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Abstract Combinatorial filters, which take the form of labelled transition graphs,
are a general representation for filtering and inference tasks in robotics. They are
of particular interest in contexts where the objective is to minimize the compu-
tational resources needed to execute the filter. One specific problem is called the
filter minimization (FM) problem, in which the goal is to find, for a given original
filter, a state-minimal filter equivalent to the original filter. We consider a special
case of FM, called the filter partitioning minimization (FPM) problem, in which
the reduced filter must partition the state space of the original filter. This prob-
lem has been proven to be NP-hard. This paper considers the practical problem
of solving FPM in spite of these hardness results. In contrast to the best known
algorithm for this problem, a heuristic approach based on graph coloring proposed
by O’Kane and Shell, we show how to convert an FPM instance to an instance of
the well-known integer linear programming (ILP) problem. We present three dis-
tinct formulations of this reduction. Though ILP is itself a challenging problem,
reducing FPM to ILP has the advantage that the ILP problem has been studied
in great detail, and highly-optimized solvers are readily available. We describe
experiments comparing this approach to the heuristic algorithm of O’Kane and
Shell. The results show that the proposed ILP technique performs better in com-
puting exact solutions as the filter sizes grow, and that the ILP approach obtains
higher-quality feasible solutions, in contexts where time limitations prohibit the
computation of exact solutions.

1 Introduction

Combinatorial filters, which are formulated as labelled transition graphs, are used
for modeling and reasoning about systems in which sensor data is discrete. This
kind of filters was originally proposed by LaValle [15,16] for reasoning about the
information requirements of problems in robotics.

The authors are with the Department of Computer Science and Engineering, Uni-
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jokane@cse.sc.edu



2 Hazhar Rahmani, Jason M. O’Kane

Figure 1 shows an example of how such filters might be used in the context of
mobile robotics. Suppose a mobile robot navigates through its environment guided
by a topological map in the form of a generalized Voronoi diagram (GVG) [24,30].
See Figure 1a. The robot is equipped with controllers [6] to move reliably through
the environment between the junction points of this map. At each junction point,
the robot can sense the relative directions of the outgoing corridors, and select one
of them to travel along next. The operation of this robot can be expressed as a
combinatorial filter, that is, a labeled directed graph in which states are labeled
with the filter’s output and edges are labeled with observations received by the
robot. Each state of the filter corresponds to one of the junction points of the map
(or, if the robot may be uncertain about its location, a set of possible junctions)
combined with a label indicating the direction from which the robot arrived at the
junctions. Each state is labeled with the direction of the corridor the robot should
travel next. The directed edges correspond to the connectivity between junctions
along the environment’s corridors and are labeled with the observation the robot
should receive at the next junction it encounters. Notice, in particular, that this
graph is a model of the robot’s behavior in this environment —it describes what
the robot will do, rather than merely describing the environment itself. Figure 1b
and 1c show a smaller environment and a corresponding filter for that environment,
describing behavior in which the robot, starting from an unknown location in the
environment, nonetheless navigates to E.

The question we ask is this: How many states are necessary to complete a
task represented using this sort of filter? Such questions are relevant not only for
minimizing the computational resources needed to execute the filter, but also for
understanding the information structure underlying the problem itself. For this
example, Figure 1d shows the smallest filter that can replace the naive filter in
Figure 1c and by which the system’s task can still be accomplished.

O’Kane and Shell [20] first addressed this problem of automatic reduction
of combinatorial filters. Specifically, they considered the algorithmic problem of
finding the smallest filter, measured by the number of states, whose behavior is
equivalent to a given input filter. They proved that this problem is NP-hard, and
also introduced a heuristic algorithm, which forms the minimal filter by merging
‘compatible’ states. Their algorithm, in fact, solves FPM, a special case of FM in
which the reduced filter must partition the state space of the original filter. This
algorithm is (apart from naive brute force) currently the only known algorithm
for FPM.

In this paper, we offer an alternative approach to filter partitioning minimiza-
tion that improves upon the heuristic proposed by O’Kane and Shell. The basic
approach is a reduction to integer linear programming (ILP). We consider three
different integer linear programming formulations for the filter partitioning mini-
mization problem. None of these three formulations is fully superior to one another,
and each might be useful for minimizing certain types of filters.

