
What to Do When You Can’t Do It All:
Temporal Logic Planning with Soft Temporal Logic Constraints

Hazhar Rahmani Jason M. O’Kane

Abstract— In this paper, we consider a temporal logic plan-
ning problem in which the objective is to find an infinite
trajectory that satisfies an optimal selection from a set of soft
specifications expressed in linear temporal logic (LTL) while
nevertheless satisfying a hard specification expressed in LTL.
Our previous work considered a similar problem in which
linear dynamic logic for finite traces (LDLf), rather than
LTL, was used to express the soft constraints. In that work,
LDLf was used to impose constraints on finite prefixes of the
infinite trajectory. By using LTL, one is able not only to impose
constraints on the finite prefixes of the trajectory, but also to
set ‘soft’ goals across the entirety of the infinite trajectory.
Our algorithm first constructs a product automaton, on which
the planning problem is reduced to computing a lasso with
minimum cost. Among all such lassos, it is desirable to compute
a shortest one. Though we prove that computing such a shortest
lasso is computationally hard, we also introduce an efficient
greedy approach to synthesize short lassos nonetheless. We
present two case studies describing an implementation of this
approach, and report results of our experiment comparing our
greedy algorithm with an optimal baseline.

I. INTRODUCTION

Temporal logics have become one of the most powerful
and expressive tools for planning in robotics [10], [12],
[18], [24]. Such logics, including linear temporal logic
(LTL) specifically, offer high-level, user-friendly languages
for specifying complex missions and tasks. In fact, as simple
and intuitive as temporal logic is for humans to understand,
it is also precise and rigorous for robot algorithms to
manipulate. In particular, temporal logic has disrupted the
classical conception of motion and path planning —which
deals with making a finite, point to point trajectory that
avoids obstacles— by allowing the imposition of other kinds
of temporal or spatial constraints and by allowing the robot
to make infinite, rather than only finite, trajectories.

In this paper, we consider a temporal logic planning
problem in which a robot is tasked to accomplish a mission
specified by an LTL formula while optimally satisfying a
set of additional, possibly conflicting, LTL formulas. These
extra constraints could be user preferences, safety rules, soft
goals, or other constraints.

To illustrate the setting, see Figure 1, in which a social
enrichment robot, capable of making animal balloons and
juggling, visits the residents of a retirement home. The
robot’s basic mission is to visit the two common rooms, each
infinitely often. In addition to this basic mission, however,
the robot is also charged with satisfying a collection of soft

The authors are with the Department of Computer Science and Engineer-
ing at the University of South Carolina. This material is based upon work
supported by the NSF under Grant Nos. 1526862 and 1849291.

Fig. 1: a) A retirement home in which a social enrichment robot
visits each of the common rooms to perform juggling and to make
animal balloons. Its primary mission is expressed by the LTL
formula ϕ = �♦r1 ∧ �♦r2 ∧ �♦t. b) A transition system that
models the robot’s state within this environment.

constraints, given in order of their relative importance. For
example, we might prefer to maintain fairness by ensuring,
if possible, that after making animal balloons in room 1,
it should also do the same act in room 2. Or perhaps the
manager wants the robot to eventually perform juggling in
room 2, if its current act in that room is making animal
balloons. The residents of room 2 might even prefer not to
see the balloon animal act at all. The essence of our problem
is to determine how the robot can act, to satisfy its primary
mission, along with some optimal subset of these kinds of
soft constraints.

Our prior work [17] considered a related problem in which
the soft constraints were expressed in linear dynamic logic
for finite traces (LDLf) [6]. Such formulas can express
constraints only on finite prefixes of the trajectory, rather than
on the entire trajectory as a whole. A limitation of that work
is that LDLf soft constraints cannot express soft goals that
are satisfied only by infinite (rather than finite) trajectories.
As an example, a task that requires the social enrichment
robot to infinitely often perform the act of juggling is a
simple soft goal that cannot be expressed by LDLf . The
difference in the language used to express the soft constraints
not only improves the expressivity of the approach, but it
leads to significant (and new, compared to the LDLf case)
algorithmic challenges.

We contribute in this paper, a general formulation of the
kind of problem in Figure 1. To do so, we first review related
work in Section II, and then present our problem statement
in Section III. In Section IV, we propose our algorithm,
which first makes a state-weighted product automaton from
the inputs, over which a lasso with minimum weight should

be synthesized. We prove that computing a shortest such
lasso, even with any constant approximation factor, is com-
putationally hard. Thus, we introduce an algorithm using a
greedy approach to synthesize a short (but not necessarily
shortest) lasso with minimum weight. In Section V, we
present two case studies, and finally, in Section VI, we
present concluding remarks and discuss future work.

II. RELATED WORK

Our temporal logic planning is related to, but distinct
from, several threads of prior work, which consider temporal
logic planning in situations where no plan satisfying a given
temporal logic formula can be synthesized. Fainekos [9]
introduced an LTL revision problem, which, upon failures to
plan a trajectory for an LTL formula, provides information
about why that failure occurred, and how the LTL formula
can be revised so that the transition system has a satisfiable
trajectory for the revised formula. Kim et al. [13], [14]
consider the minimal revision problem (MRP), which aims to
find for a given specification (Büchi) automaton, a “closest”
specification automaton for which the system has a trajectory.
They prove that MRP is NP-hard, and then provide a SAT-
based encoding and a heuristic algorithm for solving MRP.

Lahijanian et al. [15] propose, based on a user-defined
priority over atomic propositions, which they assumed to
be low level tasks, an approach to measure how “close”
is a trajectory to satisfy a given formula, and accordingly,
propose an algorithm that generates a trajectory that has the
minimum distance to the satisfaction of that given formula.
Lahijanian and Kwiatkowska [16] later extended that idea
for probabilistic environments modeled by MDPs.

