial prior and the group-
wise structured priors, with 4 groups defined by the mode
of travel/direction pairs. Figure 5 shows the estimated graphs
and the induced covariance matrices. Graphical lasso estimates
many edges with small wj, while EMGS allows us to pick
out large wj, especially those that correspond to the edges
between the number of pedestrians traveling within the same
hour in opposite directions, and the number of bikes traveling
in adjacent hours in the same direction during morning and


http://www.seattle.gov/tech/initiatives/open-data/
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Figure 5. Comparing the estimated precision matrices from cross-validation. The blocks correspond to travel mode and direction pairs. From upper left to lower right:
southbound pedestrians, northbound pedestrians, southbound bikes, and northbound bikes. Within each block, the entries correspond to 24 hourly intervals starting
from midnight. Top row: estimated covariance matrix. Edges with less than 0.5 probability of being from the slab distributions in EMGS output, and exact zeros in graphical
lasso output are marked with gray color. Bottom row: estimated precision matrix with highlighted graph selection.

Table 1. Average and standard deviation of the mean squared errors from 100
cross-validation experiments, with the best performance highlighted in bold.

EMGS

Exchangeable Structured

Glasso Empirical

Average MSE
Standard deviation of the MSEs

0.2828
0.0052

0.2809
0.0050

0.4262 0.4602
0.0064 0.0096

afternoon commute hours. In this analysis, the structured priors
lead to a slightly more concentrated set of entries, but both
priors lead to similar graph estimation for EMGS. We also
compare the performance of predicting missing values using
Q, by randomly removing half of the measurements on half
of the days. The missing observations can be imputed by the
EMGS algorithm described in Section 3, and similarly we can
estimate 2 by either the empirical covariance matrix or from
graphical lasso using only the observed variables. We compare
the predictive performance by the mean squared error defined

as nr:iss ZIJ(X,] — X,J)z

Intuitively, predictions based on penalized estimators that
are over shrunk toward zero is likely to increase bias, while
with little penalization, the estimated covariance matrix is more
likely to be noisy, as shown in Figure 5. Table 1 shows the
average MSE and their standard deviations using different esti-

mators over 100 replications, and it confirms the improved

prediction performance from EMGS compared to graphical
lasso.

9. Symptom Structure in Verbal Autopsies

In this section, we use EMGS to learn the latent dependence
structure among symptoms reported on VA surveys. VA surveys
collect information about a deceased persons health history
through an interview with caregivers or family members of
the decedent. VAs are widely used in countries without full-
coverage civil registration and vital statistics systems. About 2/3
of deaths worldwide occur in such settings (Horton 2007). VA
data consist primarily of binary indicators of symptoms and
conditions leading to the death (e.g., Did the decedent has a
fever? Was there pain in the lower belly?).

Several algorithms have been proposed to assign causes
of death using such binary input (Byass et al. 2012; Serina
et al. 2015; McCormick et al. 2016), but these algorithms
typically assume that the binary indicators are independent.
We use data from the Physicians Health Metrics Research
Consortium (Murray et al. 2011). We created 107 variables
from the binary questions in the dataset of 7841 adults using
the R package openVA (Li, McCormick, and Clark 2019),
and removed the variables with more than 50% of values
missing, leaving us with 90 indicators. There are many missing
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Figure 6. Estimated edges between the indicators in the VA dataset. The width of the edges is proportional to the value of |wj|. Red edges correspond to negative values
of wj, or positive partial correlations. Black edges correspond to positive values of wj, or negative partial correlations.

values even after reducing the number of indicators, so there
is only one observation with answers for all 90 indicators.
This high proportion of missing data makes it difficult to
directly apply different types of rank-based estimators for the
latent precision matrix that only uses complete observations.
Instead, we focus on exploration of the joint distribution of
the binary variables under the latent Gaussian framework
described in Section 4. We first rescale the dataset by the
marginal means of the indicators to remove the different
levels of prevalence among the symptoms. We then apply
the EMGS algorithm to the rescaled dataset with the same
hyperpriors used in Section 7, and select the final vy using
cross-validation. The resulting conditional dependence graph
with 46 indicators and 42 edges is shown in Figure 6, where
several main symptom pairs (e.g., fever and sweating, stroke
and paralysis, etc.) and symptom groups (e.g., indicators
related to pregnancy) are discovered, indicating the existence
of some symptom clusters that are strongly dependent in
the dataset. Further incorporation of the ECM framework
into a classification framework could improve accuracy over
existing methods for automatic cause-of-death assignment. The
visualization of the symptom network is made with R package
network (Butts 2008).

10. Discussion

We propose a deterministic approach for graphical model
estimation that builds upon the recently proposed class of

spike-and-slab prior for precision matrices. By drawing the
connection between the conditional maximization updates
under the spike-and-slab prior and the graphical lasso algo-
rithm, we illustrate that EM type algorithm can be used to
efficiently obtain posterior modes of the precision matrix
under adaptive penalization. It also allows us to build richer
class of models that incorporate prior information and extend
to copula graphical models. The computational speed of the
EGMS algorithm allows us to explore multiple prior choices
without fitting many time-consuming MCMC chains. However,
it also comes at the price of two potential limitations. First,
characterization of posterior uncertainty is nontrivial due
to the deterministic nature of the algorithm. As in Rockova
and George (2014), one may choose to fit a Bayesian model
“locally” from the posterior mode obtained by the ECM
procedure, though this may still be challenging in high-
dimensional problems. Another limitation is that like the
EM algorithm, ECM algorithm also converges only to local
modes, thus the precision matrix initialization is critical. In
this article, we used the same initialization as the P-Glasso
algorithm described in Mazumder and Hastie (2012). Other
heuristics for initialization and warm start may also be explored.
Finally, multimodal posteriors are common with spike-and-slab
priors. The proposed method could be extended to introduce
perturbations in the algorithm, possibly drawing from the
variable selection literature (see, e.g., Rockova and George 2014;
Rockova 2018).

Replication code for the numerical examples in this article is
available at https://github.com/richardli/EMGS.
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Supplementary Materials

The supplementary materials provide additional details on data and simu-
lation results.
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