After related work and basic definitions are reviewed and recalled respectively
in Sections 2 and 3, the paper makes two primary contributions: (i) Section 4
presents three integer linear programming formulations for the filter partitioning
minimization problem; (ii) Section 5 presents experimental results, which show
that the ILP formulation outperforms the algorithm of O’Kane and Shell [21], for
both optimal and feasible solutions of the filter partitioning minimization problem.
Finally, Section 6 summarizes our conclusions and discusses future work.
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Fig. 1 a) An occupancy grid map of the UofSC Swearingen Engineering Center, generated by
a differential drive robot equipped with a Hokuyo laser range finder. The map is overlaid with
the generalized Voronoi graph (GVG) of that environment in red. b) A simpler environment
and its GVG for illustration purposes. ¢) A naively-constructed combinatorial filter, which the
robot can use to navigate, starting from full location uncertainty, to point E. In this example,
each vertex in the graph (that is, each state of the filter) is labeled with a set of possible
locations for the robot, each written in the form Xy to mean that the robot has arrived at
junction X from junction Y. The states are also labeled with a color or output from the filter
at that state; in this example, the colors are angles (0, w/2, 7, etc), telling which outgoing
corridor the robot show follow. The directed edges show how the state changes in response to
these movements. The labels on the edges show the information made available to the robot on
that transition — in this case, a list of options for which direction to leave the next junction.
For example, an edge labeled {m, w/2} means that the robot observes two options for its next
movement: It may follow a corridor to its left (w/2) or it may turn around and return the
way it came (7). A robot might execute this plan by an alternating process of executing the
movement attached to its current state, using its sensors to acquire a new observation, and
transitioning in the graph the state reached by the outgoing edge whose label matches that
observation. d) A reduced version of this filter, in which several redundant states are merged.
The reduction shows that the information encoded in those different merged states was not,
in fact, necessary, for the robot to behave correctly.

2 Related Work

Combinatorial filters [15,16] stem from early work about minimalism in robotics [7,
8]. This approach is based on the idea of identifying minimal configurations of re-
sources such as sensing, actuation, and computation that enable a task to be com-
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pleted. It has been applied to such tasks as exploration [14], navigation [17,25,27],
localization [1], target tracking [2,29], manipulation [13], and story validation [28].

The combinatorial filters considered in this paper are closely related to well-
known probabilistic filtering methods such as recursive Bayesian estimation [9, 18]
and Kalman filtering [12]. Each of these types of filters are used to estimate a
system’s internal state over time using the most recent data (observations) received
from the sensors. Note in particular that probabilistic filters, when implemented
with finite precision, can in principle be expressed as combinatorial filters, in which
each state of the filter corresponds to a tuple of concrete values of the variables
being estimated and each transition encodes the updates made to that internal
state in response to new sensor data. In addition, combinatorial filters are also
suitable for other forms of filtering that rely upon combinatorial, rather than
probabilistic reasoning. For more details about Bayesian filtering and the Kalman
filter, see [5].

Apart from offering the advantage of using less computational resources, finding
optimal filters in terms of the number of states also helps us better understand
the nature of robotic problems, because minimal filters can reveal the minimal
information required to solve those problems.

The problem of automatically constructing optimal filters from given original
filters, called the filter minimization problem, was first considered by O’Kane and
Shell [20]. They proved that the problem is NP-hard, and presented a heuristic
algorithm, which solves the problem by merging pairs of ‘mergeable’ states. Saber-
ifar et al. [23] proved that the problem is hard to approximate, even for several
reasonable special cases of combinatorial filters. Our own prior work [22] consid-
ered reducing filters through making quotient filters under equivalence relations.
We proved that the well-known notion of bisimulation for those equivalence re-
lations does not always lead to optimally reduced filters. Quite recently, Zhang
and Shell [31] introduced a generalization of combinatorial filters and their related
minimization problem, which also generalizes FM. They proved that an optimal
solution to the FM for some filters cannot be found by partitioning the state space
of the filter under an equivalence relation but it always can be found by a covering
of the state space, meaning that some states are shared among several ‘classes’
of mergeable states. Accordingly, they proposed an exact solution to FM via a
SAT formulation. The differences between our approach and their approach are
two: first, the problem we study here is a special case of FM, which we require
the reduced filter to partition the state space of the original filter; and second,
the number of constraints of their SAT formulation is exponential to the size of
filter, while each of our formulations has a polynomial number of constraints. It
is still not known if any SAT or programming formulation of FM can be formed
in polynomial time or not. Because of the first difference, our approach is com-
parable only with the heuristic algorithm of O’Kane and Shell, which essentially
solves FPM, and because of the second difference, our approach can be used to
produce feasible solutions for large filters for which an optimal solution cannot be
computed in a reasonable amount of time.
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3 Definitions

This section presents basic definitions and notation used throughout the paper.
The basic object of study is the combinatorial filter, defined as follows [21]:

Definition 1 A combinatorial filter, or simply a filter, is a 6-tuple (V, Y, C, §, ¢, vo)
in which:

— V is a finite set of states,

— Y is a set of possible observations, representing the input space of the filter,

— C'is a set of outputs, sometimes called colors, representing the outputs produced
by the filter,

—0:V xY — VU{L} is the transition function of filter,

— ¢: V = C is a function assigning to each state v € V' a color, and

— v € V is the initial state.

We depict filters as edge labelled directed graphs, in which the states are shown
as vertices and the transition function determines the directed edges. Examples
appear in Figure 1 and Figure 2.

The meaning of d(v,y) = L is that the observation y never occurs when the
filter is in state v. Equivalently, in graph view, vertex v has no outgoing edge
labeled y. This type of situation occurs when some structure in the problem being
modeled prevents that observation from that state.

An observation sequence s = y1y2---yn € Y, in which each y; is a member
of Y, is said to be trackable from v € V if there is a sequence of states qo, q1, ..., gn
such that go = v, and (¢, yi+1) = gi+1 for all 0 < i < n. In this situation, we
use 6*(v, 8) to mean the state reached to when s is traced starting from v. If s is
not trackable from v, we write §*(v,s) = L. By convention, the empty string € is
trackable for all states v, i.e., §*(v,¢€) = v.

