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a b s t r a c t 

The use of expert systems in optimizing and transforming human performance has been limited in prac- 

tice due to the lack of understanding of how an individual’s performance deteriorates with fatigue accu- 

mulation, which can vary based on both the worker and the workplace conditions. As a first step toward 

realizing the human-centered approach to artificial intelligence and expert systems, this paper lays the 

foundation for a data analytic approach to managing fatigue in physically-demanding workplaces. The 

proposed framework capitalizes on continuously collected human performance data from wearable sensor 

technologies, and is centered around four distinct phases of fatigue: (a) detection, where machine learn- 

ing methodologies are deployed to detect the occurrence of fatigue; (b) identification, where key features 

relating to the fatigue occurrence is to be identified; (c) diagnosis, where the fatigue mode is identified 

based on the knowledge generated in the previous two phases; and (d) recovery, where a suitable in- 

tervention is applied to return the worker to mitigate the detrimental effects of fatigue on the worker. 

Moreover, the framework establishes criteria for feature and machine learning algorithm selection for 

fatigue management. Two specific application cases of the framework, for two types of manufacturing- 

related tasks, are presented. Based on the proposed framework and a large number of test sets used in 

the two case studies, we have shown that: (i) only one wearable sensor is needed for fatigue detec- 

tion with an average accuracy of ≥ 0.850 and a random forest model comprised of < 7 features; and 

(ii) the selected features are task-dependent, and thus capturing different modes of fatigue. Therefore, 

this research presents an important foundation for future expert systems that attempt to quantify/predict 

changes in workers’ performance as an input to prescriptive rest-break scheduling, job-rotation, and task 

assignment models. To encourage future work in this important area, we provide links to our data and 

code as Supplementary materials . 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The advancements in automation, computation, information,

ensing, and expert systems are changing the landscape of jobs

nd workplaces at unprecedented speeds ( National Science Foun-
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ation, 2019 ). One of the main, and currently observed, conse-

uences is an increase in automation, which has resulted in an

ncreased adoption of: (a) robotic systems in manufacturing and

arehousing operations ( The White House, 2016; Wang, Jiang, Lee,

hew, & Tan, 2017 ), (b) virtual assistants ( Eisman, Navarro, & Cas-

ro, 2016; Montenegro, da Costa, & da Rosa Righi, 2019 ), and (c) ex-

ert systems for job scheduling and task optimization ( Dhurasevic

 Jakobovic, 2018 ). Despite the undeniable fact of some job loss as-

ociated with automation, a hallmark feature of this new era (often

eferred to as Industry 4.0 ) is its dependence on highly-skilled labor
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( Ferjani, Ammar, Pierreval, & Elkosantini, 2017 ) who can capitalize

on the technological revolution. The industry is moving towards

a future that will be defined by how it optimizes its three main

resources ( Daugherty & Wilson, 2018; Kong, Luo, Huang, & Yang,

2018; Pacaux-Lemoine, Berdal, Enjalbert, & Trentesaux, 2018 ): hu-

man workers, machines , and supporting technologies (e.g., artificial

intelligence, high performance computing, and expert systems). 

The current inability to jointly optimize the aforementioned

three resources stems from the lack of reliable and individualized

models that can quantify the effects of job tasks on a worker’s

performance ( Cavuoto & Megahed, 2017; Maman, Yazdi, Cavuoto,

& Megahed, 2017 ). Current applications where expert systems ex-

cel in learning from human behavior to automate/optimize the

decision-making process (see Saraiva et al., 2016; Weng, Ahmed,

and Megahed, 2017; Weng, Lu, Wang, Megahed, and Martinez,

2018 , for some recent applications); however, they do not model

the impact of automation and supporting technologies on human

performance. This observation is supported by Grosse, Glock, and

Neumann (2017) , who observed that “human characteristics that

are often a major determinant of system performance have, how-

ever, widely been ignored in this stream of research ”. The problem

is challenging since: (a) humans’ performance changes as a func-

tion of a person’s individual characteristics (e.g., age, sex, injury

history, etc.), time (which can be manifested through detrimen-

tal performance due to fatigue and/or improved performance due

to learning effects) and degree of task difficulty ( Maman, Bagh-

dadi, Megahed, & Cavuoto, 2016; Maman et al., 2017 ); (b) the

literature capturing human performance in occupational settings

have typically relied on surveys ( Lu, Megahed, Sesek, & Cavuoto,

2017 ) and thus, our understanding of how an individual’s perfor-

mance change over the course of their day/work-shift is limited

( Baghdadi et al., 2019 ); and (c) there is a disconnect between pre-

dictive and prescriptive models that attempt to model workplace

fatigue ( Lu, Megahed, & Cavuoto, 2019b; Maman, Lu, Megahed, &

Cavuoto, 2019 ). For these reasons, many researchers and practition-

ers consider “human-in-the-loop” modeling to be the next frontier

in artificial intelligence/expert systems research ( Bavaresco, D’Oca,

Ghisi, & Lamberts, 2019; Oneto, Navarin, Donini, & Anguita, 2018;

Rea, 2018; Zanzotto, 2019 ). 

As a first step toward “human-in-the-loop” modeling, this paper

proposes a framework that can be used to detect and explain dete-

rioration in an individual’s work performance as a result of phys-

ical fatigue. We focus on fatigue since it is a precursor to many

detrimental short-term and long-term health outcomes ( Cavuoto

& Megahed, 2017 ). Furthermore, we have chosen to focus on ad-

vanced manufacturing tasks since: (a) changes in work performance

is task/field dependent; and (b) advanced manufacturing jobs are

highly fatiguing despite the increased prevalence of automation

( Kajimoto, 2008; Loriol, 2017; Lu et al., 2017; Yung, 2016 ). The

high prevalence of fatigue at manufacturing workplaces can be ex-

plained by the transformations in labor roles, where the follow-

ing changes have been observed: (a) a reduction in mundane tasks

( Yakowicz, 2016 ), (b) an increased dependency on highly-trained

workers ( Ferjani et al., 2017 ), (c) an increase in worker’s autonomy

and responsibility ( Waldeck, 2014 ), and (d) the introduction of new

job duties ( Waldeck, 2014 ). 

A framework is proposed instead of a model to allow for the

detection/diagnosis of multiple fatigue modes. The main premise

is that advanced manufacturing firms require specialized labor

( Ferjani et al., 2017; Lu et al., 2017 ). Thus, the jobs can then be

grouped by the type of activities. This is reasonable since the main

tasks performed by a CNC, computer numerical control, machinist

are different from those done by a welder. The proposed frame-

work is made of four phases: (a) detection , where the goal is to de-

tect if/when a worker has become fatigued, (b) identification , where

the most important variables for diagnosing fatigue are identified,
c) diagnosis , where the information captured from phases (a) and

b) is used to pinpoint the fatigue mode, and (d) recovery , where

 suitable intervention is applied to return to a non-fatigued state.

he phases are adapted from the structured methodology used by

uality engineers for fault detection and diagnosis ( Chiang, Rus-

ell, & Braatz, 20 0 0 ). Note that none of the existing quantita-

ive approaches for fatigue modeling present information on the

dentification, diagnosis and recovery stages needed for managing

atigue. 

Our framework capitalizes on the advances and widespread use

f wearable sensors for the purposes of data collection. There are

hree important justifications for the use of wearable sensors in our

ramework. First, based on a survey of U.S. manufacturing safety

rofessionals, 54.1% of the respondents were “in favor of using

earable technologies at work to track [occupational safety and

ealth] risk factors” ( Schall, Sesek, & Cavuoto, 2018 ). From the

esponses, Schall et al. (2018) estimated that U.S. manufacturing

rms would spend, on average, an estimated $68.67 per worker for

 wearable device. Second, the use of wearables presents a unified

enchmark of performance that does not depend on the cycle time

f the process. The third, and perhaps the most important reason,

earables present an individualized view of the performance of the

orker. Unlike other outcomes, e.g., work quality which may be af-

ected by upstream performances. 

The remainder of the paper is organized as follows. In Section 2 ,

n overview of the relevant literature on fatigue management in

anufacturing environments is presented. Our proposed frame-

ork for detecting, identifying and diagnosing fatigue root-causes

s discussed in Section 3 . In Section 4 two case studies are investi-

ated to evaluate the utility of the framework in managing fatigue

uring two manufacturing tasks. Our concluding remarks and fu-

ure research suggestions are presented in Section 5 . We offer our

ode and data as supplementary materials to encourage adoption in

ractice and further investigations by researchers. 

. Background and literature review 

.1. Fatigue implications 

Managing fatigued workers is an important issue with ethical,

perational and financial considerations. Ethically, fatigue is a pre-

ursor to many detrimental short-term and long-term health out-

omes. The short-term effects include discomfort, lowered strength

nd a diminished motor control function ( Yung et al., 2017 ). In an

perational environment, those short-term effects lead to “reduced

erformance, productivity, quality of work and increased incidence

f labour accidents and human errors” (Yung, Bigelow, Hastings,

 Wells, 2014, p. 1562) . The long-term health consequences of

atigue include: (a) a high prevalence of musculoskeletal disor-

ers ( Naranjo-Flores & Ramírez-Cárdenas, 2014 ), (b) suffering from

hronic-fatigue syndrome ( Fukuda et al., 1994 ), and (c) a weakened

mmune function ( Kajimoto, 2008 ). From an operational perspec-

ive, Ricci, Chee, Lorandeau, and Berger (2007) reported that the

ealth-related lost productivity time for fatigued workers exceeds

ouble their non-fatigued counterparts. The financial ramifications

f fatigue outcomes are estimated to cost U.S. employers approxi-

ately $136 billion annually ( Ricci et al., 2007 ). 

