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The use of expert systems in optimizing and transforming human performance has been limited in prac-
tice due to the lack of understanding of how an individual's performance deteriorates with fatigue accu-
mulation, which can vary based on both the worker and the workplace conditions. As a first step toward
realizing the human-centered approach to artificial intelligence and expert systems, this paper lays the
foundation for a data analytic approach to managing fatigue in physically-demanding workplaces. The
proposed framework capitalizes on continuously collected human performance data from wearable sensor
technologies, and is centered around four distinct phases of fatigue: (a) detection, where machine learn-
ing methodologies are deployed to detect the occurrence of fatigue; (b) identification, where key features
relating to the fatigue occurrence is to be identified; (c) diagnosis, where the fatigue mode is identified
based on the knowledge generated in the previous two phases; and (d) recovery, where a suitable in-
tervention is applied to return the worker to mitigate the detrimental effects of fatigue on the worker.
Moreover, the framework establishes criteria for feature and machine learning algorithm selection for
fatigue management. Two specific application cases of the framework, for two types of manufacturing-
related tasks, are presented. Based on the proposed framework and a large number of test sets used in
the two case studies, we have shown that: (i) only one wearable sensor is needed for fatigue detec-
tion with an average accuracy of > 0.850 and a random forest model comprised of < 7 features; and
(ii) the selected features are task-dependent, and thus capturing different modes of fatigue. Therefore,
this research presents an important foundation for future expert systems that attempt to quantify/predict
changes in workers’ performance as an input to prescriptive rest-break scheduling, job-rotation, and task
assignment models. To encourage future work in this important area, we provide links to our data and
code as Supplementary materials.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

dation, 2019). One of the main, and currently observed, conse-
quences is an increase in automation, which has resulted in an

The advancements in automation, computation, information,
sensing, and expert systems are changing the landscape of jobs
and workplaces at unprecedented speeds (National Science Foun-
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increased adoption of: (a) robotic systems in manufacturing and
warehousing operations (The White House, 2016; Wang, Jiang, Lee,
Chew, & Tan, 2017), (b) virtual assistants (Eisman, Navarro, & Cas-
tro, 2016; Montenegro, da Costa, & da Rosa Righi, 2019), and (c) ex-
pert systems for job scheduling and task optimization (Dhurasevic
& Jakobovic, 2018). Despite the undeniable fact of some job loss as-
sociated with automation, a hallmark feature of this new era (often
referred to as Industry 4.0) is its dependence on highly-skilled labor
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(Ferjani, Ammar, Pierreval, & Elkosantini, 2017) who can capitalize
on the technological revolution. The industry is moving towards
a future that will be defined by how it optimizes its three main
resources (Daugherty & Wilson, 2018; Kong, Luo, Huang, & Yang,
2018; Pacaux-Lemoine, Berdal, Enjalbert, & Trentesaux, 2018): hu-
man workers, machines, and supporting technologies (e.g., artificial
intelligence, high performance computing, and expert systems).

The current inability to jointly optimize the aforementioned
three resources stems from the lack of reliable and individualized
models that can quantify the effects of job tasks on a worker’s
performance (Cavuoto & Megahed, 2017; Maman, Yazdi, Cavuoto,
& Megahed, 2017). Current applications where expert systems ex-
cel in learning from human behavior to automate/optimize the
decision-making process (see Saraiva et al., 2016; Weng, Ahmed,
and Megahed, 2017; Weng, Lu, Wang, Megahed, and Martinez,
2018, for some recent applications); however, they do not model
the impact of automation and supporting technologies on human
performance. This observation is supported by Grosse, Glock, and
Neumann (2017), who observed that “human characteristics that
are often a major determinant of system performance have, how-
ever, widely been ignored in this stream of research”. The problem
is challenging since: (a) humans’ performance changes as a func-
tion of a person’s individual characteristics (e.g., age, sex, injury
history, etc.), time (which can be manifested through detrimen-
tal performance due to fatigue and/or improved performance due
to learning effects) and degree of task difficulty (Maman, Bagh-
dadi, Megahed, & Cavuoto, 2016; Maman et al., 2017); (b) the
literature capturing human performance in occupational settings
have typically relied on surveys (Lu, Megahed, Sesek, & Cavuoto,
2017) and thus, our understanding of how an individual’s perfor-
mance change over the course of their day/work-shift is limited
(Baghdadi et al., 2019); and (c) there is a disconnect between pre-
dictive and prescriptive models that attempt to model workplace
fatigue (Lu, Megahed, & Cavuoto, 2019b; Maman, Lu, Megahed, &
Cavuoto, 2019). For these reasons, many researchers and practition-
ers consider “human-in-the-loop” modeling to be the next frontier
in artificial intelligence/expert systems research (Bavaresco, D'Oca,
Ghisi, & Lamberts, 2019; Oneto, Navarin, Donini, & Anguita, 2018;
Rea, 2018; Zanzotto, 2019).

As a first step toward “human-in-the-loop” modeling, this paper
proposes a framework that can be used to detect and explain dete-
rioration in an individual’s work performance as a result of phys-
ical fatigue. We focus on fatigue since it is a precursor to many
detrimental short-term and long-term health outcomes (Cavuoto
& Megahed, 2017). Furthermore, we have chosen to focus on ad-
vanced manufacturing tasks since: (a) changes in work performance
is task/field dependent; and (b) advanced manufacturing jobs are
highly fatiguing despite the increased prevalence of automation
(Kajimoto, 2008; Loriol, 2017; Lu et al., 2017; Yung, 2016). The
high prevalence of fatigue at manufacturing workplaces can be ex-
plained by the transformations in labor roles, where the follow-
ing changes have been observed: (a) a reduction in mundane tasks
(Yakowicz, 2016), (b) an increased dependency on highly-trained
workers (Ferjani et al., 2017), (c) an increase in worker’s autonomy
and responsibility (Waldeck, 2014), and (d) the introduction of new
job duties (Waldeck, 2014).

A framework is proposed instead of a model to allow for the
detection/diagnosis of multiple fatigue modes. The main premise
is that advanced manufacturing firms require specialized labor
(Ferjani et al., 2017; Lu et al., 2017). Thus, the jobs can then be
grouped by the type of activities. This is reasonable since the main
tasks performed by a CNC, computer numerical control, machinist
are different from those done by a welder. The proposed frame-
work is made of four phases: (a) detection, where the goal is to de-
tect if/when a worker has become fatigued, (b) identification, where
the most important variables for diagnosing fatigue are identified,

(c) diagnosis, where the information captured from phases (a) and
(b) is used to pinpoint the fatigue mode, and (d) recovery, where
a suitable intervention is applied to return to a non-fatigued state.
The phases are adapted from the structured methodology used by
quality engineers for fault detection and diagnosis (Chiang, Rus-
sell, & Braatz, 2000). Note that none of the existing quantita-
tive approaches for fatigue modeling present information on the
identification, diagnosis and recovery stages needed for managing
fatigue.

Our framework capitalizes on the advances and widespread use
of wearable sensors for the purposes of data collection. There are
three important justifications for the use of wearable sensors in our
framework. First, based on a survey of U.S. manufacturing safety
professionals, 54.1% of the respondents were “in favor of using
wearable technologies at work to track [occupational safety and
health] risk factors” (Schall, Sesek, & Cavuoto, 2018). From the
responses, Schall et al. (2018) estimated that U.S. manufacturing
firms would spend, on average, an estimated $68.67 per worker for
a wearable device. Second, the use of wearables presents a unified
benchmark of performance that does not depend on the cycle time
of the process. The third, and perhaps the most important reason,
wearables present an individualized view of the performance of the
worker. Unlike other outcomes, e.g., work quality which may be af-
fected by upstream performances.

The remainder of the paper is organized as follows. In Section 2,
an overview of the relevant literature on fatigue management in
manufacturing environments is presented. Our proposed frame-
work for detecting, identifying and diagnosing fatigue root-causes
is discussed in Section 3. In Section 4 two case studies are investi-
gated to evaluate the utility of the framework in managing fatigue
during two manufacturing tasks. Our concluding remarks and fu-
ture research suggestions are presented in Section 5. We offer our
code and data as supplementary materials to encourage adoption in
practice and further investigations by researchers.

2. Background and literature review
2.1. Fatigue implications

Managing fatigued workers is an important issue with ethical,
operational and financial considerations. Ethically, fatigue is a pre-
cursor to many detrimental short-term and long-term health out-
comes. The short-term effects include discomfort, lowered strength
and a diminished motor control function (Yung et al., 2017). In an
operational environment, those short-term effects lead to “reduced
performance, productivity, quality of work and increased incidence
of labour accidents and human errors” (Yung, Bigelow, Hastings,
& Wells, 2014, p. 1562). The long-term health consequences of
fatigue include: (a) a high prevalence of musculoskeletal disor-
ders (Naranjo-Flores & Ramirez-Cardenas, 2014), (b) suffering from
chronic-fatigue syndrome (Fukuda et al., 1994), and (c) a weakened
immune function (Kajimoto, 2008). From an operational perspec-
tive, Ricci, Chee, Lorandeau, and Berger (2007) reported that the
health-related lost productivity time for fatigued workers exceeds
double their non-fatigued counterparts. The financial ramifications
of fatigue outcomes are estimated to cost U.S. employers approxi-
mately $136 billion annually (Ricci et al., 2007).