Two recent results by Dimitrova et al. [7] and Tomita et
al. [21] consider a problem, called maximum realizability
problem, which is a synthesis problem from a hard constraint
and a set of soft constraints in the form of LTL formulas.
The aim of this problem is to synthesize a reactive transition
system (rather than a trajectory within a transition system).
They consider the case where the soft constraints are of
a specific kind of LTL formulas, those who assert that
something globally holds. Their ideas are based on optimally
refining or relaxing the soft specifications such that the
resulting soft specifications along with the hard specification
are realizable by a reactive transition system.

The closest work to ours is by Tumova et al. [22], who
address a similar problem but without the hard constraint;
they consider the problem of making a trajectory that maxi-
mizes the sum of rewards from satisfying a set of conflicting
LTL formulas. Their algorithm first makes a generalized
Büchi automaton for each LTL formula, and then from those
automata, using the idea of converting a generalized Büchi
automaton to a Büchi automaton [2], it makes a transition-
weighted Büchi automaton, in which the Cartesian product
of the state spaces of the automata are copied into different
layers, a layer for each of the original automata, to keep
track of the set of LTL formulas for which a run over the
automaton is satisfying. From this transition-weighted Büchi
automaton and the transition system, a product automaton

is constructed, on which an accepting lasso is synthesized
using a modified version of nested-DFS [5]. Our algorithm,
which is simpler, constructs a state-weighted (rather than
a transition-weighted) product automaton, and then uses a
greedy approach to synthesize on this product automaton,
a short accepting lasso with minimum weight; we prove
that an accepting lasso with minimum length and weight
is computationally hard to find.

Our synthesis process over this product automaton is
performed in two passes, first is the one-pass DFS of Tarjan’s
algorithm [20] to compute the set of strongly connected
components (SCCs) of the product automaton, and second
is a pass that synthesizes the prefix of the lasso as a simple
path from the initial state to a leader of a SCC with minimum
weight and the suffix of the lasso as a cycle within that
SCC using BFS iteratively. The work of Tumova et al. [22]
does not consider synthesis of a shortest accepting lasso.
Two other results from the same authors [3], [23] consider
for the classical setting of path planning, generating a finite
trajectory that minimizes the amount of time the robot
deviates only the less important ones of a set of conflicting
safety rules. This problem is for finite trajectories and is
treated differently.

III. DEFINITIONS AND PROBLEM STATEMENT

In this section, we review some preliminary tools and
introduce the main problem we address.

A. Preliminaries

The set of infinite-length words over an alphabet Σ is
denoted Σω , and the infinite repetition of a finite word r ∈
Σ+ is denoted rω . A lasso is formed when such an infinite
repetition is concatenated to a finite word, that is, a lasso is
an infinite word of the form r1(r2)ω , in which r1 ∈ Σ∗ and
r2 ∈ Σ+.

The environment is modeled as a transition system.

Definition 1: A transition system T = (S,R, s0, AP, L)
consists of a finite set of states S; a transition relation R ⊆
S ×S; an initial state s0 ∈ S ; a set of atomic propositions
AP ; and a labeling function L : S → 2AP , which assigns to
each state, a set of atomic propositions, which are properties
that hold at that state.

An execution of the system goes through an infinite path
π = s0s1s2 · · · ∈ Sω , in which s0 is the initial state and
for each i ≥ 0, (si, si+1) ∈ R. The trace of this path is
trace(π) = L(s0)L(s1)L(s2) · · · ∈ (2AP)ω . The transition
systems we deal with should be free of blocking states—
those states that do not have outgoing edges. To specify a set
of traces, one can use a variety of logical formulas, including
those in LTL.

Definition 2: An LTL formula is generated over a set of
atomic propositions AP by the following grammar

ϕ ::= > | p | ¬ϕ | ϕ ∨ ϕ | ©ϕ | ϕ Uϕ,

in which p ∈ AP , > represents the constant true, and ©
(’next’) and U (’until’) are temporal operators.

An LTL formula ϕ specifies a set of infinite words over
2AP , denoted Words(ϕ), which consists of those words who
satisfy ϕ. To see if a word (trace) σ = A0A1A2 · · · ∈ (2AP)ω

satisfies an LTL formula ϕ, denoted σ � ϕ, one can use rules
that (1) ϕ � > (2) σ � p iff p ∈ A0 (3) σ � ¬ϕ iff σ 2 ϕ
(4) σ � ϕ1 ∨ ϕ2 iff σ � ϕ1 or σ � ϕ2 (5) σ � ©ϕ iff
σ[1..] � ϕ (6) σ � ϕ1Uϕ2 iff ∃j ≥ 0, σ[j..] � ϕ2 and
∀0 ≤ i < j, σ[i..] � ϕ1. For simplicity, two other temporal
operators ♦ (’eventually’), defined as ♦ϕ := > Uϕ, and �
(’globally’), defined as �ϕ := ¬♦¬ϕ, are also used. We can
also use the dual of >, which is ⊥, the dual of the Boolean
operator ∨, which is ∧, as well as the Boolean operator →.

Each LTL formula is equivalent to a certain type of
automaton.

Definition 3: A Büchi automaton A = (Q,Σ, δ, q0, F)
consists of a finite set of states Q; an alphabet Σ; a transition
relation δ ⊆ Q×Σ×Q; an initial state q0 ∈ Q ; and a set
of accepting (final) states F ⊆ Q.