.2. Data collection mechanisms 

An important first step in managing fatigue is the rapid and

ccurate detection of its occurrence. Fatigue detection techniques

an be divided into two categories: qualitative and quantitative.

ualitative methods are centered around the use of fatigue surveys

 Lu et al., 2017 ). From a practical perspective, the utility of such

ethods is limited to investigations aiming to assess workloads
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Table 1 

A summary of the two major research streams of fatigue modeling. 

Category Paper Tasks Sensors Method 

Exhaustion 

Kavanagh, Morrison, and 

Barrett (2006) 

Walking EMG Statistical test 

Karg et al. (2008) Walking 3D optical tracking LDA, SVM, KNN, NB 

Zhang et al. (2014) Walking IMUs SVM 

Ebenbichler et al. (2002) Lifting EMG Time frequency analysis 

Bonato et al. (2003) Lifting EMG Statistical test 

Chow et al. (2004) Lifting EMG Statistical test 

Karg et al. (2014) Squat Infrared cameras Linear regression, HMM 

Occ. fatigue 

Yoshino et al. (2004) Walking EMG Linear regression 

Helbostad et al. (2007) Walking Accelerometer Statistical test 

Lee et al. (2009) Walking Reflective markers Statistical test, LDA 

Baghdadi et al. (2018b) Material handling IMUs SVM 

Maman et al. (2017) Material handling, supply insertion & 

pickup, part assembly 

IMUs, HR Penalized logistic regression 

where SVM = support vector machines, HMM = hidden markov models, LDA = linear discriminant analysis, kNN = k-nearest neighbors, & NB = naive bayes. 
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nd/or redesign jobs. However, they are not suitable for real-time,

hop-floor-wide fatigue detection, since they are not scalable and

re potentially disruptive. For example, consider a situation where

here are 70 workers on the shop-floor and their fatigue ratings are

easured every 5 min. The administration of surveys in this situa-

ion would require a large number of surveyors, and would disrupt

roduction (reducing the productivity of workers ( Cai, Gong, Lu, &

hong, 2018 )). 

The quantitative approaches, of the second category, rely on us-

ng one or more sensor technologies to model changes in human

erformance. The utilized sensor technologies include: (a) heart

ate sensors to measure heart-rates, which are indicative of whole-

ody fatigue ( Maman et al., 2017 ); (b) inertial measurement units

IMUs), which are cheap and reliable sensors that are used to cap-

ure a person’s acceleration and motion data ( Baghdadi, Cavuoto, &

rassidis, 2018a; Baghdadi, Megahed, Esfahani, & Cavuoto, 2018b;

aman et al., 2017 ); (c) electroencephalography (EEG), used to

easure brain activity, which is important in detecting mental fa-

igue ( Charbonnier, Roy, Bonnet, & Campagne, 2016; Moon, Kwon,

ark, & Yoon, 2019; Zhao, Zheng, Zhao, Tu, & Liu, 2011 ); (d) elec-

romyography (EMG), used to assess muscle activity and localized

atigue ( Kumar & Mital, 2017; Venugopal, Navaneethakrishna, & Ra-

akrishnan, 2014 ); and (e) optical sensors, which can be used to

etect sleepiness or can be utilized for motion capture ( Iskander,

ossny, & Nahavandi, 2018; Koesdwiady, Soua, Karray, & Kamel,

017 ). Note that some of these technologies are not suitable for

aily field implementation. Specifically, EEG and EMG are invasive

 Cavuoto & Megahed, 2017 ), which inhibits their daily usage for

eal-time fatigue detection. Moreover, motion capture systems of-

en require special setups, which make them better suited for con-

rolled environments. For these reasons, the EEG, EMG and motion

apture sensors will not be further discussed. Hereafter, the phrase

earable sensors is used to denote a system made of one or more

MUs and a heart rate monitor. 

Despite the popularity of wearable sensors in personal phys-

cal activity monitoring (e.g., Fitbit, Garmin and Jawbone track-

rs), workplace fatigue monitoring applications has been limited

o three domains ( Cavuoto & Megahed, 2017; Maman et al., 2017 ).

hese are athletics, transportation and mining. The main barrier,

n other disciplines, is a lack of standardization of work activities

cross employees, which results in multiple modes of fatigue (e.g.,

ifferent muscles or whole-body fatigue). This is different from the

hree domains where the technology is tailored to target a known

nd dominant fatigue mode. It is, therefore, difficult to develop a

lobal model to accurately detect different fatigue modes outside

f the three disciplines. 
.3. An overview and taxonomy of the physical fatigue detection 

iterature 

The literature on physical fatigue detection in manufactur-

ng environments can be classified into: (a) exhaustion detection,

nd (b) occupational fatigue detection. In the first group, stud-

es attempt to identify extreme fatigue, i.e. exhaustion, which re-

ults in an inability to generate muscle forces and consequently,

 worker’s inability to perform the job ( Ceschi, Demerouti, Sar-

ori, & Weller, 2017 ). Since exhaustion in the manufacturing work-

lace is often on the muscle level (localized fatigue), the associ-

ted literatures ( Baghdadi et al., 2018b; Bonato et al., 2003; Chow,

an, Holmes, & Evans, 2004; Davidson, Madigan, & Nussbaum,

0 04; Ebenbichler et al., 20 02; Fontes et al., 2010; Karg, Ven-

ure, Hoey, & Kulic, 2014; Lee, Roan, Smith, & Lockhart, 2009;

oshino, Motoshige, Araki, & Matsuoka, 2004; Zhang, Lockhart, &

oangra, 2014 ) is characterized by: (i) primarily utilizing invasive

MG and EEG sensors, (ii) focusing on one task element only

e.g., lifting or walking), and (iii) no attempt to generalize the

eveloped models to focus on a more complex task. In the sec-

nd group, the studies focused on detecting occupational fatigue,

hich is less extreme than exhaustion, where the workers are still

ble to perform their job at a diminished level. Those studies,

.g. Baghdadi et al. (2018b) ; Helbostad, Leirfall, Moe-Nilssen, and

letvold (2007) ; Lee et al. (2009) ; Yoshino et al. (2004) , have of-

en utilized pervasive sensors including IMUs and heart rate mon-

tors. In addition, recently, Maman et al. (2017) has developed

 generalized model for detecting fatigue across multiple man-

facturing tasks. However, their model involved over 20 predic-

ors and lacked the interpretability that makes it effective for the

onsequent phases of fatigue identification, diagnosis and recov-

ry. Table 1 summarizes the literature in the two groups. In this

aper, we focus on occupational fatigue since it is: (i) a prece-

ent to exhaustion, and (ii) more aligned to the working envi-

onment in advanced manufacturing environments. Moreover, our

roposed framework is evaluated using multiple complex manu-

acturing tasks in an attempt to showcase its potential generaliz-

bility. The reader should note that multiple manufacturing tasks

ave only been examined in Maman et al. (2017) . 

From a detailed literature review, we could not identify any pa-

ers discussing the identification and diagnosis of fatigue. This may

e attributed to the implicit assumption in the literature that man-

gement or the individual worker can handle those stages once fa-

igue has been detected. However, as indicated in Levenson (2017) ,

workplace fatigue is a systems problem”, and there needs to be a

ystematic approach to identify its root-causes. This is a critical gap
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Fig. 1. An overview of proposed method. 
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since the end goal is intervening to prevent the unwanted negative

consequences on the worker and the production process. 

3. Proposed framework for fatigue management 

Fig. 1 presents an overview of the four phases of the proposed

framework for managing physical fatigue. The first phase is com-

prised of five main steps: (a) sensor selection, where practitioners

should identify appropriate sensors for fatigue detection; (b) data

preprocessing and feature generation, where the sensors’ data are

prepared for analysis; (c) model construction and validation, where

statistical and data analytic models are trained for distinguishing

between fatigued and non-fatigued states; (d) measuring useful-

ness, where models are evaluated based on accuracy, sensitivity,

specificity, etc.; and (e) ease of use analysis, where the best model

in step (d) is evaluated by constraining the number of sensors

used. Note that steps (d) and (e) are based on the Technology Ac-

ceptance Model (TAM) ( Maranguni ́c & Grani ́c, 2015 ). The outcome

from Phase 1 is the selection of an appropriate model for prospec-

tive analysis. In Phase 2, the subset of features/predictors that are

most frequently used in predicting the fatigue state is identified.

This subset presents insights into what features are most predic-

tive, which is an important input to the following phase. Phase 3

utilizes visual analytic methods (specifically an interactive parallel

coordinates plot) to help management understand how the varia-

tion in the values of the predictors impact the fatigue state (i.e.

from 0 to 1). Based on the insights gained from the fatigue diag-

nosis phase, a suitable evidence-based intervention can be selected

in Phase 4. 

3.1. Phase 1: fatigue detection 

3.1.1. Sensor selection 

Cavuoto and Megahed (2017) discussed several fatigue indi-

cators, which included heart rate, heart rate variability, tremor

and performance. They suggested that these indicators can be

monitored using pervasive wearable sensors. In a follow-up work,

Maman et al. (2017) showed that four IMU sensors (located at the

ankle, hip, torso and wrist) coupled with a heart rate sensor can

be used to detect fatigue in different manufacturing tasks. Similar

to Maman et al. (2017) , we suggest using these wearable sensors

for fatigue detection. More importantly, our framework presents a

systematic approach to answer the question: “what are the gains

associated with wearing an extra sensor?” In essence, this question

attempts to quantify whether the hassle and cost associated with

wearing an extra sensor can be justified with a significant/practical
mprovement in fatigue detection. This question, which has not

een addressed in the literature, is tackled in the usability anal-

sis in Phase 1. 

