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1. Introduction
The Q-learning algorithm of Watkins (Watkins 1989, Watkins and Dayan 1992) has been an early and one of
the most popular and widely used algorithms for approximate dynamic programming for Markov decision
processes. An important feature of this and other algorithms of this ilk (actor-critic, temporal difference(A),
least squares temporal difference, least squares policy evaluation, natural gradient, etc.) has been that they are
stochastic approximations, that is, recursive schemes that update a vector incrementally based on observed
payoffs (Jaakkola et al. 1994). This is achieved by using step sizes that are either decreasing slowly in a precise
sense or equal a small positive constant. In either case, this induces a slower time scale for the iteration
compared with the natural time scale on which the underlying stochastic phenomena evolve. Thus, the two
time scale effects such as averaging kick in, ensuring that the algorithm effectively follows an averaged dynamics,
that is, its original dynamics averaged out over the random processes affecting it on the natural time scale. The
iterations are designed such that this averaged dynamics has the desired convergence properties. This extends even
when the algorithm is asynchronous, for example, Q-learning (Tsitsiklis 1994). In fact, it can be generalized to
stochastic approximations for general nonexpansive maps (Abounadi et al. 2002, Yu and Bertsekas 2013).
What we propose here is an alternative scheme for Q-learning that is not incremental and therefore evolves
on the natural time scale. It does the usual Q-value iteration with the proviso that the conditional averaging
with respect to the actual transition kernel of the underlying controlled Markov chain is replaced by a
simulation-based empirical surrogate. One obvious advantage one might expect from this is that if it works, it
will have much faster convergence. Indeed, this was observed earlier in Kearns and Singh (1999), who called
it a phased-Q learning algorithm. A sample complexity result was provided via some back-of-the-envelope
calculations although convergence is not implied. Our contribution is to provide a rigorous proof that it
indeed works and provide simulation evidence that the expected fast convergence to a ballpark estimate is
indeed a reality, although the theoretically predicted convergence is much slower. We first show that with
fixed number of samples iterates almost surely converge to a random vector and then show that it coincides
with the optimal Q-value function. Then, we obtain the rate of convergence and sample complexity bounds
via a random operator analysis technique based on stochastic dominance.
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The proof technique we use should be of independent interest as it is based on the constructs borrowed from
the celebrated backward coupling scheme for exact simulation (Propp and Wilson 1996; see also Diaconis and
Freedman 1999 for a discussion of the scheme and other related dynamics). In hindsight, this need not be
surprising, as value and Q-value iterations in finite time yield finite horizon values/Q-values looking backward
with the initial guess as the terminal cost.

There is an enormous amount of literature on reinforcement learning for approximate dynamic pro-
gramming, and there is no point in even attempting a bird’s eye view here. We refer the reader instead to the
classic (Bertsekas and Tsitsiklis 1996) and its update in chapters 6 and 7 of Bertsekas (2012). Other related
expositions are Sutton and Barto (1998), Szepesvari (2010), and Powell (2007).

We set up the framework and state the main result in the next section, followed by its proof in Section 3. Section 4
presents rate of convergence analysis, a nonasymptotic sample complexity bound, and its asynchronous and online
extensions. Section 5 presents some simulation results, and Section 6 concludes with pointers to future possibilities.

2. Preliminaries and Main Result

2.1. Markov Decision Process

Consider a Markov decision process (MDP) on a finite state space S and a finite action space A. Let P(A)
denote the space of all probability measures on A. Also given is a transition kernel

p:(s,a,s)eSXAXS— p(sls,a)e[0,1]

satisfying Yy es p(s’[s,a) = 1. Let ¢ : SX A — R, denote the cost function that depends on the state-action pair.

An MDP is a controlled Markov chain {X;} on the set S controlled by an A-valued control process {Z;} such
that P(Xi1 = s|X,, Z,, v <t) = p(s|Xs, Z;). Define IT to be the class of stationary randomized policies: mappings
7: S — P(A) such that n(X}) is the conditional distribution of Z; given {X,, Z,,r < t; X;} for all t. Our objective
is to minimize over all admissible {Z;} the infinite horizon discounted cost E[Z{2, )'c(X;, Z;)] where y € (0,1) is
the discount factor. It is well known that IT contains an optimal policy that minimizes the infinite horizon
discounted cost (Puterman 2005). Also, let £ denote the set of nonstationary policies {o;} with o;: S — P(4),
that is, 04(X;) is the conditional distribution of Z; given {X,,Z,,r < t;X,} for each t.

For any 7t € I, we define the transition probability matrix P™ as

P7(s,s"):= > p(s'ls, a)m(s, a). (1)

acA

We make the following assumption.

Assumption 1. For any © € I1, the Markov chain defined by the transition probability matrix P™ is irreducible and aperiodic.

Remark 1. By Assumption 1, for any n € I, there exists a positive integer r, such that, (P™)(s,s’) > 0,Vs,s’ €S,
where (P™)"7(s,s’) denotes the (s,s’)th element of the matrix (P™)" (Levin et al. 2009, proposition 1.7, p. 8).

Define the optimal value function V*:S — R, as

V(s) = 7111611%1[*3 g{; Yie(Xe, n(Xp)|Xo = 5. (2)
Also define the Bellman operator T : ]R'fl — ]lel as
T(V)(s):= %{An[c(s,a) +y ;p(s s,a)V(s')|. 3)

The Bellman operator is a contraction mapping, that is, ||[T(V) = T(V')|le < 7IIlV = V', and the optimal value
function V* is the unique fixed point of T(:). Given the optimal value function, an optimal policy ©* can be
calculated as (Puterman 2005)

. (4)

7'(s) € arg Iglegl[c(s, a)+y ;p(s ls,a)V*(s")

2.2. Value lteration, Q-Value Iteration

A standard scheme for finding the optimal value function (and hence an optimal policy) is walue iteration. One
starts with an arbitrary function V. At the kth iteration, given the current iterate Vj, we calculate Vi = TV.
Because T(-) is a contraction mapping, by Banach fixed point theorem, Vj, — V™.
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Another way to find the optimal value function is via Q-value iteration. Although this requires more
computation than the value iteration, Q-value iteration is extremely useful in developing learning algorithms
for MDPs.