Additionally, the set of all observation sequences trackable from a state v is
called as the language of v, denoted by L(v). Accordingly, the language of F,
denoted by L(F), is the language of its initial state, i.e., L(F') = L(vo).

Filter reduction relies on the following definition.

Definition 2 Let Fi = (V1,Y,C,d1,c1,v0) and Fo = (V2,Y, C, b2, c2,wo) be two
filters and L C Y* be an observation language. We say that F is equivalent to Fo

with respect to L, denoted Fi £ Fy, if for any observation sequence s € L,

1. 67 (vo,s) # L,
2. 65(wo,s8) # L, and
3. Cl((ST(Uo,S)) = CQ((SS(’LUO,S)).

This definition requires that L. C L(F1) and L C L(F), and that for any
observation sequence in L, F7 and F> must produce the same output. Note that
this definition does not require that L(F1) to be equal to L(F2). We also require
that the state space of the minimized filter has a special property in the sense of
the following definition.

Definition 3 Let F1 = (V1,Y,C,d1,c1,v0) and Fo = (V2,Y, C, 62, c2,wo) be two
filters. Denoted F1 = F>, we say that F» partitions the state space of Fp if for
each v € Vi, there is a single state w € F> such that for any observation sequence
s € Y™, if 671 (vo, s) = v, then 05 (wo, s) = w.



6 Hazhar Rahmani, Jason M. O’Kane

The filter partitioning minimization problem, on which this work elaborates,
is defined thusly:

Problem: Filter partitioning minimization (FPM)
Input: A filter F.
L(F)

Output: A filter F* such that F ——= F* and F' = F* and the number of
states in F'* is minimum.

Informally, the intuition of filter partitioning minimization is to produce for a
given filter F, a state minimal filter F'* that traces all observation sequences of
L(F) while producing for each of them, the same output produced by the original
filter F. Since this minimized filter F** would produce the same outputs as F for
any observation sequence trackable by F' and that F'* partitions the state space
of F, we can view F'* as a sort of optimal replacement for F' with any state in F'*
plays the role of one or more states in F. Note that FM is similar to FPM but it
lacks the condition F' = F'* in its output. The next section casts this problem as
an integer linear programming problem with three different formulations.

4 ILP formulations of the FPM problem

In this section, we introduce three integer linear programming models for filter
partitioning minimization. To do so, we first review how filter reduction relates to
quotient operations.

4.1 Filter reduction as a quotient operation

The idea of these formulations stems from our previous work [22], in which we
proved that an optimal filter can formed by taking the quotient of the original
filter under some equivalence relation over the state space of the original filter.
Assuming that one has the correct relation, for each equivalence class of that
relation, all of the states in that class are merged to form a single state in the
reduced filter.

In our prior work, we provide conditions on the relation under which the quo-
tient operation produces a well-defined filter. Specifically, the relation must be a
compatibility relation, defined as follows:

Definition 4 Let F = (V,Y,C, §, c,v) be a filter. We say that a relation R C V xV
is a compatibility relation for F, if for any (v,w) € R:

1. ¢(v) = c(w), and
2. forany y € Y, if 6(v,y) # L and §(w,y) # L, then (§(v,y),d(w,y)) € R.

We say state v is compatible with w if there exists a compatibility relation R
for F such that (v,w) € R. The set of all compatible pairs for a given filter F is
denoted by A g, which is the union of all compatibility relations for F' and itself
is a compatibility relation for F. For a simple efficient algorithm computing A g,
see [22].

To illustrate, consider filter F; in Figure 2. Some compatibility relations for this
filter are R1 = wa Ry =1Ip,, Rs = {(4:5)7(77 7)}7 Ry = {(233)3 (Oa 1)a (3:4)}7 and
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Rs =1r, U{(2,3),(3,2),(0,1),(1,0),(3,4),(4,3),(4,5), (5,4)}, where I, denotes
the identity relation on the state space of Fy. Observe that Ap = Rs.

Given a relation that is both a compatibility relation and an equivalence rela-
tion, we can form a quotient filter, which merges equivalent states:

Definition 5 For a filter F = (V,Y,C,d,¢,v), and a relation R C V x V that
is both a compatibility relation and an equivalence relation (a compatibility equiva-
lence relation), the quotient of F under R is the filter F/R = (V/R,Y,C, &', , [vo]Rr),
in which

b(w,y)]r if Fw € [v]r with §(w,y) # L
4 otherwise

§'([v)Rr,y) = {

and ¢ ([v]r) = c(v).

Notice that Definition 4 ensures that if two states v and w, both of which have
an outgoing edge labeled by an observation y, are merged then their ‘y-successors’
—06(v,y) and 6(w, y)— must also be merged.

The following result holds the key to using this quotient operation to reduce
filters.

Lemma 1 [22] For any filter F = (V,Y,C,0,¢,v0), and any compatibility equiv-
alence relation R for F', we have F L) F/R and that Fi = F>.
This upshot is that, if the relation R in Lemma 1 has the minimum number of

equivalence classes, then it is guaranteed that F'/R is a minimal filter equivalent
to F. As a result, the FPM problem is reduced to the following problem:

Problem: Minimum-partition compatibility equivalence relation

(MPCER)

Input: A filter F.
Output: A compatibility equivalence relation for F' with a minimum number
of equivalence classes.