A run over the automaton is an infinite sequence r =
q0q1q2 · · · ∈ Qω in which q0 is the initial state and for
each i ≥ 0, (qi, A, qi+1) ∈ δ for an A ∈ Σ. Sequence
r is a run for an infinite word A0A1A2 · · · ∈ Σω if for
each integer i ≥ 0, (qi, Ai, qi+1) ∈ δ. The set of states that
appear infinitely many times in an infinite run r is denoted
inf(r). Accordingly, run r is accepting if inf(r) ∩ F 6= ∅.
Consequently, the language of A, denoted Lω(A) is

Lω(A) = {w ∈ Σω | there exists an accepting run for w}.

A connection between LTL formulas and Büchi automata is
that for any LTL formula ϕ over a set of atomic propositions
AP , one can construct a Büchi automaton Aϕ with alphabet
2AP such that Lω(Aϕ) = Words(ϕ). Several algorithms for
this kind of construction are available [1], [11], [19], [26].

In our algorithm, we need to be sure that each Büchi
automaton created for a soft constraint is nonblocking, that is,
for any state q in the automaton and every letter a ∈ Σ, there
is at least one state q′ such that (q, a, q′) ∈ δ. Any Büchi
automaton is converted to a nonblocking Büchi automaton by
adding a trapping state, to which all missing transitions are
added. We also consider a variant of Büchi automaton called
generalized Büchi automaton, which has the same syntax of
Büchi automaton except that it has a set F ⊆ 2Q rather
than a set F ⊆ Q as its acceptance set. More precisely, the
acceptance set of the automaton is a set F consisting of
sets F1, F2, . . . Fk with Fi ⊆ Q for each i ∈ {1, . · · · , k}.
Accordingly, an infinite run r over a generalized Büchi
automaton G is accepting if for each F ∈ F , it holds that
inf(r) ∩ F 6= ∅. The language of G, Lω(G), is the set of all
infinite words for each of which there is an accepting run.

B. LTL planning with soft constraints

Our goal in this problem is to find, in a transition system
modeling the environment, an infinite path whose trace
satisfies a goal mission expressed as an LTL formula ϕ
while optimally satisfying a prioritized list of soft constraints
ψ1, ψ2, · · · , ψn, where each ψi is an LTL formula, given in

order of decreasing importance. For this purpose, we define
a cost function fω : (2AP)ω → Z≥0, such that for any
σ ∈ (2AP)ω ,

fω(σ) =
∑

i:σ/∈Words(ψi)

nn−i. (1)

Note that this cost function guarantees to impose the standard
lexicographic ordering between all Boolean vectors, where
each vector has an entry for each LTL constraint showing
whether that LTL constraint is satisfied or not. As a result,
a constraint with a higher priority (smaller number) is
never sacrificed to satisfy a constraint with a lower priority.
Accordingly, we want a trajectory whose trace minimizes this
function. With this in mind, our problem is defined as:

Problem: Optimal LTL Planning with Soft Con-
straints (OLPSC)

Input: A transition system T , an LTL formula ϕ,
and a prioritized list of n LTL formulas
ψ1, ψ2, · · · , ψn.

Output: An infinite path π over T such that trace(π) �
ϕ and fω(trace(π)) is minimized.

IV. ALGORITHM DESCRIPTION

This section presents an algorithm for solving the OLPSC
problem. See Algorithm 1. The two main steps of this
algorithm are constructing a product automaton (line 6),
and computing a lasso with minimum cost on the product
automaton (line 7). In the sequel, we explain those steps.

A. The product automaton

The first step of the algorithm is, following an established
pattern in the literature [3], [15], [22], [23], to construct a
form of product automaton [25]. To that end, the algorithm
first makes the Büchi automata representations of the LTL
formulas —an automaton A for ϕ, and an automaton Bi for
each ψi. It then ensures that Bi’s are nonblocking and uses all
those automata along with the transition system to construct
a product automaton based on the following definition.

Definition 4: For a Büchi automaton A =
(Q, 2AP , δ, q0, F), a transition system T =
(S,R, s0, AP, L), and a prioritized list of n nonblocking
Büchi automata Bi = (Qi, 2

AP , δi, q0,i, Fi) for
i ∈ {1, . . . , n}, the product automaton is a tuple
P = (QP , δP , q0,P , FP ,w) in which

1) QP = Q× S ×Q1 × . . .×Qn is a finite set of states;
2) q0,P = (q0, s0, q0,1, . . . , q0,n) is the initial state;
3) δP ⊆ QP × QP is a transition relation, such that

((q, s, q1, . . . , qn), (q′, s′, q′1, . . . , q
′
n)) ∈ δP if and only

if (s, s′) ∈ R, (q, L(s), q′) ∈ δ, and (qi, L(s), q′i) ∈ δi
for each i ∈ {1, . . . , n};

4) FP = F × S × Q1 × . . . × Qn is the set of accepting
states;

5) w : QP → {T,F}n is a state-weighting function that
assigns to each state (q, s, q1, . . . , qn) ∈ QP , a Boolean
vector v such that for any 1 ≤ i ≤ n, it holds that
v[i] = T if and only if qi ∈ Fi.

Algorithm 1: OPTIMALLTLPLANNINGWSOFTCONSTS

Data: T , ϕ, ψ1, ψ2, . . . , ψn
Result: A path π = s0s1s2 · · · on T s.t π � ϕ and

fω(trace(π)) is minimum

1 for i = 1 to n do
2 Bi ← LTL2BÜCHIAUTOMATON(ψi)
3 Bi ← MAKENONBLOCKING(Bi)
4 end
5 A ← LTL2BÜCHIAUTOMATON(ϕ)
6 P ← A× T × B1 × B2 · · · Bn
7 r ← MINIMUMCOSTACCEPTINGLASSO(P)
8 if r = nil then return nil
9 return CONVERT2PATHONTS(r)

This product automaton can be thought of as a Büchi
automaton with a trivial alphabet, and thus, all definitions
related to Büchi automata are applicable on it.

