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Abstract— In this paper, we present Online Empirical Value
Learning (ONEVaL), an ‘online’ reinforcement learning algo-
rithm for continuous MDPs that is ‘quasi-model-free’ (needs
a generative/simulation model but not the model per se) that
can compute nearly-optimal policies and comes with non-
asymptotic performance guarantees including prescriptions on
required sample complexity for specified performance bounds.
The algorithm relies on use of a ‘fully’ randomized policy that
will generate a β-mixing sample trajectory. It also relies on
randomized function approximation in an RKHS for arbitrarily
small function approximation error, and an ‘empirical’ estimate
of value from the next state by several samples of the next
state from the generative model. We demonstrate its’ good
numerical performance on some benchmark problems. We note
that the algorithm requires no hyper-parameter tuning, and is
also robust to other concerns that seem to plague Deep RL
algorithms.

I. INTRODUCTION

Recently, reinforcement learning (RL) algorithms have
been shown to have remarkably good performance on sim-
ulated control problems ranging from video games to loco-
motion tasks [13], [20], [9]. Unfortunately, these methods
are rather complicated, require a lot of data to perform
well [7],and do not yield much insight. Furthermore, it
has been shown [8] that many of these RL algorithms are
not robust to changes in hyperparameters, network archi-
tectures, random seeds, or even different implementations
of the same algorithm. In fact, a large amount of time
is typically spent on hyper-parameter tuning than acually
training of the algorithm. Furthermore, [10] showed that a
simple linear policy-based method with weights updated by
a random search method can outperform some of these state-
of-the-art results. A key question is whether the remarkable
performance of these algorithms is more than just random
search, and whether algorithms based on more principled
approaches could be designed that could potentially match
the remarkable performance (eventually).

There is a large class of model-based algorithms based on
dynamic programming (DP) ideas [17] including for con-
tinuous state space MDPs. Unfortunately, in many problems
(e.g., robotics), the system model is unknown, or simply too
complicated to be succintly stated and used in DP algorithms.
Usually, latter is the more likely case. Thus, model-free algo-
rithms such as Q-Learning have been in popular usage [21].
The problem with such stochastic approximation algorithms
is that they are too slow to converge as shown in [4], [3], [2].
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An alternative has been ‘empirical’ algorithms such as [15],
[4] which replace the expectation in the Bellman operator
with a sample average approximation obtained by getting
multiple samples of the next state for each state-action pair.
This requires access to a generative model. At first glance,
this seems restrictive, and somewhat short of the goal of an
‘online’ algorithm for reinforcement learning. But in a large
variety of applications from video games [13] to robotics,
we do have access to a generative model of the system (even
if it is too complicated for theoretical analysis). In fact, in
robotics, for example, training of RL algorithms is first done
offline in high-fidelity simulators as the training takes too
long to converge for it to be done direcly on the physical
robot.

In this paper, we propose an ‘online’ RL algorithm for
continuous state space MDPs that is quasi-model-free in the
sense of only needing access to a generative model (e.g.,
in a simulator), and unlike other approaches [13], [20], [9]
provably converges to the optimal policy with finite time
(or non-asymptotic) guarantees. The idea is inspired by the
‘empirical’ algorithms proposed in [15], [4]. While [4] only
considered finite state MDPs, [15] considered continuous
MDPs but with user-specified deterministic function class
which may result in a large approximation error. Recently,
in [5], the authors seem to have gotten around this problem
by leveraging [19] and doing randomized function approx-
imation in an RKHS. Though, this algorithm for continu-
ous MDPs is ‘quasi-model-free’ (essentially model-free but
needs a generative model), computes nearly-optimal policies
and comes with theoretical performance guarantees, it is
still an ‘offline’ algorithm. An ‘online’ version of [15] was
presented in [1] but that algorithm can have a large optimality
gap for continuous MDPs.

