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Abstract—Already in the 1960s, Levenshtein and others stud-
ied error-correcting codes that protect against synchronization
errors, such as symbol insertions and deletions. However, despite
significant efforts, progress on designing such codes has been
lagging until recently, particularly compared to the detailed
understanding of error-correcting codes for symbol substitution
or erasure errors. This paper surveys the recent progress in
designing efficient error-correcting codes over finite alphabets
that can correct a constant fraction of worst-case insertions and
deletions.

Most state-of-the-art results for such codes rely on synchro-
nization strings, simple yet powerful pseudo-random objects
that have proven to be very effective solutions for coping with
synchronization errors in various settings. This survey also
includes an overview of what is known about synchronization
strings and discusses communication settings related to error-
correcting codes in which synchronization strings have been
applied.

Index Terms—Coding for Insertions and Deletions, Synchro-
nization Strings, Error-Correction for Synchronization Errors,
List-Decoding.

I. INTRODUCTION

OLLOWING the inspiring works of Shannon and Ham-
ming a sophisticated and extensive body of research on
error-correcting codes has led to a deep and detailed theoretical
understanding as well as practical implementations that have
helped fuel the Digital Revolution. Error-correcting codes
can be found in virtually all modern communication and
computation systems. While being remarkably successful in
understanding the theoretical limits and trade-offs of reliable
communication under substitution errors and erasures, the cod-
ing theory literature lags significantly behind when it comes to
overcoming errors that concern the timing of communications.
In particular, the study of correcting synchronization errors,
i.e., symbol insertions and deletions, while initially introduced
by Levenshtein in the 60s, has significantly fallen behind our
highly sophisticated knowledge of codes for Hamming-type
errors, that are symbol substitutions and erasures.
This discrepancy has been well noted in the literature.
An expert panel [1] in 1963 concluded: “There has been
one glaring hole in [Shannon’s] theory; viz., uncertainties
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in timing, which I will propose to call time noise, have not
been encompassed .... Our thesis here today is that the
synchronization problem is not a mere engineering detail, but
a fundamental communication problem as basic as detection
itself!” however as noted in a comprehensive survey [2] in
2010: “Unfortunately, although it has early and often been
conjectured that error-correcting codes capable of correct-
ing timing errors could improve the overall performance of
communication systems, they are quite challenging to design,
which partly explains why a large collection of synchroniza-
tion techniques not based on coding were developed and
implemented over the years.” or as Mitzenmacher puts in his
survey [3]: “Channels with synchronization errors, including
both insertions and deletions as well as more general timing
errors, are simply not adequately understood by current theory.
Given the near-complete knowledge we have for channels
with erasures and errors ...our lack of understanding about
channels with synchronization errors is truly remarkable.”

However, over the last five years, partially spurred by new
emerging application areas, such as DNA-storage [4], [5],
[6], [7], [8], [9], significant breakthroughs in our theoretical
understanding of error correction methods for insertions and
deletions have been made.

This survey focuses on error-correcting codes over finite
alphabets that can correct a constant fraction of worst-case
insertions and deletions and provides a complete account
of the recent progress in this area. Much of this progress
has been obtained through synchronization strings, recently
introduced, simple yet powerful pseudo-random objects proven
to be very effective solutions for coping with synchroniza-
tion errors in various communication settings. This paper
includes streamlined and self-contained proofs for the state-of-
the-art code constructions and decoding procedures for both
unique-decodable and list-decodable error-correcting codes
over large constant alphabets, which are based on synchro-
nization strings. We also provide in-depth discussions of
such codes over binary and other fixed (small) alphabets.
Lastly, this paper includes an overview of what is known
about synchronization strings themselves and discusses other
communication settings in which synchronization strings have
been successfully applied.

A. Synchronization Errors

Consider a stream of symbols being transmitted through
a noisy channel. There are two basic types of errors that
we will consider, Hamming-type errors and synchronization
errors. Hamming-type errors consist of erasures, that is, a
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symbol being replaced with a special “?”” symbol indicating the
erasure, and substitutions in which a symbol is replaced with
any other symbol of the alphabet. We will measure Hamming-
type errors in terms of half-errors. The wording half-error
comes from the realization that, when it comes to code
distances, erasures are half as bad as symbol substitutions.
An erasure is thus counted as one half-error while a symbol
substitution counts as two half-errors. Synchronization errors
consist of deletions, that is, a symbol being removed without
replacement, and insertions, where a new symbol is added
somewhere within the stream.

Synchronization errors are strictly more general and harsher
than half-errors. In particular, any symbol substitution, worth
two half-errors, can also be achieved via a deletion followed
by an insertion. Any erasure can be interpreted as a deletion
together with the extra information where this deletion has
taken place. This shows that any error pattern generated by
k half-errors can also be replicated using &k synchronization
errors, making dealing with synchronization errors at least
as hard as half-errors. The real problem that synchronization
errors bring about, however, is that they cause sending and
receiving parties to become “out of sync”. This easily changes
how received symbols are interpreted and makes designing
codes or other systems tolerant to synchronization errors
an inherently difficult and significantly less well-understood
problem.