Define the Q-value operator G: R? — R? as

G(Q)(s,a):=c(s,a) +y > p(s'ls,a) min Q(s", b), )

s’eS

where d = [S||A|. Similar to the Bellman operator T, Q-value operator G is also a contraction mapping, that is,
IG(Q) — G(Q)lleo £ VIIQ = Q'|lee- Let Q* be the unique fixed point of G(:), that is,

Q'(s,a) = c(s,a) +y > p(s'ls, a) min Q(s, b).

s’eS

This Q* is called the optimal Q-value. By the uniqueness of V*, it is clear that V* = minses Q*(s,a). Thus,
given Q*, one can compute V* and hence an optimal policy 7*.

The standard method to compute Q* is Q-value iteration. We start with an arbitrary Qp and then update
Qk+1 = G(Qx). Because of the contraction property of G, Qr — Q* almost surely.

2.3. Empirical Q-Value Ilteration for MDPs

The Bellman operator T and the Q-value operator G require the knowledge of the exact transition kernel p(-|-, ).
In practical applications, these transition probabilities may not be readily available, but it may be possible to
simulate a transition according to any of these probabilities. Without loss of generality, we assume that the
MDP is driven by uniform random noise according to the simulation function

Y :SxSx[0,1] =S such that Pr(y(s,a,&) =5") = p(s'ls,a), (6)

where ¢ is a random variable distributed uniformly in [0, 1]. Using this convention, the Q-value operator can
be written as

G(Q)(s,a):=c(s,a) +y E mbin Q(y(s,a,&),b)|. (7)

In the empirical Q-value iteration (EQVI) algorithm, we replace the expectation in the previous equation with an
empirical estimate. Given a sample of # i.i.d. random variables distributed uniformly in [0, 1], denoted {&;},,
the empirical estimate of E[min, Q(i(s,a,&),b)] is 13, min, Q((s,a, &), b). We summarize our empirical
Q-walue iteration algorithm here.

Algorithm 1: EQVI Algorithm
Input: Qp € R'i, sample size n > 1, maximum iterations kmax. Set counter k = 0.
1. For each (s,a) € S x A, sample n uniformly distributed random variables {&¥(s,a)},, and compute

Qks1(s,a) = c(s,a) +y %i mbin @k(lp(s, a,&(s,a)),b) ).
=1

2. Increment k < k + 1. If k > kyax, STOP. Else, return to Step 1.

We introduce some notation to state our results precisely. Let (Q;, F1,P;) be the probability space of one-
sided infinite sequences w = (wy : k € Z*), where Z" is the set of nonnegative integers. Each element wy is a
vector, wy = (éf(s, a),1<i<n,seS,ae ), where éf(s, a) is a random noise distributed uniformly in [0, 1]. We
assume that Ef (s,a) are i.i.d. Vi, V(s,a) € Sx A and Vk € Z*. E; denotes expectation with respect to measure P;.

Our main result then is the following.

Theorem 1. For a given w € ()y, let Q@) k > 0, be the corresponding Q-value iterates as defined in Algorithm 1. Then,
there exists a random variable Q*(w) such that Qi(w) — Q*(w), w —a.s.

The main idea that we exploit is the fact that (exact) Q-value iteration in finite time is equal to finite horizon
Q-values obtained by looking backward with the initial guess as the terminal cost. More precisely, when the
transition kernels p(:|-,-) are known, the kth iterate Qi of the (exact) Q-value iteration is obtained via the
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iteration Qx = G(Qk-1) (compare with (5)) with an initial guess Qp. One can show that this Qy is equal to Qj,
which is the Q-value obtained by looking backward where

Qi(s,a) =E

I__Zl}(yl+kc(XlI,Z;) + VkQO (X(,),ZE)) |Xl_k =5, Z/—k = gl_

Therefore, rather than showing that the forward iteration Q; converges to the optimal Q-value function Q¥,
one can also establish the convergence of the (exact) Q-value iteration by showing that the backward iterate Q;
converges to Q" almost surely. When the transition kernels are known, this is obviously a convoluted route
because the convergence of the forward iteration Q.1 = G(Qx) is immediate by the contraction property of G.
However, when the transition kernels are unknown, it is not clear if we can directly prove the convergence
of the (simulation-based) forward iteration sequence @k(a)) (given in Algorithm 1 and formalized in Equa-
tion (14)) to the optimal Q-value function Q. To overcome this difficulty, we take the approach mentioned
above and define the (simulation-based) backward iteration sequence Qi(w) (compare with Equation (26))
similar to the Q}, and we rigorously show that Qi(w) = Q(w), Yw (compare with Proposition 2). Then, using an
approach similar to the well-known Propp-Wilson backward simulation algorithm (Propp and Wilson 1996),
we show that Qy (and hence Q) converges to a random variable Q*(w) almost surely (compare with Proposition 1).
We can further establish that the random limit Q*(w) in Theorem 1 is indeed a constant almost surely.

Corollary 1. The empirical Q-value iteration converges to the optimal Q-value function, that is, Qk — Q% as k — oo for any
fixed n.

We also provide a rate of convergence, or a nonasymptotic sample complexity bound. This follows from
methods that had been developed in Haskell et al. (2013) for empirical value and policy iteration, which,
however, only provide a convergence in probability guarantee.

Let Q} be the kth iterate of EQVI when using n samples. Then,

Theorem 2. Given € € (0,1) and 6 €(0,1), fix €, =€/n* and select 61,6, >0 such that 6 + 20, <6 where n* =
[2/(1 —y)]. Select an n such that

()" 1o 2SIl

> =
n > n(e,0) 26; 5,
where k* = maxgex c(s,a)/(1 — y) and select a k such that
k > k(e, 6) = log| ————|.
( ) g(62 [in, min)

Then,
Py (10 - Qll 2 €) <.

Here piymin = min; u, (i), and u, (i) is given by

>('_ >('_ % 1 — Pn
y”(n*): f’l\] K 1/ [JH(N): p,
Pn
() = (1= popt” Y, Vizit 41, N~ 1,
mﬂ—mwﬂWWWW,w=gy
8

2.4. Comparison with Classical Q-Learning

Synchronous variant of the classical Q-learning algorithm for discounted MDPs works as follows (see
Bertsekas and Tsitsiklis 1996, section 5.6). For every state-action pair (s,a) € S X A, we maintain a Q-value
function and use the update rule

Qrs1(s,a) = Qx(s,a) + ax|c(s,a) + v nbrgg Qx((s, a, & (s,a)),b) — Qx(s, )], 8)
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where &f(s,a) is a random noise sampled uniformly from [0,1] and {ai k > 0} is the standard stochastic
approximation step sequence such that 3 ax = co and Ty a7 < co. It can be shown that Qy — Q* almost surely
(Bertsekas and Tsitsiklis 1996). The rate of convergence depends on the sequence {ay, k > 0} (Borkar 2008). In
general, the convergence is very slow.

