
0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2021.3056317, IEEE

Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY 1

Synchronization Strings and Codes for Insertions

and Deletions – a Survey
Bernhard Haeupler and Amirbehshad Shahrasbi

Abstract—Already in the 1960s, Levenshtein and others stud-
ied error-correcting codes that protect against synchronization
errors, such as symbol insertions and deletions. However, despite
significant efforts, progress on designing such codes has been
lagging until recently, particularly compared to the detailed
understanding of error-correcting codes for symbol substitution
or erasure errors. This paper surveys the recent progress in
designing efficient error-correcting codes over finite alphabets
that can correct a constant fraction of worst-case insertions and
deletions.

Most state-of-the-art results for such codes rely on synchro-
nization strings, simple yet powerful pseudo-random objects
that have proven to be very effective solutions for coping with
synchronization errors in various settings. This survey also
includes an overview of what is known about synchronization
strings and discusses communication settings related to error-
correcting codes in which synchronization strings have been
applied.

Index Terms—Coding for Insertions and Deletions, Synchro-
nization Strings, Error-Correction for Synchronization Errors,
List-Decoding.

I. INTRODUCTION

FOLLOWING the inspiring works of Shannon and Ham-

ming a sophisticated and extensive body of research on

error-correcting codes has led to a deep and detailed theoretical

understanding as well as practical implementations that have

helped fuel the Digital Revolution. Error-correcting codes

can be found in virtually all modern communication and

computation systems. While being remarkably successful in

understanding the theoretical limits and trade-offs of reliable

communication under substitution errors and erasures, the cod-

ing theory literature lags significantly behind when it comes to

overcoming errors that concern the timing of communications.

In particular, the study of correcting synchronization errors,

i.e., symbol insertions and deletions, while initially introduced

by Levenshtein in the 60s, has significantly fallen behind our

highly sophisticated knowledge of codes for Hamming-type

errors, that are symbol substitutions and erasures.

This discrepancy has been well noted in the literature.

An expert panel [1] in 1963 concluded: “There has been

one glaring hole in [Shannon’s] theory; viz., uncertainties

Department of Computer Science, Carnegie Mellon University, Pittsburgh,
PA, 15213, USA. E-mails: haeupler@cs.cmu.edu, shahrasbi@cs.cmu.edu.
Supported in part by NSF grants CCF-1527110, CCF-1618280, CCF-1814603,
CCF-1910588, NSF CAREER award CCF-1750808, a Sloan Research Fel-
lowship, and funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program (ERC grant
agreement 949272).

Copyright (c) 2020 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

in timing, which I will propose to call time noise, have not

been encompassed Our thesis here today is that the

synchronization problem is not a mere engineering detail, but

a fundamental communication problem as basic as detection

itself!” however as noted in a comprehensive survey [2] in

2010: “Unfortunately, although it has early and often been

conjectured that error-correcting codes capable of correct-

ing timing errors could improve the overall performance of

communication systems, they are quite challenging to design,

which partly explains why a large collection of synchroniza-

tion techniques not based on coding were developed and

implemented over the years.” or as Mitzenmacher puts in his

survey [3]: “Channels with synchronization errors, including

both insertions and deletions as well as more general timing

errors, are simply not adequately understood by current theory.

Given the near-complete knowledge we have for channels

with erasures and errors . . . our lack of understanding about

channels with synchronization errors is truly remarkable.”

However, over the last five years, partially spurred by new

emerging application areas, such as DNA-storage [4], [5],

[6], [7], [8], [9], significant breakthroughs in our theoretical

understanding of error correction methods for insertions and

deletions have been made.

This survey focuses on error-correcting codes over finite

alphabets that can correct a constant fraction of worst-case

insertions and deletions and provides a complete account

of the recent progress in this area. Much of this progress

has been obtained through synchronization strings, recently

introduced, simple yet powerful pseudo-random objects proven

to be very effective solutions for coping with synchroniza-

tion errors in various communication settings. This paper

includes streamlined and self-contained proofs for the state-of-

the-art code constructions and decoding procedures for both

unique-decodable and list-decodable error-correcting codes

over large constant alphabets, which are based on synchro-

nization strings. We also provide in-depth discussions of

such codes over binary and other fixed (small) alphabets.

Lastly, this paper includes an overview of what is known

about synchronization strings themselves and discusses other

communication settings in which synchronization strings have

been successfully applied.

A. Synchronization Errors

Consider a stream of symbols being transmitted through

a noisy channel. There are two basic types of errors that

we will consider, Hamming-type errors and synchronization

errors. Hamming-type errors consist of erasures, that is, a

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 19,2021 at 21:00:13 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2021.3056317, IEEE

Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY 2

symbol being replaced with a special “?” symbol indicating the

erasure, and substitutions in which a symbol is replaced with

any other symbol of the alphabet. We will measure Hamming-

type errors in terms of half-errors. The wording half-error

comes from the realization that, when it comes to code

distances, erasures are half as bad as symbol substitutions.

An erasure is thus counted as one half-error while a symbol

substitution counts as two half-errors. Synchronization errors

consist of deletions, that is, a symbol being removed without

replacement, and insertions, where a new symbol is added

somewhere within the stream.

Synchronization errors are strictly more general and harsher

than half-errors. In particular, any symbol substitution, worth

two half-errors, can also be achieved via a deletion followed

by an insertion. Any erasure can be interpreted as a deletion

together with the extra information where this deletion has

taken place. This shows that any error pattern generated by

k half-errors can also be replicated using k synchronization

errors, making dealing with synchronization errors at least

as hard as half-errors. The real problem that synchronization

errors bring about, however, is that they cause sending and

receiving parties to become “out of sync”. This easily changes

how received symbols are interpreted and makes designing

codes or other systems tolerant to synchronization errors

an inherently difficult and significantly less well-understood

problem.

B. Scope of the Survey and Related Works

The study of coding for synchronization errors was initiated

by Levenshtein [10] in 1966 when he showed that Varshamov-

Tenengolts codes can correct a single insertion, deletion, or

substitution error with an optimal redundancy of almost log n
bits. Ever since, synchronization errors have been studied in

various settings. In this section, we specify and categorize

some of the commonly studied settings and give a detailed

summary of past works within the scope of this survey.

The first important aspect is the noise model. Several works

have studied coding for synchronization errors under the as-

sumption of random errors, most notably, to study the capacity

of deletion channels, which independently delete each symbol

with some fixed probability. In this paper, we exclusively focus

on worst-case error models in which correction has to be

possible from any (adversarial) error pattern bounded only by

the total number of insertions and deletions. We refer to the

recent survey (in the same special issue) by Cheraghchi and

Ribeiro [11] on capacity results for synchronization channels

as well as the surveys by Mitzenmacher [3] and Mercier [2],

for an extensive review of the literature on codes for random

synchronization errors.

Another angle to categorize the previous work on codes for

synchronization error from is the noise regime. In the same

spirit as ordinary error-correcting codes, the study of families

of synchronization codes has included both ones that protect

against a fixed number of synchronization errors and ones

that consider error count that is a fixed fraction of the block

length. The inspiring work of Levenshtein [10] falls under

the first category and is followed by several works designing

synchronization codes correcting k errors for specific values of

k [12], [13], [14], [15] or with k as a general parameter [16],

[17]. In this work, we focus on the second category, i.e.,

infinite families of synchronization codes with increasing

block length that are defined over a fixed alphabet size and can

correct from constant-fractions of worst-case synchronization

errors.

Furthermore, we mainly focus on codes that can be ef-

ficiently constructed and decoded – in contrast to merely

existential results. The first such code was constructed in 1990

by Schulman and Zuckerman [18]. They provided an efficient,

asymptotically good synchronization code with constant rate

and constant distance. In the following, we will give a com-

plete review of the previous work relevant to the scope of this

paper.

1) Rate-Distance Trade-Off: One of the main problems

in coding theory concerns the question of what the largest

achievable communication rate is while protecting from a

certain fraction of (synchronization) errors. This question can

be studied under the regime that assumes some fixed alphabet

of size q, specifically binary alphabets, or an alphabet-free

regime that studies the rate achievability when alphabet size

can be chosen arbitrarily large but independent of the block

length.

For the large alphabet setting, the Singleton bound suggests

that no family of codes can correct a δ fraction of deletions,

and hence, δ fraction of synchronization errors while achieving

a rate strictly larger than 1 − δ. A series of works by

Guruswami et al. [19], [20] provides codes that achieve a

rate of Ω((1 − δ)5) and 1 − Õ(
√
δ) while being able to

efficiently recover from a δ fraction of insertions and deletions

in high-noise and high-rate regimes respectively. In this paper,

we will take a deep dive into synchronization string based

code constructions that provide codes that can approach the

Singleton bound up to an arbitrarily small additive term over

the entire distance spectrum δ ∈ (0, 1).
For binary alphabet codes, one can show that the optimal

achievable rate to protect against a δ fraction of insertions

or deletions is 1 − O(δ log 1
δ) [10]. Works of Guruswami et

al. [19], [20] and Haeupler et al. [21] present efficient codes

with distance δ and rate 1−O
(√

δ logO(1) 1
δ

)

for sufficiently

small δ. Recent works by Cheng et al. [22] and Haeupler [23]

have achieved codes with rate 1−O(δ log2 1
δ).

2) List Decoding: Like error-correcting codes, synchroniza-

tion codes have been studied under the list decoding model

where, as opposed to unique decoding, the decoder is expected

to produce a list of codewords containing the transmitted

codeword as long as the error rate is sufficiently small.

Guruswami and Wang [20] have provided positive-rate

binary deletion codes that can be list-decoded from close to
1
2 fraction of deletions. Haeupler et al. [24], [25] gave upper

and lower bounds on the maximum achievable rate of list-

decodable insertion-deletion codes (or insdel codes for short)

over any alphabet size q. Recent works of Wachter-Zeh [26]

and Hayashi and Yasunaga [27] have studied list-decoding

by providing Johnson-type bounds for synchronization codes

that relate the minimum edit-distance of the code to its list

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 19,2021 at 21:00:13 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2021.3056317, IEEE

Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY 3

decoding properties. We generally define the edit-distance

between two strings as the smallest number of insertions

and deletions needed to convert one to another. The bounds

presented in [27] show that binary codes by Bukh, Guruswami,

and Håstad [28] can be list-decoded from a fraction ≈ 0.707
of insertions. Via a concatenation scheme used in [20] and

[19], Hayashi and Yasunaga furthermore made these codes

efficient. A recent work of Liu, Tjuawinata, and Xing [29] also

derives bounds on list-decoding radius, provides efficiently

list-decodable insertion-deletion codes over small alphabets,

and gives a Zyablov-type bound for synchronization codes.