.1.2. Data preprocessing 

Cleaning The first step in analyzing data is to ensure that the

ata is correct and cleaned. For wearable sensors data, four main

leaning steps are proposed. First, a low-pass filter should be ap-

lied on the acceleration data for noise removal. Second, collected

ata should be visualized to check for any additional erroneous

ata, i.e. data that were not corrected through the automated fil-

ering in step 1. Possible examples of erroneous data include faulty

ensor values (too high and/or too low), and participants who had

ot experienced fatigue based on their subjective fatigue ratings.

hird, the data from the different sensors should be synchronized

nd any observations that were captured outside of the experimen-

al window should be eliminated. The fourth step involves the nor-

alization of the heart rate data through the computation of: per-

ent heart rate reserve (%HRR). Note that %HRR accounts for both

n individual’s resting heart rate (RHR) and his/her age-predicted

aximum heart rate HR max = 220 − age . The %HRR can be com-

uted as: 

 H RR = 

Heart Rate − RH R 

H R max − RH R 
× 100 . (1)

he interpretation of the % HRR is a percentage of an individual’s

eart rate capacity being used. Since it accounts for both their rest-

ng and maximum heart rates it allows for standardizing the heart

ate data. For example, if the %HRR = 50, this means that the per-

on is using 50% of their heart rate capacity, i.e. is half way be-

ween his/her resting and maximum heart rates. 

Jerk and posture calculation The four IMUs (attached at the an-

le, wrist, hip and torso) measure the acceleration associated with

 person’s dynamic motion. From the acceleration profile, other

omponents of motion can be computed. Jerk, which is the deriva-

ive of acceleration with respect to time, should be computed since

t has been shown to be effective in detecting fatigue in several

ccupational settings (see e.g., Catapult Sports, 2018 for several

pplications in professional sports). In addition, changes in work

osture are also indicative of fatigue ( Cavuoto & Megahed, 2017 ).

n this paper, the approach of Baghdadi et al. (2018b) is used for

osture calculation, where: (a) a Kalman filter is first used to cal-

ulate position in the three ( xyz ) directions, and then (b) posture

s estimated from the positional data. The reader is referred to

aghdadi et al. (2018b) for more details on posture calculation. 

Dimension reduction and feature extraction Based on the afore-

entioned data preprocessing steps, one would have 12 accelera-
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Fig. 2. Biomechanical features illustration. 
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ion profiles (4 IMUs × 3 directions [x y z]) and 4 jerk profiles (rate

f change of the magnitude of the acceleration profile for each

MU) each sampled at 25 Hz. In addition, there is a %HRR profile

ampled at 10 0 0 Hz. These profiles cannot be directly used in pre-

ictive models and thus, features summarizing these profiles need

o be generated. In this article, we propose utilizing features that

ould summarize the profiles based on a non-overlapping time

indow of the 17 profiles. The selection of the length of the time

indow should depend on: (a) length of the cycle for task, (b) con-

equences of fatigue on the worker and production, and (c) man-

ging the trade-off between false alarms and early detection. 

To capture the changes within the profile and provide in-

ights to the later isolation and diagnosis phases, three sets of

eatures are generated from the 17 profiles. The first set corre-

ponds to statistical features from the acceleration, jerk, posture

nd %HRR. For each of these profiles, the mean and coefficient

f variation (CV) are computed for each time-window to capture

he intensity and variation changes. Features capturing the inten-

ity and spread are commonly used in the fatigue detection liter-

ture (see e.g., Bao & Intille, 2004; Maman et al., 2017; Pirttikan-

as, Fujinami, & Nakajima, 2006 ). The second set corresponds to

iomechanical features, which allow for identifying and diagnos-

ng the type of fatigue. This set includes features such as: num-

er of steps in the time interval, mean step time and length , and

ean foot/hip oscillations . The biomechanical features used in our

ramework are depicted in Fig. 2 . Note that these features are

alculated for each time window. Those features are computed

ased on the code provided in Baghdadi et al. (2018b) . The third,

nd last feature set contains both age and gender, which may be

sed to explain performance differences across different individu-

ls (see Kent-Braun, Ng, Doyle, & Towse, 2002; Wojcik, Nussbaum,

in, Shibata, & Madigan, 2011 for more details). A description of

he proposed features for each of the three sets is provided in

able 2 . 

.1.3. Model construction and validation 

Cross validation A leave p -participants out cross validation ap-

roach can be used to split the preprocessed dataset into training

nd testing sets. Cross validation is commonly used to avoid over-

tting ( Weng et al., 2017 ). A typical approach to cross validation is

ividing the dataset into 10 folds, where the models are selected

ased on the average/median prediction performance across 10

on-overlapping test datasets. The literature suggests that 10-fold

ross validation may reduce the variation between the train and

est performance ( Dag, Topuz, Oztekin, Bulur, & Megahed, 2016 ).

ote that in fatigue detection studies such as ours, each partici-
ant’s data maybe autocorrelated. Thus, the plain k -fold cross vali-

ation approach is not suitable since the train and test datasets are

ot independent. To alleviate this problem, we recommend leaving

 participants out for the cross validation, where the value of p

orresponds to approximately 10% of the participants in the data

nalytic study. 

Feature selection and dimension reduction When the number of

otential features/predictors is large, the computational complexity

or model training increases. Feature reduction is typically applied

o reduce the computational burden. More importantly, it leads

o: (a) an improved prediction performance, and (b) an increased

eneralization capability. Algorithms for feature selection/reduction

an be categorized into three main groups ( Blum & Langley, 1997 ):

1) filter methods , where univariate statistical approaches are typ-

cally used to select features based on their relationship to the

esponse, (2) wrapper methods , where the important features are

ept based on their prediction performance, and (3) embedded

ethods , which involve the use of methods such as LASSO for se-

ecting the most predictive features. 

Since the end goal of our proposed framework is to enable the

iagnosis of fatigue and the recommendation of an appropriate in-

ervention, we recommend a two-step approach for feature selec-

ion. In the first step, simple filter approaches (e.g., information

ain or correlation analysis) should be combined with visualiza-

ions (e.g., time series charts, parallel coordinates plot, and scatter

iagrams). The goal of the first step is to provide practitioners with

n understanding of how fatigue affects and/or is associated with

hanges in the potential predictors. From this step, any features

hat are unchanged in the fatigued and non-fatigued states should

e removed. The reader should note that the insights gained from

he visualization will also be utilized in diagnosing the root-causes

f fatigue. In the second step, several structured wrapper and/or

mbedded methods (e.g., best subset selection and LASSO) should

e examined. Preference should be given to techniques that re-

ult in a small number of features (i.e. more interpretable) and a

elatively large prediction performance (i.e. good fatigue detection

ith a low false alarm rate). 

Bootstrapping To further prevent over-fitting and the bias asso-

iated with selecting a training dataset, we recommend the use of

ootstrapping ( Efron & Tibshirani, 1993 ), which is a computational

rocedure that uses intensive re-sampling with replacement. An

mportant assumption behind bootstrapping is that the sample dis-

ribution is a good approximation to the population’s distribution.

ecent studies have shown an improved performance of analyti-

al models when bootstrapping is deployed (e.g., see Argon & Ziya,

009; Ødegaard & Roos, 2014 ). 
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Table 2 

Generated feature sets. 

Category # Feature Definition Justification 

Statistical 

1 %HRR.Mean Average percent of heart rate reserve 

Baghdadi, Maman, Lu, Cavuoto, and 

Megahed (2017) , Bao (2003) , Bao and 

Intille (2004) Bonato et al. (2003) , 

Côté, Mathieu, Levin, and 

Feldman (2002) Foster (1998) , 

Maman et al. (2017) , 

Quagliarella, Sasanelli, and 

Belgiovine (2008) , Young, Trudeau, 

Odell, Marinelli, and 

Dennerlein (2013) , and 

Zhang et al. (2014) 