2.2. Data collection mechanisms

An important first step in managing fatigue is the rapid and
accurate detection of its occurrence. Fatigue detection techniques
can be divided into two categories: qualitative and quantitative.
Qualitative methods are centered around the use of fatigue surveys
(Lu et al., 2017). From a practical perspective, the utility of such
methods is limited to investigations aiming to assess workloads
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Table 1
A summary of the two major research streams of fatigue modeling.
Category Paper Tasks Sensors Method
Kavanagh, Morrison, and Walking EMG Statistical test
Barrett (2006)
Karg et al. (2008) Walking 3D optical tracking LDA, SVM, KNN, NB
Exhaustion Zhang et al. (2014) Walking IMUs SVM
Ebenbichler et al. (2002) Lifting EMG Time frequency analysis
Bonato et al. (2003) Lifting EMG Statistical test
Chow et al. (2004) Lifting EMG Statistical test
Karg et al. (2014) Squat Infrared cameras Linear regression, HMM
Yoshino et al. (2004) Walking EMG Linear regression
Helbostad et al. (2007) Walking Accelerometer Statistical test
Occ. fatigue Lee et al. (2009) Walking Reflective markers Statistical test, LDA

Baghdadi et al. (2018b)
Maman et al. (2017)

Material handling

pickup, part assembly

Material handling, supply insertion &

IMUs SVM
IMUs, HR Penalized logistic regression

where SVM=support vector machines, HMM=hidden markov models, LDA=linear discriminant analysis, KNN= k-nearest neighbors, & NB=naive bayes.

and/or redesign jobs. However, they are not suitable for real-time,
shop-floor-wide fatigue detection, since they are not scalable and
are potentially disruptive. For example, consider a situation where
there are 70 workers on the shop-floor and their fatigue ratings are
measured every 5 min. The administration of surveys in this situa-
tion would require a large number of surveyors, and would disrupt
production (reducing the productivity of workers (Cai, Gong, Lu, &
Zhong, 2018)).

The quantitative approaches, of the second category, rely on us-
ing one or more sensor technologies to model changes in human
performance. The utilized sensor technologies include: (a) heart
rate sensors to measure heart-rates, which are indicative of whole-
body fatigue (Maman et al., 2017); (b) inertial measurement units
(IMUs), which are cheap and reliable sensors that are used to cap-
ture a person’s acceleration and motion data (Baghdadi, Cavuoto, &
Crassidis, 2018a; Baghdadi, Megahed, Esfahani, & Cavuoto, 2018b;
Maman et al., 2017); (c) electroencephalography (EEG), used to
measure brain activity, which is important in detecting mental fa-
tigue (Charbonnier, Roy, Bonnet, & Campagne, 2016; Moon, Kwon,
Park, & Yoon, 2019; Zhao, Zheng, Zhao, Tu, & Liu, 2011); (d) elec-
tromyography (EMG), used to assess muscle activity and localized
fatigue (Kumar & Mital, 2017; Venugopal, Navaneethakrishna, & Ra-
makrishnan, 2014); and (e) optical sensors, which can be used to
detect sleepiness or can be utilized for motion capture (Iskander,
Hossny, & Nahavandi, 2018; Koesdwiady, Soua, Karray, & Kamel,
2017). Note that some of these technologies are not suitable for
daily field implementation. Specifically, EEG and EMG are invasive
(Cavuoto & Megahed, 2017), which inhibits their daily usage for
real-time fatigue detection. Moreover, motion capture systems of-
ten require special setups, which make them better suited for con-
trolled environments. For these reasons, the EEG, EMG and motion
capture sensors will not be further discussed. Hereafter, the phrase
wearable sensors is used to denote a system made of one or more
IMUs and a heart rate monitor.

Despite the popularity of wearable sensors in personal phys-
ical activity monitoring (e.g., Fitbit, Garmin and Jawbone track-
ers), workplace fatigue monitoring applications has been limited
to three domains (Cavuoto & Megahed, 2017, Maman et al., 2017).
These are athletics, transportation and mining. The main barrier,
in other disciplines, is a lack of standardization of work activities
across employees, which results in multiple modes of fatigue (e.g.,
different muscles or whole-body fatigue). This is different from the
three domains where the technology is tailored to target a known
and dominant fatigue mode. It is, therefore, difficult to develop a
global model to accurately detect different fatigue modes outside
of the three disciplines.

2.3. An overview and taxonomy of the physical fatigue detection
literature

The literature on physical fatigue detection in manufactur-
ing environments can be classified into: (a) exhaustion detection,
and (b) occupational fatigue detection. In the first group, stud-
ies attempt to identify extreme fatigue, i.e. exhaustion, which re-
sults in an inability to generate muscle forces and consequently,
a worker’s inability to perform the job (Ceschi, Demerouti, Sar-
tori, & Weller, 2017). Since exhaustion in the manufacturing work-
place is often on the muscle level (localized fatigue), the associ-
ated literatures (Baghdadi et al., 2018b; Bonato et al., 2003; Chow,
Man, Holmes, & Evans, 2004; Davidson, Madigan, & Nussbaum,
2004; Ebenbichler et al., 2002; Fontes et al., 2010; Karg, Ven-
ture, Hoey, & Kulic, 2014; Lee, Roan, Smith, & Lockhart, 2009;
Yoshino, Motoshige, Araki, & Matsuoka, 2004; Zhang, Lockhart, &
Soangra, 2014) is characterized by: (i) primarily utilizing invasive
EMG and EEG sensors, (ii) focusing on one task element only
(e.g., lifting or walking), and (iii) no attempt to generalize the
developed models to focus on a more complex task. In the sec-
ond group, the studies focused on detecting occupational fatigue,
which is less extreme than exhaustion, where the workers are still
able to perform their job at a diminished level. Those studies,
e.g. Baghdadi et al. (2018b); Helbostad, Leirfall, Moe-Nilssen, and
Sletvold (2007); Lee et al. (2009); Yoshino et al. (2004), have of-
ten utilized pervasive sensors including IMUs and heart rate mon-
itors. In addition, recently, Maman et al. (2017) has developed
a generalized model for detecting fatigue across multiple man-
ufacturing tasks. However, their model involved over 20 predic-
tors and lacked the interpretability that makes it effective for the
consequent phases of fatigue identification, diagnosis and recov-
ery. Table 1 summarizes the literature in the two groups. In this
paper, we focus on occupational fatigue since it is: (i) a prece-
dent to exhaustion, and (ii) more aligned to the working envi-
ronment in advanced manufacturing environments. Moreover, our
proposed framework is evaluated using multiple complex manu-
facturing tasks in an attempt to showcase its potential generaliz-
ability. The reader should note that multiple manufacturing tasks
have only been examined in Maman et al. (2017).

From a detailed literature review, we could not identify any pa-
pers discussing the identification and diagnosis of fatigue. This may
be attributed to the implicit assumption in the literature that man-
agement or the individual worker can handle those stages once fa-
tigue has been detected. However, as indicated in Levenson (2017),
“workplace fatigue is a systems problem”, and there needs to be a
systematic approach to identify its root-causes. This is a critical gap
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Phase 1: Fatigue Detection

Model Validation / Evaluation

Sensors DataCieani Learning Algorithm Best Subset Selection of
S Features on Train Fold
% Heart Rate . Jerk Calculation [ 'E 7
3 . Cross | D . *| Statistical models I‘
~ IMU ”)) Posture Calculation Validation L & Testing Data/Labels  } Generate Bootstrap samples,
Dimension Reduction (Two ! Train a model and Test it
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3 jIxainiEold | | Test Fold | Models and Cross Validation
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Select Model with Highest
Phase 4: Fatigue Recovery Phase 3: Fatigue Diagnosis Performance
Heart Rate Sensor inpoi i
4 e Pmp'oml Parallel Coordinates Sensor Combination Testing
- Intervention i Eatsns o
Recover to Non- [% Based on i Whole Body Fatigue Location 1
Fatigued State Fatigue Type H IMUs and Type Best Subset of Select Sensors:
§ I Features L1+ Ease of Use (Less Sensors)
Localized or Isolated Fatigue « Usefulness (High Performance)

Fig. 1. An overview of proposed method.

since the end goal is intervening to prevent the unwanted negative
consequences on the worker and the production process.

3. Proposed framework for fatigue management

Fig. 1 presents an overview of the four phases of the proposed
framework for managing physical fatigue. The first phase is com-
prised of five main steps: (a) sensor selection, where practitioners
should identify appropriate sensors for fatigue detection; (b) data
preprocessing and feature generation, where the sensors’ data are
prepared for analysis; (c) model construction and validation, where
statistical and data analytic models are trained for distinguishing
between fatigued and non-fatigued states; (d) measuring useful-
ness, where models are evaluated based on accuracy, sensitivity,
specificity, etc.; and (e) ease of use analysis, where the best model
in step (d) is evaluated by constraining the number of sensors
used. Note that steps (d) and (e) are based on the Technology Ac-
ceptance Model (TAM) (Marangunic¢ & Granic, 2015). The outcome
from Phase 1 is the selection of an appropriate model for prospec-
tive analysis. In Phase 2, the subset of features/predictors that are
most frequently used in predicting the fatigue state is identified.
This subset presents insights into what features are most predic-
tive, which is an important input to the following phase. Phase 3
utilizes visual analytic methods (specifically an interactive parallel
coordinates plot) to help management understand how the varia-
tion in the values of the predictors impact the fatigue state (i.e.
from O to 1). Based on the insights gained from the fatigue diag-
nosis phase, a suitable evidence-based intervention can be selected
in Phase 4.