The main contribution of this paper is an ‘online’ quasi-
model-free reinforcement learning algorithm for continuous
MDPs that computes nearly-optimal policies and also comes
with non-asymptotic theoretical performance guarantees. We
assume that we can use a randomized stationary policy that
yields a β-mixing sample trajectory. At each instant, we
do a value function update by doing a randomized function
approximation in an RKHS. This involves getting multiple
next state samples by use of the generative model, and then
use them for an ‘empirical’ estimate of the expectation in the
Bellman operator. The function approximation is performed
on the base-points in some finite window of the sample
trajectory. We prove convergence and yield finite time sample
complexity bounds by combining the β-mixing analysis
with the random operator theoretic analysis and randomized
function approximation analysis in [4], [5].

2020 59th IEEE Conference on Decision and Control (CDC)
Jeju Island, Republic of Korea, December 14-18, 2020

978-1-7281-7447-1/20/$31.00 ©2020 IEEE 3617

Authorized licensed use limited to: Rahul Jain. Downloaded on February 19,2021 at 18:46:11 UTC from IEEE Xplore.  Restrictions apply. 



II. PROBLEM FORMULATION

Consider a discounted MDP (X ,A, P, r, γ) where X is
the state space and A is the action space. The transition
probability kernel is given by P (·|x, a), i.e., if action a is
executed in state x, the probability that the next state is in
a Borel-measurable set B is P (xt+1 ∈ B|xt = x, at = a)
where xt and at are the state and action at time t. The reward
function is r : X ×A → R. We are interested in maximizing
the infinite horizon expected discounted reward where the
discount parameter is γ. Let Π denote the class of stationary
deterministic Markov policies mappings π : X → A which
only depend on history through the current state. We only
consider such policies since it is well known that there is an
optimal MDP policy in this class. When the initial state is
given, any policy π determines a probability measure Pπ . Let
the expectation with respect to this measure be Eπ . We focus
on infinite horizon discounted reward criterion. The expected
infinite horizon discounted reward or the value function for
a policy π and initial state x is given as

vπ(x) = Eπ
[ ∞∑
t=0

γt r(xt, at)

∣∣∣∣x0 = x

]
.

The optimal value function is given as v∗(x) =
supπ∈Π v

π(x) and the policy which maximizes the value
function is the optimal policy, π∗. We make the following
regularity assumption on the MDP.

Assumption 1: (Regularity of MDP) The state space X
is a compact subset of d-dimensional Euclidean space. The
rewards are uniformly bounded by rmax, i.e, |r(x, a)| ≤ rmax

for all (x, a) ∈ X ×A. Furthermore, there exists LP , Lr > 0
such that for all (x, x′, a) ∈ X × X ×A, we have

‖P (·|x, a)− P (·|x′, a)‖TV ≤ LP ‖x− x′‖2
|r(x, a)− r(x′, a)| ≤ Lr ‖x− x′‖2

where TV denotes the total variation norm. The assumption
above implies that for any policy π, vπ ≤ vmax = rmax/(1−
γ). Let B(X ) be the set of functions f : X → R such
that ‖f‖∞ ≤ vmax. Let us now define the Bellman operator
T : B(X )→ B(X ) as follows:

T v(x) = max
a

[
r(x, a) + γEx′∼P (·|x,a)v(x′)

]
.

It is well known that the operator T is a contraction with
respect to ‖ · ‖∞ norm and the contraction parameter is the
discount factor, γ. Hence, the sequence of iterates vk =
T vk−1 converge to v∗ geometrically. It is easy to check
that T maps bounded functions to Lipschitz functions with
Lipschitz constant Lr + γ LP vmax.

We can pick a function space in which to do function
approximation which can provide an arbitrarily close
approximation to any continuous function. As in [19], [5],
we pick a parametrized reproducible kernel Hilbert space
(RKHS) and do randomized function approximation via
random features which can be called Random parametric
basis functions (RPBF). Let Θ be a set of parameters and let
φ : X ×Θ→ R be a feature function. The feature functions

need to satisfy sup(x, θ)∈X×Θ |φ (x; θ) | ≤ 1. One example
of such basis functions are Fourier features. Let F (Θ) ,{
f (·) :=

∫
Θ
φ (·; θ)α (θ) dθ | : α (θ) | ≤ C ν (θ) , ∀θ ∈ Θ

}
.