For a state (q, s, q1, . . . , qn) ∈ QP , w((q, s, q1, . . . , qn))
indicates which of the qi’s were accepting in their original
Büchi automata. Accordingly, for any 1 ≤ i ≤ n, we use
Fi,P to denote in P , the set of all states that are accepting
for automaton Bi, i.e., Fi,P = {p ∈ QP | w(p)[i] = T}. For
a run rP = q0q1q2 . . . ∈ QωP , we use inf(rP) to denote a
vector v ∈ {T,F}n in which for each 1 ≤ i ≤ n, v[i] = T
if and only if there are infinitely many j ≥ 0 such that
w(qj)[i] = T. Subsequently, by having a cost function fw :
{T,F}n → Z≥0, in which for any v ∈ {T,F}n,

fw(v) =
∑

i:v[i]=F

nn−i, (2)

the cost of rP will be fw(inf(rP)). The purpose of con-
structing P is to synthesize a run rP that has the minimum
cost. To see why, we first consider the following lemmas.

Lemma 1: Given the structures in Definition 4, let
rP = (q0, s0, q0,1, . . . , q0,n)(q1, s1, q1,1, . . . , q1,n) · · · be a
run over P . It holds that:

1) If rP is accepting for P , then the sequence π =
s0s1s2 · · · is a path for T such that trace(π) ∈ Lω(A).

2) For any i ∈ {1, . . . , n}, if inf(rP)[i] = T, then the
sequence π = s0s1s2 · · · is a path for T such that
trace(π) ∈ Lω(Bi).

Proof: (1) From the construction of P , it follows that
the sequence π = s0s1s2 · · · —the projection of rP onto
T— is a path over T , and that the sequence r = q0q1q2 · · ·
is a run for trace(π) = L(s0)L(s1)L(s2) · · · over A. Given
that rP is an accepting run for P , there are infinitely many
i’s for r = q0q1q2 · · · such that qi ∈ F , implying that r
is accepting, and thus, trace(π) ∈ Lω(A). (2) The proof is
similar to the proof of (1) with the consideration that in this
case, for each i, sequence ri = q0,iq1,iq2,i · · · is a run for
trace(π) = L(s0)L(s1)L(s2) · · · over Bi.

Lemma 2: Assuming the structures in Definition 4, for
any I ⊆ {1, . . . , n} and for any path π = s0s1s2 · · ·
in T such that trace(π) ∈ Lω(A) and trace(π) ∈⋂
i∈I Lω(Bi), there exists an accepting run rP =

(q0, s0, q0,1, . . . , q0,n)(q1, s1, q1,1, . . . , q1,n) · · · over P such
that inf(rP)[i] = T for all i ∈ I .

Proof: Let r be an accepting run for π over A, and let
for each i ∈ I , ri be an accepting run for π over Bi. Given
that all Büchi automata created for the soft constraints are
nonblocking, for each j ∈ {1, 2, · · ·n} such that j /∈ I , there
exists an infinite run rj for π over Bj . Now we choose one
such r, one such ri for each i, and one such rj for each j.
Then we combine π, the chosen r, all the chosen ri’s, and
all the chosen rj’s to form an rP . This constructed rP has
the properties claimed in this lemma.

The impact of these lemmas is that for any optimal
solution of the OLPSC problem, there is an accepting run
rP over P for which fw(inf(rP)) is minimum, and that
from any accepting run rP that minimizes fw(inf(rP)), one
can create an optimal solution to the OLPSC problem via
projecting rP into T . Accordingly, one can solve the OLPSC
problem by computing over P , a run rP with minimum cost.

B. Trajectory generation

A run rP with minimum cost is constructed in Line 7
of Algorithm 1. The product automaton may have many, or
even infinitely many optimal runs; in fact, there could exist
an optimal run whose sequence of states cannot be specified
by any pattern; however, we are interested in only one kind,
which is revealed by the following result.

Lemma 3: If Lω(P) 6= ∅, then P has an accepting lasso
rP = r1(r2)ω such that r1 ∈ Q∗P , r2 ∈ Q+

P , and that
fw(inf(rP)) is minimum.

Proof: We show that from any accepting run r′P =
p0p1p2 . . . that minimizes fw(inf(r′P)), we can construct an
accepting lasso rP such that fw(inf(r′P)) = fw(inf(rP)).
Given that r′P has an infinite length while QP has only a
finite number of states, there exists an integer k ≥ 0 such
inf(r′P) = {pj ∈ r′P | j ≥ k}. We choose l to be the smallest
such k.

Let I = {1 ≤ i ≤ n | inf(r′P)[i] = T}. We choose
an integer j ≥ l such that r′P [l..j] contains at least one
state p ∈ FP and it contains at least a state qi ∈ Fi,P for
each i ∈ I . We choose u to be the smallest such integer
j. We now set r2 = r′P [l..u] = plpl+1 . . . pu and set r1 =
r′P [0..l − 1] = p0p1 . . . pl−1. Clearly, lasso rP is accepting.
Moreover, fw(inf(r′P)) = fw(inf(rP)).

The punchline is that to synthesize an optimal run, it is
sufficient to consider those runs who are lassos. We are also
interested in finding a shortest such lasso —a lasso rP =
r1(r2)w for which |r1| + |r2| is minimum. Unfortunately,
the following result reveals that finding a shortest such lasso
is not easy.

Lemma 4: Given a product automaton P , the problem of
finding over P , a shortest lasso rP = r1(r2)ω that minimizes
fω(rP) is NP-hard.