2 Wrist.jerk.Mean Average wrist jerk or smoothness magnitude 

3 Wrist.ACC.Mean Average wrist acceleration magnitude 

4 Wrist.xposture.Mean Average wrist angular position in sagittal plane 

5 Wrist.yposture.Mean Average wrist angular position in transverse plane 

6 Wrist.zposture.Mean Average wrist angular position in coronal plane 

7 Hip.jerk.Mean Average hip jerk magnitude 

8 Hip.ACC.Mean Average hip acceleration magnitude 

9 Hip.xposture.Mean Average hip angular position in coronal plane 

10 Hip.yposture.Mean Average hip angular position in transverse plane 

11 Hip.zposture.Mean Average hip angular position in sagittal plane 

12 Torso.jerk.Mean Average torso jerk magnitude 

13 Torso.ACC.Mean Average torso acceleration magnitude 

14 Torso.xposture.Mean Average torso angular position in sagittal plane (bending) 

15 Torso.yposture.Mean Average torso angular position in transverse plane 

16 Torso.zposture.Mean Average torso angular position in coronal plane 

17 Ankle.jerk.Mean Average ankle jerk magnitude 

18 Ankle.ACC.Mean Average ankle acceleration magnitude 

19 Ankle.xposture.Mean Average ankle angular position in coronal plane 

20 Ankle.yposture.Mean Average ankle angular position in transverse plane 

21 Ankle.zposture.Mean Average ankle angular position in sagittal plane 

22 %HRR.CV Coefficient of variation in %HRR 

23 Wrist.jerk.CV Coefficient of variation in the wrist jerk 

24 Wrist.ACC.CV Coefficient of variation in the wrist acceleration magnitude 

25 Wrist.xposture.CV Coefficient of variation in the wrist angular position in sagittal 

plane 

26 Wrist.yposture.CV Coefficient of variation in the wrist angular position in 

transverse plane 

27 Wrist.zposture.CV Coefficient of variation in the wrist angular position in 

coronal plane 

28 Hip.jerk.CV Coefficient of variation in the hip jerk magnitude 

29 Hip.ACC.CV Coefficient of variation in the hip acceleration magnitude 

30 Hip.xposture.CV Coefficient of variation in the hip angular position in coronal 

plane 

31 Hip.yposture.CV Coefficient of variation in the hip angular position in 

transverse plane 

32 Hip.zposture.CV Coefficient of variation in the hip angular position in sagittal 

plane 

33 Torso.jerk.CV Coefficient of variation in the torso jerk magnitude 

34 Torso.ACC.CV Coefficient of variation in the torso acceleration magnitude 

35 Torso.xposture.CV Coefficient of variation in the torso angular position in sagittal 

plane 

36 Torso.yposture.CV Coefficient of variation in the torso angular position in 

transverse plane 

37 Torso.zposture.CV Coefficient of variation in the torso angular position in coronal 

plane 

38 Ankle.jerk.CV Coefficient of variation in the ankle jerk magnitude 

39 Ankle.ACC.CV Coefficient of variation in the ankle acceleration magnitude 

40 Ankle.xposture.CV Coefficient of variation in the ankle angular position in 

coronal plane 

41 Ankle.yposture.CV Coefficient of variation in the ankle angular position in 

transverse plane 

42 Ankle.zposture.CV Coefficient of variation in the ankle angular position in 

sagittal plane 

Biomechnical 

43 Number of steps Number of gait cycles during the fixed time interval 

Bächlin, Förster, and Tröster (2009) , 

Baghdadi et al. (2018b) , Dolan and 

Adams (1998) , 

Hallemans et al. (2009) , 

Larivière, Gagnon, and Loisel (2000) , 

Strohrmann, Harms, Kappeler-Setz, 

and Troster (2012) , Willson and 

Kernozek (1999) , and Yun, Bachmann, 

Moore, and Calusdian (2007) 

44 Mean step time Average duration of each gait cycle 

45 Mean step length Average length of each gait cycle 

46 Time bent The duration spent in bent posture 

47 Mean back bent angle Average angle of torso in bent posture w.r.t vertical axis 

48 Mean hip oscillation Average side-to-side range of motion in hip 

49 Mean foot oscillation Average side-to-side range of motion in foot 

50 Mean leg rotational velocity in 

sagittal plane 

Average angular velocity of leg in sagittal plane 

51 Mean leg rotational oscillation 

in sagittal plane 

Average angular range of motion for leg in sagittal plane 

52 Mean torso vertical impact Average value of peak vertical acceleration in torso 

53 Mean back rotational position 

in sagittal plane 

Average range of bending posture while doing the task 

Individual 
54 Age - Kent-Braun et al. (2002) and 

Wojcik et al. (2011) 55 Gender 
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Table 3 

Comparing the three different analytical categories. Table is adapted from Wang (2016) . 

Statistical models Single classifiers Ensemble models 

High accuracy in general � 

High speed of learning against # of variables and samples � 

High tolerance to redundant variables � � 

High tolerance to collinearity � � 

High dealing with overfitting � 

Less complexity and easy parameter handling � 
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Analytical modeling The analytical classification models can be

ategorized into: (a) statistical models, (b) single classifiers, and

c) ensemble models. The pros and cons of using these methods

 Kotsiantis, Zaharakis, & Pintelas, 2007; Wang, 2016 ) are shown in

able 3 . Note that we do not include more advanced deep learning

odels since they often require special computing resources (i.e.

raphical processing units, GPUs) and would be quite difficult to

mplement for a large number of workers. 

Several classification methods, i.e. statistical models, single clas-

ifiers, and ensemble models, are viable candidates for utilization

n fatigue prediction. From our framework’s perspective, it is im-

ossible to predetermine which methods will work best for a given

pplication. This is due to the fact that these methods are data-

riven and thus, are application-dependent. In the following para-

raphs, we highlight some commonly used methods within each

ategory. 

Statistical models attempt to build a relationship between the

nput variables and response through the use of parametric meth-

ds. Examples include: logistic regression and penalized logistic re-

ression . Those are classification techniques where the probability

f a dichotomous outcome is a function of the predictors/features

 Algamal & Lee, 2015; Hosmer Jr, Lemeshow, & Sturdivant, 2013 ).

 key difference between the two aforementioned approaches lies

n how they handle sparse datasets. Specifically, logistic regres-

ion’s performance can vary significantly with sparse data ( King

 Zeng, 2001 ). On the other hand, the penalized logistic regres-

ion approach usually provides a more consistent performance

 Maman et al., 2017 ). 

In the single classifier category, some commonly used classi-

ers include: decision trees (DT), naive Bayes (NB), artificial neu-

al networks (ANN), k-nearest neighbors (kNN), and support vector

achines (SVM). Those non-parametric approaches are commonly

sed in human performance modeling applications. The reader

s referred to Afsar, Cortez, and Santos (2015) ; Ghaderyan, Ab-

asi, and Saber (2018) ; Rescio, Leone, and Siciliano (2018) ;

yu and Kim (2017) for examples of those applications. We rec-

mmend exploring one or more of those models for fatigue

lassification. 

For the third category, ensemble models are comprised of sev-

ral single classifiers, where the final classification of the response

s based on some voting or weighting procedure ( Dietterich, 20 0 0 ).

he premise for these methods is that combining a large num-

er of single classifiers allows for a more diverse representation of

he data and consequently, a more accurate prediction. Commonly

sed ensembles include: (a) random forests (RFs), which are en-

emble classification algorithms that utilize trees as base classifiers

o generate many classifiers and aggregate their results via voting

 Breiman, 2001 ); (b) bagging ( Breiman, 1996 ), where bootstrapping

s used to generate a new training dataset, and combine several

ase learners to fit a weak learner to the data; and (c) boosting

 Schapire, 2003 ), which creates different base learners by sequen-

ially reweighing the instances in the training set. Boosting gives

ifferent weights to the base learners based on their accuracy. The

nal model obtained by the boosting algorithm is a linear com-

ination of several base learners weighted by their own perfor-

ance. For a detailed introduction on the aforementioned analyti-
 c
al models, the reader is referred to Han, Pei, and Kamber (2011) ;

ames, Witten, Hastie, and Tibshirani (2013) . 

.1.4. Measuring usefulness 

To evaluate the performance of the analytical models, we rec-

mmend using five performance measures: (a) accuracy, which

resents the percentage of correct classifications made by a given

odel, (b) sensitivity , which captures the ability to detect the fa-

igued cases, (c) specificity, which measures the correct classifica-

ion of non-fatigued cases, (d) G-mean, which is defined as the

quare root of sensitivity times specificity, and (e) a newly pro-

osed consistency metric, which is a simple metric that captures

he absolute difference between the metrics in (b) and (c). This

etric can be used by practitioners to gauge whether a model is

qually capable of predicting both the fatigued and non-fatigued

tates. The mathematical formula below show how each of these

etrics is computed first for each fold, and then averaged across

ll folds: 

ccuracy j = 

1 

n 

n ∑ 

i =1 

T P i j + T N i j 

T P i j + T N i j + F P i j + F N i j 

. (2) 

ean Accuracy = 

1 

m 

m ∑ 

j=1 

Accuracy j . (3) 

ensit i v it y j = 

1 

n 

n ∑ 

i =1 

T P i j 

T P i j + F N i j 

. (4)

ean Sensit i v it y = 

1 

m 

m ∑ 

j=1 

Sensit i v it y j . (5)

peci f icity j = 

1 

n 

n ∑ 

i =1 

T N i j 

T N i j + F P i j 
. (6) 

ean Speci f icity = 

1 

m 

m ∑ 

j=1 

Speci f icity j . (7)

 - mean j = 

√ 

Sensit i v it y j × Speci f icity j . (8) 

ean G - mean = 

1 

m 

m ∑ 

j=1 

G - mean j . (9) 

onsistency j = | Sensit i v it y j − Speci f icity j | . (10)

ean C onsistency = 

1 

m 

m ∑ 

j=1 

C onsistency j . (11)

here TP, TN, FP, FN denote the number of true positives, true neg-

tives, false positives, and false negatives, respectively. i denotes

he number of the bootstrapping samples, j is the number of the

raining or testing data sets, n is the number of bootstrapped sam-

les, and m is the number of folds in the leave p -participants-out

ross validation. 
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3.1.5. Ease of use analysis 

In addition to evaluating its usefulness, an important aspect for

technology adoption is usability. In the context of our framework,

usability can be measured using two metrics: (a) total number of

features selected, and (b) total number of sensors needed to gen-

erate these features. In general, models are more interpretable if

the number of features are smaller (assuming no significant differ-

ences in prediction capabilities). Workers and more practitioners

will also be more inclined to adopt the framework if it requires

less sensors since it will: (i) be much cheaper; for example, requir-

ing one IMU instead of four, would reduce the cost by a factor of

four; (ii) make the process less invasive to the worker; and (iii)

reduce the time needed for the worker to wear and strap all the

sensors. Therefore, our framework will not only consider prediction

performance, but it will also evaluate how the prediction perfor-

mance varies while restricting the number of sensors that can be

used. At this stage, one would have a model that can accurately

predict the fatigue state (based on the leave p -participants out

cross validation approach), while having a relatively small number

of features. This model can now be deployed for near real-time

prediction. 

3.2. Fatigue identification 

Once the model is deployed and fatigue is identified, it is im-

portant to understand how the predictors’ change when an indi-

vidual becomes fatigued. Typically, machine learning models are

thought of as “black boxes”, where it is difficult to understand how

the predictors affect the response. However, an important aspect of

recovering from fatigue is being able to diagnose its root-causes.