We are interested in finding the best fit within finite sums of
the form

∑J
j=1 αjφ (s; θj). Doing classical function fitting

with
∑J
j=1 αjφ (s; θj) leads to non-convex optimization

problems because of the joint dependence in α and θ.
Instead, we fix a density ν on Θ and draw a random
sample θj from Θ for j = 1, 2, . . . J . Once these
(θj)

J
j=1 are fixed, consider the function space F̂

(
θ1:J

)
,{

f (·) =
∑J
j=1 αjφ (·; θj) : ‖ (α1, . . . , αJ) ‖∞ ≤ C/J

}
.

Now, it remains to calculate weights α by minimizing
a convex loss. Furthermore, let us define the L2,µ norm
of a function for a given a probability distribution µ on
X as ‖f‖22, µ =

(∫
X |f (x) |2µ (dx)

)
. The empirical norm

at given samples (x1, x2, . . . xN ) is defined as ‖f‖22, µ̂ =
1
N

∑N
i=1 |f(xi)|2. Recall two distance measures for function

spaces: d2, µ (T f, F) := inff ′∈F ‖f ′ − T f‖2, µ is the
approximation error for a specific f and d2, µ (T F , F) :=
supf∈F d2, µ (T f, F) is the inherent Bellman error for the
entire class F . Now, because of Lipschitz continuity as-
sumption on the MDP (Assumption 1), we need to choose
a function space that is dense in the space of Lipschitz
functions. In fact, F (Θ) is shown to be dense in the space of
continuous functions [18]. Hence, for such a function class
d2, µ (T F , F) = 0.

III. THE ALGORITHM AND THE MAIN RESULT

We now present our ONline Empirical Value Learning
(ONEVaL) algorithm. We assume that we have interactions
(x1, x2, . . . xN , xN+1, ....) generated by a randomized policy
πg i.e., xt+1 ∼ P (·|xt, at) where at ∼ πg(·|xt). We assume
that for any a and x, πg(a|x) is strictly positive. We keep a
window of size N which moves forward one step in every
iteration. Now these N samples serve as the states for which
we will compute our approximate value function and then
use function approximation to generalize. It is clear that these
samples are not i.i.d. Hence, we need some mixing conditions
on this stochastic process. Mixing conditions quantify the
decrease in dependence as the future moves farther from
the past. There are various types of mixing conditions, of
which the following are popular in statistical learning theory:
α-mixing, β-mixing and φ- mixing. As mentioned in [22,
Chapter 2], φ-mixing is too strong an assumption while α-
mixing is too weak but β-mixing is ”just right”. Let us now
revisit the definition of β-mixing:

Definition 1 (β-mixing): Let {Xt}∞t=1 be the sequence
of random variables from a probability space (Ω,F,P).
Let Pji define the joint distribution of random variables
(Xi, Xi+1 . . . Xj), j ≥ i. Then, the β-mixing coefficient is
defined as

βm := sup
t≥1
‖Pt1 × P∞t+m − Pt,m‖TV

where ‖·‖TV is the total variation norm and Pt,m is the joint
distribution of (Xt

1, X
∞
t+m). A stochastic process is said to

be β-mixing if βm → 0 as m→∞.
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β-mixing coefficient measures the distance between the joint
distribution of random variables separated by m time units
and the distribution under which they are independent. β-
mixing processes could be either algebraically mixing or
exponentially mixing (we focus on the latter)[12]. A β-
mixing process is said to mix at an exponential rate with
parameters b, c > 0 if βm = O(exp(−bmc)). Now, we state
the mixing assumption on our samples:

Assumption 2 (β-mixing): The sequence of samples
{xt}t≥1 is β-mixing at an exponential rate, i.e., there exists
positive constants b, c, c1 such that βm = c1 exp(−bmc).
Furthermore, this is a strictly stationary process and xt ∼ µ.

