
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 1, JANUARY 2020 115

A Universal Empirical Dynamic Programming
Algorithm for Continuous State MDPs

William B. Haskell , Rahul Jain , Hiteshi Sharma , and Pengqian Yu

Abstract—We propose universal randomized function
approximation-based empirical value learning (EVL) algo-
rithms for Markov decision processes. The “empirical” na-
ture comes from each iteration being done empirically from
samples available from simulations of the next state. This
makes the Bellman operator a random operator. A paramet-
ric and a nonparametric method for function approximation
using a parametric function space and a reproducing ker-
nel Hilbert space respectively are then combined with EVL.
Both function spaces have the universal function approxi-
mation property. Basis functions are picked randomly. Con-
vergence analysis is performed using a random operator
framework with techniques from the theory of stochastic
dominance. Finite time sample complexity bounds are de-
rived for both universal approximate dynamic programming
algorithms. Numerical experiments support the versatility
and computational tractability of this approach.

Index Terms—Continuous state-space Markov decision
processes (MDPs), dynamic programming (DP), reinforce-
ment learning (RL).

I. INTRODUCTION

THERE exist a wide variety of approximate dynamic pro-
gramming (DP) [2, Ch. 6], [3] and reinforcement learning

(RL) algorithms [4] for finite state-space Markov decision pro-
cesses (MDPs). But many real-world problems of interest have
either a continuous state space, or very large state space that
it is best approximated as one. Action space will be consid-
ered finite. Approximate DP (ADP) and RL algorithms do exist
for continuous state-space MDPs but choosing which one to
employ is an art form: different techniques (state-space aggre-
gation and function approximation [5]) and algorithms work
for different problems [6]–[8], and universally applicable algo-
rithms are lacking. For example, fitted value iteration (FVI) [9]

Manuscript received August 22, 2018; revised August 23, 2018 and
March 1, 2019; accepted March 3, 2019. Date of publication April 1, 2019;
date of current version December 27, 2019. This work was supported
by the Singapore Ministry of Education Project MOE2015-T2-2-148. The
work of Jain and Sharma was supported by an ONR Young Investigator
Award #N000141210766 and by NSF Award CCF-1817212. A prelimi-
nary version of this paper appeared in CDC 2017 [1]. Recommended by
Associate Editor E. Zhou. (Corresponding author: Rahul Jain.)

W. B. Haskell and P. Yu are with the Department of Industrial and Sys-
tems Engineering, National University of Singapore, Singapore 129792
(e-mail:, isehwb@nus.edu.sg; yupengqian@u.nus.edu).

R. Jain and H. Sharma are with the EE Department, University of
Southern California, Los Angeles, CA 90089 USA (e-mail:, rahul.jain@
usc.edu; hiteshis@usc.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2019.2907414

is very effective for some problems but requires the choice of
an appropriate basis functions for good approximation. Most
of the existing work on ADP requires domain knowledge of
the problem at hand for effective implementation. Here, we are
interested in ADP methods, which are effective without any
previous problem knowledge.

In this paper, we propose ADP algorithms for continuous
state-space MDPs with finite action space that are universal (ap-
proximating function space can provide arbitrarily good approx-
imation for any problem), computationally tractable, simple to
implement, and yet we have nonasymptotic sample complexity
bounds. The first is accomplished by picking functions spaces
for approximation that are dense in the space of continuous
functions (i.e., for any continuous function f , and ε > 0, there
is an element of our approximating function space that is within
ε of f in the sup-norm.) The second goal is achieved by relying
on randomized selection of basis functions for approximation
and also by “empirical” DP [10]. The third is enabled because
standard Python routines can be used for function fitting and the
fourth is by analysis in a random operator framework, which
provides nonasymptotic rate of convergence and sample com-
plexity bounds.

There is a large body of well-known literature on RL and
ADP for continuous state-space MDPs. We discuss the most di-
rectly related. In [11], a sampling-based state-space aggregation
scheme combined with sample average approximation for the
expectation in the Bellman operator was proposed. Under some
regularity assumptions, the approximate value function can be
computed at any state and an estimate of the expected error is
given. But the algorithm seems to suffer from poor numerical
performance. A linear programming-based constraint-sampling
approach was introduced in [12]. Finite sample error guaran-
tees, with respect to this constraint-sampling distribution, are
provided but the method suffers from issues of feasibility. The
closest paper to this study is the study by Munos and Szepesvári
[9] that does function fitting with a given basis and does “empir-
ical” value iteration in each step. Unfortunately, it is not a uni-
versal method as approximation quality depends on the function
basis picked. Other papers worth noting are the study by Or-
moneit and Sen[13] that discusses kernel-based value iteration
and the bias-variance tradeoff, and the study by Grunewalder
et al. [14] that proposed a kernel-based algorithm with random
sampling of the state and action spaces, and proves asymp-
totic convergence. Other related works worth mentioning are
[15], [16] (approximate value iteration), [17], [18] (the LP ap-
proach to ADP), and [19]–[21] (approximate policy iteration).

0018-9286 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Rahul Jain. Downloaded on February 19,2021 at 19:03:21 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9518-4310
https://orcid.org/0000-0003-3786-8682
https://orcid.org/0000-0002-4057-0302
https://orcid.org/0000-0002-4660-6679
mailto:isehwb@nus.edu.sg
mailto:yupengqian@u.nus.edu
mailto:rahul.jain@usc.edu
mailto:rahul.jain@usc.edu
mailto:hiteshis@usc.edu

116 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 1, JANUARY 2020

Recent applications stress policy gradient methods [22], [23]
and deep learning-based function approximation [24] for which
theoretical performance guarantees for general problems are not
available. The method presented in this paper may be seen as
another alternative.

This paper is inspired by the “random function” approach that
uses randomization to (nearly) solve otherwise intractable prob-
lems (see, e.g., [25] and[26]) and the “empirical” approach that
reduces computational complexity of working with expectations
[10]. We propose two new algorithms. For the first parametric
approach, we pick a parametric function family. In each itera-
tion, a number of functions are picked randomly for function
fitting by sampling the parameters. A preliminary version of this
for l2 function fitting appeared in [1]. For the second nonpara-
metric approach, we pick a reproducing kernel Hilbert space
(RKHS) for approximation. Both function spaces are dense in
the space of continuous functions. In each iteration, we sam-
ple a few states from the state space. Empirical value learning
(EVL) is then performed on these states. Each step of EVL in-
volves approximating the Bellman operator with an empirical
(random) Bellman operator by plugging a sample average ap-
proximation from simulation for the expectation. This is akin
to doing stochastic approximations with step size 1. We employ
a probabilistic convergence analysis technique of iterated ran-
dom operators based on stochastic dominance that we developed
in [10]. This method is general in the sense that not only can
we handle various norms, but also various random contractive
operators.

The main contribution of this paper is the development of
randomized function approximation-based (offline) DP algo-
rithms that are universally applicable (i.e., do not require ap-
propriate choice of basis functions for good approximation). A
secondary contribution is further development of the random
operator framework for convergence analysis in the Lp−norm
that also yields finite time sample complexity bounds.

The paper is organized as follows. Section II presents prelim-
inaries including the continuous state-space MDP model and
the empirical DP framework for finite state MDPs introduced in
[10]. Section III presents two EVL algorithms—first, a random-
ized parametric function fitting method, and second, a nonpara-
metric randomized function fitting in an RKHS space. We also
provide statements of main theorems about nonasymptotic er-
ror guarantees. Section IV presents a unified analysis of the two
algorithms in a random operator framework. Numerical results
are reported in Section V. Supplemental proofs are relegated to
the appendix.

II. PRELIMINARIES

Consider a discrete time discounted MDP given by the
5-tuple, (S, A, Q, c, γ). The state space S is a compact
subset of Rd with the Euclidean norm, with correspond-
ing Borel σ−algebra B(S). Let F(S) be the space of all
B(S)−measurable bounded functions f : S→ R in the supre-
mum norm ‖f‖∞ := sups∈S |f(s)|. Moreover, letM(S) be the
space of all probability distributions over S and define the Lp

norm as ‖f‖pp, μ := (
∫

S |f(s)|pμ(ds)) for p ∈ [1, ∞) and given

μ ∈M(S). We assume that the action space A is finite. The
transition law Q governs the system evolution. For B ∈ B(S),
Q(B | s, a) is the probability of next visiting the set B given
that action a ∈ A is chosen in state s ∈ S. The cost function
c : S ×A→ R is a bounded measurable function that depends
on state-action pairs. Finally, γ ∈ (0, 1) is the discount factor.

We will denote by Π the class of stationary deterministic
Markov policies: mappings π : S→ A, which only depend on
history through the current state. For a given state s ∈ S, π(s) ∈
A is the action chosen in state s under the policy π. The state and
action at time t are denoted st and at , respectively. Any policy
π ∈ Π and initial state s ∈ S determine a probability measure
Pπ

s and a stochastic process {(st , at), t ≥ 0} defined on the
canonical measurable space of trajectories of state-action pairs.
The expectation operator with respect to Pπ

s is denoted Eπ
s [·].

We will assume that the cost function c satisfies |c(s, a)|
≤ cmax <∞ for all (s, a) ∈ S ×A. Under this assumption,
‖vπ‖∞ ≤ vmax := cmax/(1− γ) where vπ is the value func-
tion for policy π ∈ Π defined as vπ (s) = Eπ

s [
∑∞

t=0 γtc(st ,
at)], ∀s ∈ S. For later use, we define F(S; vmax) to be the
space of all functions f ∈ F(S) such that ‖f‖∞ ≤ vmax .

The optimal value function is v∗(s) := infπ∈Π Eπ
s [
∑∞

t=0
γtc(st , at)], ∀s ∈ S. To characterize the optimal value func-
tion, we define the Bellman operator T : F(S)→ F(S) via

[T v] (s) := min
a∈A

{
c (s, a) + γ EX∼Q(· | s, a) [v(X)]

} ∀s ∈ S.

It is well known that the optimal value function v∗ is a fixed point
of T , i.e., T v∗ = v∗ [27, Th. 6.2.5]. Classical value iteration
is based on iterating T to obtain a fixed point, it produces a
sequence (vk)k≥0 ⊂ F(S) given by vk+1 = T vk , k ≥ 0. Also,
we know that (vk)k≥0 converges to v∗ geometrically in ‖ · ‖∞.

We are interested in approximating the optimal value func-
tion v∗ within a tractable class of approximating functions
F ⊂ F(S). We have the following definitions, which we use
to measure the approximation power ofF with respect to T . We
define

dp, μ (G,F) := sup
g∈G

inf
f∈F
‖f − g‖p, μ

to be the distance between two function classes; then dp, μ(T
F , F) is the inherent Lp Bellman error for the function class
F . Similarly, defining

d∞ (G,F) := sup
g∈G

inf
f∈F
‖f − g‖∞

gives d∞(TF ,F) as the inherent L∞ Bellman error for an ap-
proximating class F .

We often compare F to the Lipschitz continuous functions
Lip(L) defined as

{f ∈ F (S) : |f(s)− f (s′) | ≤ L ‖s− s′‖ ∀s, s′ ∈ S} .

In our case, we say that an approximation classF is universal if
d∞(Lip(L), F) = 0 for all L ≥ 0. Note that on a compact state
space S, universality in the supremum norm implies universality
in the L1 and L2 norms as well.

One of the difficulties of DP algorithms such as value iteration
above is that each iteration of the Bellman operator involves

Authorized licensed use limited to: Rahul Jain. Downloaded on February 19,2021 at 19:03:21 UTC from IEEE Xplore. Restrictions apply.