Proof: We prove by reduction from the problem of
finding a shortest accepting lasso for a generalized Büchi
automaton, which is known to be NP-hard [4], [8]. For

Algorithm 2: MinimumCostAcceptingLasso
Data: Product automaton P = (QP , δP , q0,P , FP ,w)
Result: An accepting lasso for P minimizing fw

1 SCCs = STRONGLYCONNECTEDCOMPONENTS(P);
2 O ← nil;
3 minW ←∞;
4 forall C ∈ SCCs do
5 if C.accepting = True then
6 if fw(C.w) < minW then
7 O ← C;
8 minW ← fw(C.w);
9 end

10 end
11 end
12 if O = nil then return nil
13 r1 = BFSSHORTESTPATH(q0,P , O.leader);
14 r2 = MINCOSTACCEPTINGCYCLE(O);
15 return (r1, r2);

each generalized Büchi automaton G = (Q,Σ, δ, q0,F :=
{F1, F2, · · · , Fn}), we make a product automaton P =
(QP , δP , q0,P , FP ,w) such that QP = Q; q0,P = q0;
FP = Q; for each q, q′ ∈ Q, (q, q′) ∈ δP iff (q, a, q′) ∈ δ
for an a ∈ Σ; and for each state q ∈ QP , function w assigns
a vector v ∈ {T,F}n such that for each j ∈ {1, 2, · · · , n},
v[j] = T if q ∈ Fj , and otherwise, v[j] = F. Consider that
any run over P is accepting, and that fw(inf(rP)) = 0 for
any optimal lasso rP in P . Any shortest lasso rP over P for
which fw(inf(rP)) = 0 is a shortest accepting lasso for G.
This completes the proof.

As a result of this lemma, unless P=NP we cannot compute
in a time polynomial to the size of P , a shortest lasso
that is accepting for P and for which fw(rP) is minimum.
Unfortunately, it is also NP-hard to approximate within
any constant factor, the length of such a lasso (the proof
would utilize the same reduction in Lemma 4 along with
the fact due to Ehlers [8], according to which it is NP-hard
to approximate within any constant factor the length of a
shortest accepting lasso for a generalized Büchi automaton).
Consequently, we utilize a greedy algorithm to find a shortest
such lasso which has the minimum cost.

Our algorithm uses graph algorithms to minimize |r1| and
|r2| separately. Algorithm 2 shows the process. Consider that
P can be thought of as a directed graph with vertex set
QP and edge set δP . Additionally, all vertices (states) in r2
are in a strongly connected component (SCC) of the graph
given that they are contained in a cycle, r2.r2[0]. With these
in mind, our algorithm first decomposes the graph into its
strongly connected components, (Line 1); then finds a SCC
that contains |r2| of a lasso rP = r1(r2)ω with minimum
fw(rP) (Lines 2–11); and then construct r1 and r2 (Lines 13
and Line 14 respectively). See Figure 2.

To find the set of SCCs of the graph, we use the well-
know algorithm of Tarjan [20]. This algorithm uses depth
first search (DFS) to traverse all the vertices (states) of the
graph in one pass. During this traversal, each vertex p is

Fig. 2: Showing our algorithm for finding an optimal lasso rP =
r1(r2)

ω over product automaton P . Each Ci is a strongly connected
component of the graph underling P . Component C5 contains the
suffix of an optimal lasso. Set FC5,P contains those state in C5

that are accepting for P , i.e., FC5,P = FP ∩ C5. For each i ∈
{1, 3, 4, 7}, set Fi,C5 are those states in C5 that are accepting for
Büchi automaton Bi—the one who represents preference ψi.

assigned a unique integer p.number, which is, in fact, the
traversal’s step number at which p is reached. Each vertex
is assigned another integer p.lowlink, whose value is set to
the smallest index of any node reachable from p, including
p itself. During this algorithm, all vertices that are assigned
the same value of lowlink will be in the same SCC of the
graph, and among those vertices, the one whose number is
equal to its lowlink is the leader (representative) of the SCC.

As Tarjan’s algorithm executes, we also compute for each
SCC C, the value of C.accepting, which gets True only
when C contains an accepting state of P and that C is
not a singleton vertex who does not have a loop. We also
compute the value of Boolean vector C.w, whose value is
set to C.w =

∑
q∈C w(q). Notice that during the same pass

of the Tarjan’s algorithm, one can keep for each vertex, a
link to its parent in the DFS search. Accordingly, later, the
algorithm can use those links to find, for each state, a path
from the initial state to that state. These paths can be used
in Line 13 to compute r1, which is, in fact, a path from the
initial state to the leader of the component which we choose
to construct r2 from. However, a path r1 that is constructed
in that way may not have minimum length. Accordingly, we
use BFS to find a shortest simple path from q0,P to C.leader.

The final phase of finding an accepting lasso is to synthe-
size the suffix r2 of it, Line 14 of Algorithm 2. This suffix
is synthesized inside an optimal SCC O using the following
greedy algorithm. Let r′P ∈ QωP be any run that minimizes
fω(r′P), and let I = {1 ≤ i ≤ n | w(r′P)[i] = T}. Let for
each i ∈ I , Fi,O be the set of states in O that are accepting
for Büchi automaton Bi, i.e., Fi,O = O∩{q ∈ Q | w(q)[i] =
T}, and let FO,P be the set of accepting states in O, i.e.,
FO,P = FP ∩O. Our greedy algorithm synthesizes r2 as the
vertices (states) of a cycle starting from O.leader such that
the cycle contains at least a state of FO,P and at least a state
in Fi,P for each i ∈ I . To do so, it uses variable U with
initial value FO,P

⋃
{Fi,O|i ∈ I}. It starts from O.leader,

and performs breadth first search (BFS) until it finds a state
s for which there is a set M ∈ U such that s ∈ M . Using
the parent links set during BFS, the algorithm records the
shortest path from O.leader to s as a first portion of r2, and

removes from U all those sets M for which s ∈M . It then
does a similar task, BFS traversal, starting from s, and then
records the path traversed from s to the new found state. It
repeatedly does this process until U becomes ∅. At this time,
it does a BFS to find the shortest path back to O.leader. By
this time, it has made r2 as the vertices of a cycle. Figure 2
illustrates how inside SCC C5, the algorithm constructs r2.