Note that, due to Lemma 1, any feasible solution to the MPCER problem
identifies a feasible solution to the FPM problem. Thus, even if we can find only
a feasible (rather than optimal) solution to MPCER, we can still use that feasible
solution to find a feasible solution to the corresponding FPM instance. The ILP
models introduced below are constructed by leveraging this connection between
FPM and MPCER.

4.2 Assignment-based ILP

Our first formulation of FPM as an ILP is inspired by the classical ILP for the
graph coloring problem [11,19]. To describe this formulation, we first describe how
to cast the problem as a mathematical program that happens to contain some
nonlinear constraints. Then we show how to linearize those constraints to form
an ILP and describe some simple optimizations that reduce the complexity of the
program.
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Fig. 2 a) Filter F;. States in the left column have color 1, states in the middle column have
color 2, state 6 has color 3, and state 7 has color 4. b) The compatibility enforcement graph
of filter F1. ¢) A minimal filter equivalent to F;.

4.2.1 Nonlinear optimization formulation

In this approach, each state of F' is assigned to a label from a set of n = |V|
labels 1,...,n. These labels form an equivalence relation on V by relating pair of
states that are assigned to the same label. Considering this, in the formulation,
for any state v and an integer 1 < j < n, a binary variable x,; is introduced.
This variable receives value 1 if state v is assigned to label j, and it receives 0
otherwise. Furthermore, n binary variables p1,p2,...,pn are introduced, where
for each integer 1 < j < n, variable p; receives value 1 if label j is used for
some state in the assignment, or it receives 0 otherwise. Accordingly, the MPCER
problem with input F' can be solved via the following (nonlinear) mathematical
programming model.

Minimize: n
> (1)
j=1
Subject to:
— Forallv eV,

szj =1. (2)
j=1

— For all j € {1,...n} and all v,w € V such that v }pw,

Toj + Twj < pj- 3)
— For all v,w € V and all y € Y such that §(v,y) # L and §(w,y) # L,
D T <D To(w,y) kT8 (w,y)k- (4)
j=1 k=1
— For allv € V and all j € {1,...,n},
pj € {0,1} and z,; € {0,1}. (5)

The objective function of this model minimizes the number of labels that are
used. That is, it minimizes the size of the partition specified by the assignment.
Observe that constraints of type (2) ensure that each state of the filter is assigned
to one and only one label.
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Thus, to see that an optimal solution to this program would yield an optimally
reduced filter, we need only to verify that the relation induced by the x,; variables
is indeed a compatibility equivalence relation. We write R to denote this relation,
defined as

R={(v,w) | ®v,j = Tw,; = 1 for some 1 < j < n}. (6)

The fact that R is an equivalence relation follows directly from this definition.
Constraints of types (3) and (4) together guarantee that R must be a compat-
ibility relation in the sense of Definition 4:

— By the constraints of type (3), if two states v and w are not compatible, then to
any label j, at most one of the states v or w is assigned. Therefore, it prevents
states x and y from being related by R. Thus, R C Apr. But, relation Ag does
not relate states of different colors, and thus, relation R satisfies the first part
of Definition 4.

— The constraints of type (4) ensure that if x,;xw; = 1 for a j —that is, if both
Tyj = 1 and wywj = 1— then X504k T5(w,y)k = 1 for some k. This means that
if v and w are merged (related by R), then §(v,y) and §(w,y) must also be
merged. Thus, relation R satisfies the second part of Definition 4.

We conclude that a solution to this mathematical program does indeed induce a
compatibility equivalence relation R with a minimal number of equivalence classes.
Therefore, that relation can be used to solve MPCER, and therefore, FPM.

4.2.2 Linearizing the constraints

This model has all the properties to be an integer linear program except that
constraints of type (4) are not linear. To linearize these constraints, we introduce
for each pair of states v,w € V, two binary variables ayw and By, the values of
which are constrained as follows:

— For all v,w € V and all j € {1,...,n},
Qvw 2 Toj + Twj — 1, (7
Bow = Tuj — Twj, (8)
Quw + Bow = 1, and 9)
Qyw, Bow € {0,1}. (10)

According to these constraints, the variable ayw becomes 1 only when z,; =
Tw; = 1 for a j. In this case, By receives 0. Consider that if for no j it holds
that ©v; = zw; = 1, then no constraint of type (7) enforces auw to receive value
0 since in this case the only restrictions on auq are aqyyw > 0 and agpew > —1, not
preventing . from receiving 1. In this case, however, it is guaranteed that Byw
gets value 1 by a constraint of type (8) because for a j it holds that z,; = 1 and
Zwj = 0. Subsequently, constraint (9) makes ayq receive 0.

Knowing that for each state pair v,w, the variable ., takes value 1 when
and only when v and w are chosen to be merged, we can replace the inequality
2?21 TyjTuws < D n_q To(v,y)kTs(w,y)k With the following inequality:

Qvw < Q§(v,)5(w,y) (11)

After these changes, the original formulation becomes an ILP.
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4.2.3 Optimizing the ILP

Though we now have a correct ILP for FPM, there are several straightforward
changes that can make that program more efficiently solvable.