3.1. Phase 1: fatigue detection

3.1.1. Sensor selection

Cavuoto and Megahed (2017) discussed several fatigue indi-
cators, which included heart rate, heart rate variability, tremor
and performance. They suggested that these indicators can be
monitored using pervasive wearable sensors. In a follow-up work,
Maman et al. (2017) showed that four IMU sensors (located at the
ankle, hip, torso and wrist) coupled with a heart rate sensor can
be used to detect fatigue in different manufacturing tasks. Similar
to Maman et al. (2017), we suggest using these wearable sensors
for fatigue detection. More importantly, our framework presents a
systematic approach to answer the question: “what are the gains
associated with wearing an extra sensor?” In essence, this question
attempts to quantify whether the hassle and cost associated with
wearing an extra sensor can be justified with a significant/practical

improvement in fatigue detection. This question, which has not
been addressed in the literature, is tackled in the usability anal-
ysis in Phase 1.

3.1.2. Data preprocessing

Cleaning The first step in analyzing data is to ensure that the
data is correct and cleaned. For wearable sensors data, four main
cleaning steps are proposed. First, a low-pass filter should be ap-
plied on the acceleration data for noise removal. Second, collected
data should be visualized to check for any additional erroneous
data, i.e. data that were not corrected through the automated fil-
tering in step 1. Possible examples of erroneous data include faulty
sensor values (too high and/or too low), and participants who had
not experienced fatigue based on their subjective fatigue ratings.
Third, the data from the different sensors should be synchronized
and any observations that were captured outside of the experimen-
tal window should be eliminated. The fourth step involves the nor-
malization of the heart rate data through the computation of: per-
cent heart rate reserve (%¥HRR). Note that ¥HRR accounts for both
an individual’s resting heart rate (RHR) and his/her age-predicted
maximum heart rate HRpax = 220 — age. The %¥HRR can be com-
puted as:

o Heart Rate — RHR
%HRR = “HRy.. _RHR x 100. (1)

The interpretation of the % HRR is a percentage of an individual’s
heart rate capacity being used. Since it accounts for both their rest-
ing and maximum heart rates it allows for standardizing the heart
rate data. For example, if the HRR =50, this means that the per-
son is using 50% of their heart rate capacity, i.e. is half way be-
tween his/her resting and maximum heart rates.

Jerk and posture calculation The four IMUs (attached at the an-
kle, wrist, hip and torso) measure the acceleration associated with
a person’s dynamic motion. From the acceleration profile, other
components of motion can be computed. Jerk, which is the deriva-
tive of acceleration with respect to time, should be computed since
it has been shown to be effective in detecting fatigue in several
occupational settings (see e.g., Catapult Sports, 2018 for several
applications in professional sports). In addition, changes in work
posture are also indicative of fatigue (Cavuoto & Megahed, 2017).
In this paper, the approach of Baghdadi et al. (2018b) is used for
posture calculation, where: (a) a Kalman filter is first used to cal-
culate position in the three (xyz) directions, and then (b) posture
is estimated from the positional data. The reader is referred to
Baghdadi et al. (2018b) for more details on posture calculation.

Dimension reduction and feature extraction Based on the afore-
mentioned data preprocessing steps, one would have 12 accelera-
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I, torso vertical impact
Oy hip oscillation

Op: foot oscillation
D: step length

H: leg raise

ts: step time

trc: foot contact time

w: leg rotational velocity in sagittal plane
@: leg rotational oscillation

& 6: back bent angle
tp: time bent

Fig. 2. Biomechanical features illustration.

tion profiles (4IMUs x 3directions[xyz]) and 4 jerk profiles (rate
of change of the magnitude of the acceleration profile for each
IMU) each sampled at 25 Hz. In addition, there is a #HRR profile
sampled at 1000 Hz. These profiles cannot be directly used in pre-
dictive models and thus, features summarizing these profiles need
to be generated. In this article, we propose utilizing features that
would summarize the profiles based on a non-overlapping time
window of the 17 profiles. The selection of the length of the time
window should depend on: (a) length of the cycle for task, (b) con-
sequences of fatigue on the worker and production, and (c) man-
aging the trade-off between false alarms and early detection.

To capture the changes within the profile and provide in-
sights to the later isolation and diagnosis phases, three sets of
features are generated from the 17 profiles. The first set corre-
sponds to statistical features from the acceleration, jerk, posture
and %HRR. For each of these profiles, the mean and coefficient
of variation (CV) are computed for each time-window to capture
the intensity and variation changes. Features capturing the inten-
sity and spread are commonly used in the fatigue detection liter-
ature (see e.g., Bao & Intille, 2004; Maman et al., 2017; Pirttikan-
gas, Fujinami, & Nakajima, 2006). The second set corresponds to
biomechanical features, which allow for identifying and diagnos-
ing the type of fatigue. This set includes features such as: num-
ber of steps in the time interval, mean step time and length, and
mean foot/hip oscillations. The biomechanical features used in our
framework are depicted in Fig. 2. Note that these features are
calculated for each time window. Those features are computed
based on the code provided in Baghdadi et al. (2018b). The third,
and last feature set contains both age and gender, which may be
used to explain performance differences across different individu-
als (see Kent-Braun, Ng, Doyle, & Towse, 2002; Wojcik, Nussbaum,
Lin, Shibata, & Madigan, 2011 for more details). A description of
the proposed features for each of the three sets is provided in
Table 2.

3.1.3. Model construction and validation

Cross validation A leave p-participants out cross validation ap-
proach can be used to split the preprocessed dataset into training
and testing sets. Cross validation is commonly used to avoid over-
fitting (Weng et al., 2017). A typical approach to cross validation is
dividing the dataset into 10 folds, where the models are selected
based on the average/median prediction performance across 10
non-overlapping test datasets. The literature suggests that 10-fold
cross validation may reduce the variation between the train and
test performance (Dag, Topuz, Oztekin, Bulur, & Megahed, 2016).
Note that in fatigue detection studies such as ours, each partici-

pant’s data maybe autocorrelated. Thus, the plain k-fold cross vali-
dation approach is not suitable since the train and test datasets are
not independent. To alleviate this problem, we recommend leaving
p participants out for the cross validation, where the value of p
corresponds to approximately 10% of the participants in the data
analytic study.

Feature selection and dimension reduction When the number of
potential features/predictors is large, the computational complexity
for model training increases. Feature reduction is typically applied
to reduce the computational burden. More importantly, it leads
to: (a) an improved prediction performance, and (b) an increased
generalization capability. Algorithms for feature selection/reduction
can be categorized into three main groups (Blum & Langley, 1997):
(1) filter methods, where univariate statistical approaches are typ-
ically used to select features based on their relationship to the
response, (2) wrapper methods, where the important features are
kept based on their prediction performance, and (3) embedded
methods, which involve the use of methods such as LASSO for se-
lecting the most predictive features.

Since the end goal of our proposed framework is to enable the
diagnosis of fatigue and the recommendation of an appropriate in-
tervention, we recommend a two-step approach for feature selec-
tion. In the first step, simple filter approaches (e.g., information
gain or correlation analysis) should be combined with visualiza-
tions (e.g., time series charts, parallel coordinates plot, and scatter
diagrams). The goal of the first step is to provide practitioners with
an understanding of how fatigue affects and/or is associated with
changes in the potential predictors. From this step, any features
that are unchanged in the fatigued and non-fatigued states should
be removed. The reader should note that the insights gained from
the visualization will also be utilized in diagnosing the root-causes
of fatigue. In the second step, several structured wrapper and/or
embedded methods (e.g., best subset selection and LASSO) should
be examined. Preference should be given to techniques that re-
sult in a small number of features (i.e. more interpretable) and a
relatively large prediction performance (i.e. good fatigue detection
with a low false alarm rate).