3) Error Resilience: As mentioned above, it is known that

there exist positive-rate binary deletion codes that are list-

decodable from any fraction of errors smaller than 1
2 . Also,

there are codes that can list-decode from a fraction ≈ 0.707
of insertions. We will present a recent result from [30] that,

for any alphabet size q, precisely identifies the maximal rates

of combinations of insertion and deletion errors from which

list-decoding is possible.

A similar question can be asked for uniquely-decodable

synchronization codes, i.e., what is the largest fraction of

errors δ0 where there exist positive-rate synchronization codes

with minimum edit-distance δ0? For binary alphabets, it is easy

to see that δ0 ≤ 1
2 . However, most resilient binary codes with

positive rate to date are ones introduced by Bukh, Guruswami,

and Håstad [28] that can correct a
√
2−1 ≈ 0.4142 fraction of

errors. Determining the optimal error resilience for uniquely-

decodable synchronization codes remains an interesting open

question. We refer the reader to [11] for a more comprehensive

review of past works on the error resilience for synchronization

codes.

C. Coding with Synchronization Strings

One commonly studied approach to correct from synchro-

nization errors is to use special symbols or sequences with

specific structures as markers or delimiters to keep track of

insertions and deletions and realign a transmitted word [31],

[32], [33], [34], [35], [36], [37], [38]. In this work, we focus

on a very recent form of such technique – indexing with

synchronization strings.

Introduced in [39], synchronization strings allow efficient

synchronization of streams that are affected by insertions

and deletions using an abstract indexing scheme. Essentially,

synchronization strings enable compartmentalization of coding

against synchronization errors into two steps of (1) realigning

the received stream of symbols in a way that guarantees

most symbols are in their original position and (2) coding

against Hamming-type errors caused by wrong realignments.

Synchronization strings have made progress on a wide vari-

ety of settings and problems. This survey focuses on code

constructions that are based on synchronization strings. Most

importantly, we will review the following results.

1) Codes Approaching the Singleton Bound: Synchroniza-

tion strings enable construction of families of synchronization

codes that approach an almost optimal rate-distance trade-off

as suggested by the Singleton bound over constant alphabet

sizes. In other words, as shown in [39], for any 0 ≤ δ < 1 and

any ε > 0, there exists a family of synchronization codes that

can uniquely and efficiently correct any δ fraction of insertions

and deletions and achieve a rate of 1−δ−ε. Such codes exist

over alphabets of size exp(1/ε) which is shown in [40] to be

the asymptotically optimal alphabet size for a code with such

properties.

2) Near-Linear Time Codes: We then present an improve-

ment from [41] over the result just described that modifies the

construction and decoding in a way that enables near-linear

time decoding. Two main ingredients are used to achieve this

improvement: (1) generalizations of synchronization strings

and their fast construction methods introduced in [40], and

(2) a fast indexing scheme for edit-distance computation

from [42]. For any n and ε > 0, [42] gives string I of length

n over an alphabet of size |Σ| = Oε(1) which enables fast

approximation of the edit distance in the following way: Let

S ∈ Σ′n be another string of length n over some other alphabet

Σ′. If one concatenates S and I , symbol-by-symbol, to obtain

the string S × I ∈ (Σ× Σ′)n, then edit distance from any

other string S′ ∈ (Σ× Σ′)∗ to S × I can be approximated

within a multiplicative factor of 1 + ε in near-linear time.

3) List Decoding for Insertions and Deletions: We then

proceed to present a recent result on list-decodable synchro-

nization codes. Using a similar synchronization string-based

approach, [24] shows that for every 0 ≤ δ < 1, every

0 ≤ γ <∞ and every ε > 0 there exist a family of codes with

rate 1− δ− ε, over an alphabet of constant size q = Oδ,γ,ε(1)
that are list-decodable from a δ-fraction of deletions and a

γ-fraction of insertions. This family of codes are efficiently

decodable and their decoding list size is sub-logarithmic in

terms of the code’s block length. We stress that the fraction

of insertions can be arbitrarily large (even more than 100%)

and the rate is independent of this parameter.

4) Optimal Error Resilience for List Decoding: Finally, we

review a result by Guruswami et al. [30] that, using a code

concatenation scheme for synchronization codes with codes

from [28] and [24], exactly identifies the maximal fraction of

insertions and deletions that can be tolerated by q-ary list-

decodable codes with non-vanishing information rate. This

includes efficient binary codes that can be list-decoded from

any δ fraction of deletions and γ fraction of insertions as

long as 2δ + γ < 1. One can show that list decoding is not

possible for any family of codes achieving positive rates for

any error fraction out of this region. Guruswami et al. [30]

have generalized this result to alphabets of size q and identified

the feasibility region for (γ, δ) as a more complex region with

a piece-wise linear boundary.

D. Organization of the Paper

In Section II, we will provide proofs for claims presented

in Section I-C by formally introducing indexing based code

constructions and giving a minimal introduction to pseudo-

random strings used for indexing. In Section III, we discuss

several pseudo-random string properties, their constructions,

their repositioning algorithms and the decoding properties

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 19,2021 at 21:00:13 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2021.3056317, IEEE

Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY 4

that they enable once used to construct codes. We then

mention applications of synchronization strings and related

string properties in other communication problems such as

coding for block errors and interactive communication under

synchronization errors in Section IV.

II. CODE VIA INDEXING

In this section, we explain the construction of codes stated in

Section I-C. We start with a self-contained simplified proof of

Singleton bound approaching codes presented in Section I-C1

that encapsulates the major ideas behind synchronization

string-based code constructions while avoiding unnecessary

details.

A. Approaching the Singleton Bound: Technical Warm-up

We start by defining the notion of ε-self-matching strings

that satisfy a weaker property than synchronization strings but

can be used in a similar fashion to construct synchronization

codes.

Definition II.1. String S ∈ Σn is ε-self-matching if it contains

no two identical non-aligned subsequences of length nε or

more, i.e., there exist no two sequences a1, a2, . . . , abnεc and

b1, b2, . . . , bbnεc where for all is ai 6= bi and S[ai] = S[bi].

1) Pseudo-random Property: We first point out that random

strings over an alphabet of size Ω(ε−2) satisfy ε-self-matching

property with high probability. Note that the probability of

two given non-aligned subsequences of length nε in a random

string over alphabet Σ being identical is 1
|Σ|nε . Also, there are

no more than
(

n
nε

)2
pairs of such subsequences. Therefore, by

the union bound, the probability of such random string satisfy-

ing ε-self-matching property is
(

n
nε

)2 1
|Σ|nε ≤

(

ne
nε

)2nε 1
|Σ|nε =

(

e2

|Σ|ε2
)nε

and thus, if |Σ| = Ω(ε−2), the random string would

satisfy the ε-self-matching property with high probability.

2) Indexing Scheme: Consider a communication channel

where a stream of n message symbols are communicated

from the sender to the receiver and assume that the com-

munication may suffer from up to nδ adversarial insertions

or deletions for some 0 ≤ δ < 1. We introduce a simple

indexing scheme that will be used to construct synchronization

codes. Let m1,m2, . . . ,mn represent the message symbols

that the sender wants to get to the receiver and s1, s2, . . . , sn
be some ε-self-matching string that the sender and the re-

ceiver have agreed upon beforehand. To communicate its

message to the receiver, we have the sender send the sequence

(m1, s1), (m2, s2), . . . , (mn, sn) through the channel. We will

refer to this sequence as m indexed by s and denote it by m×s.

Note that in this setting a portion of the channel alphabet is

designated to the ε-self-matching string and thus, does not

contain information. This portion will be used to reposition the

message symbols on the receiving end of the communication

as we will describe in the next section.

3) Repositioning (Decoding): We now show that, hav-

ing the indexing scheme described above, the receiver can

correctly identify the positions of most of the symbols it

receives. Let us denote the sequence of symbols arriving at

the receiving end by (m′
1, s

′
1), (m

′
2, s

′
2), . . . , (m

′
n′ , s′n′). We

show the following.

Lemma II.2. There exists an algorithm for the receiving party

that, having (m′
1, s

′
1), . . . , (m

′
n′ , s′n′) and s1, . . . , sn, guesses

the position of all received symbols in the sent string such

that positions of all but O(n
√
ε) of the symbols that are not

deleted in the channel are guessed correctly. This algorithm

runs in Oε(n
2) time.

Note that if no error occurs, the receiver expects the index

portion of the received symbols to be similar to the ε-self-

matching string s. Having this observation, we present the

decoding procedure in Algorithm 1. The decoding algorithm

calculates the longest common subsequence (LCS) between

the synchronization string, s, and the index portion of the

received string, s′. It then assigns each of the symbols from the

received string that appear in the common subsequence to the

position of the symbol from s that corresponds to it under the

common subsequence. The algorithm repeats this procedure

1/
√
ε times and after each round eliminates received symbols

whose positions are guessed.

Algorithm 1 Insertion-Deletion Decoder

Input: s, (m′
1, s

′
1), · · · , (m′

n′ , s′n′)

1: L = [s′1, s
′
2, · · · , s′n′]

2: for i = 1 to n′ do

3: Position[i]← Undetermined

4: end for

5: for i = 1 to 1√
ε

do

6: Compute LCS(s, L)
7: for all Corresponding s[i] and L[j] in LCS(s, L) do

8: Position[j]← i
9: end for

10: Remove all elements of LCS(s, L) from L
11: end for

Output: Position

Proof of Lemma II.2. Clearly, Algorithm 1 takes quadratic

time as it mainly runs Oε(1) instances of LCS computation

over strings of length O(n).
To prove the correctness guarantee, we remark that there

are two types of incorrect guesses for symbols that are not

deleted by the adversary and bound the number of incorrect

guesses of each type.