HASKELL et al.: UNIVERSAL EMPIRICAL DYNAMIC PROGRAMMING ALGORITHM FOR CONTINUOUS STATE MDPS 117

computation of an expectation, which may be expensive. Thus,
in [10], Haskell et al. proposed replacing the Bellman operator
with an empirical (or random) Bellman operator

[
T̂nv
]
(s) := min

a∈A

{

c (s, a) +
γ

n

n∑

i=1

[v(Xi)]

}

where Xi are samples of the next state from Q(· | s, a), which
can be obtained from simulation. Now, we can iterate the em-
pirical Bellman operator

vk+1 = T̂nvk ∀k ≥ 0

an algorithm we called empirical value iteration (EVI). The
sequence of iterates {vk} is a random process. Since T is a
contractive operator, its iterates converge to its fixed point v∗.
The random operator T̂n may be expected to inherit the contrac-
tive property in a probabilistic sense and its iterates converge
to some sort of a probabilitic fixed point. We introduce (ε, δ)
versions of two such notions introduced in [10].

Definition 1: A function v̂ : S→ R is an (ε, δ)-strong prob-
abilistic fixed point for a sequence of random operators {T̂n} if
there exists an N such that for all n > N

P
(
||T̂n v̂ − v̂|| > ε

)
< δ.

It is called a strong probabilistic fixed point, if the above is
true for every positive ε and δ.

Definition 2: A function v̂ : S→ R is an (ε, δ)-weak prob-
abilistic fixed point for a sequence of random operators {T̂n} if
there exist N and K such that for all n > N and all k > K

P
(
||T̂ k

n v0 − v̂|| > ε
)

< δ ∀v0 ∈ F (S) .

It is called a weak probabilistic fixed point, if the above is
true for every positive ε and δ. Note that the stochastic iterative
algorithms such as EVL often find the weak probabilistic fixed
point of {T̂n} whereas what we are looking for is v∗, the fixed
point of T . In [10], it was shown that asymptotically the weak
probabilistic fixed point of {T̂n} coincides with its strong prob-
abilistic fixed points, which coincide with the fixed point of T
under certain fairly weak assumptions and a natural relationship
between T and {T̂n}

lim
n→∞P

(
||T̂nv − Tv|| > ε

)
= 0 ∀v ∈ F (S) .

This implies that stochastic iterative algorithms such as EVL
will find approximate fixed points of T with high probability.

III. ALGORITHMS AND MAIN RESULTS

When the state space S is very large, or even uncountable,
exact DP methods are not practical, or even feasible. Instead,
one must use a variety of approximation methods. In particular,
function approximation (or fitting the value function with a fixed
function basis) is a common technique. The idea is to sample a
finite set of states from S, approximate the Bellman update at
these states, and then extend to the rest of S through function
fitting similar to [9]. Furthermore, the expectation in the Bellman
operator, for example, is also approximated by taking a number
of samples of the next state. There are two main difficulties with

this approach: First, the function fitting depends on the function
basis chosen, making the results problem-dependent. Second,
with a large basis (for good approximation), function fitting can
be computationally expensive.

In this paper, we aim to address these issues by first pick-
ing universal approximating function spaces, and then using
randomization to pick a smaller basis and thus reduce the com-
putational burden of the function fitting step. We consider two
functional families, one is a parametric family F(Θ) parame-
terized over parameter space Θ and the other is a nonparametric
regularized RKHS. By μ ∈M(S), we will denote a probabil-
ity distribution from which to sample states in S, and by a
F ⊂ F(S; vmax), we will denote a functional family in which
to do value function approximation.

Let us denote by (vk)k≥0 ⊂ F(S; vmax) the iterates of the
value functions produced by an algorithm and a sample of size
N ≥ 1 from S is denoted s1:N = (s1 , . . . , sN). The empirical
p−norm of f is defined as ‖f‖pp, μ̂ := 1

N

∑N
n=1 |f(sn)|p for

p ∈ [1, ∞) and as ‖f‖∞, μ̂ := supn=1,..., N |f(sn)| for p =∞,
where μ̂ is the empirical measure corresponding to the samples
s1:N .

We will make the following technical assumptions for the rest
of the paper similar to those made in [9].

Assumption 1:
1) For all (s, a) ∈ S ×A, Q(· | s, a) is absolutely continu-

ous with respect to μ and

Cμ := sup
(s, a)∈S×A

‖dQ (· | s, a) /dμ‖∞ <∞.

2) Given any sequence of policies {πm}m≥1 , the future state
distribution ρQπ1 · · ·Qπm is absolutely continuous with
respect to μ

cρ, μ (m) := sup
π1 ,..., πm

‖d (ρQπ1 · · ·Qπm) /dμ‖∞ <∞

and Cρ, μ :=
∑

m≥0 γm cρ, μ(m) <∞.
The above assumptions are conditions on transition proba-

bilities, the first being a sufficient condition for the second. ρ
can be regarded as an “importance” distribution on S, that is
possibly different from the distribution μ on S that is used to
sample states. Assumption 1 is essentially a regularity condi-
tion on the MDP: It ensures that the MDP cannot make arbitrary
transitions with high probability with respect to the initial state
distribution μ. Cρ,μ is called the discounted-average concentra-
bility coefficient of the future-state distributions in [9]. Note that
the assumption is satisfied when μ is the Lebesgue measure on
S and the transition kernel has a bounded density with respect
to μ.

A. Random Parametric Basis Function (RPBF)
Approximation

We introduce an EVL algorithm with function approxima-
tion using random parametrized basis functions (EVL+RPBF).
It requires a parametric family F built from a set of param-
eters Θ with probability distribution ν and a feature function
φ : S ×Θ→ R (that depends on both states and parameters)
with the assumption that sup(s, θ)∈S×Θ |φ(s; θ)| ≤ 1. This can

Authorized licensed use limited to: Rahul Jain. Downloaded on February 19,2021 at 19:03:21 UTC from IEEE Xplore. Restrictions apply.

118 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 1, JANUARY 2020

easily be met in practice by scaling φ whenever S and Θ are
both compact and φ is continuous in (s, θ). Let α : Θ→ R be
a weight function and define F(Θ) :=
{

f(·) =
∫

Θ
φ (·; θ)α (θ) dθ : |α (θ) | ≤ C ν (θ) ∀θ ∈ Θ

}

.

We note that the condition |α(θ)| ≤ C ν(θ) for all θ ∈ Θ is
equivalent to requiring that ‖α‖∞, ν := supθ∈Θ |α(θ)/ν(θ)| ≤
C where ‖α‖∞, ν is the ν−weighted supremum norm of α and
C is a constant.

The function space F(Θ) may be chosen to have the “uni-
versal” function approximation property in the sense that any
Lipschitz continuous function can be approximated arbitrarily
closely in this space as shown in [25]. By [25, Th. 2], many such
choices of F(Θ) are possible and are developed in [25, Sec. 5].
For example, F(Θ) is universal in the following two cases.

1) φ(s; θ) = cos(〈ω, s〉+ b) where θ = (ω, b) ∈ Rd+1 ;
and ν(θ) is given by ω ∼ Normal(0, 2 γ I) and b ∼
Uniform [−π, π].

2) φ(s; θ) = sign(sk − t) where θ = (t, k) ∈ R× {1, . . . ,
d}; and ν(θ) to be given by k ∼ Uniform{1, . . . , d} and
t ∼ Uniform[−a, a].

In this approach, we have a parametric function familyF(Θ)
but instead of optimizing over parameters in Θ, we randomly
sample them first and then do function fitting, which involves
optimizing over finite weighted combinations

∑J
j=1 αjφ(·; θj).

Unfortunately, this leads to a nonconvex optimization prob-
lem. Hence, instead of optimizing over θ1:J = (θ1 , . . . , θJ) and
α1:J = (α1 , . . . , αJ) jointly, we first do randomization over
θ1:J and then optimization over α1:J , as in [26], to bypass the
nonconvexity inherent in optimizing over θ1:J and α1:J simul-
taneously. This approach allows us to deploy rich parametric
families without much additional computational cost. Once we
draw a random sample {θj}Jj=1 from Θ according to ν, we

obtain a random function space: F̂(θ1:J) :=
⎧
⎨

⎩
f(·) =

J∑

j=1

αjφ (·; θj) : ‖ (α1 , . . . , αJ) ‖∞ ≤ C/J

⎫
⎬

⎭
.

Step 1 of such an algorithm (Algorithm 1) involves sampling
states s1:N over which to do value iteration and sampling param-
eters θ1:J to pick basis functions φ(·; θ), which are used to do
function fitting. Step 2 involves doing an EVI over states s1:N

by sampling next states (Xsn , a
m)M

m=1 according to the transition
kernel Q, and using the current iterate of the value function vk .
Note that fresh (i.i.d.) samples of the next state are regenerated
in each iteration. Step 3 involves finding the best fit to ṽk , the
iterate from Step 2, within F̂(θ1:J) wherein randomly sampled
parameters θ1:J specify the basis functions for function fitting
and weights α1:J are optimized, which is a convex optimization
problem.

We note that Step 3 of the algorithm can be replaced by
another method for function fitting (as we do in the next sec-
tion). The above algorithm differs from FVI algorithm of [9]
in how it does function fitting. FVI does function fitting with
a deterministic and given set of basis functions, which limits
its universality, whereas we do function fitting in a much larger

Algorithm 1: EVL with Random Parameterized basis Func-
tions (EVL+RPBF).

Input: probability distribution μ on S and ν on Θ;
Sample sizes N ≥ 1, M ≥ 1, J ≥ 1; initial seed v0 .
counter k = 0 and iterations K ≥ 1.
For k = 1, . . . , K

1) Sample (sn)N
n=1 ∼ μN and (θj)J

j=1 ∼ νJ .
2) Compute

ṽk (sn) = min
a∈A

{

c (sn , a) +
γ

M

M∑

m=1

vk (Xsn , a
m)

}

,

where (Xsn , a
m) ∼ Q(· | sn , a), m = 1, · · · ,M are

i.i.d.
3) αk = arg minα

1
N

∑N
n=1(

∑J
j=1 αjφ(sn ; θj)−

ṽ(sn))2

s.t. ‖(α1 , . . . , αJ)‖∞ ≤ C/J .
vk+1(s) =

∑J
j=1 αk

j φ(s; θj).
4) Increment k ← k + 1 and return to Step 1.

space, which has the universal function approximation property,
but are able to reduce computational complexity by exploiting
randomization.

In [9, Sec. 7], it is shown that if the transition kernel and cost
are smooth such that there exist LQ and Lc for which

‖Q (· | s, a)−Q (· | s′, a) ‖T V ≤ LQ‖s− s′‖2 (1)

and

|c (s, a)− c (s′, a) | ≤ Lc‖s− s′‖2 (2)

hold for all s, s′ ∈ S and a ∈ A, then the Bellman operator T
maps bounded functions to Lipschitz continuous functions. In
particular, if v is uniformly bounded by vmax , then T v is (Lc +
γ vmaxLQ)−Lipschitz continuous. Subsequently, the inher-
ent L∞ Bellman error satisfies d∞(T F , F) ≤ d∞(Lip(L), F)
since T F ⊂ Lip(L). So, it only remains to choose an F(Θ)
that is dense in Lip(L) in the supremum norm, for which many
examples exist.

We now provide nonasymptotic sample complexity bounds
to establish that Algorithm 1 yields an approximately optimal
value function with high probability. We provide guarantees for
both the L1 and L2 metrics on the error.

