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Abstract—As a means for leveraging technology in the design
of Deaf spaces, this paper presents initial results on American
Sign Language (ASL) recognition using RF sensing. RF sensors
are non-contact, non-invasive, and protective of privacy, making
them of special interest for use in personal areas. Using just the
kinematic properties of signing as captured by the micro-Doppler
signatures of a multi-frequency RF sensor network, this paper
shows that native and imitation signing can be differentiated with
%99 accuracy, while up to 20 ASL signs are recognized with an
accuracy of %72 or higher.

Index Terms—American sign language, gesture recognition,
radar micro-Doppler, RF sensing

I. INTRODUCTION

Most research in technologies for the Deaf community have
focused on translation using either video or wearable devices.
Sensor-augmented gloves [1], [2] have been reported to yield
higher gesture recognition rates than camera-based systems
[3], [4]; however, they cannot capture information expressed
through head and body movement. Gloves are also intrusive
and inhibit users in their pursuit of normal daily life, while
cameras can raise concerns over privacy and are ineffective in
the dark. In contrast, RF sensors are non-contact, non-invasive
and do not reveal private information even if hacked.

Although RF sensors are unable to measure facial expres-
sions or hand shapes, which would be required for complete
translation, this paper aims to exploit RF sensors for the design
of smart Deaf spaces. In this way, we hope to enable the Deaf
community to benefit from advances in technologies that could
generate tangible improvements in their quality of life.

More specifically, this paper investigates the recognition of
ASL signs based on kinematics only, as perceived by a multi-
frequency RF sensor network. In fact, RF sensors can acquire
a unique source of information that is inaccessible to optical or
wearable devices: namely, a visual representation of the kine-
matic patterns of motion via the micro-Doppler signature [5].
Micro-Doppler refers to frequency modulations that appear
about the central Doppler shift, which are caused by rotational
or vibrational motions that deviate from principle translational
motion. In prior work [6], we showed that fractal complexity
computed from RF data could be used to discriminate signing
from daily activities and that RF data could reveal linguistic
properties, such as coarticulation.

This paper shows RF data can be used to distinguish
imitation from native signing and up to 20 ASL signs can
be recognized with %72 accuracy or greater. In Section II,
the experimental datasets acquired are presented. Section III
addresses the differences between imitation and native signing,
while Section IV presents the results for classification of ASL
signs. Finally, in Section IV, conclusions and future work are
discussed.

II. RF ASL DATASETS

In many ASL recognition studies, non-native signers, who
may not know any ASL, are used as an expeditious source
of data. However, imitation signing by non-signers results
in motor production that does not approximate native sign
language production in the speed and stability of motion
signatures [7], but has severe spatiotemporal distortion and
linguistic errors [8]. It can take learners of sign language at
least 3 years to produce signs in a manner that is perceived
as fluent by native signers [9].

To study the differences between imitation and native sign-
ing, two distinct datasets were acquired: 1) native ASL data
from Deaf participants and 2) imitation data from hearing
individuals imitating ASL signs based on copy-signing videos.
A total of 10 non-signers and 3 native signers were recruited
to participate in the study. A total of 180 native signing
samples and 2631 imitation signing samples were acquired.
Words were selected from the ASL-LEX database (http://asl-
lex.org/), choosing words that are higher frequency, but not
phonologically related to ensure a more diverse dataset. A
complete listing of the words are given in Table I. In all
experiments, participants were asked to begin with their hands
placed on their thighs, and to return to this position once done
signing.

A. Multi-Frequency RF Sensor Network

RF sensors operating at three different transmit frequencies
are considered in this work. The Xethru sensor is a low-
power ultra-wide band (UWB) impulse radar with transmit
frequencies between 7.25 - 10.2 GHz. The range resolution of
an RF sensor isgiven by ¢/20, where c is the speed of light
and (3 is the bandwidth. Thus, the Xethru sensor has about 5



cm range resolution. Frequency modulated continuous wave
(FMCW) radars at 24 GHz and 77 GHz were also deployed.
A 24 GHz Ancortek SDR was operated with bandwidth of 1.5
GHz, while the 77 GHz Texas Instruments device transmitted
with a bandwidth of 750 MHz. This results in range resolutions
of 10 cm and 20 cm, respectively.