I) The position of the received symbol remains

Undetermined by the end of the algorithm:

Note that if by the end of the algorithm there are k
original symbols–i.e., symbols that are originally sent

by the sender and not inserted by the adversary–that

have undetermined positions, then the remainder of L
after 1/

√
ε rounds has a common subsequence of size

k with s. This implies that, in each round of the for

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 19,2021 at 21:00:13 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2021.3056317, IEEE

Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY 5

loop, |LCS(s, L)| ≥ k. Note the total size of these

LCSs cannot exceed the initial size of L that is n′.
Therefore, k · 1√

ε
≤ n′ ≤ 2n⇒ k ≤ 2

√
εn.

II) The position of the received symbol is incorrectly

guessed in one recurrence of the for loop: We claim that

the number of such wrong assignments in each round of

the for loop is no more than nε. Let s[i] and L[j] be

corresponding elements under LCS(s, L) in Line 7 while

the received symbol that L[j] identifies is the i′th symbol

sent by the sender. This implies that s[i] = L[j] = s[i′].
If there are more than nε such incorrect guesses in one

LCS computation, we have nε such pairs of identical

symbols in s that constitute a self-matching of size nε
in s and violate the assumption of s being an ε-self-

matching string. Therefore, overall there are no more

than 1√
ε
· nε = n

√
ε incorrect determination of the

original positions of received symbols.

4) Codes Approaching the Singleton Bound: We now use

the discussions on ε-self-matching strings and Lemma II.2 to

construct efficient synchronization codes that can approach the

Singleton bound.

Theorem II.3. For any ε > 0, δ ∈ (0, 1), and sufficiently large

n, there exists an encoding map E : Σk → Σn and a decoding

map D : Σ∗ → Σk, such that, if ED(E(m), x) ≤ δn then

D(x) = m. Further, the rate is k
n > 1−δ−ε, |Σ| = exp(1/ε),

and E and D are explicit and can be computed in linear and

quadratic time in n.

We use ED(x, y) to denote the edit distance between x
and y. Note that the indexing scheme from Section II-A2 and

Lemma II.2 essentially gives a way to reduce insertions and

deletions to symbol substitutions and erasures at the cost of

designating a portion of the message symbols to an ε-self-

matching string. More precisely, with the indexing scheme

from Section II-A2 in place, a receiver can use Algorithm 1

to guess the position of the symbols it receives in the sent

message and rearrange them to recover the message sent by

the sender.

Let m̃ denote the recovered message and Position denote

the output of Algorithm 1. More precisely, for any 1 ≤ i ≤ n,

the decoder sets m̃[i] = j if only for one value of j,

Position[j] = i. If there are zero or multiple received symbols

that are guessed to be at position i, the decoder simply decides

m̃[i] = ?.

We claim that m̃ is different from m by no more than n(δ+
12
√
ε) half-errors. Note that if an adversary applies no errors

and Algorithm 1 guesses the positions perfectly, m̃ = m. In

the following steps, we add these imperfections and see the

effect in the Hamming distance between m and m̃.

• Each deleted symbol turns a detection in m̃ to a ? and,

therefore, adds one half-error to the Hamming distance

between m and m̃.

• Each inserted symbol can either turn a detection in m̃ to

a ? or a ? to an incorrect value. Therefore, each insertion

also adds one half-error to the Hamming distance between

m and m̃.

• Each incorrectly guessed symbol can also change up to

two symbols in m̃ and therefore increase the Hamming

distance between m and m̃ by up to four.

This implies that the m and m̃ are far apart by no more than

n(δ+12
√
ε). Having this reduction, we derive codes promised

in Theorem II.3 by taking the following near-MDS codes from

[43] and indexing their codewords with a self-matching string.

Theorem II.4 (Guruswami and Indyk [43, Theorem 3]). For

every r, 0 < r < 1, and all sufficiently small ε > 0, there

exists an explicitly specified family of GF(2)-linear (also called

additive) codes of rate r and relative distance at least (1 −
r − ε) over an alphabet of size 2O(ε−4r−1 log(1/ε)) such that

codes from the family can be encoded in linear time and can

also be (uniquely) decoded in linear time from a fraction e of

errors and s of erasures provided 2e+ s ≤ (1− r − ε).

Proof of Theorem II.3. Let C be a code from Theorem II.4

with relative distance δC = δ + ε
3 and rate 1 − δC − εC for

εC = ε
3 and S be an εS-self-matching string with parameter

εS = ε2

362 . We construct code C ′ by simply taking the code C
and indexing each codeword of it with S. We claim that the

resulting code satisfies the properties promised in the statement

of the theorem.

We start with showing the decoding guarantee by describing

the decoder. Note that a decoder can use the procedure

described in Algorithm 1 to use the index portion of codewords

to reconstruct the codeword by up to a δ+12
√
ε′ = δ+ ε

3 = δC
fraction of half-errors. The decoder then simply feeds the

resulting string into the decoder of C to fully recover the

original string. The encoding and decoding complexities of

C ′ follow from the fact that C is encodable and decodable in

linear time and that Algorithm 1 runs in quadratic time.

We finish the proof with proving the rate guarantee. Note

that ΣC′ = ΣC × ΣS .

rC′ =
|C ′|

n log |ΣC′ | =
|C|

n log (|ΣC | × |ΣS |)

= rC ·
log |ΣC |

log |ΣC |+ log |ΣS |
=

rC

1 + log |ΣS |
log |ΣC |

(1)

Note that the discussion in Section II-A1 implies that S
can be over an alphabet of size |ΣS | = O(ε−2) and

Theorem II.4 gives that log |ΣC | = ω(ε−4 log 1/ε). Thus,
log |ΣS |
log |ΣC | = O(ε−4), which plugged in (1) implies that rC′ ≥

rC
1+O(ε4) ≥ rC − ε

3 . Therefore, since the rate of code C is

rC = 1− δC − εC = 1− δ− 2
3ε, the rate of the code C ′ is at

least rC′ = 1− δ − 2
3ε− ε

3 = 1− δ − ε.

Note that the alphabet size of the codes from Theorem II.3 is

exponentially large in terms of ε−1. This is in sharp contrast to

the Hamming error setting where there are codes known that

can get ε close to unique decoding capacity with alphabets

of polynomial size in terms of 1/ε. While large alphabet

sizes might seem as an intrinsic weakness of the indexing-

based code constructions, it turns out that an exponentially

large alphabet size is actually necessary. We present the

following theorem from [24] that shows any such code requires

exponentially large alphabet size in terms of exp(ε−1).

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 19,2021 at 21:00:13 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2021.3056317, IEEE

Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY 6

Theorem II.5. There exists a function f : (0, 1) → (0, 1)
such that for every δ, ε > 0, every family of insertion-deletion

codes of rate 1 − δ − ε that can be uniquely decoded from

δ-fraction of synchronization errors must have alphabet size

q ≥ exp
(

f(δ)
ε

)

.

Proof Sketch. For simplicity, assume that δ = d
q for some

integer d. Consider a code of block length n and an adversary

that always deletes all occurrences of the d least frequent

symbols. With such an adversary, the string received on

receiver’s side will be a string of length n(1 − δ) over an

alphabet of size q − d = q(1 − δ). This means that there are

a total of M =
(

q
q−d

)

(q − d)n(1−δ) possible strings that may

arrive at the receiver’s end which implies that the rate of any

such code is no more than

logM

n log q
= (1− δ)

(

1 +
log(1− δ)

log q

)

+ o(1).

Therefore, to achieve a rate of 1− δ − ε,

1− δ − ε ≤ (1− δ)

(

1 +
log(1− δ)

log q

)

⇒ (1− δ)
log 1

1−δ

log q
≤ ε⇒ q ≥ e(1−δ) log 1

1−δ

For the general case where δq is not necessarily an integer, a

similar, more careful argument proves the theorem. (See [24].)

The alphabet reduction idea used in the proof of Theo-

rem II.5 shows that deletions, in addition to reducing the

information by eliminating symbols, reduce the information

by essentially decreasing the information content of surviving

symbols; suggesting that designating a part of each symbol to

synchronization strings is not a waste of information. A similar

alphabet reduction argument is used in [24], [25] to derive

strong upper-bounds on the zero-error list-decoding capacity

of adversarial insertion-deletion channels.

B. Near-Linear Time Codes

In Section II-A, we presented a way to construct synchro-

nization codes that approach the Singleton bound by taking

a near-MDS error-correcting code and indexing its codewords

with self-matching strings. In this section, we explain how the

decoding complexity of such codes can be reduced to near-

linear time.

The main idea is to replace the ε-self matching string

with one that satisfies a stronger pseudo-random property that

allows for a near-linear time repositioning algorithm. We will

thoroughly explain the construction of such a string and its

repositioning algorithm in Section III-F. We forward reference

the properties of this string in the following theorem and defer

the details to Section III-F.

Theorem II.6 (Theorem III.11 with εI = 2ε
9 , εs =

ε2

18 , K = 6
ε ,

γ = 1). For any ε > 0, there exist strings of any length n over

an alphabet of size exp
(

log(1/ε)
ε3

)

that, if used as an index in

a synchronization channel with δ fraction of errors, enables a

repositioning in Oε(npoly(log n)) time which guarantees no

more than nε incorrect guesses.

Using these strings in the code construction, the following

can be achieved.

Theorem II.7. For any ε > 0 and δ ∈ (0, 1), and suffi-

ciently large n, there exists an encoding map E : Σk →
Σn and a decoding map D : Σ∗ → Σk, such that, if

ED(E(m), x) ≤ δn then D(x) = m. Further, k
n > 1− δ − ε,

|Σ| = exp
(

ε−4 log(1/ε)
)

, and E and D are explicit and

can be computed in linear and near-linear time in terms of n
respectively.

Proof Sketch. To construct such codes with a given ε, we

use strings from Theorem II.6 with parameter ε
4 as an index

string. We then take code C from [43] as a code with distance

δC = δ + ε
2 and rate 1 − δC − ε

4 over an alphabet of size

|ΣC | ≥ |ΣS |4/ε. Note that |ΣS | = exp
(

log(1/ε)
ε3

)

, therefore,

the choice of |ΣC | is large enough to satisfy the requirements

of [43]. C is also encodable and decodable in linear time.

With this choice of C and S, the same analysis as in

Section II-A shows that the resulting synchronization code can

be encoded in linear time, be decoded in Oε(npoly(log n))
time, corrects from any δn insertions and deletions, achieves

a rate of RC

1+
log |ΣS |

log |ΣC |

≥ 1−δ−3ε/4
1+ε/4 ≥ 1 − δ − ε, and is over an

alphabet of size exp
(

log(1/ε)
ε4

)

.