Given this discussion, we now analyze the time complexity
of our algorithm.

Lemma 5: For any automaton P =
(QP , δP , Q0,P , FP ,w), a lasso with minimum cost
can be generated in time O(n(|δP |+ |QP |)).

Proof: It takes O(|δP |+ |QP |) time to find the set of
strongly connected components. BFS is called at most n+ 1
times, each of which takes O(|δP |+ |QP |) time.

This bound simplifies to O(|δP |+ |QP |) if the number of
soft constraints n is treated as a constant.

We can slightly improve the quality of solution by letting
instead of the leader, the first state to which BFS reaches
from the leader and who is either a final state or it cor-
responds to a final state of the Büchi automata for a soft
constraint, to be the midpoint of the lasso.

Though Algorithm 2 generates a lasso of minimum cost,
it is not guaranteed to produce the shortest such lasso. In
the next section, we compare our algorithm with an optimal
brute-force algorithm, which finds the shortest lasso by
letting any state within an optimal SCC to be the midpoint of
the lasso, and synthesizes the suffix of the lasso by searching
from the shortest ones, all cycles, simple or otherwise, that
start from the midpoint until it finds a satisfactory cycle or
the length will be longer than the length of a shortest lasso
computed for other midpoints.

V. CASE STUDIES AND EXPERIMENTS

We have implemented Algorithms 1 and 2 in Java. The
computed results were executed on an Ubuntu 16.04 com-
puter with a 3.6GHz processor.

A. Case study: Hospital deliveries

Figure 3 shows a hospital which has an emergency de-
partment (e), a primary care department (p), a maintenance
department (n), a pharmacy (h), and a warehouse (w). In
this hospital, a robot delivers first aid items (f) and medicine
(m) from the warehouse to the other departments. Each state
of the transition system for this case study has an atomic
proposition indicating a unit within the hospital, along with
other propositions indicating which items the robot is caring
at that unit. Those states are connected according to the
connectivity of the units within the hospital and the items the
robot can take or leave at a unit. The robot’s primary tasks
are to deliver first aid items to the emergency department,
deliver first aid items to primary care, deliver medicine to
the pharmacy, and report for maintenance, each infinitely
often. In addition, suppose the robot is given these soft
specifications, ordered from most to least important:

1) If first aid items are delivered to the primary care
department, then do not deliver additional first aid items

Fig. 3: A hospital, in which a delivery robot is tasked to deliver
first aid items to emergency and primary care departments, deliver
medicine to pharmacy, and visit the maintenance section. The
robot’s task is expressed by LTL formula ϕ = �♦(p∧f)∧�♦(e∧
f) ∧�♦(h ∧m) ∧�♦n

there until first aid items have been delivered to the
emergency department, and vice versa.

2) If the first aid items are picked from the warehouse,
then they must not be delivered to the primary care
department until the emergency department receives the
first aid items.

3) Do not carry first aid items and medicine together.
4) Always pick both first aid items and medicine when

leaving warehouse.
Notice that, in particular, the first two constraints cannot

be expressed in LDLf . Thus, the algorithm from our prior
work [17] cannot generate a plan for this instance. The
box below shows how to formulate these constraints into
an instance of OLPSC, along with the solution computed by
our implementation.

Goal: �♦(p ∧ f) ∧�♦(e ∧ f) ∧�♦(h ∧m) ∧�♦n
Soft constraints:

1) �((p ∧ f)→©(¬p U(e ∧ f)))
∧�((e ∧ f)→©(¬e U(p ∧ f)))

2) �((c ∧ f)→ (¬p Ue))
3) �(¬w → ¬(f ∧m))
4) �((w ∧©c)→©(f ∧m))

Solution:
wcp(cecwfcfpfcwfcfefcwmcmhmhmhcnncpc)

ω

Satisfied constraints: 1, 3
Computation time: 201.50s

In the sequence shown for the solution, a letter is the
location of the robot, and the subscript of the letter, if any,
is what the robot is carrying. Not that this optimal solution
satisfies only the first and third soft constraints.

For comparison purposes, we also executed on this exam-
ple, the brute-force algorithm to compute a shortest accepting
lasso that minimizes the cost function fω . That algorithm
failed to compute such a lasso in 15 hours.

B. Case study: Retirement home

In this section, we look back to the retirement home ex-
ample from Section I. The transition system in that example
has atomic propositions for locations —r1 for common room
1, r2 for common room 2, and t for toy room— and also

for the robot acts —g for juggling, and b for making animal
balloons. The robot is tasked to visit r1, r2, and t, each one
infinitely often. The robot’s specification also includes 6 soft
constraints (some of which were mentioned in Section I):

1) After making animal balloons in room 1, the robot
should immediately do the same act in room 2.

2) The robot should perform each of the acts in room 1
infinitely often.

3) The robot should not perform the act of making animal
balloons in room 2.

4) If the current act in room 2 is making animal balloons,
then the robot should eventually make animal balloons
in that room.

5) The robot should not stay in a common room once it
performed an act.

6) The robot should perform at least two acts in each
common room once it has entered that room. Those
two acts can be different or not.