As mentioned earlier, we focus on fully randomized
policy (i.e., each action is taken with positive probability
in each state) for generating these interactions which is
known to induce a Markov process satisfying the β-mixing
properties [16]. But one could modify by sampling from
these interactions, for instance, sampling from experience
replay buffer [14]. As long as the mixing properties are
satisfied, we are guaranteed to generalize well. In fact, in the
experiments section, we show that sampling from previous
samples satisfy the mixing conditions. Since we will be
analyzing the convergence in L2 norm, we no longer have
the contraction property. Hence, we need bounded Radon-
Nikodym derivatives of transitions which we illustrate in the
next assumption. Such an assumption has been used earlier
in [15], [5]:

Assumption 3: (Stochastic Transitions) For all (x, a) ∈
X × A, P (· |x, a) is absolutely continuous with respect to
µ and Cµ , sup(x, a)∈X×A

∥∥∥dP (· | x, a)
dµ

∥∥∥
∞
<∞.

When there is an uncertainty in the underlying environment,
computing expectation in the Bellman operator is expensive.
If we have a generative model of the environment, we
can replace the expectation by empirical mean leading to
definition of empirical Bellman operator:

T̂M v(x) := max
a

[
r(x, a) +

γ

M

M∑
i=1

v(xx,ai )

]
. (1)

where xx,ai ∼ P (·|x, a) for i = 1, 2 . . .M . Note that
the next state samples, x′, are i.i.d. If the environment is
deterministic, like Atari games or locomotion tasks, having
a single next state suffices and we don’t need a generative
model.

Given the data {(xn, v̂ (xn))}Nn=1, we fit the value func-
tion over the state space by computing a best fit within
F̂
(
θ1:J

)
by solving

min
α

1

N

N∑
n=1

|
J∑
j=1

αjφ (xn; θj)− v̂ (xn) |2 (2)

s.t. ‖ (α1, . . . , αJ) ‖∞ ≤ C/J.

This optimization problem only optimizes over weights
α1:J since parameters θ1:J have already been randomly
sampled from a given distribution ν. Let ΠF̂ (J,N) de-
note this optimization problem which we denote as ΠF̂

for compact notation. We are now ready to present our
algorithm ONEVaL, shown in Algorithm 1. Step 1 selects the

Algorithm 1 ONEVaL

Input: sample sizes N,M, J ≥ 1; initial seed v0; interactions
from policy πg: (x1, x2, . . . , xN , xN+1, . . . x2N−1, x2N , . . .)

For k=0,1, 2, . . .
1) Select samples (xn)

k+N
n=k+1 from given interactions

2) For each n and action a, sample i.i.d. next states
xxn,a
i ∼ P (·|xn, a) for i = 1, 2, . . .m

3) Empirical value iteration: v̂k+1(xn) = T̂M vk(xn) for
each n according to (1)

4) Function approximation: vk+1 = ΠF̂ v̂k+1(xn) accord-
ing to (2)

samples at which we compute approximate value function.
Step 2 samples the next states for a given state and action.
This is not difficult when we have a generative model for
various learning tasks, for, instance, in robotics. Step 3
computes the approximate labels which Step 4 generalizes
via function approximation. ONEVaL can be seen as an
iteration of a composition of two random operators. Let
us define Ĝ(N,M, J, µ, ν) = ΠF̂ (N, J) ◦ T̂M where ◦
denotes the composition. Let Ĝ be a compact notation for
this operator. Hence, in our algorithm vk+1 = Ĝ vk. We will
use the random operator framework developed in [4], [5] for
analysis. Denote v̄ε =

(
512 v2

max/(ε/5)4
)
,

J0(ε, δ) :=

[
5C

ε

(
1 +

√
2 log

5

δ

)]2

,

M0(ε, δ) := v̄ε log

(4 e vmax

(ε/5)2

)J
40 eN |A| (J + 1)

δ


ηN0

(ε, δ) := v̄ε log

[
160 e (J + 1)

δ

(
200C γ e vmax

ε3

)J]
Theorem 1: Suppose Assumptions 1, 2 and 3 hold and let

N = 2 lN ηN . Choose an ε > 0 and δ ∈ (0, 1). Set δ′ = 1−
(1/2 + δ/2)1/(K∗−1) and denote C̃ := 4