The empirical Q-value iteration algorithm does not use stochastic approximation and is a nonincremental
scheme. The rate of convergence will depend on the number of noise samples 7.

3. Proof of Theorem 1
In the following, we first formally set the notations for the underlying probability space and define EQVI
iterate Qi using those notations (14). Then we define the forward simulation model for controlled Markov
chains (Equation (19)) and show the finite time coupling property of this simulated chain (Proposition 1). Then
we define the backward simulation model for controlled Markov chain (24). Equipped with these notions, we
proceed to prove Proposition 2. Finally, we will give the proof for the main results Theorem 1 and for
the corollary

Let (Q1, F1,P1) be the probability space of one-sided infinite sequences w such that w = {wy : k € Z*}, where
Z* is the set of nonnegative integers. Each element w; of the sequence is a vector wy = (&X(s,a),1 <
i<n,seS,aeh), where éi.‘(s, a) is a random noise distributed uniformly in [0,1]. We assume that Ef(s, a) are
iid. Vi, ¥(s,a) € Sx A, and Vk € Z*. E; denotes expectation with respect to measure P;.

For each k € Z*, 0, denotes the left shift operator, that is,

Orw :={weyx : T = 0} 9)

Also, let T be the projection operator such that ['(6xw) = wy, Yk € Z*, Yo € (. Recall that 1 is the simulation
function defined in Equation (6) such that

Py (y(s,a, ks, a)) =) = p(s'ls,a), Vi,k. (10)

Using 1, for each w € O, we define a sequence of empirical transition kernels p(w) = (Pr(wk))iso as
-, 1Z ,
p(s'ls,a) = EZI{IP(S,Q, é;‘(s,a)) =5} (11)
i=1

We dropped w; from the previous definition for ease of notation. For any 7t € I'l, we also define the transition
probability matrix P} as

P(s,s):= >\ Pe(s'ls, a)me(s, a). (12)

achA

The rows of 1'5,’(T are independent because of the independence assumption on the elements of the vector wy.
Also, P are independent Vk. R
We define the empirical Q-value operator G : Q) x R — R? as

G(Okw, Q)(5,):= G(T(O), Q)(5,2)
=c(s,a) + y%é} mbin Q(y(s,a, ks, a)),b)
=c(s,a)+y ;ﬁk(s’ls, a) min Q(s’, b). (13)
Then, the empirical Q-value iteration given in Algorithm 1 can be succinctly represented as
Qunt (@) = G610, Qul@)). (14)

We drop w from the notation of Q« whenever it is not necessary.
From Equations (10) and (13), for any fixed Q,

E, [E;(ekw, Q)] - G(Q), Vke 7", (15)

where G is the Q-value operator defined in Equation (5).
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We define another probability space (Q, = Q) X ), F»,P,) of one-sided infinite sequences p such that
p={(vk, ),k € Z*}. Here v ={v: k€ Z*} € Q. Each element v, of the sequence v is a [S||A|-dimensional
vector, v = (vk(s,a),s € S,a € A) where vi(s,a) is a random variable distributed uniformly in [0, 1]. We assume
that vi(s,a) are i.id. V(s,a) € Sx A and Vk € Z*. Likewise, let ¥ = {i : k € Z*} € Q. Each element ¥} of the
sequence 7 is a [S|-dimensional vector, 7, = (7x(s), s € S), where ¥(s) is a random variable distributed uniformly
in [0,1]. We assume that ¥(s) are i.i.d., independent of v, Vs € S and Vk € Z*. E, denotes the expectation with
respect to P,. Let P be the product measure, P = P; ® , and let E denote the expectation with respect to P.

For each w € (), that is, for each sequence of transition kernels p(w) = (Px(wk))iso, We define a sequence of
simulation functions (¢, = (¢f, $?))ks0 as

dr: SXAXQ,—S, (16)
qbi: Sx Q) — A, (17)

such that
Po (¢ (s,a, vi(s, a)) = ') = pi(s'ls, a), (18)

and ¢? is the (randomized) control strategy that maps the output of the function ¢} to an action space-valued
random variable ¢ (i (s, a, vi(s,a)), 7k(Pi(s,a, vi(s,a)))). We note that the control strategy can be identified with
an element 7, respectively, o, of the set Il or X, when, respectively,

Ps(r(s, 7(s)) = a) = 7e(s,a) or Pa(Pr(s, 7(s)) = a) = o(s, a).

In such a case, we write ¢? ~ 7t or ¢? ~ oy as the case may be.
For k; > ki, define the composition function CDIJE as

q)liif =1 0P, 0O Py (19)

Given an w € (,v € (), and an initial condition (sp,a9), we can simulate an MDP with state-action sequence
(Xi(w, v), Zi(w,v))so as follows:

(Xi(w,v), Zi(w,v)) = Di(so,a0) and (Xes1(, V), Zis1 (@, V) = ¢, © Df(s0, a0)- (20)

We call this simulation method as forward simulation. The dependence on the control strategy ¢? is implicit and
is not used in the notation. Whenever not necessary, we also drop @ and v from the notation and denote the
simulated chain by (Xj, Zx). Because

Po( X1 Xim, Zim, m < k) = Pr( X1 1 Xk, Zie),

the sequence (Xx(w, v))iso is a controlled Markov chain.
Consider two controlled Markov chains X,l(a), V), X,%(a)’,v’),k > ko, with different initial conditions, defined
on (AX Y, FxF',PxP) where (O, F/,P’) is another copy of (Q, F,P). Define the coupling time, T » +, for

w vV
W* = (W, @),V = (v,V), as T (b, 53) =

min{m >0: X,l0+m(a),v) = X,%Mm(a)',v’), X,%O(a), V) = sé,X,%o(a)’,v’) = sg}. (21)

We prove that the expected value of the coupling time is finite.

Proposition 1. Let (Xi(w, V), Z} sk, (X3 (@', V'), Z2)isi, be two sequences of state-action pairs for an MDP simulated
according to (20) using an arbitrary control strategy i ~ ox. Let T,  be the coupling time as defined in Equation (21). Then,

= 12 12
E[’Iw*,v* (50,50)] < oo, Vs,s5€S.

Proof is given in the Appendix.