Bootstrapping To further prevent over-fitting and the bias asso-
ciated with selecting a training dataset, we recommend the use of
bootstrapping (Efron & Tibshirani, 1993), which is a computational
procedure that uses intensive re-sampling with replacement. An
important assumption behind bootstrapping is that the sample dis-
tribution is a good approximation to the population’s distribution.
Recent studies have shown an improved performance of analyti-
cal models when bootstrapping is deployed (e.g., see Argon & Ziya,
2009; @degaard & Roos, 2014).
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Table 2
Generated feature sets.
Category # Feature Definition Justification
1 %HRR.Mean Average percent of heart rate reserve
2 Wrist.jerk.Mean Average wrist jerk or smoothness magnitude
3 Wrist.ACC.Mean Average wrist acceleration magnitude
4 Wrist.xposture.Mean Average wrist angular position in sagittal plane
5 Wrist.yposture.Mean Average wrist angular position in transverse plane
6 Wrist.zposture.Mean Average wrist angular position in coronal plane
7 Hip.jerk.Mean Average hip jerk magnitude
8 Hip.ACC.Mean Average hip acceleration magnitude
9 Hip.xposture.Mean Average hip angular position in coronal plane
10  Hip.yposture.Mean Average hip angular position in transverse plane
11 Hip.zposture.Mean Average hip angular position in sagittal plane
12 Torso.jerk.Mean Average torso jerk magnitude
13 Torso.ACC.Mean Average torso acceleration magnitude
14  Torso.xposture.Mean Average torso angular position in sagittal plane (bending)
15  Torso.yposture.Mean Average torso angular position in transverse plane
16  Torso.zposture.Mean Average torso angular position in coronal plane
17  Ankle jerk.Mean Average ankle jerk magnitude
18  Ankle.ACC.Mean Average ankle acceleration magnitude
19  Ankle.xposture.Mean Average ankle angular position in coronal plane
20  Ankle.yposture.Mean Average ankle angular position in transverse plane
Statistical 21 Ankle.zposture.Mean Average ankle angular position in sagittal plane Baghdadi, Maman, Lu, Cavuoto, and
22 %HRR.CV Coefficient of variation in ¥HRR Megahed (2017), Bao (2003), Bao and
23 Wrist.jerk.CV Coefficient of variation in the wrist jerk Intille (2004) Bonato et al. (2003),
24 Wrist. ACC.CV Coefficient of variation in the wrist acceleration magnitude Coté, Mathieu, Levin, and
25  Wrist.xposture.CV Coefficient of variation in the wrist angular position in sagittal Feldman (2002) Foster (1998),
plane Maman et al. (2017),
26 Wrist.yposture.CV Coefficient of variation in the wrist angular position in Quagliarella, Sasanelli, and
transverse plane Belgiovine (2008), Young, Trudeau,
27  Wrist.zposture.CV Coefficient of variation in the wrist angular position in Odell, Marinelli, and
coronal plane Dennerlein (2013), and
28  Hip.jerk.CV Coefficient of variation in the hip jerk magnitude Zhang et al. (2014)
29  Hip.ACC.CV Coefficient of variation in the hip acceleration magnitude
30  Hip.xposture.CV Coefficient of variation in the hip angular position in coronal
plane
31 Hip.yposture.CV Coefficient of variation in the hip angular position in
transverse plane
32  Hip.zposture.CV Coefficient of variation in the hip angular position in sagittal
plane
33 Torso.jerk.CV Coefficient of variation in the torso jerk magnitude
34  Torso.ACC.CV Coefficient of variation in the torso acceleration magnitude
35  Torso.xposture.CV Coefficient of variation in the torso angular position in sagittal
plane
36  Torso.yposture.CV Coefficient of variation in the torso angular position in
transverse plane
37  Torso.zposture.CV Coefficient of variation in the torso angular position in coronal
plane
38  Anklejerk.CV Coefficient of variation in the ankle jerk magnitude
39  Ankle.ACC.CV Coefficient of variation in the ankle acceleration magnitude
40  Ankle.xposture.CV Coefficient of variation in the ankle angular position in
coronal plane
41 Ankle.yposture.CV Coefficient of variation in the ankle angular position in
transverse plane
42 Ankle.zposture.CV Coefficient of variation in the ankle angular position in
sagittal plane
43 Number of steps Number of gait cycles during the fixed time interval
44  Mean step time Average duration of each gait cycle
45  Mean step length Average length of each gait cycle Bachlin, Forster, and Troster (2009),
46  Time bent The duration spent in bent posture Baghdadi et al. (2018b), Dolan and
47  Mean back bent angle Average angle of torso in bent posture w.r.t vertical axis Adams (1998),
Biomechnical 48  Mean hip oscillation Average side-to-side range of motion in hip Hallemans et al. (2009),
49  Mean foot oscillation Average side-to-side range of motion in foot Lariviére, Gagnon, and Loisel (2000),
50 Mean leg rotational velocity in Average angular velocity of leg in sagittal plane Strohrmann, Harms, Kappeler-Setz,
sagittal plane and Troster (2012), Willson and
51 Mean leg rotational oscillation Average angular range of motion for leg in sagittal plane Kernozek (1999), and Yun, Bachmann,
in sagittal plane Moore, and Calusdian (2007)
52 Mean torso vertical impact Average value of peak vertical acceleration in torso
53  Mean back rotational position Average range of bending posture while doing the task
in sagittal plane
.. 54  Age - Kent-Braun et al. (2002) and
Individual 55  Gender Wojcik et al. (2011)
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Table 3

Comparing the three different analytical categories. Table is adapted from Wang (2016).

Statistical models  Single classifiers ~ Ensemble models

High accuracy in general

High speed of learning against # of variables and samples
High tolerance to redundant variables

High tolerance to collinearity

High dealing with overfitting

Less complexity and easy parameter handling

v
v
v v
v v
v
v

Analytical modeling The analytical classification models can be
categorized into: (a) statistical models, (b) single classifiers, and
(c) ensemble models. The pros and cons of using these methods
(Kotsiantis, Zaharakis, & Pintelas, 2007; Wang, 2016) are shown in
Table 3. Note that we do not include more advanced deep learning
models since they often require special computing resources (i.e.
graphical processing units, GPUs) and would be quite difficult to
implement for a large number of workers.

Several classification methods, i.e. statistical models, single clas-
sifiers, and ensemble models, are viable candidates for utilization
in fatigue prediction. From our framework’s perspective, it is im-
possible to predetermine which methods will work best for a given
application. This is due to the fact that these methods are data-
driven and thus, are application-dependent. In the following para-
graphs, we highlight some commonly used methods within each
category.

Statistical models attempt to build a relationship between the
input variables and response through the use of parametric meth-
ods. Examples include: logistic regression and penalized logistic re-
gression. Those are classification techniques where the probability
of a dichotomous outcome is a function of the predictors/features
(Algamal & Lee, 2015; Hosmer Jr, Lemeshow, & Sturdivant, 2013).
A key difference between the two aforementioned approaches lies
in how they handle sparse datasets. Specifically, logistic regres-
sion’s performance can vary significantly with sparse data (King
& Zeng, 2001). On the other hand, the penalized logistic regres-
sion approach usually provides a more consistent performance
(Maman et al., 2017).

In the single classifier category, some commonly used classi-
fiers include: decision trees (DT), naive Bayes (NB), artificial neu-
ral networks (ANN), k-nearest neighbors (kNN), and support vector
machines (SVM). Those non-parametric approaches are commonly
used in human performance modeling applications. The reader
is referred to Afsar, Cortez, and Santos (2015); Ghaderyan, Ab-
basi, and Saber (2018); Rescio, Leone, and Siciliano (2018);
Ryu and Kim (2017) for examples of those applications. We rec-
ommend exploring one or more of those models for fatigue
classification.

For the third category, ensemble models are comprised of sev-
eral single classifiers, where the final classification of the response
is based on some voting or weighting procedure (Dietterich, 2000).
The premise for these methods is that combining a large num-
ber of single classifiers allows for a more diverse representation of
the data and consequently, a more accurate prediction. Commonly
used ensembles include: (a) random forests (RFs), which are en-
semble classification algorithms that utilize trees as base classifiers
to generate many classifiers and aggregate their results via voting
(Breiman, 2001); (b) bagging (Breiman, 1996), where bootstrapping
is used to generate a new training dataset, and combine several
base learners to fit a weak learner to the data; and (c) boosting
(Schapire, 2003), which creates different base learners by sequen-
tially reweighing the instances in the training set. Boosting gives
different weights to the base learners based on their accuracy. The
final model obtained by the boosting algorithm is a linear com-
bination of several base learners weighted by their own perfor-
mance. For a detailed introduction on the aforementioned analyti-

cal models, the reader is referred to Han, Pei, and Kamber (2011);
James, Witten, Hastie, and Tibshirani (2013).

3.14. Measuring usefulness

To evaluate the performance of the analytical models, we rec-
ommend using five performance measures: (a) accuracy, which
presents the percentage of correct classifications made by a given
model, (b) sensitivity, which captures the ability to detect the fa-
tigued cases, (c) specificity, which measures the correct classifica-
tion of non-fatigued cases, (d) G-mean, which is defined as the
square root of sensitivity times specificity, and (e) a newly pro-
posed consistency metric, which is a simple metric that captures
the absolute difference between the metrics in (b) and (c). This
metric can be used by practitioners to gauge whether a model is
equally capable of predicting both the fatigued and non-fatigued
states. The mathematical formula below show how each of these
metrics is computed first for each fold, and then averaged across
all folds:

TPU + TNU
Accuracy; = 73 | TP; + TN + FPj + FNyj’ )
i=1
.l m
Mean Accuracy = p ;Accuracyj. (3)
]:
Sensitivity; = Z T P - FN,] (4)
.1 m
M N § vty
ean Sensitivity m ;Sensmmty] (5)
Specificity; = Z TN,J +FP,] (6)
1 m
Mean Specificity = p X;Speczflcztyj. (7)
Jj=
G-mean; = \/Sensitivityj x Specificity;. (8)
-l m
Mean G-mean = — 21: G-mean;. (9)
Jj=
Consistency; = |Sensitivity; — Specificity;|. (10)
.1 m
Mean Consistency = = ZConszstencyj. (11)

j=1

where TP, TN, FP, FN denote the number of true positives, true neg-
atives, false positives, and false negatives, respectively. i denotes
the number of the bootstrapping samples, j is the number of the
training or testing data sets, n is the number of bootstrapped sam-
ples, and m is the number of folds in the leave p-participants-out
cross validation.
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3.1.5. Ease of use analysis

In addition to evaluating its usefulness, an important aspect for
technology adoption is usability. In the context of our framework,
usability can be measured using two metrics: (a) total number of
features selected, and (b) total number of sensors needed to gen-
erate these features. In general, models are more interpretable if
the number of features are smaller (assuming no significant differ-
ences in prediction capabilities). Workers and more practitioners
will also be more inclined to adopt the framework if it requires
less sensors since it will: (i) be much cheaper; for example, requir-
ing one IMU instead of four, would reduce the cost by a factor of
four; (ii) make the process less invasive to the worker; and (iii)
reduce the time needed for the worker to wear and strap all the
sensors. Therefore, our framework will not only consider prediction
performance, but it will also evaluate how the prediction perfor-
mance varies while restricting the number of sensors that can be
used. At this stage, one would have a model that can accurately
predict the fatigue state (based on the leave p-participants out
cross validation approach), while having a relatively small number
of features. This model can now be deployed for near real-time
prediction.