C. List Decoding: High Rate Codes

In this section, we review the results described in Sec-

tion I-C3 that, for every 0 ≤ δ < 1, every 0 ≤ γ < ∞ and

every ε > 0, gives list-decodable codes with rate 1 − δ − ε,

constant alphabet (so q = Oδ,γ,ε(1)), and sub-logarithmic list

sizes. Furthermore, these codes are accompanied by efficient

(polynomial time) decoding algorithms. We stress that the

fraction of insertions can be arbitrarily large (more than

100%), and the rate is independent of this parameter. Here

is a formal statement of the result from [24].

Theorem II.8. For every 0 < δ, ε < 1 and γ > 0, there

exist a family of list-decodable insertion-deletion codes that

can protect against δ-fraction of deletions and γ-fraction

of insertions and achieves a rate of at least 1 − δ − ε or

more over an alphabet of size
(

γ+1
ε2

)O(γ+1

ε3
)

= Oγ,ε (1).
These codes are list-decodable with lists of size Lε,γ(n) =
exp (exp (exp (log∗ n))), and have polynomial time encoding

and decoding complexities.

The construction of these codes is similar to the ones from

Theorem II.7 except that the error-correcting code used in the

construction is replaced with a high-rate list-recoverable code.

A code C given by the encoding function E : Σnr → Σn is

called to be (α, l, L)-list recoverable if for any collection of

n sets S1, S2, . . . , Sn ⊆ Σ each of size l or less, there are at

most L codewords for which more than αn elements appear

in the list that corresponds to their position, i.e.,
∣

∣ {x ∈ C | |{i ∈ [n] | xi ∈ Si}| ≥ αn}
∣

∣ ≤ L.

The main idea is to use indexes and the repositioning

algorithm from Algorithm 1 to come up with a list of candidate

symbols for each position of the original message and then

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 19,2021 at 21:00:13 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2021.3056317, IEEE

Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY 7

feed these lists to the decoder of the list-recoverable code. To

prove Theorem II.8, the following family of list-recoverable

codes from [44] is utilized.

Theorem II.9 (Hemenway et al. [44, Theorem A.7]). Let q
be an even power of a prime, and choose l, ε > 0, so that q ≥
ε−2. Choose ρ ∈ (0, 1). There is an mmin = O(l logq(l/ε)/ε

2)
so that the following holds for all m ≥ mmin. For infinitely

many n (all n of the form qe/2(
√
q − 1) for any integer e),

there is a deterministic polynomial-time construction of an Fq-

linear code C : Fρn
qm → F

n
qm of rate ρ and relative distance

1− ρ− O(ε) that is (1− ρ− ε, l, L)-list-recoverable in time

poly(n, L), returning a list of codewords that are all contained

in a subspace over Fq of dimension at most
(

l
ε

)2log
∗(mn)

;

implying that L ≤ q(l/ε)
2log

∗(mn)

.

Proof of Theorem II.8. By setting parameters ρ = 1− δ − ε
2 ,

l = 2(γ+1)
ε , and ε = ε

4 in Theorem II.9, one can obtain a

family of codes C that achieves rate ρ = 1 − δ − ε
2 and is

(α, l, L)-recoverable in polynomial time for α = 1− δ − ε/4
and some L = exp (exp (exp (log∗ n))) (by treating γ and

ε as constants). Such a family of codes can be found over

an alphabet ΣC of size q = (l/ε)
O(l/ε2)

=
(

γ+1
ε2

)O(γ+1

ε3
)
=

Oγ,ε(1) or infinitely many integer numbers larger than q.

We index the codewords of this code with an εs =
ε2

64(1+γ)
self-matching string S. We now show that these codes satisfy

the list-decoding properties presented in the statement of the

theorem.

The decoder starts with guessing the positions for the

symbols it receives using a repositioning algorithm similar to

Algorithm 1 with two minor differences:

1) Instead of reconstructing the original string with guessed

positions and ?s, the decoder compiles a list for each

position containing all received symbols that have been

guessed to be in that position.

2) The algorithm repeats the procedure of calculating LCS

and adding elements to the lists for a total of K =
8(1+γ)

ε times.

A similar analysis to the one for Algorithm 1 shows that

the count of the lists that do not contain the original

symbol that corresponds to their position is no more than

n
(

δ + 1+γ
K +Kεs

)

= n(δ + ε/4).

Then, the decoding algorithm feeds these lists into the

decoder of the list-recoverable code from C to obtain a list

of size L of potential original messages. Since the parameter

α was chosen to be 1− δ − ε/4, the output list is guaranteed

to contain the original message.

The rate of the resulting family of codes is
1−δ−ε/2

1+log|ΣS |/ log|ΣC|
which, by taking |ΣC | large enough in terms of ε, is larger than

1−δ−ε. As C is encodable and decodable in polynomial time,

the encoding and decoding complexities of the indexed code

will be polynomial as well.

We remark that the self-matching string in the construction

of list-decodable synchronization codes from Theorem II.8 can

be replaced with the near-linear time repositionable indexes of

Theorem II.6. This would reduce the time complexity of the

repositioning subroutine in the decoding algorithm to near-

linear time. Therefore, it would allow one to improve the

decoding complexity of these codes upon discovery of high-

rate list-recoverable codes with faster decoders, potentially to

near-linear time. A recent work of Kopparty et al. [45] has

broken this barrier and offers list-recoverable tensor codes with

a deterministic n1+o(1) time decoding. Using such codes in a

similar scheme would yield a near-linear time list-decodable

family of codes with similar properties as of Theorem II.8

albeit over alphabet sizes that grow in terms of the block length

of the code.

D. List Decoding: Optimal Resilience via Concatenation

In this section, we discuss the result presented in Sec-

tion I-C4 that fully characterizes error resilience for list-

decodable synchronization codes. More precisely, [30] exactly

identifies the maximal fraction of insertion and deletion errors

tolerable by q-ary list-decodable codes with non-vanishing

rate.

We start by describing the result for binary codes. Note that

no positive-rate code can be list-decoded from a δ = 1
2 fraction

of deletions as an adversary can simply delete all instances

of the less frequent symbol. Similarly, no positive-rate code

can be list-decoded from a fraction γ = 1 of insertions

since any string of length n can be turned into (01)n with n
insertions. A simple time-sharing argument would show that

an adversary that can apply any combination of δ fraction of

deletions and γ-fraction of insertions that satisfy γ + 2δ = 1
can make the list-decoding impossible. The following theorem

from [30] shows the existence of positive-rate list-decodable

codes otherwise.

Theorem II.10. For any ε ∈ (0, 1) and sufficiently large n,

there exists a constant-rate family of efficient binary codes that

are L-list decodable from any δn deletions and γn insertions

in poly(n) time as long as γ + 2δ ≤ 1 − ε where n denotes

the block length of the code, L = Oε(exp(exp(exp(log
∗ n)))),

and the code achieves a rate of exp
(

− 1
ε10 log

2 1
ε

)

.

This result is generalized for larger alphabets in [30].

However, the feasibility region for larger alphabet sizes is

more complex. We start with showing that list-decoding is

impossible for several points (γ, δ) that lie on a quadratic

curve. This implies a piece-wise linear outer-bound for the

resilience region.

Theorem II.11. For any alphabet size q and any i =
1, 2, · · · , q − 1, no positive-rate q-ary infinite family of

insertion-deletion codes can list-decode from δ = q−i
q fraction

of deletions and γ = i(i−1)
q fraction of insertions.

Proof. Take a codeword x ∈ [q]n. With δn = q−i
q · n, the

adversary can delete the q − i least frequent symbols to turn

x into x′ ∈ Σ
n(1−δ)
d for some Σd = {σ1, · · · , σi} ⊆ [q].

Then, with γn = n(1− δ)(i−1) insertions, it can turn x′ into

[σ1, σ2, · · · , σi]
n(1−δ), i.e., n(1 − δ) repetitions of the string

σ1, σ2, · · · , σi. Such an adversary only allows O(1) amount

of information to pass to the receiver. Hence, no such family

of codes can yield a positive rate.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 19,2021 at 21:00:13 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2021.3056317, IEEE

Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY 9

the number of deletions and I denotes the number of insertions

required to convert the string v into some Bukh-Ma codeword

when picking the set of insertions and deletions that minimizes

2D + I .

The proof technique utilized by [30] is somewhat remi-

niscent of the one used to establish the polarization of the

martingale of entropies in the analysis of polar codes [47],

[48]. In more detail, [30] recursively sub-samples smaller and

smaller nested substrings of v, and analyzes the expectation

and variance of the bias between the fraction of 0’s and 1’s

in these substrings. More precisely, it orders the run lengths

r1, r2, . . . that are ε-correlated with v in decreasing order and

first samples a substring v1 with r1 � |v1| � r2 from v.

While the expected zero-one bias in v1 is the same as in v,

[30] shows that the variance of this bias is a strictly increasing

function in the correlation with (0r11r1)
n

2r1 . Intuitively, v
cannot be too uniform on a scale of length |v1| if it is correlated

with r1.

In other words, if v is ε-correlated with r1, the sampled

substring v1 will land in a part of v which is either similar to

one of the long stretches of zeros in v or in a part which is

similar to a long stretch of ones in v, resulting in some positive

variance in the bias of v1. Furthermore, because the scales

r2, r3, . . . are so much smaller than v1, this sub-sampling of

v1 preserves the correlation with these scales intact, at least

in expectation.

Next, a substring v2 with r2 � |v2| � r3 is sampled

within v1. Again, the bias in v2 stays the same as the one in

v1 in expectation but the sub-sampling introduces even more

variance given that v1 is still non-trivially correlated with the

string with period r2. The evolution of the bias of the strings

v1, v2, . . . produced by this nested sampling procedure can

now be seen as a martingale with the same expectation but

an ever increasing variance. Given that the bias is bounded

in magnitude by 1, the increase in variance cannot continue

indefinitely. This limits the number of frequencies a string v
can be non-trivially correlated with and, subsequently, implies

the list-decodability property of the code.

III. SYNCHRONIZATION STRINGS

In this section, we discuss synchronization strings intro-

duced in [39] and review their combinatorial properties and

applications. We also overview extensions and enhancements

made to synchronization strings from [49], [21], [40], [24],

[42].