We now consider the backward simulation of an MDP. This is similar to the coupling from the past idea
introduced in Propp and Wilson (1996). For us, this is a proof technique, a thought experiment, and not the
actual algorithm.
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Given w € (O, v € (), the sequence of simulation functions (¢, = (¢}, ¢?)), a ko > 0, and an initial condition
f(_ko (w,v) = sq, Z_ko (w,v) = ap, we simulate a controlled Markov chain (F)v(m(a),v))gq:_ko of length ky + 1 using the
backward simulation. As a first step, we do an offline computation of all possible simulation trajectories
as follows:

1. Input ky. Initialize m = —1.

2. Compute qbl (s,a,v_m(s,0)) =P (s,a,v_u(s,a)), ¥(s,a) €S X A.

3. me—m-—1. If m < =k, stop Else, return to Step 2.

Then we simulate (X,,(w,v))° m=—ko+1 @S

X & (~m 1, Zm=1,V—(m- 1)(Xm 1/Zm—1))/ (22)
A N N ) o

starting from the initial condition f(_ko (w,v) = so,z_ko (w,v) = ag. We define the composition function as
—ko % 5—1 o0 a—ko+2 ° €~b—k0+1/ (24)

where @, = (9}, 9%

Recall that (20) in the forward simulation startmg from k =0, we go from a path of length kj to a path of
length ko +1 by taking the composition ¢, o CD (S0,40). In backward simulation, we do this by taking the
composition P° “ko+1 © Py, (S0, a0). Therefore, forward simulation is done by forward composition of simulation
functions, whereas the backward simulation is done by backward composition of the simulation functions.
Furthermore, in forward simulation, we can successively generate consecutive states of a single controlled
Markov chain trajectory one transition at a time, whereas in backward simulation, one is obliged to generate
one transition per state and any trajectory from —ky to 0 has to be traced out of this collection by choosing
contiguous state transitions at each successive time. This feature is familiar from the Propp-Wilson backward
simulation algorithm mentioned previously.

In the following, we fix the control strategy ¢? as

¢}(s) = argminQy(s, ), Vs, (25)

where ék is defined as

Qi(s,a):=E,

-1
55 4e(X,7) + 70 (o Za) Kok = 5,74 = ] 20
I=—k

and éo(-, -) = h(-,-) for any bounded function i : S X A — R.. The expectation in this equation is with respect to
the measure P, for a given w (i.e., for a given sequence of transition kernels (pi(w))iso)-

We now show an important connection between the Qy iterate defined previously and the empirical Q-value
iterate Q.

Proposition 2. Let Qo(-,-) = Qo(-,-) = h(-, ) for any bounded function h: S x A — R,. Then, O = Ok forall k > 0.
We prove this by induction. First, by the definition of Ok given in Equation (14), for all (s,a) € SX A, we get

Quls,a) = h(s,a),
O1(s,a) = c(s,a) +y Z po(s’ls, a) min h(s’,b).

Now, by the definition in Equation (26),

Qos, a) = [ (xo, zo) Xo = 5,70 = a] h(s, a),
él(S/ﬂ) = Ez[C(X—1,2_1) +y éo (5(0, Zo)|}~(_1 =35, 2_1 = a]

=c(s,a) + VEZ[QO (% (5(—1,2—1,1/1), Zo) X1=52721= 11],
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where ZO = arg min @0(¢0(§_1,Z_1,v1), -). Then,
Qi(s,a) =c(s,a)+y ; po(s’ls, a) mbm h(s’, b),

where we used the fact that éo =h.
Now, assume that Q,, = Q,, for all m <k —1. Then,

—_~ -1 ~ o~ ~ —~ —~
Qk(s,a) = Ep| >y e (Xl, Zl) +9%Qo (XO,ZO)

=k

f(_k =S, z_k = al

_1 _ . . ~ _ . .
= c(s,a)+Ea| > ye (Xl, zl) +1+Q0 (XO,ZO) X =57, = ul
I=—k+1
=c(s,a)
_1 . . . . _ .
+y Ey| D) Vl+k_1C(Xz, Zl) +751Q0 (XO/ZO) Xy=s2y= al
I=—k+1

=c(s,a) +y Ez[ékl (i—kﬂ/z—kﬂ)

;(v,k =S5, Z,k = a]

=c(s,a)+y Ez[ék—l (CP_kH (;{—krz—krvk)/z—kﬂ)

y(_k = S,z_k = a],

where Z_jy1 = argmin Q1 (¢_y.,, Xk, Zg, Vi), - ).
Then,

Q(s,0) = c(5,0) +y X Per(s'ls, ) min Qe (s, b)
-

= o(s,0) + 7 3 Piaa(5'ls, ) min Qi (57, )
s/

= Qi(s,a).
Now we show the following results.

Proposition 3. For w € O, v € (), we trace out two MDPs with state-action sequences

(f(m (w,v), Zm (w, v)) i}k, (3'(;"((4), V), Z;n (w, 1/))

0
7
m=—k

with initial conditions
(Xok(@, ), Zsl@,v) = 0, (Xplw@,v), Z(@,v)) = ).

These chains couple with probability 1 as k — oo.

By construction, two Markov chain paths initiated at time —k traced from the backward simulation in
forward time beginning at —k will merge once they hit a common state, that is, get coupled (Propp and Wilson

1996). Let ?ﬁw be the time after which these chains couple, that is, X_; ik = X poa and X_jy # }~(’_k ,; for all
0 <1<7 . Because these chains are of finite length (from —k to 0), we may need to define the value of ™,

w,v*
arbitrarily if they don’t couple during this time.

To overcome this, we let these chains run to infinity. This can be done without loss of generality as follows.
For —k < m <0, simulate the chains according to the backward simulation method specified by (22) ad (23).

Suppose the i.i.d. random vectors v,, are generated for all —co < m < co. For m > 0, continue the simulation to
generate chains (X, (w, ), Zm(w, 1)1, (X (0, 1), Z, (@, 4))py as

X = (P,ln_;.k (im—ll zm—l; 1/7(mfl)) ’ (27)

Zon = 92X ). (28)
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It is easy to see that the 7% , has the same statistical properties as the coupling time defined in Equation (21).
Therefore, by Proposition 1, E[7F, ] < c. Now,

ZIP’ ZT(M_ [ ﬁw]<00.

n>1

w, V]

Also, it is easy to see that T¥, s are identically distributed Vk. Therefore,

D PQRT, = n) = > PQ2T), 2 1) < o,

n>1 n>1

which implies

ZP(F’EZ),V -n> —Z) < 0.

n>1

Then, by the Borel-Cantelli lemma, 7/ , —n — —oo, (w, v)-a.s. Thus, the chains will couple with probability 1.
We shall need the following lemma of Blackwell and Dubins (Blackwell and Dubins 1962; Borkar 1995,
chapter 3, theorem 3.3.8).