Denote

N2(ε, δ′) = 2752 v̄4
max log

[
40 e (J2 + 1)

δ

(
10 e v̄2

max
)J
]

M2(ε, δ′) =
(

v̄2
max

2

)

log
[
10N2 |A|

δ′

]

J2(ε, δ′) =

⎛

⎝5C

ε

⎛

⎝1 +

√

2 log
5
δ′

⎞

⎠

⎞

⎠

2

, and

K∗2 = 2

⎡

⎢
⎢
⎢

ln
(
C

1/2
ρ, μ ε

)
− ln (2 vmax)

ln γ

⎤

⎥
⎥
⎥

Authorized licensed use limited to: Rahul Jain. Downloaded on February 19,2021 at 19:03:21 UTC from IEEE Xplore. Restrictions apply.

HASKELL et al.: UNIVERSAL EMPIRICAL DYNAMIC PROGRAMMING ALGORITHM FOR CONTINUOUS STATE MDPS 119

where v̄max = vmax/ε. Set δ′ := 1− (1− δ/2)1/(K ∗
2−1) . Then,

we have the following sample complexity bound on Algorithm 1
with L2 error. We note that L2, μ(S) is a Hilbert space and that
many powerful function approximation results exist for this
setting because of the favorable properties of a Hilbert space.

Theorem 1: Given an ε > 0, and a δ ∈ (0, 1), choose J
≥ J2(ε, δ′), N ≥ N2(ε, δ′), M ≥M2(ε, δ′), Then, for K ≥
log(4/(δ μ∗(δ;K∗2))), we have

‖vK − v∗‖2, ρ ≤ 2γ̃1/2C1/2
ρ, μ (d2, μ (T F (Θ) , F (Θ)) + 2 ε)

with probability at least 1− δ.
Remarks:
1) That is, if we choose enough samples N2 of the states,

enough samples M2 of the next state, and enough ran-
dom samples J2 of the parameter θ, and then for large
enough number of iterations K2 , theL2 error in the value
function is determined by the inherent Bellman error of
the function class F(Θ).

2) For the function familiesF(Θ) discussed earlier (RPBF),
the inherent Bellman error, d2, μ(T F(Θ), F(Θ)) = 0
indeed, and so the value function will have small L2
error with high probability.

3) Note that the sample complexity bounds are independent
of the state-space dimension though the computational
complexity of sampling from the state space does indeed
depend on that dimension.

Next we give a similar guarantee for L1 error for Algorithm
1 by considering approximation in L1, μ(S).

Denote

N1(ε, δ′) = 2752 v̄2
max log

[
40 e (J1 + 1)

δ
(10 e v̄max)

J

]

M1(ε, δ′) =
(

v̄2
max

2

)

log
[
10N1 |A|

δ′

]

J1(ε, δ′) =

⎛

⎝5C

ε

⎛

⎝1 +

√

2 log
5
δ′

⎞

⎠

⎞

⎠

2

K∗1 =
⌈

ln (Cρ, με)− ln (2 vmax)
ln γ

⌉

, and

μ∗ (p; K∗) = (1− p) p(K ∗−1)

where C is the same constant that appears in the definition
of F(Θ) (see [26]) and v̄max = vmax/ε. Set δ′ := 1− (1−
δ/2)1/(K ∗

1−1) .
Theorem 2: Given an ε > 0, and a δ ∈ (0, 1), choose J ≥

J1(ε, δ′), N ≥ N1(ε, δ′), and M ≥M1(ε, δ′), Then, for K ≥
log(4/(δ μ∗(δ;K∗1))), we have

‖vK − v∗‖1, ρ ≤ 2Cρ, μ (d1, μ (T F (Θ) , F (Θ)) + 2 ε)

with probability at least 1− δ.
Remarks:
1) Again, note that the above result implies that the

RBPF function family F(Θ) has inherent Bellman error
d1, μ(T F(Θ), F(Θ)) = 0, so that for enough samples
N1 of the states, enough samples M1 of the next state,

and enough random samples J1 of the parameter θ, and
then for large enough number of iterations K1 , the value
function will have small L1 error with high probability.

2) As above, note that there is no dependence on state-space
dimension in the sample complexity bounds though com-
putational complexity of sampling states from the state
space indeed depends on it.

B. Nonparametric Function Approximation in RKHS

We now consider nonparametric function approximation
combined with EVL. We employ a RKHS for function approxi-
mation since for suitably chosen kernels, it is dense in the space
of continuous functions and hence has a “universal” function
approximation property. In the RKHS setting, we can obtain
guarantees directly with respect to the supremum norm.

We will consider a regularized RKHS setting with a continu-
ous, symmetric, and positive semidefinite kernel K : S × S→
R and a regularization constant λ > 0. The RKHS space, HK ,
is defined to be the closure of the linear span of {K(s, ·)}s∈S en-
dowed with an inner product 〈·, ·〉HK

. The inner product 〈·, ·〉HK

for HK is defined such that 〈K(x, ·), K(y, ·)〉HK
= K(x, y)

for all x, y ∈ S, i.e., 〈∑i αiK(xi, ·),
∑

j βjK(yj , ·)〉HK
=∑

i, j αiβjK(xi, yj). Subsequently, the inner product satisfies
the reproducing property: 〈K(s, ·), f〉HK

= f(s) for all s ∈ S
and f ∈ HK . The corresponding RKHS norm is defined in terms
of the inner product ‖f‖HK

:=
√〈f, f〉HK

. We assume that our
kernel K is bounded so that κ := sups∈S

√
K(s, s) <∞.

To find the best fit f ∈ HK to a function with data {(sn , ṽ
(sn))}Nn=1 , we solve the regularized least squares problem

min
f∈HK

{
1
N

N∑

n=1

(f (sn)− ṽ (sn))2 + λ ‖f‖2HK

}

. (3)

This is a convex optimization problem (the norm squared is con-
vex), and has a closed-form solution by the Representer The-
orem. In particular, the optimal solution is of the form f̂(s) =
∑N

n=1 αnK(sn , s) where the weights α1:N = (α1 , . . . , αN)
are the solution to the linear system
(
[K (si, sj)]

N
i, j=1 + λ N I

)
(αn)N

n=1 = (ṽ (sn))N
n=1 . (4)

This yields EVL algorithm with randomized function fitting in
a regularized RKHS (EVL+RKHS) displayed as Algorithm 2.

Note that the optimization problem in Step 3 in Algorithm 2 is
analogous to the optimization problem in Step 3 of Algorithm 1,
which finds an approximate best fit within the finite-dimensional
space F̂(θ1:J), rather than the entire space F(Θ), while Prob-
lem (3) in Algorithm 2 optimizes over the entire space HK .
This difference can be reconciled by the Representer Theo-
rem, since it states that optimization over HK in Problem (3)
is equivalent to optimization over the finite-dimensional space
spanned by {K(sn , ·) : n = 1, . . . , N}. Note that the regular-
ization λ ‖f‖2HK

is a requirement of the Representer Theorem.
We define the regression function fM : S→ R via

fM (s) � E

[

min
a∈A

{

c (s, a) +
γ

M

M∑

m=1

v (Xs, a
m)

}]

∀s ∈ S

Authorized licensed use limited to: Rahul Jain. Downloaded on February 19,2021 at 19:03:21 UTC from IEEE Xplore. Restrictions apply.

120 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 1, JANUARY 2020

Algorithm 2: EVL with Regularized RKHS (EVL+RKHS).
Input: probability distribution μ on S;
sample sizes N ≥ 1, M ≥ 1; penalty λ;
initial seed v0 ; counter k = 0.
For k = 1, . . . ,K

1) Sample {sn}Nn=1 ∼ μ.
2) Compute

ṽk (sn) = min
a∈A

{

c (sn , a) +
γ

M

M∑

m=1

vk (Xsn , a
m)

}

,

where {Xsn , a
m }Mm=1 ∼ Q(· | sn , a) are i.i.d.

3) vk+1(·) is given by

arg min
f∈HK

{
1
N

N∑

n=1

(f(sn)− ṽ(sn))2 + λ||f ||HK

}

.

4) Increment k ← k + 1 and return to Step 1.

it is the expected value of our empirical estimator of T v. As
expected, fM → T v as M →∞. We note that fM is not nec-
essarily equal to T v by Jensen’s inequality. We require the
following assumption on fM to continue.

Assumption 2: For every M ≥ 1, fM (s) =
∫

S K(s, y)α(y)
μ(dy) for some α ∈ L2, μ(S).

Regression functions play a key role in the statistical learn-
ing theory, Assumption 2 states that the regression function
lies in the span of the kernel K. It is satisfied whenever
K is a universal kernel. Some examples of universal ker-
nels follow. Additionally, when HK is dense in the space of
Lipschitz functions, then the inherent Bellman error is zero.
For example, K(s, s′) = exp(−γ ‖s− s′‖2), K(s, s′) = 1−
1
a ‖s− s′‖1 , and K(s, s′) = exp(γ ‖s− s′‖1) are all universal
kernels.

Denote

N∞(ε, δ′) =
(

4CK κ

ε (1− γ)

)6

log
(

4
δ′

)2

M∞(ε) =
160 v2

max

(ε (1− γ))2 log
(

2 |A| γ (8 vmax − ε (1− γ))
ε (1− γ) (2− γ)

)

K∗∞ =
⌈

ln (ε)− ln (4 vmax)
ln γ

⌉

where CK is a constant independent of the dimension of S (see
[28] for the details on how CK depends on the kernel K) and
set δ′ = 1− (1− δ/2)1/(K ∗∞−1) .

Theorem 3: Suppose Assumption 2 holds. Given any ε > 0
and δ ∈ (0, 1), choose an N ≥ N∞(ε, δ′) and an M ≥M∞(ε).
Then, for any K ≥ log(4/(δ μ∗(δ;K∗∞)))

‖vK − v∗‖∞ ≤ ε

with probability at least 1− δ.
Note that we provide guarantees on L1 and L2 error (can be

generalized toLp) with the RPBF method and forL∞ error with
the RKHS-based randomized function fitting method. Getting
guarantees for the Lp error with the RKHS method has proved

quite difficult, as has bounds on the L∞ error with the RBPF
method.

IV. ANALYSIS IN A RANDOM OPERATOR FRAMEWORK

We will analyze Algorithms 1 and 2 in terms of random
operators since this framework is general enough to encom-
pass many such algorithms. The reader can see that Step 2 of
both algorithms involves iteration of the empirical Bellman op-
erator, whereas Step 3 involves a randomized function fitting
step, which is done differently and in different spaces in both
algorithms. We use random operator notation to write these al-
gorithms in a compact way, and then derive a clean and to a
large-extent unified convergence analysis. The key idea is to use
the notion of stochastic dominance to bound the error process
with an easy to analyze “dominating” Markov chain. Then, we
can infer the solution quality of our algorithms via the probabil-
ity distribution of the dominating Markov chain. This analysis
idea refines (and in fact, simplifies) the idea we introduced in
[10] for MDPs with finite state and action spaces (where there
is no function fitting) in the supremum norm. In this paper,
we develop the technique further, give a stronger convergence
rate, account for randomized function approximation, and also
generalize the technique to Lp norms.