3.2. Fatigue identification

Once the model is deployed and fatigue is identified, it is im-
portant to understand how the predictors’ change when an indi-
vidual becomes fatigued. Typically, machine learning models are
thought of as “black boxes”, where it is difficult to understand how
the predictors affect the response. However, an important aspect of
recovering from fatigue is being able to diagnose its root-causes.
Since we favor having a lower number of features in our model
selection (see Section 3.1.5), we hypothesize that the chosen pre-
diction model will have a relatively low number of features. Thus,
one can use a parallel coordinates plot to depict how the chosen
features vary with the dichotomous response. The use of such a
plot will enhance the interpretation of the model and assist prac-
titioners in diagnosing the type of fatigue in the next phase.

3.3. Fatigue diagnosis

In this phase, one would determine which type of fatigue oc-
curred. Since this framework focuses only on physical fatigue, there
are two main types of fatigue that are possible (Cavuoto & Mega-
hed, 2017): (a) whole body fatigue, and (b) localized muscle fa-
tigue. Based on the parallel coordinates plot from the previous
phase, one would identify the important features for prediction. If
the features are derived from only one IMU (as in our first case
in Section 4.1), one would conclude that the worker is experienc-
ing localized muscle fatigue, near that IMU’s location. Alternatively,
if the features are derived only from the heart rate sensor (see
Section 4.2), this implies that the worker is experiencing whole
body fatigue. The last possibility would include features selected
from one or more IMU and the heart rate sensor. In this case,
the individual is experiencing a combination of whole-body fatigue
(i.e. respiratory related) and localized fatigue. Based on the diagno-
sis, one can assign appropriate interventions in the next stage.

3.4. Fatigue recovery

From a management perspective, it is important to prescribe
interventions that eliminate/reduce the safety hazards. In essence,
“safety does not happen by accident” (Vries, Koster, & Stam, 2016)
and thus, it is important to intervene to eliminate/mitigate the
sources of fatigue. We recommend utilizing the safety design hi-
erarchy (Manuele, 2005) from safety engineering. This hierarchy

presents a structured approach for interventions, where practition-
ers should consider six actions in order of effectiveness. Since this
is a well-known concept to safety professionals, we do not detail
this further.

In our estimation, the fatigue diagnosis stage allows prac-
titioners to directly pinpoint the hazard (i.e. type of fatigue).
Practitioners can then prescribe interventions from a large number
of options, including: (a) redesigning the task (which can eliminate
the development of fatigue), (b) assigning rest breaks (which can
reduce the level of fatigue before it reaches potentially dangerous
levels), and (c) job rotation (where workers would essentially
cycle between harder and easier jobs). The type of intervention
assigned will depend on the resources available to safety practi-
tioners and the constrains of their production processes. For this
reason, we only recommend the adoption of the safety design
hierarchy without providing a recommendation for the type of
interventions to be assigned. The reader is referred to the survey
of Lu et al. (2017) for a discussion of the type of interventions
used by advanced manufacturing workers and safety professionals
in combating physical fatigue at the workplace.

4. Case studies

To evaluate the performance of the proposed framework, we ex-
amine two case studies. The first case study involves a simulated
manual material handling (MMH) task, and the second is a supply
pick-up and insertion (SI) task. Both case studies replicate typical
fatiguing manufacturing tasks (see the survey in Lu et al. (2017) for
details) in a controlled lab environment in order to facilitate the
data collection process. Since the data collection, data preprocess-
ing and model construction steps are the same for the two tasks,
we only explain them in detail in Sections 4.1.1 and 4.1.2.

4.1. Case study 1: manual material handling

4.1.1. Data collection, preprocessing and feature generation

Twenty four participants (9 females, 15 males; mean age 36.37
years with the standard deviation of 16.67 years) were recruited
over a period of 11 months from the local community. Five of the
participants were manufacturing workers, and the remainder rep-
resented a convenience sample of students with varying degrees
of physical work experience. All participants reported that they
were in good physical and mental health. In addition, they were
screened by completing the Physical Activity Readiness Question-
naire (PAR-Q) (Thomas, Reading, & Shephard, 1992) at the start of
the session to assess their eligibility to participate. They also pro-
vided informed consents at the start of the experiment. All study
procedures were approved by the university’s institutional review
board (IRB).

Participants completed one three-hour experimental session for
the simulated MMH task and another for the SI task. The order
of the two experiments was randomized and participants had to
complete the experiments in different days. The MMH task in-
volved palletizing and transporting several weighted containers
(see Fig. 3). Each participant was asked to perform the task at a
set pace for three hours continuously (without breaks) to induce
fatigue. Per the discussion in Section 3.1, four IMUs placed at the
ankle, hip, wrist and torso, and a heart rate monitor on the chest
were used for data collection. Furthermore, participants provided
their subjective exertion (RPE) using the Borg Scale (Borg, 1998)
every ten minutes.

The four step data cleaning procedure discussed in
Section 3.1.2 was deployed for our case studies. After using the
low pass filter for de-noising the IMU data, we used RPE > 13 as a
cutoff for fatigue in step 2 per the analysis of Maman et al. (2017).
Based on step 2, a total of nine participants were removed from
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Fig. 3. A participant carrying out the MMH task.

the data for the following reasons: (a) three participants did not
get fatigued by the end of the experiment; (b) three reported being
fatigued within the first half an hour of the experiment (i.e. they
may have been fatigued prior to conducting the experiment); (c)
the IMUs failed to record data for two of the participants during
the experiment; and (d) one of the participants deviated from the
experimental protocol by taking two 10-minute bathroom breaks.
As a result, we ended up with 15 participants whose data were
deemed reliable for analysis. After synchronizing the data from the
sensors in step 3, we removed the first 10 min of experimental
data to avoid capturing the learning effect (Baghdadi et al., 2018a;
Maman et al., 2017). Then, the % HRR was computed in step 4
as explained in the methodology section. After step 4, the jerk
and posture profiles were generated based on the procedure of
Baghdadi et al. (2018b) which was highlighted in Section 3.1.2.

To reduce the computational burden and to maintain a bal-
anced dataset for training, we have only kept 20% of the data
for each participant. These 20% corresponded to: (a) 10% (i.e.
10% x 180 min = 18 min) at the beginning of the experiment, after
the first 10 min are removed, where the participants are not fa-
tigued, and (b) 10% at the end, where the participants are fatigued.
The rationale for removing the 80% of the data is two-fold. First,
the separation ensures that the differences between the fatigued
and non-fatigued data for each participant are maximized, while
the differences within each group are minimal. Second, based on
Maman et al. (2017), we can assume that the size of the data
can be decreased without losing much information related to fa-
tigue detection. For each participant, we coded the response as 0
(for the first 18 min) and 1 for the latter 18 min to reflect the
non-fatigued and fatigued states, respectively. Recall that our data
cleaning procedure ensured that these values reflect the estimated
RPEs by each participant.

Based on the discussion in Section 3.1.2, it is important to set
the size of the time window prior to generating the features in
Table 2. In our case studies, we have used a non-overlapping time
window of 2 min. This means that each of the 18 min was di-
vided into nine fractions of two-minute periods. The rationale for
selecting two-minutes for the time window was mainly based on
the observation that the average cycle time for MMH was approx-
imately one minute. Therefore, each two-minute time interval is
guaranteed to include at least one cycle of the task. Based on this
decision, we generated the proposed features from each sensor for
each two-minute time window. The reader can replicate our anal-

ysis by consulting our data and code (see the Supplementary Mate-
rials Section).

4.1.2. Model construction and validation

As a first step for feature selection, time series plots of all fea-
tures were constructed to evaluate which features were virtually
unchanged from the non-fatigued to fatigued states. Based on the
visualizations, 15 (of the 55 candidate) features were dropped. The
second step (where wrapper or embedded methods are used) of
feature selection is applied after the training and test samples are
generated using the leave p-participants out cross validation ap-
proach. Based on the discussion in Section 4.1.1, we had 15 par-
ticipants with reliable data for this case study. Thus, p=2 (i.e.
2/15 = 13%) was used for the leave p-participants-out cross vali-
dation approach to split the data into training and test sets. This
resulted into 105 possible training/test sets (15!/((15 -2)! x 2!) =
105), which we would evaluate to obtain an estimate of the varia-
tion in the performance of our analytical models.

Prior to deploying the analytical models, two additional tasks
were carried out. First, the last step of variable selection was
deployed using two popular methods: best subset selection and
LASSO (refer to Section 3.1.3 for details). Second, to reduce the
bias from model training and improve the performance of the
predictive models bootstrap resampling with replacement was ap-
plied to the training data. The sample size for each bootstrap sam-
ple was n =234, which was based on 13 participants x 18
samples per participant. For our analysis, we used 200 boot-
strap samples (each having n =234) based on the recommen-
dation of Pattengale, Alipour, Bininda-Emonds, Moret, and Sta-
matakis (2009).