Lemma 1 (Blackwell and Dubins (1962)). Let Yy, k =1,2,..., co be real random variables on a probability space (1, F1,P1)
such that Y — Yo a.s. and E[sup, |Yi|] < co. Let {F} be a family of subo-fields of F that is either increasing or decreasing,
with Foo = Vi Fy or (W Fy accordingly. Then, limy ;o E[Yi|F;] = E[Yeo|F ] a.s. and in L.

We now show that Qx(w) converges to a random variable Q*(w) almost surely. By the previous proposition,
this will imply the almost sure convergence of Qx to Q*(w).

We now give the proof of Theorem 1.

Consider the backward simulation described previously. For w € (;,v € (), we trace out two MDPs with
state-action sequences:

(ot o, (R Zuon]_,

with initial conditions
()~(_k(a), V), Z (@, v)) = (s,a), ()~(’_k(a), ), Z (@, v)) - (s,d).

By construction, two Markov chain paths initiated at time —k traced from the backward simulation but in

forward time beginning at —k will merge once they hit a common state, that is, get coupled (Propp and Wilson

1996). Decrease —k until all paths initiated at —k couple. Once they couple, they follow the same sample path.
Now, by construction,

(—k+k, ~1)A(-1)

S5 ) (5 7)
+ )/kMﬁ"" (éo (;{0, zo) - éo (X(/)/ ZE)))

Qu(s,a) — Qu(s',a) = B,

‘(f(_k, Z_k) = (s,a), | X'}, Z',

= (s’,a’)l.
Because the chains will couple with probability 1 (according to Proposition 3), the right-hand side (RHS) of
this equation will converge to a random variable R(w)(s,a,s’,a"), w-a.s. as k — oo, that is,

Re(w)(s,a,s',a'):= Qk(s,a) — Qk(s’, @) = R(w)(s,a,5',d'), @ —a.s. (29)

We revert to the forward time picture henceforth. Now,

Qrr(5,a) = cls,0) +y 3 pelsls, a) min Qu(s”, b)

cls,)+y SPels'ls,@) min(Qu(s',b) - Quls,)) +7 Quls,a)

c(s,a) +y > Pe(s'ls, ) min Re(@)(s, b, 5,0) +y Qe(s, a).
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Because p; depends only on w, we can define another random variable R} (w)(s,a) such that
Ri(w)(s,a):= > pi(s'ls, ) min Ry(w)(s",b,s, ),
=
= E|min Re(@)(, b, 5, )| F1 |,

where Fj_, :=o(£i-‘/ (s,a),s€S,aeA,1<i<nk’' <k). Because Ry(w) — R(w), w —a.s., it follows from the preceding
lemma that there exists another random variable R*(w) such that

Rj(w) = R¥(w), w —a.s.

Then,
Qus1(s,2) = c(s,0) +y Ri()(s,a) + 7 Qi(s,a)
=c(s,a) +y Ri(w)(s,a) +y c(s,a) + V2 Ri_;(w)(s,a) + 2 Qk_l(s, a)
k k _
=c(s,a) > Y +y DLV Ri(@)(s,a) + 1 Qols, a).
1=0 1=0
Clearly,

Quls,1) = Q“(w):= (Cl(s_'ay)) + VR(1(?)S, :

, @—as.
Next, we provide a proof of Corollary 1.

Let (Ql,]-" 1,IP1) be the probability space as defined before. By F) denote G(Qm,m < k). From Proposition 1,
Qk(a)) — Q (w), @ —a.s., and hence, Qk(a)) Qk_l(w) — 0. Taking conditional expectation and using Lemma 1
we get

E[@k(w)|~7:k—1] ~ Qk1(w) — 0.
Because @k(w) = G(Qk,la), Qk,l(w)), from Equation (15),
E[@k(w)|fk—1] = G(@k—1(w)),

where G is the Q-value operator defined in Equation (5). This gives G((AQ;H (w)) — @k,l (w) — 0. Then, by the
continuity of G, G(Q*(w)) = Q*(w), which implies that Q*(w) is indeed equal to the optimal Q-function Q*, by
the uniqueness of the fixed point of G.

4. Rate of Convergence and Asynchronous EQVI

In this section, we now provide a rate of convergence or a nonasymptotic sample complexity bound. This
follows from methods that had been developed in Haskell et al. (2013) for empirical value and policy iteration,
which, however, only provide a convergence in probability guarantee. In the second section, we provide

an argument of why asynchronous EQVI will also work. This also uses methods developed earlier in
Haskell et al. (2013).

4.1. Rate of Convergence
One notable observation about Theorem 1 is that the almost sure convergence of the EQVI iterate holds for any 7.
However, the rate of convergence will and does depend on 7, and this is confirmed by the simulation results
(Section 5). Although the convergence guarantee, Qr — Q* is a strong result, rate of convergence is an
important consideration in practical applications. Unfortunately, the coupling argument used in the proof of
Theorem 1 does not yield a rate of convergence. However, we note that the exact Q-value operator G(-) is a
contraction, and its empirical variant G() is a random contraction operator.

In Haskell et al. (2013), a technique for analyzing the rate of convergence of a random sequence resulting
from iteration of a random contraction operator was developed. This was used to show the probabilistic
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convergence of empirical value iteration, and explicit bounds were given on the number of simulations
samples n and the number of iterations k that are needed to get an e-optimal value function with a probability
greater than (1 — 6). We now argue that the exact Q-value operator G(-) is a contraction, its empirical variants G(-)
satisfy assumptions 4.1-4.4 in Haskell et al. (2013), and thus a very similar methodology can be used in
establishing convergence in probability of the iterates of EQVI (weaker than Theorem 1 in this paper).
However, more importantly, it yields a rate of convergence and a nonasymptotic sample complexity result;
that is, for any given € > 0,6 > 0, we give an explicit bound on the number of simulation samples n and the
number of iterations k that are needed to get an € optimal Q-value with probability greater that (1 -0).
Assumptions. The classical operator G and a sequence of random operators {G,} satisfy the following:

4.1. P(limy,— e ||Gnq Gqll>€) =0Ve >0 and Yq € RISl Also G has a (possibly nonunique) fixed point g*
such that Gg* = 4".

4.2. There exists a k* < oo such that [|3k|| < ¥* almost surely for all k >0, n > 1. Also, ||7*|| < x*.

43.IGg—q*1l < yllg — 7|l for all g € RS,

4.4. There is a sequence {p,},s; such that

P(IGq - Cudll < &) > pu(e)

and p,(€) T1 as n — oo for all v € B x(0), Ve > 0.