Since we favor having a lower number of features in our model

selection (see Section 3.1.5 ), we hypothesize that the chosen pre-

diction model will have a relatively low number of features. Thus,

one can use a parallel coordinates plot to depict how the chosen

features vary with the dichotomous response. The use of such a

plot will enhance the interpretation of the model and assist prac-

titioners in diagnosing the type of fatigue in the next phase. 

3.3. Fatigue diagnosis 

In this phase, one would determine which type of fatigue oc-

curred. Since this framework focuses only on physical fatigue, there

are two main types of fatigue that are possible ( Cavuoto & Mega-

hed, 2017 ): (a) whole body fatigue, and (b) localized muscle fa-

tigue. Based on the parallel coordinates plot from the previous

phase, one would identify the important features for prediction. If

the features are derived from only one IMU (as in our first case

in Section 4.1 ), one would conclude that the worker is experienc-

ing localized muscle fatigue, near that IMU’s location. Alternatively,

if the features are derived only from the heart rate sensor (see

Section 4.2 ), this implies that the worker is experiencing whole

body fatigue. The last possibility would include features selected

from one or more IMU and the heart rate sensor. In this case,

the individual is experiencing a combination of whole-body fatigue

(i.e. respiratory related) and localized fatigue. Based on the diagno-

sis, one can assign appropriate interventions in the next stage. 

3.4. Fatigue recovery 

From a management perspective, it is important to prescribe

interventions that eliminate/reduce the safety hazards. In essence,

“safety does not happen by accident” ( Vries, Koster, & Stam, 2016 )

and thus, it is important to intervene to eliminate/mitigate the

sources of fatigue. We recommend utilizing the safety design hi-

erarchy ( Manuele, 2005 ) from safety engineering. This hierarchy
resents a structured approach for interventions, where practition-

rs should consider six actions in order of effectiveness. Since this

s a well-known concept to safety professionals, we do not detail

his further. 

In our estimation, the fatigue diagnosis stage allows prac-

itioners to directly pinpoint the hazard (i.e. type of fatigue).

ractitioners can then prescribe interventions from a large number

f options, including: (a) redesigning the task (which can eliminate

he development of fatigue), (b) assigning rest breaks (which can

educe the level of fatigue before it reaches potentially dangerous

evels), and (c) job rotation (where workers would essentially

ycle between harder and easier jobs). The type of intervention

ssigned will depend on the resources available to safety practi-

ioners and the constrains of their production processes. For this

eason, we only recommend the adoption of the safety design

ierarchy without providing a recommendation for the type of

nterventions to be assigned. The reader is referred to the survey

f Lu et al. (2017) for a discussion of the type of interventions

sed by advanced manufacturing workers and safety professionals

n combating physical fatigue at the workplace. 

. Case studies 

To evaluate the performance of the proposed framework, we ex-

mine two case studies. The first case study involves a simulated

anual material handling (MMH) task, and the second is a supply

ick-up and insertion (SI) task. Both case studies replicate typical

atiguing manufacturing tasks (see the survey in Lu et al. (2017) for

etails) in a controlled lab environment in order to facilitate the

ata collection process. Since the data collection, data preprocess-

ng and model construction steps are the same for the two tasks,

e only explain them in detail in Sections 4.1.1 and 4.1.2 . 

.1. Case study 1: manual material handling 

.1.1. Data collection, preprocessing and feature generation 

Twenty four participants (9 females, 15 males; mean age 36.37

ears with the standard deviation of 16.67 years) were recruited

ver a period of 11 months from the local community. Five of the

articipants were manufacturing workers, and the remainder rep-

esented a convenience sample of students with varying degrees

f physical work experience. All participants reported that they

ere in good physical and mental health. In addition, they were

creened by completing the Physical Activity Readiness Question-

aire (PAR-Q) ( Thomas, Reading, & Shephard, 1992 ) at the start of

he session to assess their eligibility to participate. They also pro-

ided informed consents at the start of the experiment. All study

rocedures were approved by the university’s institutional review

oard (IRB). 

Participants completed one three-hour experimental session for

he simulated MMH task and another for the SI task. The order

f the two experiments was randomized and participants had to

omplete the experiments in different days. The MMH task in-

olved palletizing and transporting several weighted containers

see Fig. 3 ). Each participant was asked to perform the task at a

et pace for three hours continuously (without breaks) to induce

atigue. Per the discussion in Section 3.1 , four IMUs placed at the

nkle, hip, wrist and torso, and a heart rate monitor on the chest

ere used for data collection. Furthermore, participants provided

heir subjective exertion (RPE) using the Borg Scale ( Borg, 1998 )

very ten minutes. 

The four step data cleaning procedure discussed in

ection 3.1.2 was deployed for our case studies. After using the

ow pass filter for de-noising the IMU data, we used RPE ≥ 13 as a

utoff for fatigue in step 2 per the analysis of Maman et al. (2017) .

ased on step 2, a total of nine participants were removed from
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Fig. 3. A participant carrying out the MMH task. 
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he data for the following reasons: (a) three participants did not

et fatigued by the end of the experiment; (b) three reported being

atigued within the first half an hour of the experiment (i.e. they

ay have been fatigued prior to conducting the experiment); (c)

he IMUs failed to record data for two of the participants during

he experiment; and (d) one of the participants deviated from the

xperimental protocol by taking two 10-minute bathroom breaks.

s a result, we ended up with 15 participants whose data were

eemed reliable for analysis. After synchronizing the data from the

ensors in step 3, we removed the first 10 min of experimental

ata to avoid capturing the learning effect ( Baghdadi et al., 2018a;

aman et al., 2017 ). Then, the % HRR was computed in step 4

s explained in the methodology section. After step 4, the jerk

nd posture profiles were generated based on the procedure of

aghdadi et al. (2018b) which was highlighted in Section 3.1.2 . 

To reduce the computational burden and to maintain a bal-

nced dataset for training, we have only kept 20% of the data

or each participant. These 20% corresponded to: (a) 10% (i.e.

0% × 180 min = 18 min ) at the beginning of the experiment, after

he first 10 min are removed, where the participants are not fa-

igued, and (b) 10% at the end, where the participants are fatigued.

he rationale for removing the 80% of the data is two-fold. First,

he separation ensures that the differences between the fatigued

nd non-fatigued data for each participant are maximized, while

he differences within each group are minimal. Second, based on

aman et al. (2017) , we can assume that the size of the data

an be decreased without losing much information related to fa-

igue detection. For each participant, we coded the response as 0

for the first 18 min) and 1 for the latter 18 min to reflect the

on-fatigued and fatigued states, respectively. Recall that our data

leaning procedure ensured that these values reflect the estimated

PEs by each participant. 

Based on the discussion in Section 3.1.2 , it is important to set

he size of the time window prior to generating the features in

able 2 . In our case studies, we have used a non-overlapping time

indow of 2 min. This means that each of the 18 min was di-

ided into nine fractions of two-minute periods. The rationale for

electing two-minutes for the time window was mainly based on

he observation that the average cycle time for MMH was approx-

mately one minute. Therefore, each two-minute time interval is

uaranteed to include at least one cycle of the task. Based on this

ecision, we generated the proposed features from each sensor for

ach two-minute time window. The reader can replicate our anal-
sis by consulting our data and code (see the Supplementary Mate-

ials Section). 

.1.2. Model construction and validation 

As a first step for feature selection, time series plots of all fea-

ures were constructed to evaluate which features were virtually

nchanged from the non-fatigued to fatigued states. Based on the

isualizations, 15 (of the 55 candidate) features were dropped. The

econd step (where wrapper or embedded methods are used) of

eature selection is applied after the training and test samples are

enerated using the leave p -participants out cross validation ap-

roach. Based on the discussion in Section 4.1.1 , we had 15 par-

icipants with reliable data for this case study. Thus, p = 2 (i.e.

 / 15 = 13% ) was used for the leave p -participants-out cross vali-

ation approach to split the data into training and test sets. This

esulted into 105 possible training/test sets ( 15! / ((15 − 2)! × 2!) =
05 ), which we would evaluate to obtain an estimate of the varia-

ion in the performance of our analytical models. 

Prior to deploying the analytical models, two additional tasks

ere carried out. First, the last step of variable selection was

eployed using two popular methods: best subset selection and

ASSO (refer to Section 3.1.3 for details). Second, to reduce the

ias from model training and improve the performance of the

redictive models bootstrap resampling with replacement was ap-

lied to the training data. The sample size for each bootstrap sam-

le was n = 234 , which was based on 13 participants × 18

amples per participant. For our analysis, we used 200 boot-

trap samples (each having n = 234 ) based on the recommen-

ation of Pattengale, Alipour, Bininda-Emonds, Moret, and Sta-

atakis (2009) . 

To develop the fatigue prediction models, several methods were

pplied during our preliminary analysis of the data. The models

valuated included: logistic regression, penalized logistic regres-

ion, decision trees (DT), naive Bayes (NB) , k- nearest neighbors

kNN), support vector machines (SVM), and three ensemble models

random forest (RF), bagging, and boosting). Due to their relatively

oor performance, DT, NB and kNN were eliminated. In addition,

odels using best subset selection typically had better predic-

ion performance with less features than their LASSO counterparts.

herefore, our case study focused on using the best subset selec-

ion with the following five analytical models: (a) logistic regres-

ion, (b) SVM, (c) RF, (d) RF with bagging (hereafter bagging), and

e) RF with boosting (hereafter boosting). In addition, we compared

hese five models to the approach of Maman et al. (2017) since it

as the only paper that considered multiple tasks in the context of

ccupational fatigue (see Table 2 ). To ensure that the comparison is

air, we considered two different variants of the penalized logistic

egression approach with LASSO proposed in Maman et al. (2017) .

he first is utilizing their approach and features (on our data), and

he second involves using their methodology with our features and

ata. In our estimation, this allows us to better evaluate whether

ur proposed method is superior to theirs. The reader should note

hat they did not consider model interpretation in their feature

eneration and thus we expect that our features are easier to in-

erpret by practitioners. 