Definition III.1 (ε-synchronization strings). String S ∈ Σn is

an ε-synchronization string if for every 1 ≤ i < j < k ≤ n+1
we have that ED (S[i, j), S[j, k)) > (1− ε)(k − i).

In this definition, ED represents the edit distance function

and S[x, y) denotes a substring of S starting from position x
and ending at position y−1. We use similar notations S[x, y],
S(x, y], and S(x, y) to denote substrings of S where (,) and

[,] denote the exclusion and inclusion of the starting/end point

of the interval respectively.

In simpler terms, the ε-synchronization property is a

pseudo-random property that requires all neighboring sub-

strings of the string to be far apart under the edit distance

metric. It is shown in [39] that ε-synchronization is not only

a strictly stronger property than the ε-self-matching property

but also a hereditary extension of it. More precisely, if all sub-

strings of a string satisfy the ε
2 -self matching string property,

then the string itself is an ε-synchronization string.

A. Existence

It is shown in [39] that, similar to self matching strings,

arbitrarily long ε-synchronization strings exist over alphabets

whose size is independent of the string length. More precisely,

[39] shows the existence of arbitrarily long strings over an

alphabet of size O(ε−2) that satisfy the ε-synchronization

property for pairs of neighboring substrings of total length 1
ε2

or more by utilizing the Lovász’s local lemma to show that

the probability of such an event for a random string is non-

zero. Indexing such a string with a string formed by repetitions

of 1, 2, · · · , ε−2 ensures the ε-synchronization property over

smaller substrings and gives an ε-synchronization string over

an alphabet of O(ε−4) size. With a non-uniform sample space,

[49] utilizes the Lovász’s local lemma in the same manner to

reduce the alphabet size to O(ε−2) and gives the following.

Theorem III.2. For any ε ∈ (0, 1), there exists an alphabet

Σ of size O(ε−2) so that for any n ≥ 1, there exists an ε-

synchronization string of length n over Σ.

Extremal Properties: We would like to add a brief remark

regarding extremal questions that are raised by the definition of

the synchronization string property. One interesting question

is what is the minimal function of ε as alphabet size for which

Theorem III.2 holds. It has been shown in [49] that any such

alphabet has to be of size Ω(ε−3/2). This leaves us with the

open question of where the minimal alphabet size lies between

Ω(ε−3/2) and O(ε−2).
A similar question can be asked for non-specific values of

ε, i.e., what is the smallest alphabet size over which arbitrarily

long ε-synchronization strings exist for any ε < 1. It is easy

to observe that any binary string of length 4 or more contains

two identical neighboring substrings. Also, it has been shown

that arbitrarily long 11
12 -synchronization strings exist over an

alphabet of size four [49]. This leaves the open question of

whether arbitrarily long synchronization strings exist over a

ternary alphabet or not.

B. Online Decoding for Synchronization Strings

In this chapter, we introduce an online repositioning al-

gorithm for synchronization strings. In the same spirit as

Section II-A, we show that synchronization strings can be used

to guess the original position of symbols undergoing insertion-

deletion errors via indexing. However, for synchronization

strings, the repositioning can be done in an online fashion,

i.e., the position of each symbol is guessed upon its arrival

and without waiting for the rest of the communication to

take place. This enables a delay-free simulation of a channel

with Hamming-type errors over any given insertion-deletion

channel with adequately large alphabet size. We will discuss

this further in Section IV.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 19,2021 at 21:00:13 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2021.3056317, IEEE

Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY 10

To present the online repositioning algorithm, we introduce

the notion of relative suffix distance inspired by a similar

notion from [50].

Definition III.3 (Relative Suffix Distance). For any S, S′ ∈
Σ∗, their relative suffix distance (RSD) is defined as follows:

RSD(S, S′) = max
k>0

ED
(

S
(

|S| − k, |S|
]

, S′(|S′| − k, |S′|
]

)

2k

It is shown in [39] that RSD is a metric that takes a value

within [0, 1]. The interesting property of RSD that comes in

handy when devising an online repositioning algorithm is that

the prefixes of a synchronization string are far apart under the

RSD metric.

Proposition III.4. Let S be an ε-synchronization string. For

any i 6= j, RSD(S[1, i], S[1, j]) > 1− ε.

Note that an online repositioning algorithm is essentially

one that decides which prefix of the message string is sent

upon arrival of each symbol at the receiver side. Therefore,

the online repositioning algorithm only needs to decide which

prefix of the synchronization string is the most consistent to

the index portion of the received string up until the arrival

of each symbol. To this end, Proposition III.4 suggests the

natural repositioning strategy of finding the closest prefix of

the utilized synchronization string to the index part of the

received string under relative suffix distance and declaring the

length of that prefix as the position of that symbol.

The guarantees that this decoding strategy provides is dis-

cussed in details in [39]. However, we remark that the suffix

distance between a string s and a noisy version of it, s̃, that is

altered by insertions and deletions is particularly sensitive to

how dense the fraction of error occurrences is in small suffixes

of s̃. This implies that occurrences of insertions and deletions

can only disrupt the correctness of this repositioning strategy

for some of the following symbols and the effect would

fade away as communication goes on. By formalizing these

observations and employing a similar yet more complicated

distance function, [39] gives the following.

Theorem III.5. There exists an online repositioning algorithm

for a communication of length n over a channel with up to

nδ synchronization errors that, assuming that the message is

indexed by an ε-synchronization string, guesses the position of

each received symbol in O(n4) time and incorrectly guesses

the positions of no more than nδ
1−ε received symbols.

Note that, as opposed to the repositioning algorithm in

Section II-A, the number of incorrect guesses does not tend

to zero by taking smaller values for ε. In fact, if one

constructs synchronization codes as in Section II-A with ε-

synchronization strings and uses this repositioning algorithm

instead of Algorithm 1, the rate achieved is 1− 3δ − εO(1).

C. Construction: Long-Distance Synchronization Strings

To construct synchronization strings, [40] utilizes the al-

gorithmic Lovász local lemma of Chandrasekaran et al. [51]

with a similar random space to the one used in Section III-A

and obtains an efficient construction of such strings over an

alphabet of size O(ε−4). In this section, we review the steps

taken in [40] to obtain a linear-time explicit construction

for synchronization strings. In order to do so, we start with

presenting the long-distance synchronization string property

that generalizes the requirement of large edit distance to non-

adjacent substrings that are at least logarithmically long in

terms of the length of the string.

Definition III.6 (c-long-distance ε-synchronization string).

String S ∈ Σn is a c-long-distance ε-synchronization string

if for every pair of substrings S[i, j) and S[i′, j′) that

are either adjacent or of total length c log n or more,

ED (S[i, j), S[i′, j′)) > (1− ε)l where l = j − i+ j′ − i′.

We now describe construction algorithms for (long-distance)

synchronization strings.

1) Boosting Step I: Linear Time Construction: [40] pro-

vides a simple boosting step which allows a polynomial speed-

up to any synchronization string construction at the cost of

increasing the alphabet size by proposing a construction of

an O(ε)-synchronization string of length Oε(n
2) having an

ε-synchronization string of length n.

Lemma III.7. Fix an even n ∈ N and γ > 0 such that γn ∈
N. Suppose S ∈ Σn is an ε-synchronization string. The string

S′ ∈ Σ′γn2

with Σ′ = Σ3 and

S′[i] =

(

S[i mod n], S[(i+ n/2) mod n], S

[⌈

i

γn

⌉])

(2)

is an (ε+ 6γ)-synchronization string of length γn2.

Proof Sketch. S′ is formed by the symbol-wise concatenation

of three strings as presented in Eq. (2). The first two elements

form repetitions of S which guarantee the synchronization

property over small intervals and the third element that guar-

antees the synchronization property over larger intervals.

Employing this boosting technique for an adequately large

number of times can turn the polynomial-time construction

of synchronization strings obtained by the algorithmic Lovász

local lemma of [51] into a linear time construction at the cost

of a larger alphabet that is still of ε−O(1) size.

2) Boosting Step II: Explicit Linear-Time Long-Distance

Construction: We now describe a second boosting step in-

troduced in [40] that takes the linear-time construction from

the previous section and turns it into a linear-time construction

for long-distance synchronization strings that is also highly-

explicit, i.e., for any index i, it can compute the substring

[i, i+ log n] in O(log n) time.

To describe the construction, we first point out a connection

between long-distance synchronization strings and synchro-

nization codes. Note that if one splits a c-long-distance ε-

synchronization string into substrings of length c log n, the

long-distance synchronization property will require that any

pair of resulting substrings to have an edit distance of at least

2(1−ε)c log n, i.e., form an insertion-deletion code of relative

distance 1− ε.

Similarly, given a synchronization code C of distance 1−ε,

rate r > 0 and block length N , one can construct a string

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 19,2021 at 21:00:13 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2021.3056317, IEEE

Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY 13

distance between S × I and S′ or n arbitrary one of them

if there are more than one. One might expect that any block

of S that is not significantly altered by such insertions and

deletions, (i) appears in a set of consecutive blocks in S′ and

(ii) has a small edit distance to at least one of those blocks.

Following this intuition, our proposed algorithm works

thusly: For any block of S′ like S′(i), the algorithm uses

the list-decoder of C to find all (up to L) blocks of S that

can be turned into S′(i) by N(1− ε) deletions and N(1− ε)
insertions only considering the index portion of the alphabet

and ignoring the content portion of it. In other words, let

S′(i) = C ′
i × S′

0[N(i − 1), Ni − 1]. We denote the set of

such blocks by DecC(C ′
i). Then, the algorithm constructs a

bipartite graph G with |S| and |S′| vertices on each side

(representing symbols of S and S′) as follows: a symbol in

S′(i) is connected to all identical symbols in the blocks that

appear in DecC(C ′
i) or any block that is in their w = O

(

1
ε

)

neighborhood, i.e., is up to O
(

1
ε

)

blocks away from at least

one of the members of DecC(C ′
i).

Note that any non-crossing matching in G corresponds

to some common subsequence between S and S′ because

G’s edges only connect identical symbols. In the next step,

the algorithm finds the largest non-crossing matching in G,

MALG, and outputs the corresponding set of insertions and

deletions as the output. Finally, an algorithm proposed by

Hunt and Szymanski [52] is used to compute the largest

non-crossing matching of G with n vertices and r edges

in O ((n+ r) log log n). A formal description is available

in Algorithm 2. As the number of edges of G cannot exceed
n

logn ·log
2 n = n log n and code C is efficiently list-decodable,

the run time for this algorithm is O(n · polylog(n)).