We introduce a probability space (Ω,B(Ω), P) on which to
define random operators, where Ω is a sample space with ele-
ments denoted ω ∈ Ω, B(Ω) is the Borel σ−algebra on Ω, and
P is a probability distribution on (Ω, B(Ω)). A random oper-
ator is an operator-valued random variable on (Ω, B(Ω), P).
We define the first random operator on F(S) as T̂ (v) =
(sn , ṽ(sn))N

n=1 where (sn)N
n=1 is chosen from S according to

a distribution μ ∈M(S) and

ṽ (sn) = min
a∈A

{

c (sn , a) +
γ

M

M∑

m=1

v (Xsn , a
m)

}

n = 1, . . . , N is an approximation of [T v](sn) for all n =
1, . . . , N . In other words, T̂ maps from v ∈ F(S; vmax) to
a randomly generated sample of N input–output pairs (sn , ṽ

(sn))N
n=1 of the function T v. Note that T̂ depends on sample

sizes N and M . Next, we have the function reconstruction op-
erator Π̂F , which maps the data (sn , ṽ(sn))N

n=1 to an element
in F . Note that Π̂F is not necessarily deterministic since Al-
gorithms 1 and 2 use randomized function fitting. We can now
write both algorithms succinctly as

vk+1 = Ĝ vk := Π̂F T̂ vk (5)

which can be further written in terms of residual error εk =
Ĝ vk − T vk as

vk+1 = Ĝ vk = T vk + εk . (6)

Iteration of these operators corresponds to repeated samples
from (Ω,B(Ω), P), so we define the space of sequences
(Ω∞,B(Ω∞),P) where Ω∞ = ×∞k=0Ω with elements denoted
ω = (ωk)k≥0 , B(Ω∞) = ×∞k=0B(Ω), and P is the probability
measure on (Ω∞, B(Ω∞)) guaranteed by the Kolmogorov ex-
tension theorem applied to P .

Authorized licensed use limited to: Rahul Jain. Downloaded on February 19,2021 at 19:03:21 UTC from IEEE Xplore. Restrictions apply.

HASKELL et al.: UNIVERSAL EMPIRICAL DYNAMIC PROGRAMMING ALGORITHM FOR CONTINUOUS STATE MDPS 121

The random sequences (vk)k≥0 in Algorithms 1 and 2 given
by

vk+1 = Π̂F T̂ (ωk) vk

= Π̂F T̂ (ωk) Π̂F T̂ (ωk−1) · · · Π̂F T̂ (ω0) v0

for all k ≥ 0 is a stochastic process defined on (Ω∞,B(Ω∞),P).
We now analyze error propagation over the iterations.

Let us now bound how the Bellman residual at each iteration
of EVL is changing. There have already been some results that
address the error propagation both inL∞ andLp (p ≥ 1) norms
[16]. After adapting [9, Lemma 3], we obtain the following p-
norm error bounds on vK − v∗ in terms of the errors {εk}k≥0 .

Lemma 4: For any K ≥ 1, and ε > 0, suppose ‖εk‖p, μ ≤ ε
for all k = 0, 1, . . . , K − 1, then

‖vK − v∗‖p, ρ ≤ 2
(

1− γK +1

1− γ

)p −1
p [

C1/p
ρ, μ ε + γK/p (2 vmax)

]

(7)
where Cρ, μ is as defined in Assumption 3. Note that Lemma 4
assumes that ‖εk‖p, μ ≤ ε, which we will show subsequently
that it is true with high probability.

The second inequality is for the supremum norm.
Lemma 5: For any K ≥ 1 and ε > 0, suppose ‖εk‖∞ ≤ ε

for all k = 0, 1, . . . , K − 1, then

‖vK − v∗‖∞ ≤ ε/ (1− γ) + γK (2 vmax) . (8)

Inequalities (7) and (8) are the key to analyzing iteration of
(6).

A. Convergence Analysis Using Stochastic Dominance

We now provide a (unified) convergence analysis for iteration
of a sequence of random operators given by (5) and (6). Later, we
will show how it can be applied to Algorithms 1 and 2. We will
use ‖ · ‖ to denote a general norm in the following discussion,
since our idea applies to all instances of p ∈ [1, ∞) and p =∞
simultaneously. The magnitude of the error in iteration k ≥ 0 is
then ‖εk‖. We make the following key assumption for a general
EVL algorithm.

Assumption 3: For ε > 0, there is a q ∈ (0, 1) such that
Pr{‖εk‖ ≤ ε} ≥ q for all k ≥ 0.

Assumption 3 states that we can find a lower bound on the
probability of the event {‖εk‖ ≤ ε} that is independent of k and
(vk)k≥0 (but does depend on ε). Equivalently, we are giving a
lower bound on the probability of the event {‖T vk − Ĝ vk‖ ≤
ε}. This is possible for all of the algorithms that we proposed
earlier. In particular, we can control q in Assumption 3 through
the sample sizes in each iteration of EVL. Naturally, for a given
ε, q increases as the number of samples grows.

We first choose ε > 0 and the number of iterations K∗ for
our EVL algorithms to reach a desired accuracy [this choice
of K∗ comes from the inequalities (7) and (8)]. We call iter-
ation k “good” if the error ‖εk‖ is within our desired toler-
ance ε and “bad” when the error is greater than our desired
tolerance. We then construct a stochastic process (Xk)k≥0 on
(Ω∞, B(Ω∞), P) with state space K := {1, 2, . . . , K∗} such

that

Xk+1 =

{
max {Xk − 1, 1} , if iteration k is “good”

K∗, otherwise.

The stochastic process (Xk)k≥0 is easier to analyze than (vk)k≥0
because it is defined on a finite state space, however (Xk)k≥0 is
not necessarily a Markov chain.

We next construct a “dominating” Markov chain (Yk)k≥0 to
help us analyze the behavior of (Xk)k≥0 . We construct (Yk)k≥0
on (K∞, B), the canonical measurable space of trajectories on
K, so Yk : K∞ → R, and we let Q denote the probability mea-
sure of (Yk)k≥0 on (R∞, B). Since (Yk)k≥0 will be a Markov
chain by construction, the probability measure Q is completely
determined by an initial distribution on R and a transition kernel
for (Yk)k≥0 . We always initialize Y0 = K∗, and then construct
the transition kernel as follows:

Yk+1 =

{
max {Yk − 1, 1} , w.p. q

K∗, w.p. 1− q

where q is the probability of a “good” iteration with respect to
the corresponding norm. Note that (Yk)k≥0 , we introduce here
is different and has much smaller state space than the one we
introduced in [10] leading to stronger convergence guarantees.

We now describe a stochastic dominance relationship be-
tween the two stochastic processes (Xk)k≥0 and (Yk)k≥0 . We
will establish that (Yk)k≥0 is “larger” than (Xk)k≥0 in a stochas-
tic sense.

Definition 3: Let X and Y be two real-valued random
variables, then X is stochastically dominated by Y , written
X ≤st Y , when E[f(X)] ≤ E[f(Y)] for all increasing func-
tions f : R→ R. Equivalently, X ≤st Y when Pr{X ≥ θ} ≤
Pr{Y ≥ θ} for all θ in the support of Y .

Let {Fk}k≥0 be the filtration on (Ω∞, B(Ω∞), P) corre-
sponding to the evolution of information about (Xk)k≥0 , and let
[Xk+1 | Fk] denote the conditional distribution of Xk+1 given
the information Fk . We have the following initial results on the
relationship between (Xk)k≥0 and (Yk)k≥0 .

The following theorem, our main result for our random oper-
ator analysis, establishes the relationship between the stochastic
process {Xk}k≥0 and the Markov chain {Yk}k≥0 . Under As-
sumption 3, this result allows us to bound the stochastic process
{Xk}k≥0 , which keeps track of the error in EVL with the dom-
inating Markov chain {Yk}k≥0 .

Theorem 6: Under Assumption 3
1) Xk ≤st Yk for all k ≥ 0.
2) Pr{Yk ≤ η} ≤ Pr{Xk ≤ η} for any η ∈ R and all k ≥ 0.

The proof is relegated to Appendix C. By Theorem 6, if
XK ≤st YK and we can make Pr{YK ≤ η} large, then we will
also obtain a meaningful bound on Pr{XK ≤ η}. Following this
observation, the next two corollaries are the main mechanisms
for our general sample complexity results for EVL.

The following corollary follows from bounding the mixing
time of the dominating Markov chain {Yk}k≥0 and employing
our general p−norm error bound Lemma 4.

Corollary 7: For a given p ∈ [1, ∞), and any ε > 0, and
δ ∈ (0, 1), suppose Assumption 3 holds for this ε, and choose

Authorized licensed use limited to: Rahul Jain. Downloaded on February 19,2021 at 19:03:21 UTC from IEEE Xplore. Restrictions apply.

122 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 1, JANUARY 2020

any K∗ ≥ 1. Then, for q ≥ (1/2 + δ/2)1/(K ∗−1) and K ≥
log(4/((1/2− δ/2)(1− q)qK ∗−1)), we have

‖vK − v∗‖p, ρ ≤ 2
(

1− γK ∗+1

1− γ

)p −1
p [

C1/p
ρ, μ ε + γK ∗/p(2 vmax)

]

with probability at least δ.
The proof is relegated to Appendix C.
The next Corollary uses the same reasoning for the supremum

norm case. It follows from bounding the mixing time of the
dominating Markov chain {Yk}k≥0 and employing our general
∞−norm error bound Lemma 5.

Corollary 8: Given any ε > 0 and δ ∈ (0, 1), suppose As-
sumption 3 holds for this ε, and choose any K∗ ≥ 1. For
q ≥ (1/2 + δ/2)1/(K ∗−1) and K ≥ log(4/((1/2− δ/2)(1−
q)qK ∗−1)), we have

Pr
{‖vK − v∗‖∞ ≤ ε/ (1− γ) + γK ∗

(2 vmax)
} ≥ δ.

The sample complexity results for both EVL algorithms from
Section III follow from Corollaries 7 and 8. This is shown next.

B. Proofs of Theorems 1, 2, and 3

We now apply our random operator framework to both EVL
algorithms. We will see that it is easy to check the conditions
of Corollaries 7 and 8, from which we obtain specific sample
complexity results. We will use Theorems 17, 16, and 19, which
are all “one-step” results that bound the error in a single step
of Algorithm 1 (in the 1- and 2-norm) and Algorithm 2 (in the
∞-norm) compared to the true Bellman operator.

We first give the proof of Theorem 1. We let p(N, M, J, ε)
denote the a lower bound on the probability of the event {‖T̂ v −
T v‖2, μ ≤ ε}.

Proof of Theorem 1: Starting with inequality (7) for p = 2
and using the statement of Theorem 17 in Appendix C, we have
‖vK − v∗‖2, ρ

≤ 2
(

1
1− γ

)1/2

C1/2
ρ, μ (d2, μ (T F (Θ) , F (Θ)) + ε)

+ 4
(

1
1− γ

)1/2

vmaxγ
K/2

when ‖εk‖2, μ ≤ d2, μ(T F(Θ), F(Θ)) + ε for all k = 0, 1,
. . . ,K − 1. We choose K∗ ≥ 1 to satisfy

4
(

1
1− γ

)1/2

vmaxγ
K ∗/2 ≤ 2

(
1

1− γ

)1/2

C1/2
ρ, μ ε

which implies K∗ = 2� ln(C 1 / 2
ρ , μ ε)−ln(2 vm a x)

ln γ �. On the basis of
Corollary 7, we just need to choose N, M, J such that
p(N, M, J, ε) ≥ (1− δ/2)1/(K ∗−1) . We then apply the state-
ment of Theorem 16 with p = 1− (1− δ/2)1/(K ∗−1) . �

We now give the proof of Theorem 2 along the same lines as
for Theorem 2. Let p(N, M, J, ε) denote the lower bound on
the probability of the event {‖T̂ v − T v‖1, μ ≤ ε} for ε > 0. We
also note that d1, μ(T v, F(Θ)) ≤ d1, μ(T F(Θ), F(Θ)) for all
v ∈ F(Θ).