.1.3. Fatigue detection results 

In Table 4 , the predictive performance of our five models is

ompared with the two variants from Maman et al. (2016) . The

able shows the mean (and standard deviation in parentheses)

or each of our four metrics. In addition, the average number

f features selected by each model is also presented. The re-

orted results are based on 105 constructed test datasets from the

wo-participants-out cross validation. For the first three numeric

olumns, a higher value is desired since it reflects a better pre-

iction performance. The consistency column captures the aver-
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Table 4 

Mean performance and the corresponding standard deviation of the classification methods for fatigue detection in MMH task, (the recommended 

model is in bold ). 

Category Model Sensitivity Specificity Accuracy G-mean Consistency # of Features 

Random Forest 0.879 (0.14) 0.879 (0.15) 0.879 (0.09) 0.869 (0.10) 0.152 (0.18) 5.352 

Bagging 0.872 (0.13) 0.869 (0.15) 0.870 (0.09) 0.863 (0.10) 0.143 (0.17) 5.352 

BSS Boosting 0.871 (0.13) 0.872 (0.15) 0.870 (0.08) 0.862 (0.10) 0.147 (0.17) 5.352 

Support Vector Machine 0.811 (0.18) 0.828 (0.17) 0.820 (0.11) 0.805 (0.13) 0.198 (0.19) 5.352 

Logistic Regression 0.790 (0.17) 0.766 (0.20) 0.778 (0.11) 0.758 (0.15) 0.227 (0.20) 5.352 

LASSO Penalized Logistic Regression ∗ 0.802 (0.20) 0.916 (0.11) 0.859 (0.11) 0.846 (0.13) 0.175 (0.20) 18.943 

Penalized Logistic Regression 0.810 (0.13) 0.775 (0.17) 0.793 (0.08) 0.781 (0.09) 0.197 (0.16) 11.133 

∗ Features used in the model are only those generated in Maman et al. (2017) . 
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age absolute difference between the sensitivity and specificity for

each model, evaluated on the 105 test datasets. It is noted that the

smaller the consistency is, the similar performance in detecting fa-

tigued and no-fatigued states simultaneously would be. Moreover,

a smaller number of features facilitates the interpretation of the

model, which is important in the fatigue identification and diag-

nosis phases. 

Four main observations from Table 4 need to be highlighted.

First, as expected from the preliminary analysis, the number of fea-

tures selected with the best subset selection are much less than

those selected by the LASSO model. This means that the usability

of the analytical models with the BSS model is much higher than

that with LASSO since practitioners’ need to monitor and under-

stand approximately five features (instead of 11 or 19). Second, the

performance of all seven models is relatively high with an overall

average accuracy greater than 0.77. Third, the performance of the

three ensembles is better than the remaining models. Fourth, the

penalized logistic regression of Maman et al. (2017) outperforms

its variant with our features from a prediction perspective. How-

ever, this comes at the cost of adding eight features to the model

(i.e. ≈ 70% increase in the variables used). Based on these obser-
Table 5 

Mean performance and the corresponding standard deviation of the random forest mo

(the recommended model is in bold ). 

# sensors Sensor Combination Sensitivity 

5 Ankle Hip Wrist Torso HR 0.879 (0.14

4 Ankle Hip Wrist Torso 0.883 (0.14

Ankle Hip Torso HR 0.851 (0.16

Hip Wrist Torso HR 0.883 (0.12

Ankle Wrist Torso HR 0.877 (0.13

Ankle Hip Wrist HR –

3 Wrist Torso HR 0.880 (0.12

Ankle Torso HR 0.846 (0.15

Ankle Hip Torso 0.851 (0.16

Hip Wrist Torso 0.882 (0.12

Hip Torso HR 0.860 (0.16

Ankle Wrist Torso 0.877 (0.13

Ankle Hip HR –

Ankle Hip Wrist –

Ankle Wrist HR –

Hip Wrist HR –

2 Wrist Torso 0.880 (0.12

Ankle Torso 0.846 (0.15

Hip Torso 0.860 (0.16

Torso HR 0.842 (0.16

Ankle Hip –

Ankle HR –

Ankle Wrist –

Hip Wrist –

Hip HR –

Wrist HR –

1 Torso 0.847 (0.16

Ankle –

Hip –

Wrist –

HR –
ations and this case study, one can conclude that our framework

as shown higher detection performance (with less features) when

ompared to the approach in Maman et al. (2017) . 

The next logical research question is to examine how the pre-

iction performance varies while limiting the number of sensors

sed. To evaluate this question, we utilize the random forest model

ince Table 4 showed that it had the highest mean accuracy, sensi-

ivity, specificity and G-mean when compared to the other two en-

embles. Table 5 reports the prediction results, when features are

imited to those from one, two, three, four and all sensor combina-

ions. Note that the values that are not shown in the table (e.g. an-

le, hip, wrist and HR sensors) reflect scenarios when a prediction

as not possible. This means that the main features that detected

he fatigue were eliminated with the added constraints on which

ossible features to select from. 

From the results in Table 5 , one can see that the prediction per-

ormance does not vary significantly as the number of sensors’ are

hanged. For example, the average accuracy varies from 0.855 to

.880 (with a standard deviation � 0.09) as the number of sensors

ary. This is only true if the torso IMU is included in the analy-

is. Based on this observation, we recommend only using the torso
del for fatigue detection using different sensor combinations for the MMH task 

Specificity Accuracy G-mean Consistency 

) 0.879 (0.15) 0.879 (0.09) 0.869 (0.10) 0.152 (0.18) 

) 0.878 (0.15) 0.880 (0.09) 0.871 (0.10) 0.148 (0.18) 

) 0.883 (0.13) 0.867 (0.10) 0.858 (0.11) 0.149 (0.16) 

) 0.872 (0.15) 0.877 (0.08) 0.870 (0.10) 0.147 (0.16) 

) 0.873 (0.15) 0.875 (0.08) 0.867 (0.10) 0.146 (0.16) 

– – – –

) 0.874 (0.15) 0.877 (0.08) 0.869 (0.09) 0.142 (0.16) 

) 0.882 (0.13) 0.864 (0.09) 0.856 (0.10) 0.148 (0.16) 

) 0.883 (0.13) 0.867 (0.10) 0.858 (0.11) 0.149 (0.16) 

) 0.872 (0.15) 0.877 (0.08) 0.869 (0.10) 0.147 (0.16) 

) 0.885 (0.14) 0.872 (0.10) 0.863 (0.11) 0.150 (0.17) 

) 0.873 (0.15) 0.875 (0.08) 0.867 (0.10) 0.146 (0.16) 

– – – –

– – – –

– – – –

– – – –

) 0.874 (0.15) 0.877 (0.08) 0.869 (0.09) 0.142 (0.16) 

) 0.882 (0.13) 0.864 (0.09) 0.856 (0.10) 0.148 (0.16) 

) 0.885 (0.14) 0.872 (0.10) 0.863 (0.11) 0.150 (0.17) 

) 0.867 (0.14) 0.855 (0.10) 0.846 (0.11) 0.149 (0.17) 

– – – –

– – – –

– – – –

– – – –

– – – –

– – – –

) 0.864 (0.14) 0.855 (0.10) 0.847 (0.11) 0.148 (0.16) 

– – – –

– – – –

– – – –

– – – –
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Fig. 4. Important features visualization in the MMH task using the Bagging model. 
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MU sensor for detecting fatigue in manual material handling en-

ironments (that are similar to those analyzed in our case study).

hile the prediction performance is almost the same, the costs in-

urred by the firm are much lower, and the usability of the system

y using only one sensor is significantly improved. This is an im-

ortant practical takeaway, which has not been reported in previ-

us studies investigating fatigue in MMH tasks (see the references

n Table 1 ). 

.1.4. Fatigue identification results 

A first step in understanding fatigue is to examine how fre-

uently a feature is selected all of the 105 two-participants-out

ross validation bagging model test sets. In this section, we limit

ur analysis to two cases: (a) when all five sensors are utilized,

nd (b) when only the torso sensor is used. The results for these

nalyses are shown in Fig. 4 (a) and (b), respectively. From both fig-

res, one can see that all three categories of features (i.e. statistical,

iomechanical, and individual features) are selected in our mod-

ls. For the five sensor case, one biomechanical feature ( mean back

otational position , i.e. feature #53 in Table 2 ) and five statistical

eatures appeared in more than 65% of the models. All other re-
aining features appeared in less than 10% of the models. On the

ther hand, age becomes a much more predictive factor if we only

ely on the torso sensor. In that case, mean back rotational position

s still selected in 100% of the models. 

Once a list of predictive/important features is established, we

hen investigate how those features vary as the participant tran-

ition from the non-fatigued to fatigued states. As highlighted in

ection 3.2 , this analysis can be done visually using a parallel co-

rdinates plot. Fig. 5 depicts this analysis (using the median model

orted by accuracy) for the five sensors and one sensor cases. Note

hat the lines graphed in these plots represent the average values

er variable for each of the two participants in the test set exam-

ned by the median model. 