Algorithm 2 (1 +O(ε′))-Approximation for Edit Distance

Input: S × I, S′, N,DecC(·)
1: Make empty bipartite graph G(|S|, |S′|)
2: w = 1

ε′

3: for each S′(i) = C ′
i × S′

0[N(i− 1), Ni− 1] do

4: List← DecC(C ′
i)

5: for each j ∈ List do

6: for k ∈ [j − w, j + w] do

7: Connect pairs of vertices in G that correspond to

identical symbols in S(k) and S′(i).
8: end for

9: end for

10: end for

11: MALG ← Largest non-crossing matching in G ([52])

Output: MALG

The detailed proof of the approximation guarantee is avail-

able in [42]. We provide a general proof sketch here.

Note that if graph G from Algorithm 2 contains the match-

ing that corresponds to the LCS between S × I and S′, then

the algorithm will find the longest common subsequence in

Line 11 and compute the exact edit distance. To show that

Algorithm 2 finds a 1 + O(ε′) approximation of the edit

distance, [42] associates any edge from the LCS missing in

G to O(1/ε′) insertions or deletions from the optimal edit

distance solution.

Consider the matching that corresponds to the LCS. If some

block of S′ like S′(i′) is connected to more than 1+ 1
ε′ blocks

in S, the unmatched vertices among those blocks account

for n × 1
ε′ deletions in the optimal edit distance solution.

Therefore, even if none of the edges of LCS that have an

endpoint in such blocks appear in G, the size of the edit

distance would increase by a factor of 1+O(ε′). This is why

the parameter w is chosen as 1
ε′ in Algorithm 2.

Further, if some block of S′ is only connected to one block

of S and has no more than N
ε edges to it, N−N

ε of its symbols

are insertions in the optimal edit distance solution. Therefore,

the absence of its edges from G in Algorithm 2 may only

increase the size of the edit distance solution by a factor of

1 +O(ε′).
In [42], the authors show that all LCS edges that are absent

from G fall under these two categories and, therefore, the

outcome of Algorithm 2 is an 1+O(ε′) = 1+ε approximation.

2) Near-linear Time Repositioning: Note that the reposi-

tioning algorithm for strings indexed with ε-synchronization

strings that was presented in Algorithm 1 consists of multiple

rounds of edit distance computation between the synchroniza-

tion string used and a distorted version of it. To reduce the

run time of the repositioning algorithm, one can use the edit-

distance approximating indexes from Section III-F1 and index

ε-synchronizations strings with them. Then, use edit distance

approximations instead of exact computations in Algorithm 1.

We formally summarize this in the following.

Theorem III.11 (Theorem 7.1 of [42]). Let S be a string

of length n that consists of the symbol-wise concatenation

of an εs-synchronization string and an edit distance indexing

sequence from Section III-F1 with parameter εI . Assume

that a stream of messages indexed by S goes through a

channel that might impose up to δ · n deletions and γ · n
symbol insertions for some 0 ≤ δ < 1 and 0 ≤ γ. For

any positive integer K, there exists a repositioning algorithm

that runs in O(Kn · polylog(n)) time, guarantees up to

n
(

1+γ
K(1+εI)

+ εI(1+γ/2)
1+εI

+Kεs

)

incorrect guesses and does

not decode more than K received symbols to any number in

[1, n].

IV. FURTHER APPLICATIONS OF SYNCHRONIZATION

STRINGS

A. Codes for Block Transpositions and Replications

We showed in Section III-E that using long-distance syn-

chronization strings in the indexing-based synchronization

code construction allows local repositioning, i.e., the decoder

will be able to guess the original position of each symbol by

only looking at a logarithmically long neighborhood of the

received symbol. In this section, we show that this property

enables the code to protect from block transposition and block

duplication errors as well.

Block transposition errors allow for arbitrarily long sub-

strings of the message to be moved to another position in the

message string. Similarly, block duplication errors are ones

that pick a substring of the message and copy it between two

symbols of the communication.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 19,2021 at 21:00:13 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2021.3056317, IEEE

Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY 14

We will present codes that can achieve a rate of 1− δ − ε
and correct from some O(δ) fraction of synchronization errors,

a O(δ/ log n) fraction of block errors, or a combination of

them. A similar result for insertions, deletions, and block

transpositions was shown by Schulman and Zuckerman [18]

where they provided the first constant-distance and constant-

rate synchronization code correcting from insertions, deletions,

and block errors. They also show that the O(δ/ log n) re-

silience against block errors is optimal up to constants.

Theorem IV.1. For any 0 < r < 1 and sufficiently small

ε, there exists a code with rate r that corrects nδinsdel
synchronization errors and nδblock block transpositions or

replications as long as 6δinsdel + (c log n)δblock < 1− r − ε
for some c = O(1). The code is over an alphabet of size

Oε(1) and has O(n) encoding and O(N log3 n) decoding

complexities where N is the length of the received message.

Proof Sketch. Similar to Section II-A, this code is constructed

by indexing near-MDS codes of Guruswami and Indyk [43]

with a pseudo-random string, particularly, long-distance syn-

chronization strings. The decoding procedure also follows the

same steps as Section II-A. Namely, the decoder uses the

repositioning algorithm presented in Theorem III.10 to guess

the actual position of the symbols and then runs the decoder

of the Guruswami-Indyk code over the reconstructed string.

Note that the repositioning guarantee from Theorem III.10

implies that with the choice of some small ε parameter

for the long-distance synchronization string, the repositioning

algorithm correctly guesses the position of all but O(nδinsdel)
symbols where n is the length of the communication if only

insertions and deletions are allowed.

Additionally, the local quality of the repositioning algorithm

implies that any symbol at the receiver that does not have any

synchronization errors or block error borders in its O(log n)
neighborhood, is correctly repositioned by the local reposition-

ing algorithm. Therefore, with nδblock block errors, no more

than nδblock log n repositioning guesses would be incorrect.

This implies an O(n/ log n) block error resilience. Combining

the two remarks above gives that the code can correct nδinsdel
synchronization errors and nδblock block transpositions or

replications as long as 6δinsdel + (c log n)δblock < 1 − r − ε
for some constant c.

The encoding and decoding complexities simply follow the

properties of the Guruswami-Indyk codes, linear time con-

structions of long-distance synchronization strings from The-

orem III.8 and time complexity of the repositioning algorithm

from Theorem III.10.

B. Channel Simulation

The construction of codes based on indexing presented in

this paper suggests that indexing with pseudo-random strings

can reduce synchronization errors to more benign Hamming-

type errors (substitutions and erasures). In this section, we

present results from [21], [40] which shows that this is indeed

true.

More precisely, having a channel afflicted by synchro-

nization errors, one can put two simulation agents on the

two ends of the channel who can simulate a channel with

Hamming-type errors over the given channel. In other words,

the sender/receiver sends/receives symbols to/from their corre-

sponding agent and the simulation guarantees that the channel

would seem like a channel with Hamming-type errors to the

parties.

Note that the indexing scheme from Section II-A almost

achieves this goal by reducing synchronization errors to half-

errors through indexing. However, this procedure requires

all symbols to be communicated before the repositioning

procedure of Algorithm 1 can start running and, therefore,

introduces a delay. A true channel simulation would not add

such delay. More precisely, a round of error-free communica-

tion in a simulated channel is one that communicates the ith
symbol sent by the sender as the ith symbol to the receiver

once it arrives at the other side and prior to the i+1st symbol

being sent by the sender.

This subtle requirement can be satisfied through using

synchronization strings as the indexing sequence and utilizing

the online repositioning algorithm introduced in Section III-B.

Before presenting the channel simulations, we remark an

interesting negative result of [21] stating that, as opposed

to codes, when it comes to channel simulations, no channel

simulator can reduce δ fraction of synchronization errors to

δ + ε half-errors for arbitrarily small ε.

Theorem IV.2. Assume that n uses of a synchronization

channel over an arbitrarily large alphabet Σ with a δ
fraction of insertions and deletions are given. There is no

deterministic simulation of a half-error channel over any

alphabet Σsim where the simulated channel guarantees more

than n (1− 4δ/3) uncorrupted transmitted symbols. If the

simulation is randomized, the expected number of uncorrupted

transmitted symbols is at most n(1− 7δ/6).

We now present the channel simulations that can be

achieved via indexing with synchronization strings. Simula-

tions are presented for channels with large constant alphabets,

binary alphabets, one-way communication or interactive com-

munication.

Theorem IV.3. [Channel Simulations]

(a) Suppose that n rounds of a one-way/interactive

insertion-deletion channel over an alphabet Σ with a

δ fraction of insertions and deletions are given. Using

a long-distance ε-synchronization string over alphabet

Σsyn, it is possible to simulate n (1−Oε(δ)) rounds

of a one-way/interactive substitution channel over Σsim

with at most Oε (nδ) symbols corrupted so long as

|Σsim| × |Σsyn| ≤ |Σ|.
(b) Suppose that n rounds of a binary one-way/interactive

insertion-deletion channel with a δ fraction of in-

sertions and deletions are given. It is possible to

simulate n(1 − Θ(
√

δ log(1/δ))) rounds of a bi-

nary one-way/interactive substitution channel with

Θ(
√

δ log(1/δ)) fraction of substitution errors between

two parties over the given channel.

All of the simulations mentioned above take O(1) time per

symbol for the sending/starting party of one-way/interactive

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 19,2021 at 21:00:13 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2021.3056317, IEEE

Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY 15

communications. Further, on the other side, the simulation

spends O(log3 n) time upon arrival of each symbol and only

looks up O(log n) recently received symbols. Overall, these

simulations take a O(n log3 n) time and O(log n) space to

run. These simulations can be performed even if parties are

not aware of the communication length.

Proof Sketch. We highlight the main ideas behind each of

these simulations in the following.

(a) In this simulation, the simulating agents do the indexing

as done in the case of coding. Meaning that on the sender

side, the simulation simply indexes the messages of the

sender with symbols of a long-distance synchronization

string and on the receiving end, the receiver-side simu-

lating agent runs the online repositioning algorithm from

Section III-E to identify the position of the symbols it

receives and relays them to the receiver.