It can be shown that the exact Q-value operator G and its empirical variants G, (where the index n is for
number of samples) satisfy the previous assumptions. It can be argued easily by using strong law of large
numbers that Assumption 4.1 is satisfied. Assumption 4.2 is satisfied easily when rewards are bounded.
Assumption 4.3 is satisfied because G is a contraction operator. It can easily be checked that Assumption 4.4 is
satisfied with

pu = 1= 2]lafe (W ((5)), (30)

This implies convergence in probability of the Q-value iterates (weaker than in the previous section) to the
optimal Q-value. Now, following arguments and construction similar to section 5.1 in Haskell et al. (2013), we
can derive a nonasymptotic sample complexity bound given in Theorem 2.

Because the details of the proofs are the same as in Haskell et al. (2013), we only give a short outline here.
Readers are referred to Haskell et al. (2013) for details. The proof is based on the idea of constructing a
sequence of Markov chains that stochastically dominate a discrete error process. More precisely, we are
interested in the rate of convergence of the sequence {||Qk - Q*,k >0} to 0. However, because the error
process {||Qk — Q*|l,k > 0} is continuous valued, we first discretize it and get a discrete error process now
defined on nonnegative integers. Unfortunately, this process is not Markovian. Hence, we construct a Markov
chain {Y?,k > 0} that has the following structure:

(31)

yi = max{Y” 1 1°},  with probability p,,
TN, with probabilityl — p,.

Note that p, is close to 1 for sufficiently large n. The Markov chain {Y}, k > 0} will either move one unit closer
to zero until it reaches n*, or it will move (as far away from zero as possible) to N* (and hence bounds are very
conservative). We can show that this Markov chain stochastically dominates the discrete error process.
Furthermore, as n goes to infinity, the invariant distribution of the Markov chain will concentrate at zero,
which establishes convergence of the error process {||Qk —Q*|l,k > 0} to zero in probability. Now the mixing
rate of the Markov chain gives the rate of convergence and the sample complexity bound for EQVI in the
previous theorem.

4.2. Asynchronous EQVI

We now show that just as for empirical value iteration, the asynchronous version of EQVI works as well. That
is, the Q-value function estimates converge in probability even when the updates are asynchronous, including
in the online case when updates are done for one state at a time. We consider each state to be visited at least
once to complete a full cycle, and the time for a full cycle could be random.
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Let (0, ax)iso be any infinite sequence of states and actions. This sequence (0, & )iso may be deterministic or
stochastic, and it may even depend online on the Q-value function updates. For shorthand, denote z = (o, ).
For any z € S X A, we define the asynchronous Q-value operator G, as

G=Ql(s,a) = {“‘7' a) + yE[minye, Q¢(0, @, &),)], (s,0) = =

Q(s,a), otherwise.

Also define its empirical variant with n samples as

[am(w)@](s’ 2 = c(o,a) + 31'[2:11 Minpes @(1/1(0, a,&),b), (s,a) =z,

Q(s, a), otherwise.

The operators G, and éz,n only update the Q-value function for state s and action a, and leaves the other
estimates unchanged. This will then produce a sequence of updates {Qx} and {Q}}, respectively, starting from
some initial seed Q.

Suppose that in some finite number of steps Kj, each state-action pair is visited at least once. Define

G:=G;,, GGz,

which is a contraction with constant y. It is well known (Borkar 2008) that if each state-action pair is visited
infinitely often, the sequence produced by asynchrononus Q-value iteration, {Qx} will converge to Q*, the
optimal Q-value.

Now define the time of (m + 1)th full update

K1 := inf{k ck>K,, (zi)ff:,(m 41 includes every state-action pair in S X A},

with Ky = 0. We can now give a slightly modified stochastic dominance argument to show that asynchronous
EVI will converge in a probabilistic sense by checking the progress of the algorithm at these hitting times, that
is, we look at the sequence {Q} },,50- In the simplest update scheme, each state-action pair is updated in turn
and the length of a full update cycle is [S|[A].

Now, analogous to G, we can define an operator G,,

—~

—~ —~ —~
Gy = GZK1 PR Gzl,nGZO,n-

Each random operator in this iteration introduces an error €/[S||A| compared with the corresponding non-
random operator. This can be ensured by picking n large enough such that

P{IC-1Q - G.QIl > e/[Si|al} < 2e2(/0ID WY,

where «* is a constant that can be computed. This can be used now to guarantee that P{G,Q - G.Q|| > €} is
upper bounded by

pu = 2|S] |A] 2 (€ OBIADY ni@ )

Now, the stochastic dominance argument developed in Haskell et al. (2013) can be applied to obtain the
following result.

Theorem 3. If each state-action pair is visited in turn infinitely often, the iterates of asynchronous EQVI,
Q! — Q" in probability
as n,k — oo.

Remark 2. We note that the online version of asynchronous EQVI is like the popular Q-learning algorithm used for
reinforcement learning. As we see in the numerical results in the next section, online EQVI has a much faster
convergence than Q-learning, although the theoretical guarantees are weaker, that is, convergence in probability
for EQVI and almost sure for Q-learning.
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5. Numerical Results
In this section, we show some numerical results comparing the classical Q-Learning (QL) algorithm (given in
Equation (8)) with our EQVI. We generate a random MDP, with [S| = 500 and |A| = 10, where the transition
matrix P and the cost c¢(s,a) are generated randomly. We plot relative error e :=||Qr — Q*[|/||Q* versus the
number of iterations. The synchronous version of QL was used in which we used more than one simulation
samples and updated all state-action pairs at the same time. R

We can represent the update equations of both QL and EQVI using the operator G ((13) and (8))

QL: Qi = (1 - a) Qi + G010, Q). (32)

EQVI: Qun = G(0kw, Q). (33)

Therefore, both EQVI and QL can be run using the same MatLab code. For EQVI, set a; = 1, Vk. This does not
make EQVI a stochastic approximation scheme because it does not satisfy the step-size requirement.

As you can see from Figure 1, the rate of decay of relative error is way faster in EQVI (and close to exact
QVI) compared with synchronous QL. In fact, to reach 5% relative error, QVI takes about 30 iterations, and
EQVI takes just a bit more (about 35), whereas synchronous QL takes more than 300. Thus, EQVI promises at
least a 10 times speedup over synchronous QL. In fact, in about 35 iterations, synchronous QL has a 50%
relative error. The relative error has been estimated from 50 simulation runs, and the confidence intervals are
very tight. As we take more samples per iteration, we start to approach performance of exact QVI.