To develop the fatigue prediction models, several methods were
applied during our preliminary analysis of the data. The models
evaluated included: logistic regression, penalized logistic regres-
sion, decision trees (DT), naive Bayes (NB), k-nearest neighbors
(kNN), support vector machines (SVM), and three ensemble models
(random forest (RF), bagging, and boosting). Due to their relatively
poor performance, DT, NB and KNN were eliminated. In addition,
models using best subset selection typically had better predic-
tion performance with less features than their LASSO counterparts.
Therefore, our case study focused on using the best subset selec-
tion with the following five analytical models: (a) logistic regres-
sion, (b) SVM, (c) RF, (d) RF with bagging (hereafter bagging), and
(e) RF with boosting (hereafter boosting). In addition, we compared
these five models to the approach of Maman et al. (2017) since it
was the only paper that considered multiple tasks in the context of
occupational fatigue (see Table 2). To ensure that the comparison is
fair, we considered two different variants of the penalized logistic
regression approach with LASSO proposed in Maman et al. (2017).
The first is utilizing their approach and features (on our data), and
the second involves using their methodology with our features and
data. In our estimation, this allows us to better evaluate whether
our proposed method is superior to theirs. The reader should note
that they did not consider model interpretation in their feature
generation and thus we expect that our features are easier to in-
terpret by practitioners.

4.1.3. Fatigue detection results

In Table 4, the predictive performance of our five models is
compared with the two variants from Maman et al. (2016). The
table shows the mean (and standard deviation in parentheses)
for each of our four metrics. In addition, the average number
of features selected by each model is also presented. The re-
ported results are based on 105 constructed test datasets from the
two-participants-out cross validation. For the first three numeric
columns, a higher value is desired since it reflects a better pre-
diction performance. The consistency column captures the aver-
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Table 4

Mean performance and the corresponding standard deviation of the classification methods for fatigue detection in MMH task, (the recommended

model is in bold).

Category  Model Sensitivity Specificity Accuracy G-mean Consistency # of Features
Random Forest 0.879 (0.14) 0.879 (0.15) 0.879 (0.09) 0.869 (0.10) 0.152 (0.18) 5.352
Bagging 0.872 (0.13)  0.869 (0.15)  0.870 (0.09) 0.863 (0.10)  0.143 (0.17)  5.352

BSS Boosting 0.871(0.13)  0.872 (0.15)  0.870 (0.08)  0.862 (0.10)  0.147 (0.17)  5.352
Support Vector Machine 0.811(0.18) 0.828 (0.17)  0.820 (0.11)  0.805(0.13)  0.198 (0.19)  5.352
Logistic Regression 0.790 (0.17) 0.766 (0.20) 0.778 (0.11) 0.758 (0.15) 0.227 (0.20) 5.352

LASSO Penalized Logistic Regression*  0.802 (0.20)  0.916 (0.11)  0.859 (0.11)  0.846 (0.13)  0.175 (0.20) 18.943
Penalized Logistic Regression 0.810(0.13)  0.775(0.17)  0.793 (0.08)  0.781 (0.09)  0.197 (0.16)  11.133

* Features used in the model are only those generated in Maman et al. (2017).

age absolute difference between the sensitivity and specificity for
each model, evaluated on the 105 test datasets. It is noted that the
smaller the consistency is, the similar performance in detecting fa-
tigued and no-fatigued states simultaneously would be. Moreover,
a smaller number of features facilitates the interpretation of the
model, which is important in the fatigue identification and diag-
nosis phases.

Four main observations from Table 4 need to be highlighted.
First, as expected from the preliminary analysis, the number of fea-
tures selected with the best subset selection are much less than
those selected by the LASSO model. This means that the usability
of the analytical models with the BSS model is much higher than
that with LASSO since practitioners’ need to monitor and under-
stand approximately five features (instead of 11 or 19). Second, the
performance of all seven models is relatively high with an overall
average accuracy greater than 0.77. Third, the performance of the
three ensembles is better than the remaining models. Fourth, the
penalized logistic regression of Maman et al. (2017) outperforms
its variant with our features from a prediction perspective. How-
ever, this comes at the cost of adding eight features to the model
(i.e. ~ 70% increase in the variables used). Based on these obser-

Table 5

vations and this case study, one can conclude that our framework
has shown higher detection performance (with less features) when
compared to the approach in Maman et al. (2017).

The next logical research question is to examine how the pre-
diction performance varies while limiting the number of sensors
used. To evaluate this question, we utilize the random forest model
since Table 4 showed that it had the highest mean accuracy, sensi-
tivity, specificity and G-mean when compared to the other two en-
sembles. Table 5 reports the prediction results, when features are
limited to those from one, two, three, four and all sensor combina-
tions. Note that the values that are not shown in the table (e.g. an-
kle, hip, wrist and HR sensors) reflect scenarios when a prediction
was not possible. This means that the main features that detected
the fatigue were eliminated with the added constraints on which
possible features to select from.

From the results in Table 5, one can see that the prediction per-
formance does not vary significantly as the number of sensors’ are
changed. For example, the average accuracy varies from 0.855 to
0.880 (with a standard deviation = 0.09) as the number of sensors
vary. This is only true if the torso IMU is included in the analy-
sis. Based on this observation, we recommend only using the torso

Mean performance and the corresponding standard deviation of the random forest model for fatigue detection using different sensor combinations for the MMH task

(the recommended model is in bold).

# sensors Sensor Combination Sensitivity Specificity Accuracy G-mean Consistency
5 Ankle Hip Wrist Torso HR 0.879 (0.14) 0.879 (0.15) 0.879 (0.09) 0.869 (0.10) 0.152 (0.18)
4 Ankle Hip Wrist Torso 0.883 (0.14) 0.878 (0.15) 0.880 (0.09) 0.871 (0.10) 0.148 (0.18)
Ankle Hip Torso HR 0.851 (0.16) 0.883 (0.13) 0.867 (0.10) 0.858 (0.11) 0.149 (0.16)
Hip Wrist Torso HR 0.883 (0.12) 0.872 (0.15) 0.877 (0.08) 0.870 (0.10) 0.147 (0.16)
Ankle Wrist Torso HR 0.877 (0.13) 0.873 (0.15) 0.875 (0.08) 0.867 (0.10) 0.146 (0.16)
Ankle Hip Wrist HR - - - -
3 Wrist Torso HR 0.880 (0.12) 0.874 (0.15) 0.877 (0.08) 0.869 (0.09) 0.142 (0.16)
Ankle Torso HR 0.846 (0.15) 0.882 (0.13) 0.864 (0.09) 0.856 (0.10) 0.148 (0.16)
Ankle Hip Torso 0.851 (0.16) 0.883 (0.13) 0.867 (0.10) 0.858 (0.11) 0.149 (0.16)
Hip Wrist Torso 0.882 (0.12) 0.872 (0.15) 0.877 (0.08) 0.869 (0.10) 0.147 (0.16)
Hip Torso HR 0.860 (0.16) 0.885 (0.14) 0.872 (0.10) 0.863 (0.11) 0.150 (0.17)
Ankle Wrist Torso 0.877 (0.13) 0.873 (0.15) 0.875 (0.08) 0.867 (0.10) 0.146 (0.16)
Ankle Hip HR - - - - -
Ankle Hip Wrist - - - - -
Ankle Wrist HR - - - - -
Hip Wrist HR - - - - -
2 Wrist Torso 0.880 (0.12) 0.874 (0.15) 0.877 (0.08) 0.869 (0.09) 0.142 (0.16)
Ankle Torso 0.846 (0.15) 0.882 (0.13) 0.864 (0.09) 0.856 (0.10) 0.148 (0.16)
Hip Torso 0.860 (0.16) 0.885 (0.14) 0.872 (0.10) 0.863 (0.11) 0.150 (0.17)
Torso HR 0.842 (0.16) 0.867 (0.14) 0.855 (0.10) 0.846 (0.11) 0.149 (0.17)
Ankle Hip - - -
Ankle HR - - - - -
Ankle Wrist - - - - -
Hip Wrist - - - - -
Hip HR - - - - -
Wrist HR - - - - -
1 Torso 0.847 (0.16) 0.864 (0.14) 0.855 (0.10) 0.847 (0.11) 0.148 (0.16)
Ankle - - - - -
Hip - - - - -
Wrist - - - - -

HR -
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Figure 4: Important features visualization in the MMH task using the Bagging model

Fig. 4. Important features visualization in the MMH task using the Bagging model.

IMU sensor for detecting fatigue in manual material handling en-
vironments (that are similar to those analyzed in our case study).
While the prediction performance is almost the same, the costs in-
curred by the firm are much lower, and the usability of the system
by using only one sensor is significantly improved. This is an im-
portant practical takeaway, which has not been reported in previ-
ous studies investigating fatigue in MMH tasks (see the references
in Table 1).

4.1.4. Fatigue identification results

A first step in understanding fatigue is to examine how fre-
quently a feature is selected all of the 105 two-participants-out
cross validation bagging model test sets. In this section, we limit
our analysis to two cases: (a) when all five sensors are utilized,
and (b) when only the torso sensor is used. The results for these
analyses are shown in Fig. 4(a) and (b), respectively. From both fig-
ures, one can see that all three categories of features (i.e. statistical,
biomechanical, and individual features) are selected in our mod-
els. For the five sensor case, one biomechanical feature (mean back
rotational position, i.e. feature #53 in Table 2) and five statistical
features appeared in more than 65% of the models. All other re-

maining features appeared in less than 10% of the models. On the
other hand, age becomes a much more predictive factor if we only
rely on the torso sensor. In that case, mean back rotational position
is still selected in 100% of the models.

Once a list of predictive/important features is established, we
then investigate how those features vary as the participant tran-
sition from the non-fatigued to fatigued states. As highlighted in
Section 3.2, this analysis can be done visually using a parallel co-
ordinates plot. Fig. 5 depicts this analysis (using the median model
sorted by accuracy) for the five sensors and one sensor cases. Note
that the lines graphed in these plots represent the average values
per variable for each of the two participants in the test set exam-
ined by the median model.