Note that the online repositioning algorithm for long-

distance synchronization strings allows the simulator on

the receiving end to guess the positions of the received

symbols as they arrive. However, we stress that the

simulated channel has to behave as an actual channel

and therefore cannot reveal the symbols to the receiver

out of order. For instance, if the repositioning algorithm

incorrectly identifies the first symbol as the tenth symbol

and reveals it as the tenth symbol to the receiver, it

cannot reveal the second to ninth symbols to the receiver

afterwards even if the repositioning for those symbols is

done correctly.

To ensure in-order revealing of symbols, the simulation

uses a lazy revealing strategy to avoid over-reacting

to incorrect guesses by the repositioning algorithm.

More precisely, if the guessed position of a symbol is

far beyond where the communication length is at that

moment, the receiver-side simulator moves the commu-

nication forward by outputing two dummy symbols to

the reciever. For the analysis of this strategy, we refer

the reader to [21].

(b) The simulation for channels with a binary alphabet is

very similar except that the indexing is not possible

due to the size of the alphabet. To overcome this, the

simulation splits the communication into several blocks.

In each block, the sender-side simulator first sends a

fixed header of size O(log 1
δ) (indicating the start of a

new block), then sends a binary encoding of a symbol of

the long-distance synchronization string, and then ends

the block by relaying the messages of the sender for

r =
√

log 1/δ
δ rounds.

Time and space guarantees of these simulations are inferred

from highly-explicit constructions of infinite long-distance

synchronization strings (Theorem III.9) and their local repo-

sitioning algorithms (Theorem III.10). Similar simulations

can be performed in interactive communication channels by

taking the steps mentioned above in one direction of the

communication.

C. Interactive Communication for Synchronization Errors

The channel simulations via indexing presented in Sec-

tion IV-B can be used to obtain interactive coding schemes

for synchronization errors. Interactive communication between

two parties is one in which any round of the communication

consists of a message transmission from one party to the

other one. Each party is assumed to hold a private information

denoted by X and Y and the goal is for both parties to compute

some function f(X,Y). Any strategy for computing f(X,Y)
is called a protocol.

A coding scheme for interactive communication is one that

takes any protocol that computes some function f in noiseless

communication and converts it into a protocol that computes f
over a noisy channel. The rate of an interactive coding scheme

is defined as the minimal ratio of the length of the protocol

in the absence of noise over the length of the protocol in the

presence of noise over all functions f .

The channel model used in the results of this section is the

commonly used model of Braverman et al. [50] that considers

an alternating protocol, i.e., protocols in which parties take

alternating turns in sending and receiving symbols.

Using channel simulations, [21], [40] provide coding

schemes for interactive communication over channels suffering

from synchronization errors by simply simulating a half-error

channel over the given synchronization channel and applying

interactive protocols for channels with symbol substitution

errors over the simulated channel. Using simulations for chan-

nels with large alphabets along with the interactive protocol

of Haeupler and Ghaffari [53], [40] gives the following.

Theorem IV.4. For a sufficiently small δ and n-round al-

ternating protocol Π, there is a randomized coding scheme

simulating Π in the presence of δ fraction of synchroniza-

tion errors with constant rate (i.e., in O(n) rounds) and in

near-linear time. This coding scheme works with probability

1− 2Θ(n).

Similarly, using binary alphabet simulations and the inter-

active protocol of Haeupler [54], [21] gives the following.

Theorem IV.5. For sufficiently small δ, there is an effi-

cient interactive coding scheme for fully adversarial binary

synchronization channels which is robust against δ fraction

of edit-corruptions, achieves a communication rate of 1 −
Θ(

√

δ log(1/δ)), and works with probability 1− 2−Θ(nδ).

D. Binary Synchronization Codes

A similar approach is taken to design binary synchroniza-

tion error-correcting codes in [21] by simulating a half-error

channel over the given synchornization channel and then using

a binary error-correcting code on top of it.

Theorem IV.6. For any sufficiently small δ, there is a binary

synchronization code with rate 1 − Θ
(
√

δ log 1
δ

)

which is

decodable from δ fraction of insertions and deletions.

It is shown in [10] that the optimal rate for binary synchro-

nization codes with distance δ is 1−O
(

δ log 1
δ

)

. Recent works

by Cheng et al. [22] and Haeupler [23] have simultaneously

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 19,2021 at 21:00:13 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2021.3056317, IEEE

Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY 16

improved over the codes from Theorem IV.6 by introducing

efficient binary codes with rate 1−O(δ log2 1
δ) via providing

deterministic document exchange protocols.

E. Document Exchange

Document exchange is a problem in which a server and a

client hold two versions of the same string, say F and F ′

respectively, where F ′ is an outdated version that is different

from F by up to k insertions or deletions. The goal is for the

server to compute a small summary and send it to the client

so the client can update its string to F .

There is a close connection between deterministic document

exchange protocols and systematic synchronization codes.

Having a systematic synchronization code, one can construct

a document exchange protocol with using the non-systematic

part of the code as the summary. On the other hand, having a

document exchange protocol, one can construct a systematic

code by taking the summary of the document exchange

protocol, encoding it using a synchronization code, and using

the encoded summary as the non-systematic part of the code.

For document exchange with k errors, Ω(k log n
k) bits

of information is necessary as the summary. Orlitsky [55]

showed in 1991 that protocols with this amount of redundancy

exist, however, fell short of providing efficient ones. In 2005,

Irmak, Mihaylov and Suel [56] provided an efficient document

exchange protocol with O(k log n
k log n) redundancy. Since

then, there have been several works on randomized document

exchange protocols (mostly for k sublinear in n) by [57],

[58], [59], [60]. Recent works of Cheng et al. [22] and Haeu-

pler [23] provide deterministic document exchange protocols

with redundancy O(k log2 n
k).

Haeupler [23] first provides a randomized document ex-

change protocol with redundancy O(δ log 1
δ) through a mod-

ification and careful analysis of the protocol of Irmak et

al. [56]. Then, it derandomizes the protocol using a deran-

domizarion technique reminiscent of one used in [40] of

synchronization strings. The techniques of Cheng et al. [22]

also make use of notions called ε-self-matching hash functions

and ε-synchronization hash functions which are sequences of

hash functions whose outputs satisfy properties resembling the

corresponding string properties introduced in [39].

F. Linear Insertion-Deletion Codes

A recent work of Cheng et al. [61] studies qualities like

linearity and affinity in the context of synchronization cod-

ing. They propose an efficient synchronization string-based

transformation that can convert any asymptotically good linear

error-correcting code into an asymptotically good insertion-

deletion code. Using this transformation along with well-

known linear error-correcting codes, such as Hamming codes,

results in explicit constructions for linear insertion-deletion

codes.

The indexing scheme introduced in Section II inherently

leads to codes that are non-linear as it specifies a fixed

value to a portion of each symbol. To circumvent this, [61]

uses pseudo-random strings to design linear insertion-deletion

codes in the following manner: To encode a message x ∈ F
m
q ,

they first encode it using a linear error-correcting code for

Hamming-type errors C : Fm
q → F

n
q to become y = C(x).

They then take care of the synchronization issues by inserting

several sequences of 0 symbols into the message and gener-

ating the final codeword as follows:

z? = (0S1 , y1, 0
S2 , y2, · · · , 0Sn , yn).

The string S = (S1, S2, · · · , Sn) is a pseudo-random string

having synchronization properties similar to the ones studied

in this survey.

More precisely, [61] defines a Λ-synchronization sepa-

rator sequence as a sequence S for which any z =
(0S1 , ?, 0S2 , ?, · · · , 0Sn , ?) does not have self-matchings with

more than Λ undesirable matches. An undesirable match is

one between two ‘?’s like the ith and the jth ‘?’ where i 6= j
and pi−pi′ = pj−pj′ where (i′, j′) is the immediate previous

match to (i, j) in the matching and pi denote the position of

the ith ‘?’ in z?.

[61] provides explicit constructions for synchronization sep-

arator sequences and shows that, if used in the above con-

struction, they enable the decoder to reconstruct the codeword

y up to a number of Hamming-type errors that is within

a constant factor of the number of insertions and deletions

applied; Hence, proving that this conversion preserves both

linearity and the asymptotic goodness of the code.

G. Coded Trace Reconstruction

A recent work by Brakensiek et al. [62] provides novel

results for the coded trace reconstruction problem. Coded

trace reconstruction asks for codes that satisfy the following:

Assuming that a sender chooses a codeword of the code and

sends multiple copies of it over independent binary deletion

channels (called traces), the receiver wants to be able to

recover the original codeword with high probability. Using

synchronization strings, [62] provides a high-rate coded trace

reconstruction scheme that is efficiently decodable from a

constant number of traces.

H. Coding for Binary Deletion Channels and Poisson Repeat

Channels

Con and Shpilka [63] use the synchronization string-

based Singleton-bound-approaching synchronization codes

from Section I-C1 to provide an efficient and explicit code for

binary deletion channels that improve over the state-of-the-art

in terms of error resilience. They, additionally, show that their

code also works for the Poisson repeat channel where each

bit appears on the receiver’s side a number of times which

follows some Poisson distribution.

REFERENCES

[1] S. Golomb, J. Davey, I. Reed, H. Van Trees, and J. Stiffler, “Synchroniza-
tion,” IEEE Transactions on Communications Systems, vol. 11, no. 4,
pp. 481–491, 1963.

[2] H. Mercier, V. K. Bhargava, and V. Tarokh, “A survey of error-
correcting codes for channels with symbol synchronization errors,” IEEE

Communications Surveys & Tutorials, vol. 12, no. 1, pp. 87–96, 2010.
[3] M. Mitzenmacher, “A survey of results for deletion channels and related

synchronization channels,” Probability Surveys, vol. 6, pp. 1–33, 2009.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 19,2021 at 21:00:13 UTC from IEEE Xplore. Restrictions apply.

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2021.3056317, IEEE

Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY 17

[4] L. Organick, S. D. Ang, Y.-J. Chen, R. Lopez, S. Yekhanin,
K. Makarychev et al., “Random access in large-scale DNA data storage,”
Nature biotechnology, vol. 36, no. 3, pp. 242–248, 2018.