Figure 2 shows asynchronous EQVI and QL for a random MDP with 500 states and 10 actions wherein state-
action pairs were chosen randomly in each iteration. As can be seen, exact QVI and EQVI get to within 5%
relative error in about 500 iterations (quite remarkable because there are 5,000 state-action pairs), whereas QL
in 500 iterations has a 90% relative error. In fact, (asynchronous) QL is so slow that even after 10,000 iterations,
the relative error is still about 50%. As before, the relative error has been estimated from 50 simulation runs,
and the confidence intervals are very tight.

From these simulations. it is clear that EQVI promises significantly faster performance than Q-learning in
both synchronous and asynchronous settings.

Remark 3. As mentioned previously, we get a very fast convergence with EQVI to a ballpark estimate but
then an extremely slow (in fact, imperceptible in the given time frame) movement to the exact value as
guaranteed by theory. To get some intuition about why, consider the uncontrolled case. Then, the iterations
are of the form

Q1 = GQy,

Figure 1. Comparison of Synchronous Exact QVI, EQVI, and QL for a 500 State and 10 Action Random MDP
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Figure 2. Comparison of Asynchronous Exact QVI, EQVI, and QL for a 500 State and 10 Action Random MDP with Multiple
Samples in Each Step
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where G is a random affine contraction. This may further be written as
Qust = GQi + My = AQc + b+ My,

where é(x) = Ax + b for suitably defined A, b is a deterministic affine contraction and {M;}, My := éQk - éQk, a
martingale difference sequence. Note that A in our case is ) times a stochastic matrix, hence a stable ma-
trix. Then

k-1 k-1
Qr = AFQo + > AF ™Mb+ > AFIM,.
m=0 j=0

The first term on the right decays to zero, the second converges to the desired limit, and the third represents
noise. If {M;} were i.i.d., this would converge to a stationary process and not to zero. In our case, it does
converge to zero as implicit in the proof of Theorem 1. In case of stochastic approximation, My would be
weighted by a square-summable step size that accelerates this convergence to zero. However, in our case, in
the absence of such additional damping, the fluctuations can be expected to diminish only very slowly. On the
other hand, the decay of dependence on initial condition and convergence of the middle term to the desired
limit are no longer incremental as in the stochastic approximation counterpart and therefore very rapid. This is
in tune with the well-known bias-variance tradeoff and not surprising. This does, however, suggest that a
hybrid scheme that runs empirical Q-value iteration initially and then switches to conventional Q-learning will
have the best of both the worlds if a faster almost sure convergence is needed. The performance of our scheme
improves rapidly with increasing n. For practical problems, using EQVI until the relative error is below some
threshold (e.g., 1%-5%) may be enough.

6. Conclusions

We presented a new (offline and online) Q-value iteration algorithm for discounted-cost MDPs. We have
rigorously established the convergence of this algorithm to the desired limit with probability 1. Unlike the
classical learning schemes for MDPs such as Q-learning and actor-critic algorithms, our algorithm or analysis
does not use a stochastic approximation method and is a nonincremental scheme. Preliminary experimental
results suggest a faster rate of convergence for our algorithm than currently popularly used algorithms.
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A particularly interesting and useful aspect is whether distributed and asynchronous implementation of
EQVI will work. We have been able to show that for the special case where each state-action pair is updated in
turn. Moreover, the convergence guarantee is only probabilistic. It would be useful to show that even with
randomly picked state-action pairs, as long as each one of them is picked infinitely often, we will get
convergence and in the stronger almost sure sense (as for our main result for the synchronous case.)

Another useful direction will be to show that this would work with infinite (even continuous) state and
action spaces. This would then make such an algorithm useful even for partially observed MDP problems.
This will require combining current methods with function approximation in an appropriate space (e.g., a
reproducing kernel Hilbert space).

Another useful direction would be the average reward case. Average reward MDPs are typically hard to
analyze because the dynamic programming operator for average reward MDP is not a contraction mapping.
There are, however, provably convergent Q-learning and actor-critic algorithms for average reward MDPs
because of the powerful ODE approach to stochastic approximation (Konda and Borkar 1999, Abounadi et al.
2001). It would be interesting to see if our algorithm works for learning in MDPs with average re-
ward criterion.

These are directions for future research.

Appendix. Proof of Proposition 1
We present this as a series of lemmas.
Given an initial time ko and states so,s” € S, we define the hitting time 7, of the controlled Markov chain (Xi(w, V)i, as

Ta(50,8") = min{m > 0| Xy, om(w,v) = ¢, Xg, (@, v) = 50} (A1)

We first show that the expected value of the hitting time is finite when the chain is controlled by a stationary strategy,
that is, ¢ ~ m € I1, Vk.

Lemma A.1. Let (Xi(w, V), Zt)ysk, be the sequence of state-action pairs for the MDP simulated according to (20) using a stationary control
strategy ¢ ~ m € I, Vk. Let ., be the hitting time as defined in Equation (A.1). Then,

E[tw(s0,5")] < 00, Vso,8" €.

Consider a sequence of states, (5k0+j);:01 with sg, = sp and s+, = " such that P™(sg,,Sk,+1) - - P™(Sky+r—1,Sko+r) > 0. By Remark 1,
such a sequence of states exists. Furthermore, r can be picked independent of the choice of sp,s" and we assume that it
is so. Let

W = W (51,4 ) 7= PR (k0 Sk041) -+ PRt (k71 St0)-
Using (10)—(12), E; [13,7}] = P™ Vk. Because 13,7} are i.i.d.,
Eq[W™] = P™(sk,, Sky+1) - - P™ (Skg4r—1, Skor) > 0.
Therefore, there exist € > 0,0 > 0 such that P;(W™ > ¢€) > 6. Then,
P(T,v(80,5") <7) 2 Pa(Tw(50,8") S 1fW™ > €) Py(W™ > €) > €9,
because Pa(14,(s0,5") < H{W™) > Po(Xiy1r = 8", X, = 50|W™) > W™. Therefore,
P(t4,(S0,8") > 1) < (1-€0).