B. Scope of the Survey and Related Works

The study of coding for synchronization errors was initiated
by Levenshtein [10] in 1966 when he showed that Varshamov-
Tenengolts codes can correct a single insertion, deletion, or
substitution error with an optimal redundancy of almost logn
bits. Ever since, synchronization errors have been studied in
various settings. In this section, we specify and categorize
some of the commonly studied settings and give a detailed
summary of past works within the scope of this survey.

The first important aspect is the noise model. Several works
have studied coding for synchronization errors under the as-
sumption of random errors, most notably, to study the capacity
of deletion channels, which independently delete each symbol
with some fixed probability. In this paper, we exclusively focus
on worst-case error models in which correction has to be
possible from any (adversarial) error pattern bounded only by
the total number of insertions and deletions. We refer to the
recent survey (in the same special issue) by Cheraghchi and
Ribeiro [11] on capacity results for synchronization channels
as well as the surveys by Mitzenmacher [3] and Mercier [2],
for an extensive review of the literature on codes for random
synchronization errors.

Another angle to categorize the previous work on codes for
synchronization error from is the noise regime. In the same
spirit as ordinary error-correcting codes, the study of families
of synchronization codes has included both ones that protect
against a fixed number of synchronization errors and ones
that consider error count that is a fixed fraction of the block
length. The inspiring work of Levenshtein [10] falls under
the first category and is followed by several works designing

synchronization codes correcting k errors for specific values of
k [12], [13], [14], [15] or with k as a general parameter [16],
[17]. In this work, we focus on the second category, i.e.,
infinite families of synchronization codes with increasing
block length that are defined over a fixed alphabet size and can
correct from constant-fractions of worst-case synchronization
errors.

Furthermore, we mainly focus on codes that can be ef-
ficiently constructed and decoded — in contrast to merely
existential results. The first such code was constructed in 1990
by Schulman and Zuckerman [18]. They provided an efficient,
asymptotically good synchronization code with constant rate
and constant distance. In the following, we will give a com-
plete review of the previous work relevant to the scope of this
paper.

1) Rate-Distance Trade-Off: One of the main problems
in coding theory concerns the question of what the largest
achievable communication rate is while protecting from a
certain fraction of (synchronization) errors. This question can
be studied under the regime that assumes some fixed alphabet
of size ¢, specifically binary alphabets, or an alphabet-free
regime that studies the rate achievability when alphabet size
can be chosen arbitrarily large but independent of the block
length.

For the large alphabet setting, the Singleton bound suggests
that no family of codes can correct a § fraction of deletions,
and hence, ¢ fraction of synchronization errors while achieving
a rate strictly larger than 1 — 6. A series of works by
Guruswami ef al. [19], [20] provides codes that achieve a
rate of Q((1 — 6)°) and 1 — O(+v/8) while being able to
efficiently recover from a ¢ fraction of insertions and deletions
in high-noise and high-rate regimes respectively. In this paper,
we will take a deep dive into synchronization string based
code constructions that provide codes that can approach the
Singleton bound up to an arbitrarily small additive term over
the entire distance spectrum ¢ € (0, 1).

For binary alphabet codes, one can show that the optimal
achievable rate to protect against a § fraction of insertions
or deletions is 1 — O(d log %) [10]. Works of Guruswami et
al. [19], [20] and Haeupler et al. [21] present efficient codes
with distance § and rate 1 —O (v/31og®™ 1) for sufficiently

small 4. Recent works by Cheng et al. [22] and Haeupler [23]
have achieved codes with rate 1 — O(d log? 3.

2) List Decoding: Like error-correcting codes, synchroniza-
tion codes have been studied under the list decoding model
where, as opposed to unique decoding, the decoder is expected
to produce a list of codewords containing the transmitted
codeword as long as the error rate is sufficiently small.

Guruswami and Wang [20] have provided positive-rate
binary deletion codes that can be list-decoded from close to
% fraction of deletions. Haeupler et al. [24], [25] gave upper
and lower bounds on the maximum achievable rate of list-
decodable insertion-deletion codes (or insdel codes for short)
over any alphabet size q. Recent works of Wachter-Zeh [26]
and Hayashi and Yasunaga [27] have studied list-decoding
by providing Johnson-type bounds for synchronization codes
that relate the minimum edit-distance of the code to its list
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decoding properties. We generally define the edit-distance
between two strings as the smallest number of insertions
and deletions needed to convert one to another. The bounds
presented in [27] show that binary codes by Bukh, Guruswami,
and Hastad [28] can be list-decoded from a fraction ~ 0.707
of insertions. Via a concatenation scheme used in [20] and
[19], Hayashi and Yasunaga furthermore made these codes
efficient. A recent work of Liu, Tjuawinata, and Xing [29] also
derives bounds on list-decoding radius, provides efficiently
list-decodable insertion-deletion codes over small alphabets,
and gives a Zyablov-type bound for synchronization codes.