(
1−γK+1

1−γ

)1/2

C
1/2
µ

and

K∗ :=


log
(
C

1/2
µ ε

)
− log (2 vmax)

log γ

 . (3)

Then, if ηN ≥ ηN0
(ε, δ′), lN (ε, δ) ≥(

1

b
log

20 ηNc1

δ′

)1/c

, M ≥ M0(ε, δ′), J ≥ J0(ε, δ′)

and K ≥ log
(
4/
(
(1/2− δ/2) (1− q) qK∗−1

))
, we have

that with probability at least 1− δ,

‖vK − v∗‖2, µ ≤ C̃ ε.
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a) Remark:: The above theorem states that if we
have sufficiently large samples, in particular, J =
O
(
1/ε2 log 1/δ

)
, ηN = O

(
1/ε4 log 1/ε3Jδ

)
, M =

O
(
1/ε4 log 1/ε2Jδ

)
and lN = O (log 1/δ) where N =

2 ηN lN , then for sufficiently large iterations, the ap-
proximation error can be made arbitrarily small with
high probability. Moreover, if Lipschitz continuity as-
sumption is not satisfied then the result can be pre-
sented in a more general form: ‖vK − v∗‖2, µ ≤

2
(

1−γK+1

1−γ

)1/2 [
C

1/2
µ d2, µ (T F(Θ), F(Θ)) + 2ε

]
.

IV. PROOF OF MAIN THEOREM

There are two approximations interleaved in ONEVaL: ap-
proximation by sample average and function approximation.
In addition to that, the samples for function approximation
are not independent. We will use the technique developed
in [24] to transform a sequence of dependent variables
into a subsequence of nearly i.i.d. ones. Recall that the
state samples for function approximation in iteration k are
(xk+1, xk+2, . . . xk+N ). For convenience, let us rewrite the
sequence as (x̃k,n)Nn=1 for a given iteration k. Let ηN and lN
be positive integers such that this sequence is divided in to
2ηN blocks, each of length lN for all k ≥ 0. We assume that
2 ηN lN = N ( the remainder terms become insignificant as
the sample size increases). Let us now construct the blocks
for 1 ≤ j ≤ ηN :

Hk,j = {x̃k,i : 2(j − 1)lN + 1 ≤ i ≤ (2j − 1)lN}
Tk,j = {x̃k,i : (2j − 1)lN + 1 ≤ i ≤ 2jlN}

Let Hk be the entire sequence of odd blocks {Hk,j} and let
Tk be the sequence of even blocks Tk,j . Finally, let H ′k be a
sequence of blocks which are independent of x̃Nk,1 but such
that each block has the same distribution as a block from the
original sequence. Now, all the results for i.i.d variables can
now be applied to the blocks H ′k. This technique has been
used to extend the convergence of function approximation to
a β-mixing sequence.

Step 1: Bound on one-step error.: Let us now bound
the error in one iteration of ONEVaL and then we will use
the stochastic dominance argument to analyze the iteration of
the random operator. Let εk be the gap between the random
operator Ĝ and the exact Bellman operator at iteration k, i.e.,

vk+1 = Ĝ vk = T vk + εk.

We want to bound the error term εk. Note that the functions
from previous iteration, vk, are random. Also, they are not
independent of function in the next iteration, vk+1, because
the interactions samples are dependent. Next lemma bounds
the error in one iteration of ONEVaL.

Lemma 2: Choose ε > 0, and δ ∈ (0, 1). Let N =
2ηN lN for some positive integers ηN and lN . Also choose
N ≥ N0(ε, δ),M ≥ M0(ε, δ) and J ≥ J0(ε, δ). Then,
for Ĝ (N, M, J, µ, ν) v, the output of one iteration of
ONEVaL, we have with probability at least 1− δ,

‖Ĝ v − T v‖2, µ ≤ d2, µ (T F (Θ) , F (Θ)) + ε

for any arbitrary function v ∈ F (Θ).