We can formalize this scenario as an instance of OLPSC:

Goal: �♦r1 ∧�♦r2 ∧�♦t
Soft constraints:

1) �((r1 ∧ b)→©((¬b ∧ ¬g) U(r2 ∧ b)))
2) �♦(r1 ∧ g) ∧�♦(r1 ∧ b)
3) �(r2 → ¬b)
4) �((r2 ∧ b)→ ♦(r2 ∧ g))
5) �(r1 →©¬r1) ∧�(r2 →©¬r2)
6) �((¬r1 ∧©r1)→ (©© r1))

Solution:
slsr1,gslsr2,b(slsr2,bslsr2,gslsr2,bslsr1g
slsr1,bslsr2,bslsr1,bslsr2,bslststslsr2,bsl)

ω

Satisfied constraints: 1, 2, 4, 5
Computation time: 21.91s

For comparison, the brute-force algorithm computed r∗P =
slsr1,gsr1,bslsr2,bsr2,gslstsl(sr1,gsr1,bslsr2,bsr2,gslstsl)

ω

as a shortest accepting lasso minimizing fω in 3,254
seconds. The shortest accepting lasso has length 16, while
the lasso generated by our algorithm has length 26.

Now suppose there is a change in the relative ordering of
the soft constraints, in which the last two are swapped. This
induces a change to the set of constraints that can be satisfied,
but not to the basic structure of the product automaton.

Goal: �♦r1 ∧�♦r2 ∧�♦t
Soft constraints:

1) – 4) Same as above.
5) �((¬r1 ∧©r1)→©© r1))
6) �(r1 →©¬r1) ∧�(r2 →©¬r2)

Solution:
slsr2,b(sr2,gsr2,bsr2,gslsr1,gsr1,bslsr2,bsr2,g
slsr1,gsr1,bslsr2,bsr2,gslststslsr2,bsr2,g)

ω

Satisfied constraints: 1, 2, 4, 5
Computation time: 0.02s (excluding product
automaton construction)

In fact, if we have already computed the product automa-
ton for the instance above, we need only to synthesize an

accepting lasso, without any need to reconstruct the product
automaton again. To synthesize the new lasso, for each state
of the product automaton, we swap the elements of vector w
according to the new order of constraints, and then synthesize
the lasso.

It took only 20 milliseconds to synthesize an optimal
run on the constructed automaton, while for the first one it
took 21.91 seconds, much of which was spent to form the
product automaton. We also use the brute-force algorithm to
compute the shortest accepting lasso r∗P that minimizes the
fω(r∗P). It took 110 seconds, excluding the time of product
automaton construction, for the brute-force algorithm to
compute the shortest accepting lasso, which was r∗P =
slsr1,gsr1,bslsr2,bsr2,gslstsl(sr1,gsr1,bslsr2,bsr2,gslst)

ω ,
with length 16. Observe that the length of the lasso generated
by our greedy algorithm was 23 while the length of the
shortest accepting lasso was 16. The product automaton for
this problem had 1440 states.

C. Experiments

In this section, we present results of our experiment com-
paring our (greedy) algorithm with the brute-force algorithm.
We performed all those experiments on the same machine
on which we executed our case studies. In this experiment,
we execute both the greedy algorithm and the brute-force
algorithm on a large number of graphs (product automata)
of different sizes that we generated randomly by the Erdős-
Rényi model of G(n, p), according to which each edge will
be included in the graph with probability p independent from
any other edge.

Figure 4 shows results of our experiment. For each graph
size —100, 200, 300, and 500— we generated 100 random
graphs. The number of edges for each graph was approxi-
mately five times the number of vertices, and for each graph,
approximately 20 percent of the states were final states. The
number of soft constraints, the size of the Boolean vectors
assigned to a state by w, for each graph was 10. We report
for each graph size, the average time to compute an accepting
lasso with minimum cost by our algorithm, and also the
average size of the generated lassos. For each test, the greedy
algorithm had 20 minutes to find a shortest lasso. Figure 4
shows also for each graph size, the number of times the
brute-force algorithm was able to compute a shortest lasso
within the 20 minutes time window. Notice that for graph size
300, the brute-force algorithm failed four times to compute
a minimal lasso within that time window, and for graph size
500, it was able to compute a shortest lasso only for 62 tests.
Accordingly, we considered in computing all those averages
shown for the brute-force algorithm in that figure, only those
tests for which the algorithm was able to compute a solution
in 20 minutes. This means that the actual time averages
for graph size 300 and 500 are higher, and probably much
higher, than those shown in that figure. The average number
of constraints satisfied were ranged from 6.30 to 6.81. f

For each test, we also computed approximation ratio,
defined as the size of the lasso generated by the greedy
algorithm over the size of the lasso generated by the brute-

States Our algorithm Brute-force algorithm Approximation ratio

Success Avg Time (Sec.) Avg lasso size # Success Avg Time (Sec.) Avg lasso size Min Max Avg

100 100 0.0001 17.86 100 12.404 9.27 1 4.33 2.08
200 100 0.0002 21.88 100 53.91 10.39 1 4.33 2.24
300 100 0.0001 23.68 96 170.151 10.93 1 4.4 2.26
500 100 0.0001 28.14 62 504.799 11.63 1 4.14 2.35

Fig. 4: Results of our experiment comparing our algorithm with the brute-force algorithm.

Fig. 5: The distribution of approximation ratios of the lasso sizes
generated by our greedy algorithm for 100 generated random graphs
with 100 states.

force algorithm. The minimum, maximum, and the average
of those ratios for each graph size is shown in Figure 4.
We observe from this experiment that the greedy algorithm
generates a solution significantly faster than the brute-force
algorithm while the quality of solution is still acceptable. For
graph size 100, the distribution of the approximation ratios
of the 100 tests we performed is shown in Figure 5.