Proof of Theorem 2: Starting with inequality (7) for p = 1
and using the statement of Theorem 16 in Appendix D, we have

‖vK − v∗‖1, ρ

≤ 2Cρ, μ (d1, μ (T F (Θ) , F (Θ)) + ε) + 4 vmaxγ
K

when ‖εk‖1, μ ≤ d1, μ(T F(Θ), F(Θ)) + ε for all k =
0, 1, . . . ,K − 1. Choose K∗ such that

4 vmaxγ
K ≤ 2Cρ, με⇒ K∗ =

⌈
ln (Cρ, με)− ln (2 vmax)

ln γ

⌉

.

On the basis of Corollary 7, we just need to choose N, M, J
such that p(N, M, J, ε) ≥ (1− δ/2)1/(K ∗−1) . We then ap-
ply the statement of Theorem 16 with probability 1− (1−
δ/2)1/(K ∗−1) . �

We now provide proof of L∞ function fitting in RKHS based
on Theorem 19 in Appendix C. For this proof, we let p(N, M, ε)
denote a lower bound on the probability of the event {‖T̂ v −
T v‖∞ ≤ ε}.

Proof of Theorem 3: By inequality (8), we choose ε and
K∗ ≥ 1 such that ε/(1− γ) ≤ ε/2 and γK ∗

(2 vmax) ≤ ε/2 by
setting

K∗ ≥
⌈

ln (ε)− ln (4 vmax)
ln (γ)

⌉

.

On the basis of Corollary 7, we next choose N and M such that
p(N, M, ε) ≥ (1− δ/2)1/(K ∗−1) . We then apply the statement
of Theorem 19 with error ε(1− γ)/2 and probability 1− (1−
δ/2)1/(K ∗−1) . �

V. NUMERICAL EXPERIMENTS

We now present numerical performance of our algorithm by
testing it on the benchmark optimal replacement problem [9],
[11]. The setting is that a product (such as a car) becomes more
costly to maintain with time/miles, and must be replaced at
some point. Here, the state st ∈ R+ represents the accumulated
utilization of the product. Thus, st = 0 denotes a brand new
durable good. Here, A = {0, 1}, so at each time step, t, we
can either replace the product (at = 0) or keep it (at = 1).
Replacement incurs a cost C, whereas keeping the product has
a maintenance cost, c(st), associated with it. The transition
probabilities are as follows:

q(st+1 |st , at) =

⎧
⎪⎨

⎪⎩

λe−λ(st + 1−st) , if st+1 ≥ st and at = 1,

λe−λst + 1 , if st+1 ≥ 0 and at = 0, and

0, otherwise

and the reward function is given by

r(st , at) =

{
−c(st), if at = 1, and

−C − c(0), if at = 0.

For our computation, we use γ = 0.6, λ = 0.5, C = 30, and
c(s) = 4s. The optimal value function and the optimal policy
can be computed analytically for this problem. For EVL+RPBF,
we use J random parameterized Fourier functions {φ(s, θj) =
cos(θT

j s + b)}Jj=1 with θj ∼ N (0, 0.01) and b ∼ Unif[−π, π].
We fix J = 5. For EVL+RKHS, we use Gaussian kernel defined
as k(x, y) = exp(||x− y||2/(2σ2)) with 1/σ2 = 0.01 and L2
regularization. We fix the regularization coefficient to be 10−2 .
The underlying function space for FVI is polynomials of degree
4. The results are plotted after 20 iterations.

Authorized licensed use limited to: Rahul Jain. Downloaded on February 19,2021 at 19:03:21 UTC from IEEE Xplore. Restrictions apply.

HASKELL et al.: UNIVERSAL EMPIRICAL DYNAMIC PROGRAMMING ALGORITHM FOR CONTINUOUS STATE MDPS 123

Fig. 1. Relative error with iterations for various algorithms.

The error in each iteration for different algorithms with N =
100 states and M = 5 is shown in Fig. 1. On Y-axis, it shows
the relative error computed as sups∈S |v∗(s)− vπk (s)/v∗(s)|
with iterations k on the X-axis. It shows that EVL+RPBF has
relative error below 10% after 20 iterations. FVI is close to it
but EVL+RKHS has larger relative error though it may improve
with a higher M or by using other kernels. This is also reflected
in the actual runtime performance: EVL+RPBF takes 8705 s,
FVI 8654 s, and EVL+RKHS takes 42 173 s to get within 0.1
relative error. The computational complexity of kernel methods
increases quadratically with number of samples and needs a
matrix inversion resulting in a slower performance.

Note that performance of FVI depends on being able to
choose suitable basis functions, which for the optimal replace-
ment problem is easy. For other problems, we may expect both
EVL algorithms to perform better. So, we tested the algorithms
on the cart-pole balancing problem, another benchmark prob-
lem but for which the optimal value function is unknown. We
formulate it as a continuous four-dimensional state space with
2 action MDP. The state comprises of the position of the cart,
x, velocity of the cart, ẋ, angle of the pole in radians, θ, and the
angular velocity of the pole, θ̇ . The actions are to add a force
of −10N or +10N to the cart, pushing it left or right. We add
±50% noise to these actions. For system dynamics, let mc and
mp be the mass of cart and pole, respectively. Let l be the length
of the pole. If Ft is the force applied to the cart at time t, then
acceleration of pole is

θ̈t =

g sin θt + cos θt

(
− Ft −mplθ̇t

2
sin θt

mc + mp

)

l

(
4
3
− mp cos2 θt

mc + mp

)

and acceleration of cart is

ẍt =
Ft + mpl

(
θ̇t

2
sin θt − θ̈t cos θt

)

mc + mp
.

TABLE I
RUNTIME PERFORMANCE OF VARIOUS ALGORITHMS ON THE CART-POLE

PROBLEM (M=MINUTES)

Now let τ be the time step for Euler’s method, we have the
following state transition equations:

xt+1 = xt + τ ẋt

ẋt+1 = ẋt + τ ẍt

θt+1 = xt + τ θ̇t

θ̇t+1 = θ̇t + τ θ̈t .

Rewards are zero except for failure state (if the position of
cart reaches beyond ±2.4, or the pole exceeds an angle of
±12 degrees), it is−1. For our experiments, we choose N = 100
and M = 1. In case of RPBF, we consider parameterized
Fourier basis of the form cos(wT s + b) where w = [w1 , w2],
w1 , w2 ∼ N (0, 1) and b ∼ Unif[−π, π]. We fix J = 10 for
our EVL+RPBF. For RKHS, we consider Gaussian kernel,
K(s1 , s2) = exp(−σ||s1 − s2 ||2/2) with σ = 0.01. We limit
each episode to 1000 time steps. We compute the average length
of the episode for which we are able to balance the pole without
hitting the failure state. This is the goal in Table I. The other
columns show run-time needed for the algorithms to learn to
achieve such a goal.

From the table, we can see that EVL+RPBF outperforms
FVI and EVL+RKHS. Note that guarantees for FVI are only
available for L2-error and for EVL-RPBF for Lp -error. EVL-
RKHS is the only algorithm that can provide guarantees on the
sup-norm error. Also note that when for problems for which the
value functions are not so regular, and good basis functions are
difficult to guess, the EVL+RKHS method is likely to perform
better but as of now we do not have a numerical example to
demonstrate this.

We also tested our algorithms on the Acrobot problem, a
2-link pendulum with only the second joint actuated. The ob-
jective is to swing the end-effector to a height, which is at
least the length of one link above the base starting with both
links pointing downwards. The state here is six dimensional,
which are sin(·) and cos(·) of the two rotational joint angles and
the joint angular velocities. There are three actions available:
+1, 0 or −1, corresponding to the torque on the joint between
the two pendulum links. We modify the environment available
from OpenAI by injecting a uniform noise in the actions so that
the transitions are not deterministic. The reward is 1 if the goal
state is reached, else 0. We choose N = 2000,M = 1, J = 100.
Fig. 2 represents the reward for both of the proposed algorithms.
Not only does EVL+RPBF perform better, it is also faster than
EVL+RKHS by an average of 3.67 min per iteration. The reason
for this is that the EVL+RKHS algorithm is designed to provide
guarantees on sup-error, a much more stringent requirement than
the Lp -error that EVL+RPBF algorithm provides guarantees on.

Authorized licensed use limited to: Rahul Jain. Downloaded on February 19,2021 at 19:03:21 UTC from IEEE Xplore. Restrictions apply.

124 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 1, JANUARY 2020

Fig. 2. Performance on the Acrobot problem.

VI. CONCLUSION

In this paper, we have introduced universally applicable ADP
algorithms for continuous state-space MDPs with finite action
spaces. The algorithms introduced are based on using random-
ization to improve computational tractability and reduce the
“curse of dimensionality” via the synthesis of the “random func-
tion approximation” and “empirical” approaches. Our first al-
gorithm is based on a random parametric function fitting by
sampling parameters in each iteration. The second is based on
sampling states, which then yield a set of basis functions in an
RKHS from the kernel. Both function fitting steps involve con-
vex optimization problems and can be implemented with stan-
dard packages. Both algorithms can be viewed as iteration of a
type of random Bellman operator followed by a random projec-
tion operator. Iterated random operators in general are difficult
to analyze. Nevertheless, we can construct Markov chains that
stochastically dominate the error sequences, which simplify the
analysis [10]. In fact, the introduced method may be viewed
as a “probabilistic contraction analysis” method in contrast to
stochastic Lyapunov techniques and other methods for analyz-
ing stochastic iterative algorithms. They yield convergence but
also nonasymptotic sample complexity bounds. Numerical ex-
periments on the cart-pole balancing and the Acrobat problems
suggests good performance in practice. More rigorous numeri-
cal analysis will be conducted as part of future work.

APPENDIX

A. Supplement for Section III

The following computation shows that T maps bounded
functions to Lipschitz continuous functions when Q and c are
both Lipschitz continuous in the sense of (1) and (2). Suppose
‖v‖∞ ≤ vmax , then T v is Lipschitz continuous with constant
Lc + γ vmaxLQ . We have

| [T v] (s)− [T v] (s′) |
≤ max

a∈A
|c (s, a)− c (s′, a) |

+ γ max
a∈A
|
∫

v (y) Q (dy | s, a)−
∫

v (y) Q (dy | s′, a) |

≤ Lc‖s− s′‖2 + γ vmax max
a∈A

∫
|Q (dy |s, a)−Q (dy | s′, a)|

≤ (Lc + γ vmaxLQ) ‖s− s′‖2 .

B. Supplement for Section IV

First, we need to adapt [9, Lemma 3] to obtain point-wise
error bounds on vK − v∗ in terms of the errors {εk}k≥0 . These
bounds are especially useful when analyzing the performance of
EVL with respect to other norms besides the supremum norm,
since T does not have a contractive property with respect to any
other norm.

For any π ∈ Π, we define the operator Qπ : F(S)→ F(S)
(which gives the transition mapping as a function of π) via

(Qπ v) (s) �
∫

S
v (y)Q (dy | s, π(s)) ∀s ∈ S.

Then, we define the operator Tπ : F(S)→ F(S) via

[Tπ v] (s) � c (s, π(s)) + γ

∫

S
v (x)Q (dx | s, π(s)) ∀s ∈ S.