From Fig. 5(a), one can see that all of the six features high-
lighted in Fig. 4(a) are present in the median model. It is
interesting to note that only the wrist features exhibited a consis-
tent pattern across both participants when examining the fatigued
cases (black line) and the non-fatigued cases (gray line). Specifi-
cally, the coefficient of variation for wrist jerk tended to be higher,
and the mean wrist jerk tended to be lower in the fatigued cases.
For the remaining four features, there were not any consistent
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Figure 5: Features visualization for the median Bagging model in the MMH task

Fig. 5. Features visualization for the median Bagging model in the MMH task.

patterns for both test subjects. Similarly from Fig. 5(b), one can
see that only the torso ACC mean feature showed a clear separation
between the fatigued and non-fatigued states for both participants.
We hypothesize that these two figures may provide justification
for why the ensemble models outperformed the logistic regres-
sion models. Specifically, these plots may suggest interactive and
non-linear effects that can be trained for and captured using the
ensemble models.

4.1.5. Fatigue diagnosis results

From the fatigue identification results, one can conclude that
the type of fatigue is localized at the back. This conclusion is sup-
ported by: (a) the prediction performance is almost unchanged
(and high) when only the features from the torso sensor are used
for prediction, and (b) the mean back rotational position was se-
lected as an important feature in 100% of the models. This was the
only feature that was selected in 100% of the models. Our results
are consistent with findings in the ergonomics literature, which
suggest that manual material handling may lead to a higher preva-
lence of back injuries (Mital, 2017).

4.2. Case study 2: supply pick up and insertion

4.2.1. Task description and data preparation

Similar to the task in Maman et al. (2017), we examined supply
pickup and insertion task. The task involved walking while carry-
ing supplies, and then bending forward to unscrew and fasten bolts
at the supply box (destination). A snapshot of the experiment is
provided in Fig. 6. The task’s cycle time was set for two minutes to
mimic the activity in Maman et al. (2017). By design, this activity
should be less fatiguing than the MMH task of the first case study.

The mechanism used to collect and preprocess data is similar
to that used in case study 1. The four step data cleaning procedure
suggested in Section 3.1.2 resulted in having 13 participants (in-
stead of 15 for the first case study) with reliable/clean data. Then,
the sensor data were synchronized after removing the initial ten
minutes of the experiment. After down sampling, the jerk, pos-
ture, and % HRR profiles were computed. Similar to the MMH task,
the first 18 min of the data (after removing the learning period)

Fig. 6. Sensor placement on a participant for SI task.

were labeled as not fatigued and the last 10 min were marked as
fatigued.

From those two-eighteen minute periods, we generated the list
of features in Table 2. Based on the visual feature selection proce-
dure, 41 of those features were retained for further analysis. The
leave-two-participants-out cross validation resulted in 78 training
and test datasets. This is smaller than the datasets used in the first
case study since the number of participants with reliable data was
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Table 6

Mean performance and the corresponding standard deviation of the classification methods for fatigue detection in SI task, (the recommended

model is in bold).

13

Category  Model Sensitivity Specificity Accuracy G-mean Consistency # of Features
Random Forest 0.876 (0.12) 0.918 (0.10) 0.897 (0.08) 0.892 (0.09) 0.100 (0.13) 6.346
Bagging 0.863 (0.12)  0.910 (0.10)  0.886 (0.08)  0.882 (0.09) 0.097 (0.13)  6.346

BSS Boosting 0.868 (0.12)  0.893 (0.12)  0.880 (0.09) 0.875(0.09) 0.118 (0.13)  6.346
Support Vector Machine 0.728 (0.19)  0.847 (0.16)  0.787 (0.12)  0.773 (0.13)  0.226 (0.16)  6.346
Logistic Regression 0.525(0.28)  0.723 (0.21)  0.624 (0.12)  0.558 (0.19)  0.391 (0.27)  6.346

LASSO Penalized Logistic Regression*  0.674 (0.19)  0.925 (0.15)  0.800 (0.14)  0.773 (0.15)  0.257 (0.23)  16.179
Penalized Logistic Regression 0.748 (0.22)  0.824 (0.06)  0.786 (0.10)  0.775(0.17)  0.151 (0.16)  20.868

* Features used in the model are only those generated in Maman et al. (2017).

smaller. Two hundred bootstrap samples with fixed sample size (11
participants x 18 samples per participant = 198) were used to
evaluate the stability of proposed models.

To reduce the computational burden, we only examined the
seven models analyzed in case study 1. This means that we did
not examine whether the kNN, NB or decision trees performed ad-
equately for this task. The results for using these seven models for
fatigue detection are presented in the following subsection.

4.2.2. Fatigue detection results

The predictive performance of the seven models is summarized
in Table 6. Similar to Table 4, this table shows the mean (and stan-
dard deviation in parentheses) for each of the four performance
measures as well as the average number of features selected by
each model. The reader should note the reported results are based
on 78 constructed test datasets from the two-participants-out cross
validation.

There are two main observations to be made pertaining to the
results in Table 6. First, the number of features selected with the
best subset selection are much less than those selected by the
LASSO model. This means that the usability of the analytical mod-

els with the BSS model is much higher than that with LASSO since
practitioners’ need to monitor and understand approximately six
features (instead of 16 or 21). Second, the prediction performance
of the three ensembles is much higher than all other models. Note
that the performance gap is much larger in this task than in the
MMH task. Based on this case study, our framework has shown
higher detection performance (with less features) when compared
to competing models from the literature.

Next, we examine how the prediction performance varies while
restricting the number of sensors used when performing SI task.
To gage this question, we utilize the random forest model since
Table 6 showed that it had the highest prediction performance.
Table 7 shows the prediction results when features are limited to
those from one, two, three, four and all sensor combinations. Sim-
ilar to Table 5, the values, which are not shown reflect scenarios
when a prediction was not possible.

From the results in Table 7, one can observe that the predic-
tion performance does not vary significantly as the number of sen-
sors’ are changed. For instance, the average accuracy varies from
0.854 to 0.897 (with standard deviations = 0.10) as the number
of sensors vary. Note that this observation only holds if the heart

Table 7

Mean fatigue detection performance (and the corresponding standard deviation) of the random forest model using different sensor combi-
nations for the SI task (the recommended approach is in bold).

# sensors  Sensor Combination Sensitivity Specificity Accuracy G-mean Consistency
5 Ankle Hip Wrist Torso HR  0.876(0.12) 0.918 (0.10) 0.897 (0.08)  0.892 (0.09)  0.100 (0.13)
4 Ankle Hip Wrist  Torso 0.863 (0.13)  0.911 (0.05)  0.887 (0.07) 0.884 (0.08) 0.097 (0.12)
Ankle  Hip Torso HR  0.853 (0.13) 0.893 (0.12) 0.873 (0.09) 0.869 (0.10)  0.107 (0.13)
Hip Wrist Torso HR  0.853(0.17) 0.911 (0.14) 0.882(0.13) 0.866 (0.13)  0.121 (0.14)
Ankle Hip  Wrist HR  0.834(0.16) 0.921 (0.10) 0.877 (0.10)  0.870 (0.11)  0.132 (0.16)
Ankle Wrist  Torso HR  0.826 (0.19) 0.955(0.04) 0.890 (0.10) 0.882 (0.12)  0.138 (0.19)
3 Hip  Wrist  Torso 0.867 (0.15)  0.904 (0.12)  0.885(0.12)  0.872 (0.12)  0.100 (0.09)
Ankle  Hip HR  0.856 (0.13) 0.887 (0.15) 0.871 (0.10)  0.865 (0.12)  0.117 (0.15)
Hip  Wrist HR  0.831(0.15) 0.923 (0.06) 0.877 (0.08) 0.872 (0.09) 0.124 (0.14)
Ankle Torso HR  0.825(0.16) 0.935 (0.05) 0.880(0.09) 0.874 (0.09) 0.131 (0.14)
Wrist Torso HR  0.818 (0.18)  0.927 (0.12)  0.872 (0.13)  0.856 (0.14)  0.131 (0.15)
Hip Torso HR  0.852(0.17) 0.874 (0.17) 0.863 (0.13)  0.844 (0.14) 0.132 (0.16)
Ankle Wrist HR  0.820(0.19) 0.957 (0.03) 0.888 (0.10) 0.879 (0.12)  0.147 (0.19)
Ankle Hip  Wrist - - - - -
Ankle  Hip Torso - - - - -
Ankle Wrist  Torso - - - - -
2 Torso HR  0.823(0.16) 0.896 (0.12)  0.859 (0.12)  0.844 (0.13)  0.109 (0.12)
Ankle HR  0.828 (0.16) 0917 (0.07) 0.872 (0.10)  0.867 (0.10)  0.114 (0.13)
Hip HR  0.837 (0.15) 0.904 (0.08) 0.870(0.08) 0.854 (0.14) 0.117 (0.14)
Wrist HR  0.818 (0.15) 0.920 (0.05) 0.869 (0.08) 0.863 (0.09) 0.123 (0.14)
Hip Torso -
Ankle Wrist - - - - -
Ankle Hip - - - - -
Ankle Torso N - - - -
Hip  Wrist - - - - -
Wrist  Torso - - - - -
1 HR 0.820 (0.14) 0.889 (0.06) 0.854 (0.08) 0.850 (0.09) 0.102 (0.13)
Ankle - - - - -
Hip - - - - -
Wrist - - - - -

Torso
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Fig. 7. Important features visualization in the SI task using the Random Forest model.

rate sensor is included in the analysis. Accordingly, using solely the
heart rate sensor is appropriate for detecting fatigue in supply pick
up and insertion environments (that are similar to those analyzed
in our case study). Similar to the earlier case study, this is a novel
contribution (showcasing that one sensor can present similar per-
formance to multiple sensors with a much higher usability).