[5] M. Blawat, K. Gaedke, I. Huetter, X.-M. Chen, B. Turczyk, S. Inverso
et al., “Forward error correction for DNA data storage,” Procedia

Computer Science, vol. 80, pp. 1011–1022, 2016.

[6] N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. M. LeProust,
B. Sipos, and E. Birney, “Towards practical, high-capacity, low-
maintenance information storage in synthesized DNA,” Nature, vol. 494,
no. 7435, p. 77, 2013.

[7] G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital infor-
mation storage in DNA,” Science, vol. 337, no. 6102, pp. 1628–1628,
2012.

[8] S. H. T. Yazdi, H. M. Kiah, E. Garcia-Ruiz, J. Ma, H. Zhao, and
O. Milenkovic, “DNA-based storage: Trends and methods,” IEEE Trans-

actions on Molecular, Biological and Multi-Scale Communications,
vol. 1, no. 3, pp. 230–248, 2015.

[9] J. Bornholt, R. Lopez, D. M. Carmean, L. Ceze, G. Seelig, and
K. Strauss, “A DNA-based archival storage system,” ACM SIGARCH

Computer Architecture News, vol. 44, no. 2, pp. 637–649, 2016.

[10] V. Levenshtein, “Binary codes capable of correcting deletions, insertions,
and reversals,” Doklady Akademii Nauk SSSR, vol. 163, no. 4, pp. 845–
848, 1965, English translation in Soviet Physics Doklady, 10(8):707–
710, 1966.

[11] M. Cheraghchi and J. Ribeiro, “An overview of capacity results for
synchronization channels,” IEEE Transactions on Information Theory,
2020.

[12] N. J. Sloane, “On single-deletion-correcting codes,” Codes and Designs,
vol. 10, pp. 273–291, 2002.

[13] G. Tenengolts, “Nonbinary codes, correcting single deletion or insertion
(corresp.),” IEEE Transactions on Information Theory, vol. 30, no. 5,
pp. 766–769, 1984.

[14] A. S. J. Helberg and H. C. Ferreira, “On multiple insertion/deletion
correcting codes,” IEEE Transactions on Information Theory, vol. 48,
no. 1, pp. 305–308, 2002.

[15] R. Gabrys and F. Sala, “Codes correcting two deletions,” IEEE Trans-

actions on Information Theory, vol. 65, no. 2, pp. 965–974, 2018.

[16] K. A. S. Abdel-Ghaffar, F. Paluncic, H. C. Ferreira, and W. A. Clarke,
“On Helberg’s generalization of the Levenshtein code for multiple
deletion/insertion error correction,” IEEE Transactions on Information

Theory, vol. 58, no. 3, pp. 1804–1808, 2011.

[17] J. Brakensiek, V. Guruswami, and S. Zbarsky, “Efficient low-redundancy
codes for correcting multiple deletions,” IEEE Transactions on Informa-

tion Theory, vol. 64, no. 5, pp. 3403–3410, 2017.

[18] L. J. Schulman and D. Zuckerman, “Asymptotically good codes cor-
recting insertions, deletions, and transpositions,” IEEE Transactions on

Information Theory, vol. 45, no. 7, pp. 2552–2557, 1999.

[19] V. Guruswami and R. Li, “Efficiently decodable insertion/deletion codes
for high-noise and high-rate regimes,” in Proceedings of the IEEE

International Symposium on Information Theory (ISIT), 2016, pp. 620–
624.

[20] V. Guruswami and C. Wang, “Deletion codes in the high-noise and high-
rate regimes,” IEEE Transactions on Information Theory, vol. 63, no. 4,
pp. 1961–1970, 2017.

[21] B. Haeupler, A. Shahrasbi, and E. Vitercik, “Synchronization strings:
Channel simulations and interactive coding for insertions and deletions,”
in Proceedings of the International Conference on Automata, Languages,

and Programming (ICALP), 2018, pp. 75:1–75:14.

[22] K. Cheng, Z. Jin, X. Li, and K. Wu, “Deterministic document exchange
protocols, and almost optimal binary codes for edit errors,” in Pro-

ceedings of the IEEE Symposium on Foundations of Computer Science

(FOCS), 2018.

[23] B. Haeupler, “Optimal document exchange and new codes for insertions
and deletions,” in Proceedings of the IEEE Symposium on Foundations

of Computer Science (FOCS), 2019, pp. 334–347.

[24] B. Haeupler, A. Shahrasbi, and M. Sudan, “Synchronization strings:
List decoding for insertions and deletions,” in Proceedings of the

International Conference on Automata, Languages, and Programming

(ICALP), 2018.

[25] B. Haeupler and A. Shahrasbi, “Rate-distance tradeoffs for list-
decodable insertion-deletion codes,” arXiv preprint arXiv:2009.13307,
2020.

[26] A. Wachter-Zeh, “List decoding of insertions and deletions,” IEEE

Transactions on Information Theory, vol. 64, no. 9, pp. 6297–6304,
2018.

[27] T. Hayashi and K. Yasunaga, “On the list decodability of insertions and
deletions,” IEEE Transactions on Information Theory, vol. 66, no. 9, pp.
5335–5343, 2020.

[28] B. Bukh, V. Guruswami, and J. Håstad, “An improved bound on the
fraction of correctable deletions,” IEEE Transactions on Information

Theory, vol. 63, no. 1, pp. 93–103, 2017.
[29] S. Liu, I. Tjuawinata, and C. Xing, “List decoding of insertion and

deletion codes,” arXiv preprint arXiv:1906.09705, 2019.
[30] V. Guruswami, B. Haeupler, and A. Shahrasbi, “Optimally resilient

codes for list-decoding from insertions and deletions,” in Proceedings

of the ACM Symposium on Theory of Computing (STOC), 2020, pp.
524–537.

[31] F. Sellers, “Bit loss and gain correction code,” IRE Transactions on

Information Theory, vol. 8, no. 1, pp. 35–38, 1962.
[32] H. Morita, A. Van Wijngaarden, and A. H. Vinck, “Prefix synchronized

codes capable of correcting single insertion/deletion errors,” in Proceed-

ings of the IEEE International Symposium on Information Theory (ISIT),
1997, p. 409.

[33] W. Ferreira, W. A. Clarke, A. S. J. Helberg, K. A. S. Abdel-Ghaffar, and
A. H. Vinck, “Insertion/deletion correction with spectral nulls,” IEEE

Transactions on Information Theory, vol. 43, no. 2, pp. 722–732, 1997.
[34] E. Gilbert, “Synchronization of binary messages,” IRE Transactions on

Information Theory, vol. 6, no. 4, pp. 470–477, 1960.
[35] L. J. Guibas and A. M. Odlyzko, “Maximal prefix-synchronized codes,”

SIAM Journal on Applied Mathematics, vol. 35, no. 2, pp. 401–418,
1978.

[36] A. Van Wijngaarden and B. Morita, “Extended prefix synchronization
codes,” in Proceedings of the IEEE International Symposium on Infor-

mation Theory (ISIT), 1995, p. 465.
[37] H. Morita, A. J. van Wijngaarden, and A. H. Vinck, “On the construction

of maximal prefix-synchronized codes,” IEEE Transactions on Informa-

tion Theory, vol. 42, no. 6, pp. 2158–2166, 1996.
[38] W. Kautz, “Fibonacci codes for synchronization control,” IEEE Trans-

actions on Information Theory, vol. 11, no. 2, pp. 284–292, 1965.
[39] B. Haeupler and A. Shahrasbi, “Synchronization strings: Codes for in-

sertions and deletions approaching the Singleton bound,” in Proceedings

of the ACM Symposium on Theory of Computing (STOC), 2017, pp. 33–
46.

[40] ——, “Synchronization strings: Explicit constructions, local decoding,
and applications,” in Proceedings of the ACM Symposium on Theory of

Computing (STOC), 2018, pp. 841–854.
[41] A. Rubinstein, “Approximating edit distance,” https://theorydish.blog/

2018/07/20/approximating-edit-distance/, 2018.
[42] B. Haeupler, A. Rubinstein, and A. Shahrasbi, “Near-linear time

insertion-deletion codes and (1+ε)-approximating edit distance via in-
dexing,” in Proceedings of the ACM Symposium on Theory of Computing

(STOC), 2019, pp. 697–708.
[43] V. Guruswami and P. Indyk, “Linear-time encodable/decodable codes

with near-optimal rate,” IEEE Transactions on Information Theory,
vol. 51, no. 10, pp. 3393–3400, 2005.

[44] B. Hemenway, N. Ron-Zewi, and M. Wootters, “Local list recovery of
high-rate tensor codes and applications,” SIAM Journal on Computing,
vol. 49, no. 4, pp. FOCS17–157–FOCS17–195, 2020.

[45] S. Kopparty, N. Resch, N. Ron-Zewi, S. Saraf, and S. Silas, “On list
recovery of high-rate tensor codes,” IEEE Transactions on Information

Theory, 2020.
[46] B. Bukh and J. Ma, “Longest common subsequences in sets of words,”

SIAM Journal on Discrete Mathematics, vol. 28, no. 4, pp. 2042–2049,
2014.

[47] E. Arikan, “Channel polarization: a method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE

Transactions on Information Theory, vol. 55, no. 7, pp. 3051–3073,
2009.

[48] J. Blasiok, V. Guruswami, P. Nakkiran, A. Rudra, and M. Sudan,
“General strong polarization,” in Proceedings of the ACM Symposium

on Theory of Computing (STOC), 2018, pp. 485–492.
[49] K. Cheng, B. Haeupler, X. Li, A. Shahrasbi, and K. Wu, “Synchro-

nization strings: highly efficient deterministic constructions over small
alphabets,” in Proceedings of the ACM-SIAM Symposium on Discrete

Algorithms (SODA), 2019, pp. 2185–2204.
[50] M. Braverman, R. Gelles, J. Mao, and R. Ostrovsky, “Coding for

interactive communication correcting insertions and deletions,” IEEE

Transactions on Information Theory, vol. 63, no. 10, pp. 6256–6270,
2017.

[51] K. Chandrasekaran, N. Goyal, and B. Haeupler, “Deterministic algo-
rithms for the lovász local lemma,” SIAM Journal on Computing, vol. 42,
no. 6, pp. 2132–2155, 2013.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 19,2021 at 21:00:13 UTC from IEEE Xplore. Restrictions apply.