Participants were asked to sit on a bar stool facing three
RF sensors (Xethru, 24 GHz and 77 GHz), while two other
Xethru sensors were placed off to the side and at a 45° angle
elevated 0.9 meters off of the ground. Prompts indicating the
sign or sequence of signs to be observed were communicated
using a computer monitor placed directly behind the sensor,
so that the visual cues would ensure the participant remained
facing the sensors throughout the experiment.

B. RF Data Processing

Unlike video, radar measurements are not inherently an
image, but are actually a time-stream of complex I/Q data
from which line-of-sight distance and radial velocity may
be computed. To reveal patterns of motion hidden in the
amplitude and frequency modulations of the received signal,
time-frequency analysis is often employed. The micro-Doppler
signature, or spectrogram, is found from the square modulus of
the Short-Time Fourier Transform (STFT) of the continuous-
time input signal. It reveals the distinct patterns caused by
micro-motions, such as hand gestures and human activity.

Prior to computation of the spectrogram, a 4th order high
pass filter (HPF) is applied to remove reflections from station-
ary objects, such as the walls, tables, and chairs. The STFT
itself is computed using Hanning windows with 50% overlap
to reduce sidelobes in the frequency domain and convert the
1D complex time stream into a 2D uD signature. Sensor noise
and artifacts were mitigated using an isodata thresholding
algorithm [10]. Sample ASL micro-Doppler signatures at each
transmit frequency are shown in Figure 1.

INDIVIDUAL ASL WORDS
1. YOU 6. KNIFE 11. LAWYER 16. HELP
2. HELLO |7 WELL 12. HOSPITAL 17. PUSH
3. WALK 8.CAR 13. HEALTH 18.GO
4.DRINK | 9.ENGINEER | 14. EARTHQUAKE |19. COME
5.FRIEND |10. MOUNTAIN |15. BREATHE 20. WRITE

TABLE I: Listing of ASL signs collected during experiments

Xethru 24 GHz 77GHz

I_, time

Fig. 1: mD signature of BREATHE for different RF sensors.
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Fig. 2: Comparison of RF data from native ASL users and
imitation signers using tSNE.

III. IMITATION VS. NATIVE SIGNING

Differences in signing between native and imitation signers
can be revealed through observation of visual data and quan-
titative analysis of RF ASL data. ASL is a fluid language that
minimizes exertion. But imitation signers are often hesitant
or awkward, failing to replicate temporal tempo of signing
[11], [12]. Other errors of imitation signers include replicating
signs with an incorrect number of repetitions, exaggerating
movements along inaccurate trajectories, and gross motion
errors.

Machine learning can also be used to distinguish between
native versus imitation signing. The T-distributed Stochastic
Neighbor Embedding (t-SNE) algorithm [13] can be used to
visualize the feature space spanned by the data, as shown
in Figure 2. To remove any bias due to sample size, 180
samples were randomly selected from the imitation data set, an
equal number to the native signing samples utilized. It may
be noticed that there is little overlap between imitation and
native data in feature space.

In fact, the data may be explicitly discriminated using a
Support Vector Machine (SVM) classifier with Radial Basis
Function (RBF). The SMOTE [14], [15] algorithm was used
to equalize class data by oversampling minority classes with
“synthetic” samples. With SVM, the imitation and native
datasets were distinguished with %99 accuracy. An important
consequence of this result is that the imitation data samples are
not suitable for validating true ASL recognition performance,
nor are they effective in pre-training models for classification
of native data.