First, observe that the current formulation introduces two variables au,, and
Buw for each pair of states v and w, whether v and w can be merged or not.
However, if we know that two states can never be merged, or even if merged,
they do not enforce via the second condition of Definition 4 any other pairs to be
merged, then we do not need to introduce this kind of extra variables for them,
and by doing so, we may help the solver to eliminate a considerable amount of
computations.

To identify pairs (v, w) for which we require variables auw and Byw, we first
construct an auxiliary graph, denoted by G’ = (V’, E’), which we call the compat-
ibility enforcement graph for F. To construct that graph, we set V' = {vw | v #
w and v Ar w}. Then, for each pair of distinct vertices vw,rz € V', if for some
y € Y it holds that 6(v,y) = r and 6(w,y) = z, then we add edge (vw,rz) to V.
Finally, we remove the isolated vertices from V.

The vertices of this graph, V', are the pairs (v, w) for which we require variables
yw and Byw. An edge (vw, rz) of this graph means that in making a smaller filter,
if states v is merged with state w, then state r must also be merged with z. More
precisely, if (v,w) € R, then it must hold that (r,z) € R.

To illustrate, consider again filter F; in Figure 2. The compatibility enforce-
ment graph of this filter is shown in Figure 2b. Notice that although states 4 and 5
are compatible, the graph does not have a vertex 45 since even if they are merged
they do not enforce any other pair of states to be merged through the second
condition of Definition 4.

Second, we add two additional types of constraints (21 and 22 below) are
intended to reduce symmetry, as suggested by Méndez-Diaz and Zabala [11]. The
final assignment-based ILP, combining each of these elements appears below.

Minimize: n
> (12)
j=1
Subject to:
— Forallv eV,

Z%j =1 (13)
j=1

For all v,w € V such that u /pw and for all j € {1,...,n},

Toj + Twj < Pj. (14)

— For all v,w € V such that vw € V' and for all j € {1,...,n},
Qyw > Toj + Twj — 1, (15)
ﬂvw > Ty — LTwj- (16)

For all v,w € V such that vw € V',
vw + Bow = 1. (17)
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— For all v,w,r,z € V such that (vw,rz) € E’,

Qyw < Oz (18)
— For allv € V and for all j € {1,...,n},
zvj,p5 € {0,1} (19)
— For all v,w € V such that vw € V'
Qow, Bow € {0,1} (20)

— Forall j € {1,...,n}
pi <Y Ty (21)

veV

For all j € {2,...,n}

Pj < pj-1. (22)

This formulation has |V|? + [V| + 2|V’| variables— |V|? variables for z’s, |V|
variables for p’s, |V’| variables for a’s, and |V’| variables for 3s.

4.3 Representative ILP

Our second approach uses ideas based on those of Campélo et al. [3,4]. Observe
that to make an equivalence relation on the state space of a filter F', we can choose
among the states, a set of distinct representatives so that each equivalence class
be represented by a representative and then assign each state of the filter to a
single representative (in the case that a state is chosen to be a representative,
then it can be assigned only to itself). Also consider that one necessary condition
for that equivalence relation to be a compatibility relation is that a state cannot be
assigned to a representative with which is not compatible. More precisely, any state
v € V can be represented only by those states that are in S(v) where S(v) = {u |
(u,v) € Ap}. Observe that v itself is in S(v). Given these, in the representative
ILP formulation of FPM problem, for any state v and any state u € S(v), a
binary variable x,, is defined. This variable receives 1 if v is represented by u,
and receives 0 otherwise. Moreover, similar to the assignment-based formulation,
for each state pair v,w € V such that vw € V', two binary variables ayw and Byw
are introduced. If v and w are assigned to the same representative, then variable
Qe receives value 1, while By, receives value 0. Otherwise, auq receives value 0
and By receives value 1.

These three kinds of variables participate in the representative ILP formulation
of the MPCER problem as follows:

Minimize: Z
T (23)
ueV
Subject to:
— Forallv eV,

— For all v,w € V such that u \/pw and for all u € S(v) N S(w),
Tuv + Tuw < Tuwy- (25)
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— For all v,w € V such that vw € V' and for all v € S(v) N S(w),
Qow > Tuv + Tuw — 1, (26)
Brw = Tuv — Tuw- (27)
— For all v,w € V such that vw € V’,
Qpw + Pow = 1. (28)
— For all v,w,r,z € V such that (vw,rz) € E’,
Qo < Qrz. (29)
— For all v € V and for all u € S(v),
ZTuv € {0,1} (30)
— For all v,w € V such that vw € V'
Qvw, Bow € {0, 1} (31)

The objective function of this formulation minimizes the number of represen-
tatives and thus the number of equivalence classes induced by the solution. While
constraints of type (24) all together ensure all states are assigned to representatives
and that any state is assigned to exactly on representative, any two incompatible
states are prevented to be assigned to a single representative by a constraint of
type (25). The constraints involving auw and B, have a similar meaning they
had in their corresponding constraints of the assignment-based ILP. Given the z’s
part of a solution to this problem, the equivalence relation R induced by x is as
follows:

R ={(v,w) | Ju e S(v)NS(w) s.t. Tuv=Tuw=1}. (32)

4.4 Partial-ordering based ILP

Our third formulation is similar to the approach of Jabrayilov and Mutzel [11], who
proposed a partial-ordering based ILP formulation of the graph coloring problem.
This approach is similar to the assignment-based approach in that an equivalence
relation over V is constructed by relating pairs of states that are assigned the
same label among a set of n labels 1,... n. The difference, however, is that in this
approach, states are assigned labels indirectly (rather than directly) via making a
partial order on a set containing all states and all labels. It is assumed that the
sequence of labels is linearly ordered, and accordingly, to make that said partial
order, one can specify for each given state v € V and label j € {1,...,n} that
if v is greater than j, denoted v > j, or v is smaller than j, denoted v < j.
Subsequently, for each state v and label j € {1,...,n}, two variables g;, and
ly; are introduced. Variable g;, receives value 1 if it is assumed that v > j, and
receives value 0 otherwise. In contrast, variable [,; receives value 1 if it is assumed
that v < j, and otherwise it receives 0. Based on these two kind of variables, state
v is assigned label j if and only if g;., = l,,; = 0, that is, when v is neither greater
nor smaller than j. To see the connection between these two kinds of variables and
the variables of assignment-based approach, one can think of z.,; = 1—(g;,0+1v,5)-
Also, in this formulation an arbitrary state ¢ € V' is chosen to assign the largest
label used in the assignment.
Finally, the partial-ordering base ILP for the MPCER problem is as follows:
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Minimize: n
1+ Z 9j,q (33)
Subject to: =
— Forallv eV,
lo =0, (34)
n,v = 0. (35)
— ForallveVand je{l,...,n—1},
9iw = Gi+10 20, (36)
giw Flojrr =1, (37)
9j.a — Y 2 0. (38)
— For all v,w € V such that v Jw and for all j € {1,...,n},
Gio T loj + gjw+lw; > 1. (39)
— For all v,w € V such that vw € V' and for all j € {1,...,n},
Qow > 1= gjo—loj = gjw — lw,j, (40)
Bow 2 =gjw = lvj + gjw + lw,;j- (41)
— For all v,w € V such that vw € V’,
Oy + Pow = 1. (42)
— For all v,w,r,z € V such that (vw,rz) € E’,
Qyw < Qrz. (43)
— Forallv € V and for all j € {1,...,n},
o5 liw € {0, 1} (44)
— For all v,w € V such that vw € V’,
Qvw, Bow € {0, 1} (45)

Types (34) and (35) of constraints ensure that no state is less than label 1 and
that no state is greater than label n, respectively. Constraints of type (36)) and
(37) all together make sure that each state is assigned a label.

Due to constraints of type (36), if a state v is greater than a label j+ 1, then it
must also be greater than label j. By constraint of type (37) it is not possible for
a state to be greater than a label j and at the same time to be smaller than label
j + 1. Constraints of type (39) prevent incompatible states from being assigned a
single label. Those constraints that involve ayw and Byw play the same role as in
the previous two ILP formulation. The relation induced by a solution to this 0-1
model is as follows:

R ={(v,w) | 3j s.t. gjo =lv,j = gj,w = lu,; =0} (46)

5 Experimental Results

Next, we present some experimental results evaluating the performance of these
three formulations. The implementation is in Java, using Cplex to solve ILPs,
executed on an Ubuntu 16.04 computer with a 3.6GHz processor.
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Fig. 3 (a) A donut-shaped environment, in which an agent moves within n regions separated
by n beam sensors. When the robot crosses a beam, the system knows which sensor it was,
but it does not know the direction of that crossing. The task of the system is to determine at
any time whether the agent is definitely in region 1 or not. (b) A naive filter which is used
to accomplish the task for an instance problem with n = 5 regions. (c) The smallest filter the
system can use to accomplish its task.

5.1 Experimental filters

We conducted tests using three kinds of filters. For comparison purposes, we choose
two of them to be ones on which previous work performed experiments.

The first kind consists of naive filters for a family of the single-agent-donut
problem (Figure 3) by varying the number n of regions. This family of filters was
originally studied in [20].

The first part of this figure shows n beam sensors, numbered 1,...,n, that
partition a donut-shaped environment into n regions. In this environment, an
agent moves in an unpredictable but continuous path. When the agent passes a
beam sensor, the system can identify which one of the n beam sensors it was, but
cannot detect if the crossing was clockwise or otherwise. The task is to make an
alarm when it is completely sure that the agent is in region 1. For this problem,
the system can use a naive filter, each state of which indicates a set of possible
regions in which the agent can be. Accordingly, the initial state is the set of all
regions 1,2,...,n. For each state, we can draw an outgoing edge whose label is a
beam the system senses, and that edge goes to another state whose set of regions
are obtained by filtering in the source state, the set of regions the robot can be.