We also executed a variant of our algorithm, in which we
let any final state within an optimal SCC to be the midpoint
and then chose a shortest one among all lassos generated
for those midpoints. This algorithm increases the running
time by the magnitude of the number of final states. We
observed that the quality of solution is slightly improved.
For the graph sizes of 100, the average of approximation
ratio was 2.01 for this new variant, compared to 2.08 to
original algorithm. Because product automata are generally
quite large, we may not need sacrifice computation time in
favor of slightly improved quality.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we considered temporal logic planning given
both hard and soft specifications of the goal. Future work
can consider learning soft constraints. It can also consider
the case where the environment is dynamic. In this case, the
changes are reflected in the product automaton, for which
one needs to maintain the SCCs of the automaton in a data
structure that is able to quickly adapt to the changes.

REFERENCES

[1] T. Babiak, M. Křetı́nskỳ, V. Řehák, and J. Strejček, “Ltl to büchi
automata translation: Fast and more deterministic,” in Int. Conf. on
Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2012, pp. 95–109.

[2] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[3] L. I. R. Castro, P. Chaudhari, J. Tumová, S. Karaman, E. Frazzoli,
and D. Rus, “Incremental sampling-based algorithm for minimum-
violation motion planning,” in IEEE Conf. on Decision and Control.
IEEE, 2013, pp. 3217–3224.

[4] E. M. Clarke, “Efficient generation of counterexamples and witnesses
in symbolic model checking,” in Design Automation Conference, 1995.

[5] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis, “Memory-
efficient algorithms for the verification of temporal properties,” Formal
Methods in System Design, vol. 1, no. 2-3, pp. 275–288, 1992.

[6] G. De Giacomo and M. Y. Vardi, “Linear temporal logic and linear
dynamic logic on finite traces.” in IJCAI, vol. 13, 2013, pp. 854–860.

[7] R. Dimitrova, M. Ghasemi, and U. Topcu, “Maximum realizability for
linear temporal logic specifications,” in Int. Symposium on Automated
Technology for Verification and Analysis. Springer, 2018.

[8] R. Ehlers, “Short witnesses and accepting lassos in ω-automata,” in Int.
Conf. on Language and Automata Theory and Applications. Springer,
2010, pp. 261–272.

[9] G. E. Fainekos, “Revising temporal logic specifications for motion
planning,” in Proc. IEEE Int. Conf. on Robotics and Automation.
IEEE, 2011, pp. 40–45.

[10] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2,
pp. 343–352, 2009.

[11] P. Gastin and D. Oddoux, “Fast LTL to büchi automata translation,”
in Int. Conf. on Computer Aided Verification. Springer, 2001, pp.
53–65.

[12] K. He, M. Lahijanian, L. E. Kavraki, and M. Y. Vardi, “Towards
manipulation planning with temporal logic specifications,” in Proc.
IEEE Int. Conf. on Robotics and Automation. IEEE, 2015, pp. 346–
352.

[13] K. Kim, G. Fainekos, and S. Sankaranarayanan, “On the minimal
revision problem of specification automata,” The International Journal
of Robotics Research, vol. 34, no. 12, pp. 1515–1535, 2015.

[14] K. Kim, G. E. Fainekos, and S. Sankaranarayanan, “On the revision
problem of specification automata,” in Proc. IEEE Int. Conf. on
Robotics and Automation. IEEE, 2012, pp. 5171–5176.

[15] M. Lahijanian, S. Almagor, D. Fried, L. E. Kavraki, and M. Y. Vardi,
“This time the robot settles for a cost: A quantitative approach to
temporal logic planning with partial satisfaction,” in AAAI, 2015.

[16] M. Lahijanian and M. Kwiatkowska, “Specification revision for
markov decision processes with optimal trade-off,” in Proc. Conf. on
Decision and Control (CDC). IEEE, 2016, pp. 7411–7418.

[17] H. Rahmani and J. M. OKane, “Optimal temporal logic planning with
cascading soft constraints,” in Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems. IEEE, 2019, pp. 2524–2531.

[18] P. Schillinger, M. Bürger, and D. V. Dimarogonas, “Simultaneous task
allocation and planning for temporal logic goals in heterogeneous
multi-robot systems,” The International Journal of Robotics Research,
vol. 37, no. 7, pp. 818–838, 2018.

[19] F. Somenzi and R. Bloem, “Efficient büchi automata from ltl formu-
lae,” in Int. Conf. on Computer Aided Verification. Springer, 2000,
pp. 248–263.

[20] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
Journal on Computing, vol. 1, no. 2, pp. 146–160, 1972.

[21] T. Tomita, A. Ueno, M. Shimakawa, S. Hagihara, and N. Yonezaki,
“Safraless ltl synthesis considering maximal realizability,” Acta Infor-
matica, vol. 54, no. 7, pp. 655–692, 2017.

[22] J. Tumova, L. I. R. Castro, S. Karaman, E. Frazzoli, and D. Rus,
“Minimum-violation ltl planning with conflicting specifications,” in
American Control Conference. IEEE, 2013, pp. 200–205.

[23] J. Tumova, G. C. Hall, S. Karaman, E. Frazzoli, and D. Rus, “Least-
violating control strategy synthesis with safety rules,” in Proc. Int.
Conf. on Hybrid systems: Computation and control, 2013.

[24] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimality
and robustness in multi-robot path planning with temporal logic
constraints,” The International Journal of Robotics Research, vol. 32,
no. 8, pp. 889–911, 2013.

[25] M. Y. Vardi and P. Wolper, “An automata-theoretic approach to
automatic program verification,” in Proc. First Symposium on Logic
in Computer Science. IEEE Computer Society, 1986.

[26] ——, “Reasoning about infinite computations,” Information and Com-
putation, vol. 115, no. 1, pp. 1–37, 1994.