For later use, we let π∗ ∈ Π be an optimal policy satisfying

π∗(s) ∈ arg min
a∈A

{

c (s, a) + γ

∫

S
v∗ (x) Q (dx | s, a)

}

∀s ∈ S,, i.e., it is greedy with respect to v∗. More generally, a
policy π ∈ Π is greedy with respect to v ∈ F(S) if Tπ v = T v.

For use throughout this section, we let πk be a greedy policy
with respect to vk so that Tπk vk = T vk for all k ≥ 0. Then, for
fixed K ≥ 1, we define the operators

AK � 1
2

[(
Qπ ∗)K + QπK −1 QπK −2 · · ·Qπ0

]

Ak � 1
2

[(
Qπ ∗)K−k−1

+ QπK −1 QπK −2 · · ·Qπk + 1

]

for k = 0, . . . , K − 1, formed by composition of transition ker-
nels. We let �1 be the constant function equal to one on S,

and we define the constant γ̃ = 2(1−γ K + 1)
1−γ for use shortly. We

note that {Ak}Kk=0 are all linear operators and Ak
�1 = �1 for all

k = 0, . . . , K.
Lemma 9: For any K ≥ 1,
1) vK − v∗≤∑K−1

k=0 γK−k−1(Qπ ∗)K−k−1εk +γK (Qπ ∗)K

(v0 − v∗);
2) vK−v∗≥∑K−1

k=0 γK−k−1(QπK −1 QπK −2 · · ·Qπk + 1)εk +
γK (QπK −1 QπK −2 · · ·Qπ0)(v0 − v∗);

3) |vK−v∗|≤2[
∑K−1

k=0 γK−k−1Ak |εk |+γK AK (2 vmax)].
Proof:
1) For any k ≥ 1, we have T vk ≤ Tπ ∗vk and Tπ ∗vk −

Tπ ∗v∗ = γ Qπ ∗(vk − v∗), so vk+1 − v∗ =

T vk + εk − Tπ ∗vk + Tπ ∗vk − Tπ ∗v∗

≤ γ Qπ ∗ (vk − v∗) + εk .

The result then follows by induction.

Authorized licensed use limited to: Rahul Jain. Downloaded on February 19,2021 at 19:03:21 UTC from IEEE Xplore. Restrictions apply.

HASKELL et al.: UNIVERSAL EMPIRICAL DYNAMIC PROGRAMMING ALGORITHM FOR CONTINUOUS STATE MDPS 125

2) Similarly, for any k ≥ 1, we have T v∗ ≤ Tπk v∗ and
T vk − Tπk v∗ = Tπk vk − Tπk v∗ = γ Qπk (vk − v∗), so
vk+1 − v∗ =

T vk + εk − Tπk v∗ + Tπk v∗ − T v∗

≥ γ Qπk (vk − v∗) + εk .

Again, the result follows by induction.
3) If f ≤ g ≤ h inF(S), then |g| ≤ |f |+ |h|, so combining

parts 1) and 2) gives

|vK − v∗| ≤ 2
K−1∑

k=0

γK−k−1Ak |εk |+ 2 γK AK |v0 − v∗|.

Then, we note that |v0 − v∗| ≤ 2 vmax . �
Now we use Lemma 9 to derive p−norm bounds.
Proof of Lemma 4: Using

∑K
k=0 γk = (1−γK +1)/(1− γ),

we define the constants

αk =
(1− γ) γK−k−1

1− γK +1 ∀k = 0, . . . , K − 1

αK =
(1− γ) γK

1− γK +1

and we note that
∑K

k=0 αk = 1. Then, we obtain |vK − v∗|

≤ γ̃

[
K−1∑

k=0

αkAk |εk |+ αK AK (2 vmax)

]

from Lemma 9 3). Next, we compute ‖vK − v∗‖pp, ρ =
∫

S
|vK (s)− v∗(s)|pρ (ds)

≤ γ̃p

∫

S

[
K−1∑

k=0

αkAk |εk |+ αK AK (2 vmax)�1

]p

(s)ρ (ds)

≤ γ̃p

∫

S

[
K−1∑

k=0

αkAk |εk |p + αK AK (2 vmax)
p �1

]

(s)ρ (ds)

using Jensen’s inequality and convexity of x→ |x|p . Now, we
have ρAk ≤ cρ, μ(K − k − 1)μ for k = 0, . . . , K − 1 by As-
sumption 1 2) and so for all k = 0, . . . , K − 1

∫

S
[Ak |εk |p] (s)ρ (ds) ≤ cρ, μ (K − k − 1) ‖εk‖pp, μ .

We arrive at ‖vK − v∗‖pp, ρ

≤ γ̃p

[
K−1∑

k=0

αkcρ, μ (K − k − 1) ‖εk‖pp, μ + αK (2 vmax)
p

]

= 2p γ̃p−1

[
K−1∑

k=0

γK−k−1cρ, μ (K − k − 1) ‖εk‖pp, μ

+ γK (2 vmax)
p

]

where we use |v0 − v∗|p ≤ (2 vmax)p . Now, by subadditivity
of x→ |x|t for t = 1/p ∈ (0, 1] with p ∈ [1, ∞), assump-
tion that ‖εk‖p, μ ≤ ε for all k = 0, 1, . . . , K − 1, and since

∑K−1
k=0 γK−k−1cρ, μ(K − k − 1) ≤ Cρ, μ by Assumption 1 2),

we see

‖vK − v∗‖p, ρ ≤ 2
(

1− γK +1

1− γ

) p −1
p [

C1/p
ρ, μ ε + γK/p (2 vmax)

]

which gives the desired result. �
Supremum norm error bounds follow more easily from

Lemma 9.
Proof of Lemma 5: We have

‖vK − v∗‖∞ ≤ max

{∥
∥
∥
∥
∥

K−1∑

k=0

γK−k−1 (Qπ ∗)K−k−1
εk

+γK
(
Qπ ∗)K (v0 − v∗)

∥
∥
∥
∞

∥
∥
∥
∥
∥

K−1∑

k=0

γK−k−1 (QπK −1 QπK −2 · · ·QπK + 1) εk

+γK (QπK −1 QπK −2 · · ·Qπ0) (v0 − v∗)
∥
∥
∥
∞

}

by Lemma 9. Now
∥
∥
∥
∥
∥

K−1∑

k=0

γK−k−1 (Qπ ∗)K−k−1
εk

+ γK
(
Qπ ∗)K (v0 − v∗)

∥
∥
∥
∞

≤
K−1∑

k=0

γK−k−1‖εk‖∞ + γK ‖v0 − v∗‖∞

and
∥
∥
∥
∥
∥

K−1∑

k=0

γK−k−1 (QπK −1 QπK −2 · · ·QπK + 1) εk

+ γK (QπK −1 QπK −2 · · ·Qπ0) (v0 − v∗)
∥
∥
∥
∞

≤
K−1∑

k=0

γK−k−1‖εk‖∞ + γK ‖v0 − v∗‖∞

where we use the triangle inequality, the fact that |(Qf)(s)| ≤∫
S |f(y)|Q(dy | s) ≤ ‖f‖∞ for any transition kernel Q on S and

f ∈ F(S), and |v0 − v∗| ≤ 2 vmax . For any K ≥ 1

‖vK − v∗‖∞ ≤
K−1∑

k=0

γK−k−1‖εk‖∞ + γK (2 vmax) (9)

follows immediately since
∑K−1

k=0 γK−k−1ε ≤ ε/(1− γ) for all
K ≥ 1. �

We emphasize that Lemma 5 does not require any assump-
tions on the transition probabilities, in contrast to Lemma 4,
which requires Assumption 1 2).

C. Supplement for Section IV: Function Approximation

We record several pertinent results here on the type of function
reconstruction used in our EVL algorithms. The first lemma is
illustrative of approximation results in Hilbert spaces, it gives

Authorized licensed use limited to: Rahul Jain. Downloaded on February 19,2021 at 19:03:21 UTC from IEEE Xplore. Restrictions apply.

126 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 1, JANUARY 2020

an O(1/
√

J) convergence rate on the error from using F̂(θ1:J)
compared to F(Θ) in L2, μ(S) in probability.

Lemma 10 (see[26, Lemma 1]): Fix f ∗ ∈ F(Θ), for any δ ∈
(0, 1), there exists a function f̂ ∈ F̂(θ1:J) such that

‖f ∗ − f̂‖2, μ ≤ C√
J

(

1 +

√

2 log
1
δ

)

with probability at least 1− δ.
The next result is an easy consequence of [26, Lemma 1]

and bounds the error from using F̂(θ1:J) compared to F(Θ) in
L1, μ(S).

Lemma 11: Fix f ∗ ∈ F(Θ), for any δ ∈ (0, 1), there exists
a function f̂ ∈ F̂(θ1:J) such that

‖f̂ − f ∗‖1, μ ≤ C√
J

(

1 +

√

2 log
1
δ

)

with probability at least 1− δ.
Proof: Choose f, g ∈ F(S), then by Jensen’s inequality, we

have ‖f − g‖1, μ = Eμ [|f(S)− g(S)|]

= Eμ

[(
(f(s)− g(s))2

)1/2
]

≤
√

Eμ

[
(f(s)− g(s))2

]
.

The desired result then follows by [26, Lemma 1]. �
Now we consider function approximation in the supremum

norm. Recall the definition of the regression function

fM (s) = E

[

min
a∈A

{

c (s, a) +
γ

M

M∑

m=1

v (Xs, a
m)

}]

∀s ∈ S. Then, we have the following approximation result, for
which we recall the constant κ := sups∈S

√
K(s, s).

Corollary 12 (see[28, Corollary 5]): For any δ ∈ (0, 1)

‖fz, λ − fM ‖HK

≤ C̃ κ

(
log (4/δ)2

N

)1/6

for λ =

(
log (4/δ)2

N

)1/3

with probability at least 1− δ.
Proof: Uses the fact that for any f ∈ HK , ‖f‖∞ ≤

κ ‖f‖HK
. For any s ∈ S, we have |f(s)| = |〈K(s, ·), f(·)〉HK

|
and subsequently

|〈K (s, ·) , f(·)〉HK
| ≤ ‖K (s, ·) ‖HK

‖f‖HK

=
√
〈K (s, ·) , K (s, ·)〉HK

‖f‖HK

=
√

K (s, s)‖f‖HK

≤ sup
s∈S

√
K (s, s)‖f‖HK

where the first inequality is by Cauchy–Schwartz and the second
is by assumption that K is a bounded kernel. �

The preceding result is about the error when approximating
the regression function fM , but fM generally is not equal to
T v. We bound the error between fM and T v as well in the next
section.

Proof: (Theorem 6) First we note that, by [10, Lemma A.1],
[Yk+1 |Yk = η] is stochastically increasing in η for all k ≥ 0,
i.e., [Yk+1 |Yk = η] ≤st [Yk+1 |Yk = η′] for all η ≤ η′. Then,
by [10, Lemma A.2], [Xk+1 |Xk = η, Fk] ≤st [Yk+1 |Yk = η]
for all η ∈ f and Fk for all k ≥ 0.