For any n > 3, the naive filter that solves an instance of the single-agent-donut
problem with n regions has 2n+ 1 states. To illustrate, see Figure 3b, which shows
the naive filter for the case of n = 5. For any n > 3, the optimal filter has only 5
states, regardless of n. Figure 3c shows this optimal filter.

We also consider a family of two-agent-donut problems, which are similar to
single-agent-donut problems, but instead of a single agent, there are two agents in
the environment. This kind of problem was introduced by Tovar et al. [26]. The
goal is to determine, at any time, if the two agents are in the same region or not.
When an agent crosses a beam, the system can only detect which beam sensors
it was, but it can detect neither the direction of crossing nor the identity of that
agent.

The third family consists of randomly generated filters.
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5.2 Algorithms to be compared

We compare 6 algorithms. Notice that in the assignment-based ILP and the partial-
ordering based ILP we set n = |V/|. In those two ILPs, the value of |V| is an upper
bound for the number of labels used, or more precisely, for the number of states
in the reduced filter. Clearly, that upper bound works for any filter. However,
for input filters for which we know an upper bound h < |V| on the number of
states in the optimally reduced filter, then we can use that upper bound and set
n = h. By so doing, the number of variables and constraints in the model may be
considerably reduced. One way to obtain this sort of h is to compute a feasible
solution for the FPM problem using a heuristic, efficient algorithm and then set
h to the number of states of the reduced filter. Clearly, the number of states of
an optimally reduced filter will be less than or equal to the number of states of
a reduced filter computed by that heuristic algorithm. In our experiments, we
consider whether applying this kind of bound helps or not.
We considered the following algorithms:

1. BFC: the heuristic algorithm of O’Kane and Shell [21] where conflict graphs
are colored by a brute force algorithm.

2. ASGB ILP: the assignment-based ILP (with n = |V]).

3. ASGB ILP+H: the assignment-based ILP with n = h, where h is a value
obtained by the heuristic algorithm of O’Kane and Shell, with conflicts colored
greedily.

4. PORB ILP: the partial-ordering based ILP (with n = |V|).

5. PORB ILP+H: a variation on PORB ILP using the n = h bound, analogous
to ASGB ILP+H.

6. REP ILP: The representative ILP.

5.3 Computing optimal solutions

In this section, we compare the performance of the six algorithms in computing
optimally reduced filters.

5.3.1 Naive filters of single-agent-donut instances

The chart in Figure 4-top depicts the result of this experiment, which was per-
formed on the naive filters of instances of single-agent-donut problem where the
number of regions varied from 3 to 50 regions. BFC outperforms the ILP based
algorithms in computing optimal filters for very small filters, but is rapidly out-
performed by the ILP-based algorithms as the original filter sizes grow. We also
observed in this experiment that the use of a value obtained by a heuristic algo-
rithm as an upper bound helped ASGB ILP+H and PORB ILP+H to perform
better than their corresponding versions without seeds. REP ILP did not perform
well for this kind of filters.

5.8.2 Naive filters of two-agents-donut instances

Figure 4-bottom shows the results of this experiment. In a time limit of eight
hours, BFC could compute optimal filters only for instances with up to seven
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Fig. 4 The performance of the algorithms in computing optimal filters for: (top) naive filters
of single-agent-donut instances, (bottom) naive filters of two-agent-donut instances. Notice
that the vertical axis in both charts is in logarithmic scale. For each filter size, the experiment
was performed for only one filter of that size.

regions. In the same time limit, ILP based algorithms could make optimal filters
for one more instance—an instance with eight regions. Consider that although
ILP based algorithm could solve only one more instance, the naive filter for the
instance with 8 regions (which has 37 states) has 8 states more than the naive
filter for 7 regions (which has 29 states).

5.3.8 Random filters with linear number of compatible pairs

In this experiment, we generated filters for which the number of distinct compat-
ible pairs was less than 3|V, and the compatibility enforcement graph had both
number of vertices and edges around |V|. The observation space and color space
upon which the filters are constructed has sizes of five and three, respectively. For
each state v and an observation y, on the basis of a probability of 1/2 it was chosen
if v must have an outgoing edge labeled y or not, and if yes, then the destination
of that outgoing edge was chosen randomly among the states of the filter. Figure 5
compares the performance of the algorithms for this kind of filters. One notable
result about this experiment is that the representative ILP considerably outper-
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Fig. 5 The performance of the algorithms in computing optimal filters for random filters for
which the number of compatible pairs was linear to the number of states of the filter. For each
of the filter sizes, the plotted time is the average time to minimize the filter over 10 randomly
generated filters of that size. If an algorithm could not find an optimal solution for a filter on
a given size in half an hour, then it was considered as a failure, and as a result, the average
time is not plotted. Note again that the vertical axis of the chart is in logarithmic scale.

formed the other algorithms. This is because the REP ILP introduces a variables
ZTyy only when u and v are compatible. More precisely, the number of variables
in the REP ILP model was linear to the number of states of the filter, while the
number of variables of the other ILPs was quadratic to the number of states of
the filter.