Because of the ii.d. nature of w and the Markov property of Xi(w,v), it is clear that the previous probability does not
depend on kg, and hence, for any k >0,

P(T(s,8') > kr) < (1—ed).
Then, E[1,,(5,5)] = D P(Tau(s,s) > t) < D 1P(Teu(s,s") > kr)
>0 >0
<r (1 -ed)< .
0

We next show that the expected value of the coupling time is finite when the chain is controlled by a stationary strategy,
that is, ¢? ~ m € I, Vk.
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Lemma A.2. Let (X{(w, ), Z})isp, (XH@' V'), Z2 )i, be two sequences of state-action pairs for an MDP simulated according to (20)
using a stationary control strategy ¢i ~ m € I1,Vk. Let T+ + be the coupling time as defined in Equation (21). Then,

12 12
E[Tm* (50, so)] < 00, Vsp, 55 € S.
; 1oy 2y dhol =gl 2 =2 —g =
Consider two sequences of states, (s ,;)i_g and (sj ;)i with s; =s, si =G, 54, = i, =5, for some s €S such that
(el o1 [ o1 1
P (Sk0/5k0+1) - P (sk0+,_1,sk0+,) >0, and

T2 &2 T [ o2 2
p (Sk(]’sk0+1) P (Skg+r—1fsku+r) > 0.

By Remark 1, such (s;, +j)j=0 and (s3, +)j=0 exist. Using, by abuse of notation, some common notation for entities defined on
the two copies of (Q, F,P), let

T _ AT 1 r T 2 A | D 1 1
Wi =Wy ((5k0+j)/,:0) =Py (SkofskoJrl) g (Sk0+r—1lsk0+r)r
7 _wwrl(2 \ |_pr(2 2 Bn 2 2
W7 =Wj] ((Sk0+j)/:0) =Py (Sk0/5k0+1) “ P (Sk0+r—1'sk0+r)'
As in the proof of Lemma A.1,

EA[ W]

T 7 [ 1 1

p (Sko Sko+1) P (Sk0+r—1fsk0+r) >0,
T 7 [ o2 2

p (Sko Sk0+1) P (5k0+r71/5k(,+r) > 0.

Therefore, there exist € > 0,0 > 0 such that P1(W] > €) > 6 and P;(W} > €) > 6. Moreover, because of the independence of
k0+](sk0+jlskg+]+l) and Pk0+](skg+]'sk0+]+1)

Eq[WF]

P (WS > €, Wy >¢) > &

Also,

Py(X)o, = XPo,, XL, = s, XE, = WS, WE) = WIWE.

Then, by an argument analogous to that of Lemma A.1, we have

@,V

IP(T « +(s5,50) < r) > Py (Tw (55, 55) < HWT > € WJ > €)PL (W] > e, W] >¢)
> e26?,
where the €,6 may be chosen independent of the choice of s},s3. Hence,
P(’fw*/v* (s(l,,s%) > r) < (1- 6262).

Now the same arguments as in the proof of Lemma A.1 can be applied to get the desired conclusion.

We now extend the result of Lemmas A.1 and A.2 to nonstationary control strategies. For that, we use the following
result from Borkar (1991) for a homogeneous MDP defined by the original transition kernel p(-|-,-). We include the proof for
completeness.

Lemma A.3. (Borkar 1991, lemma 1.1, p. 42). Let (X, Zx), k > ko be the sequence of state-action pairs corresponding to the homogeneous
MDP defined by an arbitrary control strategy o € ¥ and the transition kernel p(-|-,-). Then, there exist integer r* and € > 0 such that

P(t(s,s')>7") < 1—¢, Vs, €S.

Suppose not. Then, there exists a sequence of controlled Markov chains {X{,k >k}, « =1,2,... governed by control
strategies {0f,t > ko} (with the corresponding control sequences {Z},k > ky}) such that the following holds: If 7%(s,s’) :=
min{k > 0[X} ,, =", X} =s}, then

1
P(t%(s,s") > a) > 1 @ > 1.

Because the state and action spaces are finite, the laws of {(X{, Zf}), k > ko}, @ > 1 are tight. By dropping to a subsequence if
necessary and invoking Skorohod’s theorem, we may assume that these chains are defined on a common probability space,



Kalathil, Borkar, and Jain: Empirical Q-Value lIteration
Stochastic Systems, Articles in Advance, pp. 1-18, © 2020 The Author(s) 17

and there exists a controlled Markov chain {X;°, k > ko} governed by controls Z;°, k > ko, corresponding to a control strategy
0% with Xp© =5, such that (X{, Z})iso = (X7, Zp ks a.s. Because

P(t%(s,s') > j) = E

j
]‘[H{X,@*ﬂ+k # s’}, at=12,...,
k=1
a straightforward limiting argument leads to
(e8] ’ 1
Pr(t (s,s)>a)>1—a, a>1,

for t(s,s’) := min{k > 0[X;>,; = &', X;> = s}. Then, 7 = oo a.s. This is possible only if there exists a nonempty subset H of

S\ {s’} such that for each i € H, maxygy minges p(k|i,a) = 0. Let a; be the action at which the above minimum is achieved.

Then the chain starting at H and governed by a stationary control strategy 7 such that 7t(i) = a; never leaves H. This

contradicts Assumption 1 that under any stationary control strategy, S is irreducible. Thus, the given statement must hold.
Now we extend the result of Lemma A.l to nonstationary control strategies.

Lemma A.4. Let (Xy(w, V), Zi)isy, be the sequence of state-action pairs for the MDP simulated according to (20) using an arbitrary control
strategy ¢,§ = oy, Vk. Let 1, be the hitting time as defined in Equation (A.1). Then,

]E[T(U,V(SO/ S/)] < 0o, VSo, s’ €S.

The proof is similar to that of Lemma A.1. By Lemma A.3, there exists a j*,0 < j* < * and a sequence of states, (skoﬂ')j;()/
with s =sg and sy = 5" such that
Po*1 (s, Skye1) * P70 (Sky4r-1, Ske4r) > 0 where P% is defined as in (1) by replacing 7 with o;. Let

W7 = W“((Skm)f;o) = P (St k1) Pt (Styert, Sty )

where P’ is defined as in (12) by replacing 7 with ox. As in the proof of Lemma A.1, E[ﬁzk ] = P%, Vk and because ﬁ,’fk are
independent Vk,

El[W“] = P+ (Skorskn+1) - PRo+r (skn+f—1’skn+f”) > 0.
Then, there exists an € > 0,6 > 0 such that P;(W? > €) > 6. Then, as in the proof of Lemma A.1,
P(Twy(s0,8) > 1) < (1-€8), and E[7,,(s0,5")] < 0.

Now, the proof of Proposition 1 is straightforward by combining the proofs of Lemmas A.2 and A.4.
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