1) Trivially, X0 ≤st Y0 since X0 ≤as Y0 . Next, we see that
X1 ≤st Y1 by [10, Lemma A.1]. We prove the general
case by induction. Suppose Xk ≤st Yk for k ≥ 1, and for
this proof define the random variable

Y (θ) =

{
max {θ − 1, 1} , w.p. q

K∗, w.p. 1− q

to be the conditional distribution of Yk conditional on θ, as
a function of θ. We see that Yk+1 has the same distribution
as [Y(θ) | θ = Yk] by definition. SinceY(θ) are stochasti-
cally increasing by Lemma [10, Lemma A.1], we see that
[Y(θ) | θ = Yk] ≥st [Y(θ) | θ = Xk] by [29, Th. 1.A.6]
and our induction hypothesis. Now, [Y(θ) | θ = Xk] ≥st

[Xk+1 |Xk, Fk] by [29, Th. 1.A.3(d)] and Lemma [10,
Lemma A.2] for all historiesFk . It follows that Yk+1 ≥st

Xk+1 by transitivity of ≥st .
2) Follows from part 1) by the definition of ≤st . �
Proof: (Corollary 7) Since (Yk)k≥0 is an irreducible Markov

chain on a finite state space, its steady-state distribution μ =
(μ(i))K ∗

i=1 on K exists. By [10, Lemma 4.3], the steady-state
distribution of (Yk)k≥0 is μ = (μ(i))K ∗

i=1 given by

μ (1) = qK ∗−1

μ (i) = (1− q) qK ∗−i , ∀i = 2, . . . ,K∗ − 1

μ (K∗) = 1− q.

The constant

μmin (q; K∗) := min
{

qK ∗−1 , (1− q) q(K ∗−2) , (1− q)
}

for all q ∈ (0, 1) and K∗ ≥ 1, which is the minimum of the
steady-state probabilities appears shortly in the Markov chain
mixing time bound for (Yk)k≥0 . We note that μ∗(q; K∗) =
(1− q)qK ∗−1 ≤ μmin(q; K∗) is a simple lower bound for
μmin(q; K∗) (we defined μ∗(q; K∗) = (1− q)qK ∗−1 earlier).

Now, recall that ‖μ− ν‖T V = 1
2

∑K ∗
η=1 |μ(η)− ν(η)| is the

total variation distance for probability distributions on K. Let
Qk be the marginal distribution of Yk for k ≥ 0. By a Markov
chain mixing time argument, e.g., [30, Th. 12.3], we have that

tmix (δ′) := min
{
k ≥ 0 : ‖Qk − μ‖T V ≤ δ′

}

≤ log
(

1
δ′μmin (q; K∗)

)

≤ log
(

1
δ′ (1− q) qK ∗−1

)

for any δ′ ∈ (0, 1). So, for K ≥ log(1/(δ′(1− q)qK ∗−1)), we
have |Pr{YK = 1} − μ(1)| =

|Pr {YK = 1} − qK ∗−1 | ≤ 2 ‖QK − μ‖T V ≤ 2 δ′

Authorized licensed use limited to: Rahul Jain. Downloaded on February 19,2021 at 19:03:21 UTC from IEEE Xplore. Restrictions apply.

HASKELL et al.: UNIVERSAL EMPIRICAL DYNAMIC PROGRAMMING ALGORITHM FOR CONTINUOUS STATE MDPS 127

where we use μ(1) = qK ∗−1 . By Theorem 6, Pr{XK = 1} ≥
Pr{YK = 1} and so

Pr {XK = 1} ≥ qK ∗−1 − 2 δ′.

Choose q and δ′ to satisfy qK ∗−1 = 1/2 + δ/2 and 2 δ′ =
qK ∗−1 − δ = 1/2− δ/2 to get qK ∗−1 − 2 δ′ ≥ δ, and the de-
sired result follows. �

D. Bellman Error

The layout of this section is modeled after the arguments in
[9], but with the added consideration of randomized function
fitting. We use the following easy-to-establish fact.

Fact 13: Let X be a given set, and f1 : X → R and f2 :
X → R be two real-valued functions on X . Then,

1) | infx∈X f1(x)− infx∈X f2(x)| ≤ supx∈X |f1(x)−
f2(x)|, and

2) | supx∈X f1(x)− supx∈X f2(x)| ≤ supx∈X |f1(x)−
f2(x)|.

For example, Fact 13 can be used to show that T is contractive
in the supremum norm.

The next result is about T̂ , it uses Hoeffding’s inequal-
ity to bound the estimation error between {ṽ(sn)}Nn=1 and
{[T v](sn)}Nn=1 in probability.

Lemma 14: For any p∈ [1,∞], f, v∈F(S; vmax), and ε > 0

Pr {|‖f − T v‖p, μ̂ − ‖f − ṽ‖p, μ̂ | > ε}

≤ 2N |A| exp
(−2M ε2

v2
max

)

.

Proof: First we have |‖f − T v‖p, μ̂ − ‖f − ṽ‖p, μ̂ | ≤ ‖T v
− ṽ‖p, μ̂ by the reverse triangle inequality. Then, for any s ∈ S,
we have |[T v](s)− ṽ(s)| =

max
a∈A

∣
∣
∣
∣

{

c (s, a) + γ

∫

S
v (x) Q (dx | s, a)

}

−
{

c (s, a) +
γ

M

M∑

m=1

v (Xs, a
m)

}∣
∣
∣
∣
∣

≤ γ max
a∈A

∣
∣
∣
∣
∣

∫

S
v (x)Q (dx | s, a)− 1

M

M∑

m=1

v (Xs, a
m)

∣
∣
∣
∣
∣

by Fact 13. We may also take v(s) ∈ [0, vmax] for all s ∈ S by
assumption on the cost function, so by the Hoeffding inequality
and the union bound, we obtain

Pr

{

max
n=1,..., N

|[T v] (sn)− ṽ (sn)| ≥ ε

}

≤ 2N |A| exp
(−2M ε2

vmax2

)

and thus

Pr {‖T v − ṽ‖p, μ̂ ≥ ε}

= Pr

⎧
⎨

⎩

(
1
N

N∑

n=1

|[T v] (sn)− ṽ (sn)|p
)1/p

≥ ε

⎫
⎬

⎭

≤ Pr

{

max
n=1,..., N

|[T v] (sn)− ṽ (sn)| ≥ ε

}

which gives the desired result. �
To continue, we introduce the following additional notation

corresponding to a set of functions F ⊂ F(S):
1) F(s1:N) � {(f(s1), . . . , f(sN)) : f ∈ F}
2) N (ε, F(s1:N)) is the ε-covering number of F(s1:N)

with respect to the 1-norm on RN .
The next lemma uniformly bounds the estimation error be-

tween the true expectation and the empirical expectation over
the set F̂(θ1:J) (in the following statement, e is Euler’s number).

Lemma 15: For any ε > 0 and N ≥ 1

Pr

{

sup
f∈F̂(θ1 :J)

∣
∣
∣
∣
∣
1
N

N∑

n=1

f (Sn)− Eμ [f(s)]

∣
∣
∣
∣
∣
> ε

}

≤ 8 e (J + 1)
(

2 e vmax

ε

)J

exp
(−N ε2

128 v2
max

)

.

Proof: For any F ⊂ F(S; vmax), ε > 0, and N ≥ 1, we
have

Pr

{

sup
f∈F̂(θ1 :J)

∣
∣
∣
∣
∣
1
N

N∑

n=1

f (Sn)− Eμ [f(s)]

∣
∣
∣
∣
∣
> ε

}

≤ 8 E
[
N
(
ε/8, F̂ (θ1:J) (s1:N)

)]
exp
(−N ε2

128 v2
max

)

.

It remains to bound E[N (ε/8, F̂(θ1:J)(s1:N))]. We note that
F̂(θ1:J) is a subset of

⎧
⎨

⎩
f(·) =

J∑

j=1

αjφ (·; θj) : (α1 , . . . , αJ) ∈ RJ

⎫
⎬

⎭

which is a vector space with dimension J . By [31, Corollary
11.5], the pseudo-dimension of F̂(θ1:J) is bounded above by J .
Furthermore

N
(
ε, F̂ (θ1:J) (s1:N)

)
≤ e (J + 1)

(
2 e vmax

ε

)J

by [32, Corollary 3], which gives the desired result. �
To continue, we let v′ = v′(v, N, M, J, μ, ν) denote the

(random) output of one iteration of EVL applied to v ∈ F(S)
as a function of the parameters N, M, J ≥ 1 and the proba-
bility distributions μ and ν. The next theorem bounds the error
between T v and v′ in one iteration of EVL with respect to
L1, μ(S), it is a direct adaptation of [9, Lemma 1] modified to
account for the randomized function fitting and the effective
function space being F(θ1:J).

Theorem 16: Choose v∈F(S; vmax), ε>0, and δ ∈ (0, 1).

Also choose J ≥ [5 C
ε (1 +

√
2 log 5

δ)]2 , N ≥ 2752 v̄2
max log

Authorized licensed use limited to: Rahul Jain. Downloaded on February 19,2021 at 19:03:21 UTC from IEEE Xplore. Restrictions apply.

128 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 1, JANUARY 2020

[40 e(J +1)
δ (10 e v̄max)J], and M ≥ (v 2

m a x
2 ε2) log[10 N |A|

δ]. Then,
for v′ = v′(v, N, M, J, μ, ν), we have ‖v′ − T v‖1, μ ≤
d1, μ(T v, F(Θ)) + ε with probability at least 1− δ.

Proof: Let ε′ > 0 be arbitrary and choose f ∗ ∈ F(Θ) such
that ‖f ∗ − T v‖1, μ≤ inff∈F(Θ) ‖f−T v‖1, μ +ε′. Then, choose

f̂ ∈ F̂(θ1:J) such that ‖f̂ − T v‖1, μ ≤ ‖f ∗ − T v‖1, μ + ε/5
with probability at least 1− δ/5 by Lemma 11 by choosing
J ≥ 1 to satisfy

C√
J

(

1 +

√

2 log
1

(δ/5)

)

≤ ε

5

⇒ J ≥
[(

5C

ε

)(

1 +

√

2 log
5
δ

)]2

.

Now consider the inequalities

‖v′ − T v‖1, μ ≤ ‖v′ − T v‖1, μ̂ + ε/5 (10)

≤ ‖v′ − ṽ‖1, μ̂ + 2 ε/5 (11)

≤ ‖f̂ − ṽ‖1, μ̂ + 2 ε/5 (12)

≤ ‖f̂ − T v‖1, μ̂ + 3 ε/5 (13)

≤ ‖f̂ − T v‖1, μ + 4 ε/5 (14)

≤ ‖f ∗ − T v‖1, μ + ε (15)

≤ d1, μ (T v, F (Θ)) + ε + ε′. (16)

First, note that inequality (12) is immediate since ‖v′ − ṽ‖1, μ̂ ≤
‖f − ṽ‖1, μ̂ for all f ∈ F̂(θ1:J) by the choice of v′ as the min-
imizer in Step 3 of Algorithm 1. Second, inequalities (10) and
(14) follow from Lemma 15 by choosing N ≥ 1 to satisfy

8 e (J + 1)
(

2 e vmax

ε/5

)J

exp

(
−N (ε/5)2

128 v2
max

)

≤ δ

5

⇒ N ≥ 2752 v̄2
max log

[
40 e (J + 1)

δ
(10 e v̄max)

J

]

.

Third, inequality (16) follows from the choice of f ∗ ∈ F . Fi-
nally, inequalities (11) and (13) follow from Lemma 14 by
choosing M ≥ 1 to satisfy

2N |A| exp
(−2M ε2

vmax2

)

≤ δ

5

⇒M ≥
(

v2
max

2 ε2

)

log
[
10N |A|

δ

]

.

Since ε′ was arbitrary, the desired result then follows by the
union bound. �

Using similar steps as Theorem 16, the next theorem bounds
the error in one iteration of EVL with respect to L2, μ(S).