Step 2: Stochastic dominance.: After bounding the error
in one-step, we will now bound the error when the random
operator Ĝ is applied iteratively by constructing a dominant
Markov chain. Since we do not have a contraction with
respect to L2 norm, we need an upper bound on how the
errors propagate with iterations. Recall that Ĝ vk = T vk+εk,
we use the point-wise error bounds as [15, Lemma 3]. For a
given error tolerance, it gives a bound on number of iterations
which we call K∗ as shown in equation (3). We then
construct a stochastic process as follows. We call iteration
k “good” if the error ‖εk‖2, µ ≤ ε and “bad” otherwise. We
then construct a stochastic process {Xk}k≥0 with state space
K as , {1, 2, . . . , K∗} such that

Xk+1 =

{
max {Xk − 1, 1} , if iteration k is ”good”,
K∗, otherwise.

The stochastic process {Xk}k≥0 is easier to analyze than
{vk}k≥0 because it is defined on a finite state space, however
{Xk}k≥0 is not necessarily a Markov chain. Whenever Xk =
1, it means that we just had a string of K∗ “good” iterations
in a row, and that ‖vk − v∗‖2, µ is as small as desired.

We next construct a “dominating” Markov chain {Yk}k≥0

to help us analyze the behavior of {Xk}k≥0. We construct
{Yk}k≥0 and we let Q denote the probability measure
of {Yk}k≥0. Since {Yk}k≥0 will be a Markov chain by
construction, the probability measure Q is completely deter-
mined by an initial distribution on R and a transition kernel
for {Yk}k≥0. We now use the bound on one-step error as
presented in Lemma 2 which states that when the samples
are sufficiently large enough for all k,

P (‖εk‖2,µ ≤ ε) > q(N,M, J, L).

Denote this probability by q for a compact notation. Initialize
Y0 = K∗, and construct the process

Yk+1 =

{
max {Yk − 1, 1} , w.p. q,
K∗, w.p. 1− q,

where q is the probability of a “good” iteration which in-
creases with sample sizes N,M, J and L. We now describe a
stochastic dominance relationship between the two stochastic
processes {Xk}k≥0 and {Yk}k≥0. We will establish that
{Yk}k≥0 is “larger” than {Xk}k≥0 in a stochastic sense.
This relationship is the key to our analysis of {Xk}k≥0.

Definition 2: Let X and Y be two real-valued random
variables, then X is stochastically dominated by Y , X ≤st
Y , when Pr {X ≥ θ} ≤ Pr {Y ≥ θ} for all θ in the
support(Y ).
The next lemma uses stochastic dominance to show that if the
error in each iteration is small, then after sufficient iterations
we will have small approximation error.

Lemma 3: Choose ε > 0, and δ ∈ (0, 1), and
suppose N,M, J and L are chosen sufficiently large
enough such that P (‖εk‖2,µ ≤ ε) > q for all k ≥
0. Then for q ≥ (1/2 + δ/2)

1/(K∗−1) and K ≥
log
(
4/
(
(1/2− δ/2) (1− q) qK∗−1

))
, we have with prob-

ability at least 1− δ,
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‖vK − v∗‖2, µ ≤ 2

(
1− γK+1

1− γ

)1/2 [
C1/2
µ ε+ γK/2 (2 vmax)

]
.

(4)
Combining Lemma 2 and Lemma 3 concludes the proof of
Theorem 1.

V. NUMERICAL EXPERIMENTS

In this section, we present the performance of our pro-
posed algorithm on two benchmark problems: optimal re-
placement and cart-pole.