From Fig. 5 (a), one can see that all of the six features high-

ighted in Fig. 4 (a) are present in the median model. It is

nteresting to note that only the wrist features exhibited a consis-

ent pattern across both participants when examining the fatigued

ases ( black line ) and the non-fatigued cases ( gray line ). Specifi-

ally, the coefficient of variation for wrist jerk tended to be higher,

nd the mean wrist jerk tended to be lower in the fatigued cases.

or the remaining four features, there were not any consistent
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Fig. 5. Features visualization for the median Bagging model in the MMH task. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Sensor placement on a participant for SI task. 
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patterns for both test subjects. Similarly from Fig. 5 (b), one can

see that only the torso ACC mean feature showed a clear separation

between the fatigued and non-fatigued states for both participants.

We hypothesize that these two figures may provide justification

for why the ensemble models outperformed the logistic regres-

sion models. Specifically, these plots may suggest interactive and

non-linear effects that can be trained for and captured using the

ensemble models. 

4.1.5. Fatigue diagnosis results 

From the fatigue identification results, one can conclude that

the type of fatigue is localized at the back. This conclusion is sup-

ported by: (a) the prediction performance is almost unchanged

(and high) when only the features from the torso sensor are used

for prediction, and (b) the mean back rotational position was se-

lected as an important feature in 100% of the models. This was the

only feature that was selected in 100% of the models. Our results

are consistent with findings in the ergonomics literature, which

suggest that manual material handling may lead to a higher preva-

lence of back injuries ( Mital, 2017 ). 

4.2. Case study 2: supply pick up and insertion 

4.2.1. Task description and data preparation 

Similar to the task in Maman et al. (2017) , we examined supply

pickup and insertion task. The task involved walking while carry-

ing supplies, and then bending forward to unscrew and fasten bolts

at the supply box (destination). A snapshot of the experiment is

provided in Fig. 6 . The task’s cycle time was set for two minutes to

mimic the activity in Maman et al. (2017) . By design, this activity

should be less fatiguing than the MMH task of the first case study.

The mechanism used to collect and preprocess data is similar

to that used in case study 1. The four step data cleaning procedure

suggested in Section 3.1.2 resulted in having 13 participants (in-

stead of 15 for the first case study) with reliable/clean data. Then,

the sensor data were synchronized after removing the initial ten

minutes of the experiment. After down sampling, the jerk, pos-

ture, and % HRR profiles were computed. Similar to the MMH task,

the first 18 min of the data (after removing the learning period)
ere labeled as not fatigued and the last 10 min were marked as

atigued . 

From those two-eighteen minute periods, we generated the list

f features in Table 2 . Based on the visual feature selection proce-

ure, 41 of those features were retained for further analysis. The

eave-two-participants-out cross validation resulted in 78 training

nd test datasets. This is smaller than the datasets used in the first

ase study since the number of participants with reliable data was
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Table 6 

Mean performance and the corresponding standard deviation of the classification methods for fatigue detection in SI task, (the recommended 

model is in bold ). 

Category Model Sensitivity Specificity Accuracy G-mean Consistency # of Features 

Random Forest 0.876 (0.12) 0.918 (0.10) 0.897 (0.08) 0.892 (0.09) 0.100 (0.13) 6.346 

Bagging 0.863 (0.12) 0.910 (0.10) 0.886 (0.08) 0.882 (0.09) 0.097 (0.13) 6.346 

BSS Boosting 0.868 (0.12) 0.893 (0.12) 0.880 (0.09) 0.875 (0.09) 0.118 (0.13) 6.346 

Support Vector Machine 0.728 (0.19) 0.847 (0.16) 0.787 (0.12) 0.773 (0.13) 0.226 (0.16) 6.346 

Logistic Regression 0.525 (0.28) 0.723 (0.21) 0.624 (0.12) 0.558 (0.19) 0.391 (0.27) 6.346 

LASSO Penalized Logistic Regression ∗ 0.674 (0.19) 0.925 (0.15) 0.800 (0.14) 0.773 (0.15) 0.257 (0.23) 16.179 

Penalized Logistic Regression 0.748 (0.22) 0.824 (0.06) 0.786 (0.10) 0.775 (0.17) 0.151 (0.16) 20.868 

∗ Features used in the model are only those generated in Maman et al. (2017) . 
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maller. Two hundred bootstrap samples with fixed sample size (11

articipants × 18 samples per participant = 198) were used to

valuate the stability of proposed models. 

To reduce the computational burden, we only examined the

even models analyzed in case study 1. This means that we did

ot examine whether the kNN, NB or decision trees performed ad-

quately for this task. The results for using these seven models for

atigue detection are presented in the following subsection. 

.2.2. Fatigue detection results 

The predictive performance of the seven models is summarized

n Table 6 . Similar to Table 4 , this table shows the mean (and stan-

ard deviation in parentheses) for each of the four performance

easures as well as the average number of features selected by

ach model. The reader should note the reported results are based

n 78 constructed test datasets from the two-participants-out cross

alidation. 

There are two main observations to be made pertaining to the

esults in Table 6 . First, the number of features selected with the

est subset selection are much less than those selected by the

ASSO model. This means that the usability of the analytical mod-
Table 7 

Mean fatigue detection performance (and the corresponding standard de

nations for the SI task (the recommended approach is in bold ). 

# sensors Sensor Combination Sensitivity 

5 Ankle Hip Wrist Torso HR 0.876 (0.12) 

4 Ankle Hip Wrist Torso 0.863 (0.13) 

Ankle Hip Torso HR 0.853 (0.13) 

Hip Wrist Torso HR 0.853 (0.17) 

Ankle Hip Wrist HR 0.834 (0.16) 

Ankle Wrist Torso HR 0.826 (0.19) 

3 Hip Wrist Torso 0.867 (0.15) 

Ankle Hip HR 0.856 (0.13) 

Hip Wrist HR 0.831 (0.15) 

Ankle Torso HR 0.825 (0.16) 

Wrist Torso HR 0.818 (0.18) 

Hip Torso HR 0.852 (0.17) 

Ankle Wrist HR 0.820 (0.19) 

Ankle Hip Wrist –

Ankle Hip Torso –

Ankle Wrist Torso –

2 Torso HR 0.823 (0.16) 

Ankle HR 0.828 (0.16) 

Hip HR 0.837 (0.15) 

Wrist HR 0.818 (0.15) 

Hip Torso –

Ankle Wrist –

Ankle Hip –

Ankle Torso –

Hip Wrist –

Wrist Torso –

1 HR 0.820 (0.14) 

Ankle –

Hip –

Wrist –

Torso –
ls with the BSS model is much higher than that with LASSO since

ractitioners’ need to monitor and understand approximately six

eatures (instead of 16 or 21). Second, the prediction performance

f the three ensembles is much higher than all other models. Note

hat the performance gap is much larger in this task than in the

MH task. Based on this case study, our framework has shown

igher detection performance (with less features) when compared

o competing models from the literature. 

Next, we examine how the prediction performance varies while

estricting the number of sensors used when performing SI task.

o gage this question, we utilize the random forest model since

able 6 showed that it had the highest prediction performance.

able 7 shows the prediction results when features are limited to

hose from one, two, three, four and all sensor combinations. Sim-

lar to Table 5 , the values, which are not shown reflect scenarios

hen a prediction was not possible. 

From the results in Table 7 , one can observe that the predic-

ion performance does not vary significantly as the number of sen-

ors’ are changed. For instance, the average accuracy varies from

.854 to 0.897 (with standard deviations � 0.10) as the number

f sensors vary. Note that this observation only holds if the heart
viation) of the random forest model using different sensor combi- 

Specificity Accuracy G-mean Consistency 

0.918 (0.10) 0.897 (0.08) 0.892 (0.09) 0.100 (0.13) 

0.911 (0.05) 0.887 (0.07) 0.884 (0.08) 0.097 (0.12) 

0.893 (0.12) 0.873 (0.09) 0.869 (0.10) 0.107 (0.13) 

0.911 (0.14) 0.882 (0.13) 0.866 (0.13) 0.121 (0.14) 

0.921 (0.10) 0.877 (0.10) 0.870 (0.11) 0.132 (0.16) 

0.955 (0.04) 0.890 (0.10) 0.882 (0.12) 0.138 (0.19) 

0.904 (0.12) 0.885 (0.12) 0.872 (0.12) 0.100 (0.09) 

0.887 (0.15) 0.871 (0.10) 0.865 (0.12) 0.117 (0.15) 

0.923 (0.06) 0.877 (0.08) 0.872 (0.09) 0.124 (0.14) 

0.935 (0.05) 0.880 (0.09) 0.874 (0.09) 0.131 (0.14) 

0.927 (0.12) 0.872 (0.13) 0.856 (0.14) 0.131 (0.15) 

0.874 (0.17) 0.863 (0.13) 0.844 (0.14) 0.132 (0.16) 

0.957 (0.03) 0.888 (0.10) 0.879 (0.12) 0.147 (0.19) 

– – – –

– – – –

– – – –

0.896 (0.12) 0.859 (0.12) 0.844 (0.13) 0.109 (0.12) 

0.917 (0.07) 0.872 (0.10) 0.867 (0.10) 0.114 (0.13) 

0.904 (0.08) 0.870 (0.08) 0.854 (0.14) 0.117 (0.14) 

0.920 (0.05) 0.869 (0.08) 0.863 (0.09) 0.123 (0.14) 

– – – –

– – – –

– – – –

– – – –

– – – –

– – – –

0.889 (0.06) 0.854 (0.08) 0.850 (0.09) 0.102 (0.13) 

– – – –

– – – –

– – – –

– – – –
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Fig. 7. Important features visualization in the SI task using the Random Forest model. 
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rate sensor is included in the analysis. Accordingly, using solely the

heart rate sensor is appropriate for detecting fatigue in supply pick

up and insertion environments (that are similar to those analyzed

in our case study). Similar to the earlier case study, this is a novel

contribution (showcasing that one sensor can present similar per-

formance to multiple sensors with a much higher usability). 