Theorem 17: Choose v∈F(S; vmax), ε>0, and δ∈(0, 1).

Also choose J ≥ [5 C
ε (1 +

√
2 log 5

δ)]2 , N ≥ 2752 v̄4
max log

[40 e(J +1)
δ (10 e v̄max)J], and M ≥ (v 2

m a x
2 ε2) log[10 N |A|

δ]. Then,
for v′ = v′(v, N, M, J, μ, ν), we have ‖v′ − T v‖2, μ ≤
d2, μ(T v, F(Θ)) + ε with probability at least 1− δ.

In the next lemma, we show that we can make the bias be-
tween the regression function fM and the Bellman update T v

arbitrarily small uniformly over s ∈ S through the choice of
M ≥ 1.

Lemma 18: For any ε > 0 and M ≥ 1

‖fM − T v‖∞ ≤ γ

[

ε + 2 |A| exp
(−2M ε2

vmax2

)

(vmax − ε)
]

.

Proof: For any s ∈ S, we compute

|fM (s)− [T v] (s)|

≤ E

[∣
∣
∣
∣
∣
min
a∈A

{

c (s, a) +
γ

M

M∑

m=1

v (Xs, a
m)

}

−min
a∈A

{
c (s, a) + γ EX∼Q(· | s, a) [v(X)]

}
∣
∣
∣
∣
∣

]

≤ γ E

[

max
a∈A

∣
∣
∣
∣
∣

1
M

M∑

m=1

v (Xs, a
m)− EX∼Q(· | s, a) [v(X)]

∣
∣
∣
∣
∣

]

≤ γ

[

ε + 2 |A| exp
(−2M ε2

vmax2

)

(vmax − ε)
]

where the second inequality follows from Fact 13 and the third
is by the Hoeffding inequality. �

We make use of the following RKHS function fitting result
for the one step Bellman error in the supremum norm.

Theorem 19: Fix v∈F(S; vmax), ε > 0, and δ ∈ (0, 1).
Also choose N ≥ (2 CK κ

ε)6 log(4/δ)2 and M ≥ v 2
m a x

2(ε/4)2 log

(4 |A| γ (vm a x−ε/4)
(4−2 γ)ε), where CK is a constant independent of the

dimension of S. Then, for

f̂λ � arg min
f∈HK

{
1
N

N∑

n=1

(f (Sn)− Yn)2 + λ ‖f‖2HK

}

we have ‖f̂λ − T v‖∞ ≤ ε with probability at least 1− δ.
Proof: By the triangle inequality, ‖f̂λ − T v‖∞ ≤ ‖f̂λ −

fM ‖∞ + ‖fM − T v‖∞. We choose N ≥ 1 to satisfy

CK κ

(
log (4/δ)2

N

)1/6

≤ ε

2
⇒ N ≥

(
2CK κ

ε

)6

log (4/δ)2

so that ‖f̂λ − fM ‖∞ ≤ ε/2 with probability at least 1− δ by
[28, Corollary 5] and the fact that ‖f‖∞ ≤ κ ‖f‖HK

. Then, we
choose M ≥ 1 to satisfy

γ

[

ε/4 + 2 |A| exp

(
−2M (ε/4)2

v2
max

)

(vmax − ε/4)

]

≤ ε

2

⇒M ≥ v2
max

2 (ε/4)2 log
(

4 |A| γ (vmax − ε/4)
(4− 2 γ) ε

)

so that ‖fM − T v‖∞ ≤ ε/2 by Lemma 18. �

REFERENCES

[1] W. B. Haskell, P. Yu, H. Sharma, and R. Jain, “Randomized function
fitting-based empirical value iteration,” in Proc. IEEE 56th Annu. Conf.
Decision Control, 2017, pp. 2467–2472.

[2] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed,
vol. 2. Belmont, MA, USA: Athena Sci., 2011.

[3] W. B. Powell, Approximate Dynamic Programming: Solving the Curses
of Dimensionality, vol. 703. New York, NY, USA: Wiley, 2007.

Authorized licensed use limited to: Rahul Jain. Downloaded on February 19,2021 at 19:03:21 UTC from IEEE Xplore. Restrictions apply.

HASKELL et al.: UNIVERSAL EMPIRICAL DYNAMIC PROGRAMMING ALGORITHM FOR CONTINUOUS STATE MDPS 129

[4] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
vol. 1. Cambridge, U.K.: Cambridge Univ. Press, 1998.

[5] R. A. DeVore, “Nonlinear approximation,” Acta Numerica, vol. 7, pp. 51–
150, 1998.

[6] D. P. Bertsekas, “Dynamic programming and suboptimal control: A sur-
vey from adp to mpc,” 2005. [Online]. Available: http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.68.4541

[7] D. P. Bertsekas, Dynamic Programming and Optimal Control, 2010.
[8] W. B. Powell, Approximate Dynamic Programming: Solving the Curses

of Dimensionality (Wiley Series in Probability and Statistics). New York,
NY, USA: Wiley-Interscience, 2007.

[9] R. Munos and C. Szepesvári, “Finite-time bounds for fitted value itera-
tion,” J. Mach. Learn. Res., vol. 9, pp. 815–857, 2008.

[10] W. B. Haskell, R. Jain, and D. Kalathil, “Empirical dynamic program-
ming,” Math. Operations Res., vol. 41, no. 2, pp. 402–429, 2016.

[11] J. Rust, “Using randomization to break the curse of dimensionality,”
Econometrica: J. Econometric Soc., vol. 65, no. 3, pp. 487–516, 1997.

[12] D. P. De Farias and B. Van Roy, “On constraint sampling in the linear
programming approach to approximate dynamic programming,” Math.
Oper. Res., vol. 29, no. 3, pp. 462–478, 2004.

[13] D. Ormoneit and Ś. Sen, “Kernel-based reinforcement learning,” Mach.
Learn., vol. 49, nos. 2/3, pp. 161–178, 2002.

[14] S. Grünewälder, G. Lever, L. Baldassarre, M. Pontil, and A. Gretton,
“Modelling transition dynamics in MDPS with RKHS embeddings,”
ICML, Madison, WI, USA: Omnipress, pp. 535–542, 2012,

[15] C. Szepesvári, “Efficient approximate planning in continuous space
markovian decision problems,” AI Commun., vol. 14, no. 3, pp. 163–176,
2001.

[16] R. Munos, “Performance bounds in l_p-norm for approximate value iter-
ation,” SIAM J. Control Optim., vol. 46, no. 2, pp. 541–561, 2007.

[17] D. P. De Farias and B. Van Roy, “The linear programming approach to
approximate dynamic programming,” Oper. Res., vol. 51, no. 6, pp. 850–
865, 2003.

[18] N. Bhat, V. Farias, and C. C. Moallemi, “Non-parametric approximate
dynamic programming via the kernel method,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 386–394.

[19] R. Munos, “Error bounds for approximate policy iteration,” in Proc. Int.
Conf. Mach. Learn., 2003, vol. 3, pp. 560–567.

[20] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Proc. Ad-
vances Neural Inf. Process. Syst., 2000, pp. 1008–1014.

[21] R. Jain and P. Varaiya, “Simulation-based optimization of Markov decision
processes: An empirical process theory approach,” Automatica, vol. 46,
no. 8, pp. 1297–1304, 2010.

[22] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gra-
dient methods for reinforcement learning with function approximation,”
in Proc. Adv. Neural Inf. Process. Syst., 2000, pp. 1057–1063.

[23] J. Peters and J. A. Bagnell, “Policy gradient methods,” in Encyclopedia
of Machine Learning and Data Mining. New York, NY, USA: Springer,
2016, pp. 1–4.

[24] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[25] A. Rahimi and B. Recht, “Uniform approximation of functions with ran-
dom bases,” in Proc. 46th Annu. Allerton Conf. Commun., Control, Com-
put., 2008, pp. 555–561.

[26] A. Rahimi and B. Recht, “Weighted sums of random kitchen sinks: Replac-
ing minimization with randomization in learning,” in Proc. Adv. Neural
Inf. Process. Syst., 2009, pp. 1313–1320.

[27] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. New York, NY, USA: Wiley, 2014.

[28] S. Smale and D.-X. Zhou, “Shannon sampling ii: Connections to learning
theory,” Appl. Comput. Harmon. Anal., vol. 19, no. 3, pp. 285–302, 2005.

[29] M. Shaked and J. G. Shanthikumar, Stochastic Orders. New York, NY,
USA: Springer, 2007.

[30] D. A. Levin, Y. Peres, and E. L. Wilmer, Markov Chains and Mixing
Times. Providence, RI, USA: Am. Math. Soc., 2008.

[31] M. Anthony and P. L. Bartlett, Neural Network Learning: Theoretical
Foundations. Cambridge, U.K.: Cambridge Univ. Press, 2009.

[32] D. Haussler, “Sphere packing numbers for subsets of the boolean n-cube
with bounded Vapnik–Chervonenkis dimension,” J. Combinatorial The-
ory, Ser. A, vol. 69, no. 2, pp. 217–232, 1995.

William B. Haskell received the B.S. degree
in mathematics and the M.S. degree in econo-
metrics from the University of Massachusetts
Amherst, Amherst, MA, USA, in 2005 and 2006,
respectively. He then received the M.S. degree
in operations research, the M.A. degree in math-
ematics, and the Ph.D. degree in operations re-
search from the University of California Berkeley,
Berkeley, CA, USA, in 2007, 2010, and 2011, re-
spectively.

He is currently an Assistant Professor with
the Department of Industrial Systems Engineering and Management,
National University of Singapore, Singapore. His research interests in-
clude algorithms for convex optimization and dynamic programming, with
an emphasis on risk-aware decision-making.

Rahul Jain received the B.Tech. degree from
IIT Kanpur, Kanpur, India, the M.A. degree in
statistics and the Ph.D. degree in EECS from
the University of California, Berkeley, Berkeley,
CA, USA.

He is the K.C. Dahlberg Early Career Chair
and Associate Professor of ECE, CS* and ISE*
(*by courtesy) with the University of South-
ern California, Los Angeles, CA, USA. His re-
search interests include reinforcement learning,
stochastic control, statistical learning, stochas-

tic networks, and game theory, and power systems, transportation, and
healthcare on the applications side.

Dr. Jain has received numerous awards including the NSF CAREER
award, the ONR Young Investigator award, an IBM Faculty award, the
James H. Zumberge Faculty Research and Innovation Award, and is
currently a US Fulbright Scholar.

Hiteshi Sharma received the M.Tech. degree in
electrical engineering from IIT Bombay, Mumbai,
India, where she worked on dynamic spectrum
sharing in cognitive radio networks. She is cur-
rently working toward the Ph.D. degree with the
University of Southern California (USC), Los An-
geles, CA, USA, working with Prof. R. Jain.

Her research interests include approximate
dynamic programming, reinforcement learning,
and online learning.

Pengqian Yu received the B.S. degree in me-
chanical design, manufacturing, and automa-
tion from the College of Mechanical Engineer-
ing, Chongqing University, Chongqing, China,
in 2012, and the Ph.D. degree from the De-
partment of Mechanical Engineering, National
University of Singapore (NUS), Singapore, in
2016.

Since 2017, he has been a Postdoctoral Re-
search Fellow with the Department of Industrial
Systems Engineering and Management, NUS.

His research interests include sequential decision-making under uncer-
tainty, machine learning, approximate dynamic programming, and rein-
forcement learning.

Authorized licensed use limited to: Rahul Jain. Downloaded on February 19,2021 at 19:03:21 UTC from IEEE Xplore. Restrictions apply.