a) Optimal replacement: As a proof of concept for the
performance of our proposed algorithm, we pick the optimal
replacement problem where we can explicitly compute the
optimal value function. In the optimal machine replacement
problem, there are two actions: keep the machine, or replace
it. The state comprises of non-negative real numbers and the
transition kernel is exponential. Further details can be found
in [15]. For this experiment, we choose J = 10 random pa-
rameterized Fourier functions φ(x; θj) = cos(θTj x+ b) with
θj ∼ N (0, 0.01) and b = Unif[−π, π]. Fig. 1 shows the per-
formance of ONEVaL for different N and M . Additionally, it
shows the performance of two different methods of selecting
the samples from interactions. The method consecutive is
same as that presented in Algorithm 1. The method sampled
refers to a variant where the instead of moving the window
one sample, we uniformly sample from the interactions. We
observe that increasing N and M improves the performance
of the algorithm as we would expect. We also verify if the
β-mixing assumption as stated in Assumption 2. Table I
presents the estimated β-mixing coefficients for N = 40000
and N = 80000. To compute these coefficients, we follows
the procedure in [11]. It shows that indeed increasing the
lengths of the block indeed decreases the mixing coefficients.

Fig. 1: Performance of ONEVaL for different sample sizes

lN N Consecutive Sampled
1 40000 15.88 0.93

10 40000 0.9281 0.77
100 40000 0.714 0.89
1000 40000 0.702 0.87

10 80000 0.52 0.59
100 80000 0.49 0.55
1000 80000 0.47 0.54

TABLE I: β-mixing coefficients

Fig. 2: Performance of ONEVaL on Cart-Pole. Expected (dis-
counted) reward, averaged over 100 trials (solid), with the range
of highest and lowest values in faded colors for N = 1000 and
N = 5000 with M = 1

b) Cart-Pole: We now evaluate our methods
on the cart-pole problem, using the OpenAI gym
codebase. We heavily borrow from the environment
constructed by the OpenAI gym for CartPole-v0 (see
https://gym.openai.com/envs/CartPole-v0/
for documentation). The state space contains four variables:
position and velocity of the cart, and angle and angular
velocity of the pole. We modify the code slightly to inject
noise, such that actual force = force + z, z ∼ N (0, 1).
The reward function is +1 if the pole is balanced (between
±12 degrees from vertical), and 0 otherwise. Since this is
an episodic task, we uniformly sample from the interactions
similar to experience replay buffer [14]. The exploration
scheme used is ε-greedy with decaying ε. We compare
the approximation methods against linear methods (ridge
regression) popular nonlinear methods (10-nearest neighbors
(NN)), kernel ridge regression (RKHS), Nystrom method
([23]) and the random parametric basis function (RPBF).
We experimented with 1, 2, 5, 10, and 20 neighbors, finding
10 neighbors usually gave the best performance in these
tests. For RKHS, we use the standard Guassian kernel. We
also add in a random policy as a baseline to see if a method
has learned anything at all.
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Batchsize 1000 Batchsize 5000
method TPI TPI
Ridge Reg 0.21 0.21
RKHS 0.70 1.18
Nystrom 0.97 0.94
RPBF 0.38 0.37
NN 2.21 2.23

TABLE II: CPU per-iteration runtime (in milliseconds).

Fig. 3: ONEVaL vs DQN

Fig. 2 give the average achieved value at each episode for
all methods, for different sample sizes. The only methods that
do significantly better than random are nonlinear methods.
Of these, RPBF appears a clear winner, with full kernel
and Nystrom regression in second. Nearest neighbor can
perform very well when the sample size is low, but has
trouble when the sample size is high. Table II shows the
average time per iteration (averaged between episodes 500
and 1000 of a single run) for each method, for sample sizes of
1000 and 5000.The runtime complexity of the approximation
methods have about the same per-iteration runtime for batch
sizes of 1000 and 5000, suggesting scalability; in contrast,
the full kernel method runtime almost doubles. To compare
the memory requirement, for KR it requires O(N2) for the
kernel matrix, and for Nystrom (with L selected columns)
and RPBF are O(NL) and O(NJ) respectively to store the
approximation parameters. For L � N and J � N , there
is clear memory improvement of the approximation methods
over the full kernel method. We also compare our algorithm
with DQN as presented in [13] in Fig. 3 which shows the
average performance with shaded region as the variance for
50 experiments . We use a 2 hidden layer architecture with
24 nodes each with ReLU activation. We notice that when
the underlying environment is noisy, there is a lot of variance
in the performance of DQN as also noted in [7].
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