4.2.3. Fatigue identification results 

As in case study 1, we follow the two-step approach for fa-

tigue identification. First, we examine how frequently a feature is

selected from all of the 78 two-participants-out cross validation

random forest model test sets. We limit the analysis to two cases:

(a) when all five sensors are utilized, and (b) when only the heart

rate sensor is used. The results from these analyses are shown in

Fig. 7 (a) and (b), respectively. Neither cases included any individ-

ual features (which is different from the earlier case when age

appeared in both). Only statistical features were selected in the

one sensor model, which is perhaps not surprising since none of

the biomechanical features can be generated if only the heart rate

sensor is used. For the five sensor case, one biomechanical feature

( mean leg rotational oscillation in sagittal plane ), i.e. feature #51 in

Table 2 and three statistical features appeared in more than 50%

of the models. On the other hand, in the single sensor case, all

the statistical features ( HRR CV, HRR Mean ) created using the heart

sensor were selected in 100% of the models. 

Second, we investigate how those features range as participants

transition from the non-fatigued to fatigued states. Fig. 8 illustrates

this analysis (using the median model sorted by accuracy) for: (a)

the five sensors, and (b) the one sensor cases. Recall that the lines

graphed in these plots represent the average values per variable

for each of the two participants in the test set examined by the

median model. The conclusion is similar to that of case study 1,

where only one feature had different values for the non-fatigue

( gray line ) and fatigue cases ( black line ) across the two test par-

ticipants. However, here, this effect is only observed for the one

sensor case. Specifically, in Fig. 8 (b), the mean HRR is higher in

the fatigued state. This result makes sense since an increased heart
ate is a fatigue symptom (see Cavuoto & Megahed, 2017 for more

etails). 

.2.4. Fatigue diagnosis results 

From the fatigue identification results, one can conclude that

he participants experience whole-body fatigue in the SI task. This

onclusion is based on the ability to accurately detect the non-

atigue and fatigue states through the use of only the heart rate

ensor. The elevated mean percent HRR shown for both partici-

ants in Fig. 8 (b) supports this conclusion. 

. Discussion and conclusions 

.1. Summary of the main contributions 

In this paper, we proposed an integrated framework for man-

ging fatigue (and consequently changes in work performance)

sing minimally-intrusive wearable sensors. Based on the case

tudies in Section 4 , this study makes four main contributions.

irst, we demonstrated the capability of using a unified modeling

pproach for managing physical fatigue in different occupational

asks/settings. The case studies show the ability to detect, identify,

nd diagnose fatigue in multiple occupationally-relevant settings.

he ability to identify/diagnose fatigue through the use of wearable

ensors has not been shown prior in the literature. Second, the in-

ights from the fatigue identification phase of our framework can be

sed to inform sensor placement and selection. We demonstrated

hat the prediction performance using one sensor is equivalent to

hat of using all sensors for our two case studies. Third, we showed

hat the importance of different types of features (statistical sum-

aries of the sensors’ profiles, biomechanical features, and indi-

idual characteristics of workers) varies with different manufactur-

ng tasks. Thus, researchers and practitioners should consider this

nding when developing models for detecting/managing fatigue in

ther settings. Fourth, from an intelligent systems perspective, this

tudy has presented a modified leave p -participants out cross vali-

ation approach (see Section 3.1.3 ) to account for the inherent au-



Z. Sedighi Maman, Y.-J. Chen and A. Baghdadi et al. / Expert Systems With Applications 155 (2020) 113405 15 

Fig. 8. Features visualization for the median Random Forest model in the SI task. 
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o  
ocorrelation within each participant’s experimental data. To cap-

talize on the advantages of the standard 10-fold cross validation

pproach, we have recommended leaving 10% of the participants

ata out. This corresponded to leaving p = 2 participants out in

ur case studies. While this required a large number of computa-

ional experiments, the standard errors of the performance metrics

ere smaller than those obtained when p = 1 . For this reason, the

arge number of simulations was justified in our case. Furthermore,

e suggest that researchers should examine p > 1 values in future

tudies. 

.2. Relevance to expert and intelligent systems research and practice 

Our framework attempts to bridge the gaps between predictive

nd prescriptive analytics in the context of human performance

odeling. The majority of current expert and intelligent systems

esearch have focused on either the predictive ( Khan, Schiøler, Ku-

ahci, Zaki, & Rasmussen, 2019; Lu, Wang, & Yoon, 2019a; Mal-

onado, López, Jimenez-Molina, & Lira, 2020; Weng et al., 2017;

eng et al., 2018 ) or prescriptive ( Chai & Ngai, 2019; de Leoni &

arrella, 2017; Rezaeiahari & Khasawneh, 2020; Sadic, de Sousa,

 Crispim, 2018 ) modeling components. Perhaps, more importantly

here is limited work that have considered the impact of “humans”

especially on an individual level) on the overall performance of

 firm ( Grosse et al., 2017 ). Our proposed framework provides a

ovel approach to detect, diagnose and intervene when fatigue oc-

urs, which is a known precursor of poor performance as shown in

he discussion in Section 2 . Thus, our proposed framework estab-

ishes a successful precedent that can inform the development of

ore advanced “human-in-the-loop” systems, where the effect of

uman operators is both predicted/modeled and incorporated into

rescriptive decision-making models. 

From an expert systems design perspective, the sequential na-

ure of our framework attempts to overcome the “black box” na-

ure of many machine learning algorithms. We have shown that

he sequential application of predictive models when combined

ith visual analytic tools can provide insights for prescriptive in-

erventions. Furthermore, this study demonstrates that futuristic

ntelligent systems can capture in real-time the well-being of hu-

an operators in addition to the data typically captured on the

quipment. This can allow for more dynamic operational interven-
ions (e.g., work-rest scheduling models), where the distribution

f work tasks between different human operators (and possibly

obotic assistants) is optimized. 

.3. Relevance to “human performance” management practice 

In our estimation, the proposed framework and the case study

ndings have significant implications for practitioners interested

n managing/optimizing their workforce as a part of larger set

f resources that include machines and supporting computational

echnologies. We have shown that changes in a worker’s physi-

al performance can be detected and modeled using wearable sen-

ors. Utilizing the principles behind the technology adoption model

TAM), we have shown that fatigue associated specialized jobs can

e detected using one sensor (without a loss in prediction per-

ormance). The emphasis on fatigue identification and diagnosis

hrough visual analytical approaches allows practitioners to iden-

ify the risks, which are to be tackled through an appropriate in-

ervention strategy. In essence, our framework can provide near

eal-time insights into the well-begin of shop-floor workers and

heir associated productivity levels. This information can be incor-

orated into the safety and productivity components of the SQDCM

safety, quality, delivery, cost, and morale) lean production effec-

iveness dashboard. 

Our case-study findings have significant implications for man-

facturing occupations, as they are likely to encourage the man-

gement to invest in data-driven manufacturing to develop bet-

er plans to prevent fatal and non-fatal occupational injury. The

atigue detection phase of the proposed framework can be used

or work scheduling practice as well, since the scheduling ap-

roaches should incorporate the fatigue status of the workers. The

eader is refereed to Mossa, Boenzi, Digiesi, Mummolo, and Ro-

ano (2016) for an example of how ergonomic risk can be incor-

orated in scheduling. 

.4. Limitations and suggestions for future research 

There are a few limitation that may influence the interpreta-

ion of our results. First, the sample sizes are small as a result of

ime committed by each participant. Second, the participants for

ur two case studies varied in age and experience. Some of them
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represented a convenience sample of undergraduate and graduate

students who may have a limited experience with manufacturing

operations. Others were recruited from industry, and as such, are

much more experienced/trained. Thus, our 10 min training win-

dow may not be sufficient for some participants, i.e. the baseline

performance for the non-fatigued state may not reflect their true

steady-state performance. Third, the fatigue detection models are

based on the participants’ perceived ratings of exertion. Different

participants may have varying levels of pain tolerance. Thus, we

implicitly assume that the aliasing of perception and fatigue will

have the same effect on performance as fatigue alone. This as-

sumption is reasonable based on the ergonomics literature. Specif-

ically, Mehta and Cavuoto (2015 , p. 94) state that “... muscle ac-

tivation, perception of discomfort, and/or motivation, might have

a greater contribution to fatigue development than peripheral fac-

tors”. Fourth, the evaluation of our framework’s performance was

limited to focused lab experiments. Future studies should evaluate

how this framework performs in the field. 

In our estimation, there are three main streams of research

that can capitalize on our framework and findings. First, studies

should investigate how our framework can be extended to simul-

taneously monitor and manage fatigue for hundreds of workers.

While our current prediction performance is excellent for an in-

dividual worker (and for typical predictive modeling applications

in the literature), it will suffer from a high false alarm rate if im-

plemented across the shop-floor. To alleviate this issue, future re-

search should consider: (a) reducing the frequency of data collec-

tion, which would increase the average time (but not samples)

between false alarms; and (b) controlling the false discovery rate

( Benjamini & Hochberg, 1995 ), which is designed for testing mul-

tiple hypotheses. Second, there are several information systems,

ethical and legal implications that arise from collecting workers’

performance data. Policies that account for these implications are

needed. Third, there is an excellent opportunity for optimization

models that can optimize recovery (or alternatively minimize fa-

tigue development) while meeting the demands of the production

schedule and the resource constraints. Such models will benefit

from the data-driven/real-time nature of our framework. 
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