IV. CLASSIFICATION OF ASL SIGNS

A wide range of handcrafted features were extracted, after
which an optimal subset was selected using the minimum
redundancy maximum relevance (mRMR) algorithm [16],
[17]. Four types of features were computed: 1) envelope
features, frequency warped cepstral coefficients (FWCC), dis-
crete cosine coefficients (DCT), and linear predictive coding
(LPC) coefficients. Envelope features have been shown to be
significant physical features [18], [19] of the uD signature as
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Fig. 3: Features selected by MRMR algorithm and resulting accuracy with random forest classifier

they describe the outline and peak response of the signature. In
this work, the maximum, minimum and mean value of upper
and lower envelopes, as well as the difference between the
average values of the upper and lower envelope are extracted
using the percentile technique [20]. Frequency-warped cepstral
coefficients (FWCC) are related to mel-frequency cepstral co-
efficients, common in speech processing, but differ in that their
filter bank is optimized to RF data using genetic algorithms
[21]. The Discrete Cosine Transform (DCT) [22] represents
a signal as the sum of sinusoidal functions oscillating at
different frequencies. Linear predictive coding (LPC) mD [23]
computes the coefficients of a forward linear predictor by
minimizing the prediction error in a least squares sense.

A total of 932 features are initially extracted for each
RF sensor in the network: 7 envelope features, 500 DCT
coefficients, 325 FWCC features, and 100 LPC coefficients.
For all sensors, features were extracted from the spectrogram
both with and without high pass filtering (HPF). This is
because while HPF removes stationary clutter, there is also
the potential for important low-frequency information to be
lost. Next, the mRMR algorithm was applied to select an
optimal subset of features from each sensor. The number
of features selected was varied between 20 and 250, while
four different classifiers considered to evaluate performance:
support vector machines (SVM), k-nearest neighbors (kNN),
linear discriminant analysis (LDA) using random subspace
gradient boosting, and random forest classifier (RFC). During
classification, %75 of the data was used for training, while
%25 was used for testing. The random forest classifier was
found to give the best result.

Table 3 summarizes the features selected by mRMR. Notice
that frequency-dependent features, e.g. DCT and FWCC, are
heavily favored, followed by envelope features, which capture
the extremety of the motion. However, LPC appears to not
be very effective for ASL recognition, with very few LPC
coefficients being selected.

Moreover, better performance is achieved at the higher
transmit frequencies, with the accuracy of the 24 GHz sensor
closely followed by that of the 77 GHz sensor. Notice that
there is a great benefit to not using a HPF on 77 GHz data,
for which the accuracy without the HPF is increased by 13%
whereas other sensors benefit from the filtering. Also, the
ASL recognition accuracy can be greatly increased by fusing
features form all inputs, and performing a feature selection
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Fig. 4: Classification accuracy versus classes with and without
ground clutter removal.

with mRMR. This yields a classification accuracy of 72%
for 20 ASL classes - about a 15% - 30% improvement over
the results obtained with just a single sensor. A classification
accuracy of 95% is attained for recognition of 5 ASL signs.
The impact of HPF is compared in Figure 4 as a function of
the number of classes.

V. CONCLUSION

This paper presents initial work on ASL recognition with
a multi-frequency RF sensor network, which extracts only
kinematic properties of signing. Results show that RF sensors
can be used to differential whether the signer is a native signer
or a non-signer doing copysigning. This shows the need to
validate machine learning algorithms on native signer data.
Frequency warped cepstral coefficients (FWCC) are optimized
for ASL using genetic algorithms, and in conjunction with
Discrete Cosine Transform (DCT) coefficients, and envelope
features, used to classify up to 20 ASL signs. Using the mini-
mum redundancy maximum relevance (mRMR) algorithm, an
optimal subset of 150 features are selected and input to a
random forest classifier to achieve %95 recognition accuracy
for 5 signs and %72 accuracy for 20 signs.
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