4.2.3. Fatigue identification results

As in case study 1, we follow the two-step approach for fa-
tigue identification. First, we examine how frequently a feature is
selected from all of the 78 two-participants-out cross validation
random forest model test sets. We limit the analysis to two cases:
(a) when all five sensors are utilized, and (b) when only the heart
rate sensor is used. The results from these analyses are shown in
Fig. 7(a) and (b), respectively. Neither cases included any individ-
ual features (which is different from the earlier case when age
appeared in both). Only statistical features were selected in the
one sensor model, which is perhaps not surprising since none of
the biomechanical features can be generated if only the heart rate
sensor is used. For the five sensor case, one biomechanical feature
(mean leg rotational oscillation in sagittal plane), i.e. feature #51 in
Table 2 and three statistical features appeared in more than 50%
of the models. On the other hand, in the single sensor case, all
the statistical features (HRR CV, HRR Mean) created using the heart
sensor were selected in 100% of the models.

Second, we investigate how those features range as participants
transition from the non-fatigued to fatigued states. Fig. 8 illustrates
this analysis (using the median model sorted by accuracy) for: (a)
the five sensors, and (b) the one sensor cases. Recall that the lines
graphed in these plots represent the average values per variable
for each of the two participants in the test set examined by the
median model. The conclusion is similar to that of case study 1,
where only one feature had different values for the non-fatigue
(gray line) and fatigue cases (black line) across the two test par-
ticipants. However, here, this effect is only observed for the one
sensor case. Specifically, in Fig. 8(b), the mean HRR is higher in
the fatigued state. This result makes sense since an increased heart

rate is a fatigue symptom (see Cavuoto & Megahed, 2017 for more
details).

4.2.4. Fatigue diagnosis results

From the fatigue identification results, one can conclude that
the participants experience whole-body fatigue in the SI task. This
conclusion is based on the ability to accurately detect the non-
fatigue and fatigue states through the use of only the heart rate
sensor. The elevated mean percent HRR shown for both partici-
pants in Fig. 8(b) supports this conclusion.

5. Discussion and conclusions
5.1. Summary of the main contributions

In this paper, we proposed an integrated framework for man-
aging fatigue (and consequently changes in work performance)
using minimally-intrusive wearable sensors. Based on the case
studies in Section 4, this study makes four main contributions.
First, we demonstrated the capability of using a unified modeling
approach for managing physical fatigue in different occupational
tasks/settings. The case studies show the ability to detect, identify,
and diagnose fatigue in multiple occupationally-relevant settings.
The ability to identify/diagnose fatigue through the use of wearable
sensors has not been shown prior in the literature. Second, the in-
sights from the fatigue identification phase of our framework can be
used to inform sensor placement and selection. We demonstrated
that the prediction performance using one sensor is equivalent to
that of using all sensors for our two case studies. Third, we showed
that the importance of different types of features (statistical sum-
maries of the sensors’ profiles, biomechanical features, and indi-
vidual characteristics of workers) varies with different manufactur-
ing tasks. Thus, researchers and practitioners should consider this
finding when developing models for detecting/managing fatigue in
other settings. Fourth, from an intelligent systems perspective, this
study has presented a modified leave p-participants out cross vali-
dation approach (see Section 3.1.3) to account for the inherent au-
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Fig. 8. Features visualization for the median Random Forest model in the SI task.
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tocorrelation within each participant’s experimental data. To cap-
italize on the advantages of the standard 10-fold cross validation
approach, we have recommended leaving 10% of the participants
data out. This corresponded to leaving p = 2 participants out in
our case studies. While this required a large number of computa-
tional experiments, the standard errors of the performance metrics
were smaller than those obtained when p = 1. For this reason, the
large number of simulations was justified in our case. Furthermore,
we suggest that researchers should examine p > 1 values in future
studies.

5.2. Relevance to expert and intelligent systems research and practice

Our framework attempts to bridge the gaps between predictive
and prescriptive analytics in the context of human performance
modeling. The majority of current expert and intelligent systems
research have focused on either the predictive (Khan, Schigler, Ku-
lahci, Zaki, & Rasmussen, 2019; Lu, Wang, & Yoon, 2019a; Mal-
donado, Lopez, Jimenez-Molina, & Lira, 2020; Weng et al., 2017;
Weng et al., 2018) or prescriptive (Chai & Ngai, 2019; de Leoni &
Marrella, 2017; Rezaeiahari & Khasawneh, 2020; Sadic, de Sousa,
& Crispim, 2018) modeling components. Perhaps, more importantly
there is limited work that have considered the impact of “humans”
(especially on an individual level) on the overall performance of
a firm (Grosse et al., 2017). Our proposed framework provides a
novel approach to detect, diagnose and intervene when fatigue oc-
curs, which is a known precursor of poor performance as shown in
the discussion in Section 2. Thus, our proposed framework estab-
lishes a successful precedent that can inform the development of
more advanced “human-in-the-loop” systems, where the effect of
human operators is both predicted/modeled and incorporated into
prescriptive decision-making models.

From an expert systems design perspective, the sequential na-
ture of our framework attempts to overcome the “black box” na-
ture of many machine learning algorithms. We have shown that
the sequential application of predictive models when combined
with visual analytic tools can provide insights for prescriptive in-
terventions. Furthermore, this study demonstrates that futuristic
intelligent systems can capture in real-time the well-being of hu-
man operators in addition to the data typically captured on the
equipment. This can allow for more dynamic operational interven-

tions (e.g., work-rest scheduling models), where the distribution
of work tasks between different human operators (and possibly
robotic assistants) is optimized.

5.3. Relevance to “human performance” management practice

In our estimation, the proposed framework and the case study
findings have significant implications for practitioners interested
in managing/optimizing their workforce as a part of larger set
of resources that include machines and supporting computational
technologies. We have shown that changes in a worker’s physi-
cal performance can be detected and modeled using wearable sen-
sors. Utilizing the principles behind the technology adoption model
(TAM), we have shown that fatigue associated specialized jobs can
be detected using one sensor (without a loss in prediction per-
formance). The emphasis on fatigue identification and diagnosis
through visual analytical approaches allows practitioners to iden-
tify the risks, which are to be tackled through an appropriate in-
tervention strategy. In essence, our framework can provide near
real-time insights into the well-begin of shop-floor workers and
their associated productivity levels. This information can be incor-
porated into the safety and productivity components of the SQDCM
(safety, quality, delivery, cost, and morale) lean production effec-
tiveness dashboard.

Our case-study findings have significant implications for man-
ufacturing occupations, as they are likely to encourage the man-
agement to invest in data-driven manufacturing to develop bet-
ter plans to prevent fatal and non-fatal occupational injury. The
fatigue detection phase of the proposed framework can be used
for work scheduling practice as well, since the scheduling ap-
proaches should incorporate the fatigue status of the workers. The
reader is refereed to Mossa, Boenzi, Digiesi, Mummolo, and Ro-
mano (2016) for an example of how ergonomic risk can be incor-
porated in scheduling.

5.4. Limitations and suggestions for future research

There are a few limitation that may influence the interpreta-
tion of our results. First, the sample sizes are small as a result of
time committed by each participant. Second, the participants for
our two case studies varied in age and experience. Some of them
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represented a convenience sample of undergraduate and graduate
students who may have a limited experience with manufacturing
operations. Others were recruited from industry, and as such, are
much more experienced/trained. Thus, our 10 min training win-
dow may not be sufficient for some participants, i.e. the baseline
performance for the non-fatigued state may not reflect their true
steady-state performance. Third, the fatigue detection models are
based on the participants’ perceived ratings of exertion. Different
participants may have varying levels of pain tolerance. Thus, we
implicitly assume that the aliasing of perception and fatigue will
have the same effect on performance as fatigue alone. This as-
sumption is reasonable based on the ergonomics literature. Specif-
ically, Mehta and Cavuoto (2015, p. 94) state that “.. muscle ac-
tivation, perception of discomfort, and/or motivation, might have
a greater contribution to fatigue development than peripheral fac-
tors”. Fourth, the evaluation of our framework’s performance was
limited to focused lab experiments. Future studies should evaluate
how this framework performs in the field.

In our estimation, there are three main streams of research
that can capitalize on our framework and findings. First, studies
should investigate how our framework can be extended to simul-
taneously monitor and manage fatigue for hundreds of workers.
While our current prediction performance is excellent for an in-
dividual worker (and for typical predictive modeling applications
in the literature), it will suffer from a high false alarm rate if im-
plemented across the shop-floor. To alleviate this issue, future re-
search should consider: (a) reducing the frequency of data collec-
tion, which would increase the average time (but not samples)
between false alarms; and (b) controlling the false discovery rate
(Benjamini & Hochberg, 1995), which is designed for testing mul-
tiple hypotheses. Second, there are several information systems,
ethical and legal implications that arise from collecting workers’
performance data. Policies that account for these implications are
needed. Third, there is an excellent opportunity for optimization
models that can optimize recovery (or alternatively minimize fa-
tigue development) while meeting the demands of the production
schedule and the resource constraints. Such models will benefit
from the data-driven/real-time nature of our framework.
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