5.4 Computing smaller filters

This section considers experiments that use ILP models for finding smaller (rather
than optimal) filters where optimal filters cannot be computed due to lack of time.
Especially, we are interested in trade-off between the time a solver spends and the
quality of a solution returned. Figure 6 presents the results of our experiments on
naive filters of two instances of two-agents-donut problem, which are considered
difficult to minimize. Notice that each algorithm had 10 minutes to find best solu-
tions it could. The heuristic algorithm with greedy-random coloring was performed
as many times as it could during 10 minutes. As an example, this algorithm was
performed 34749 rounds to find its best solution on the naive filter of two-agent-
donut with 15 regions. Results shows that although the heuristic algorithm can
find good feasible solutions very quickly, we can wait a fairly small amount of
time for the ILPs to obtain better solutions than those obtained by the heuristic
algorithm.

5.5 Discussion
In this section, we discuss a few observations we made. Our experiments show that

none of the three proposed ILP formulations is fully superior to one another and
that each one is useful for certain kind of filters. In particular, we observed,
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Fig. 6 The trade-off chart of running time vs quality of solution of reduced filters found by the
algorithms on (top) the naive filter of two-agents-donut problem with 13 regions (bottom)
the naive filter of two-agents-donut problem with 15 regions. The former filter has 92 states,
and the later has 121 states.

1.

from the experiment on random filters (Section 5.3.3 and Figure 5), that the
representative ILP formulation is superior to the assignment-based ILP and
partial-ordering ILP for filters whose union of all compatibility relations is not
dense;

. from the experiment on optimal filters for single-agent-donut problems (Sec-

tion 5.3.1 and Figure 4), that the assignment-based ILP and partial-ordering
ILP are superior to the representative ILP formulation for filters whose union
of all compatibility relations is dense;

. from the experiment on random filters (Section 5.3.3 and Figure 5), that the

assignment-based ILP is superior to the partial-ordering ILP for filters whose
union of all compatibility relations is not dense; and

. from the experiment on computing feasible solutions (Section 5.4 and Figure 6),

that for filters that are hard to minimize, the partial-ordering ILP finds feasible
solutions faster than the assignment-based ILP.

The first two observations are supported by the fact that the number of variables in
the representative ILP model is linear to the number of compatible pairs of states,
while the number of variables in the other two ILP models are always quadratic
to the number of states of the filter, regardless of the number of compatible pairs
of states.
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To summarize, our results suggest several general rules of thumb for selecting
the most appropriate ILP model.

— For filters that have a large number of colors relative to the number of states,
the representative ILP model is likely to outperform the other two ILP models.
Such filters might arise, for example, in state estimate settings, where the
filter should produce different outputs for each of its internal states. Likewise,
if the number of observations is large relative to the number of states, the
representative ILP model also seems to outperform the other models. This
would be the case, for example, in robotic perception applications in which
large amounts of partially redundant data are available.

— For filters whose number of colors and observations are relatively small com-
pared to the number of states of the filter —notably, in cases where the system
is using sparse information to reason about long-term dynamics of its environ-
ment, such as in some tracking problems— the assignment-based and partial-
ordering ILP models tend to fare better. In such cases, our results suggest to
use the assignment-based ILP if the number of states of the filters is small,
otherwise use the partial-ordering ILP.

6 Conclusions

In this paper, we proposed the use of integer linear programming for automatic
reduction of combinatorial filters.

The filter partitioning minimization problem is known to be a difficult problem
to compute exact solutions for. Our experiments show that by using the ILP
technique, we can compute exact solutions for large filters for which the brute
force algorithm is unable to compute exact solutions. Even for large filters for
which we cannot compute an exact solution in a reasonable amount of time, we
can still resort to the ILP technique to compute feasible solutions that are smaller
than those computed by the heuristic algorithm of O’Kane and Shell [20]. Those
smaller feasible solutions are unlikely to be computed by randomized versions
of the algorithm of O’Kane and Shell even if it is executed thousands of times.
This is because forming the equivalence class must ‘globally’ find the ‘mergeable’
states while the algorithm of O’Kane and Shell finds them ‘locally.” In fact, their
algorithm iteratively colors a sequence of conflict graphs, at each step of which it
is decided with which states, a state must not be merged, and that decision forces
certain decisions to be made at later steps.

Future work can consider designing metrics to measure the level of difficulty of
minimizing a given filter, which can be used for deciding an optimal stopping time
and deciding which one of the three ILP formulations is more appropriate to use
for a given filter. It can also consider computing strong lower bounds, similar to a
recent work by van Hoeve [10], who uses an idea based on decision diagrams for
computing lower bounds for the graph coloring problem. Being able to efficiently
compute strong lower bounds not only assists accelerate proving optimally, but
it also helps decide stopping time for filters that are hard to minimize. Another
consideration would be using a ‘better’ relation than the union of all compatibil-
ity relations in the ILP formulations. One possibility would be the mergeability
relation, a subset of the union of all compatibility relations, which consists of only
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those pairs of compatible states that are related by at least a compatibility equiv-
alence relation. The mergeability relation will serve a better mean to design a
heuristic algorithm on for estimating lower bounds, but experiments are required
to see if it will affect the quality of solutions or the performance of the ILPs.
Another direction would be to apply machine learning techniques to optimize the
use of the current work, especially for computing lower and upper bounds and for
learning an appropriate time at which the solver must stop in computing solutions
for difficult instances of filters.
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