3) Error Resilience: As mentioned above, it is known that
there exist positive-rate binary deletion codes that are list-
decodable from any fraction of errors smaller than % Also,
there are codes that can list-decode from a fraction ~ 0.707
of insertions. We will present a recent result from [30] that,
for any alphabet size ¢, precisely identifies the maximal rates
of combinations of insertion and deletion errors from which
list-decoding is possible.

A similar question can be asked for uniquely-decodable
synchronization codes, i.e., what is the largest fraction of
errors dy where there exist positive-rate synchronization codes
with minimum edit-distance dq? For binary alphabets, it is easy
to see that §p < % However, most resilient binary codes with
positive rate to date are ones introduced by Bukh, Guruswami,
and Hastad [28] that can correct a v/2—1 & 0.4142 fraction of
errors. Determining the optimal error resilience for uniquely-
decodable synchronization codes remains an interesting open
question. We refer the reader to [11] for a more comprehensive
review of past works on the error resilience for synchronization
codes.

C. Coding with Synchronization Strings

One commonly studied approach to correct from synchro-
nization errors is to use special symbols or sequences with
specific structures as markers or delimiters to keep track of
insertions and deletions and realign a transmitted word [31],
[32], [33], [34], [35], [36], [37], [38]. In this work, we focus
on a very recent form of such technique — indexing with
synchronization strings.

Introduced in [39], synchronization strings allow efficient
synchronization of streams that are affected by insertions
and deletions using an abstract indexing scheme. Essentially,
synchronization strings enable compartmentalization of coding
against synchronization errors into two steps of (1) realigning
the received stream of symbols in a way that guarantees
most symbols are in their original position and (2) coding
against Hamming-type errors caused by wrong realignments.
Synchronization strings have made progress on a wide vari-
ety of settings and problems. This survey focuses on code
constructions that are based on synchronization strings. Most
importantly, we will review the following results.

1) Codes Approaching the Singleton Bound: Synchroniza-
tion strings enable construction of families of synchronization
codes that approach an almost optimal rate-distance trade-off
as suggested by the Singleton bound over constant alphabet

sizes. In other words, as shown in [39], for any 0 < § < 1 and
any € > 0, there exists a family of synchronization codes that
can uniquely and efficiently correct any § fraction of insertions
and deletions and achieve a rate of 1 —d —e. Such codes exist
over alphabets of size exp(1/¢) which is shown in [40] to be
the asymptotically optimal alphabet size for a code with such
properties.

2) Near-Linear Time Codes: We then present an improve-
ment from [41] over the result just described that modifies the
construction and decoding in a way that enables near-linear
time decoding. Two main ingredients are used to achieve this
improvement: (1) generalizations of synchronization strings
and their fast construction methods introduced in [40], and
(2) a fast indexing scheme for edit-distance computation
from [42]. For any n and € > 0, [42] gives string I of length
n over an alphabet of size |X| = O.(1) which enables fast
approximation of the edit distance in the following way: Let
S € '™ be another string of length n over some other alphabet
3. If one concatenates .S and I, symbol-by-symbol, to obtain
the string S x I € (¥ x X/)", then edit distance from any
other string S’ € (¥ x ¥)" to S x I can be approximated
within a multiplicative factor of 1 4 ¢ in near-linear time.

3) List Decoding for Insertions and Deletions: We then
proceed to present a recent result on list-decodable synchro-
nization codes. Using a similar synchronization string-based
approach, [24] shows that for every 0 < § < 1, every
0 < v < oo and every € > 0 there exist a family of codes with
rate 1 — & — ¢, over an alphabet of constant size ¢ = Os 4. (1)
that are list-decodable from a §-fraction of deletions and a
~-fraction of insertions. This family of codes are efficiently
decodable and their decoding list size is sub-logarithmic in
terms of the code’s block length. We stress that the fraction
of insertions can be arbitrarily large (even more than 100%)
and the rate is independent of this parameter.

4) Optimal Error Resilience for List Decoding: Finally, we
review a result by Guruswami er al. [30] that, using a code
concatenation scheme for synchronization codes with codes
from [28] and [24], exactly identifies the maximal fraction of
insertions and deletions that can be tolerated by g-ary list-
decodable codes with non-vanishing information rate. This
includes efficient binary codes that can be list-decoded from
any o fraction of deletions and ~ fraction of insertions as
long as 25 + v < 1. One can show that list decoding is not
possible for any family of codes achieving positive rates for
any error fraction out of this region. Guruswami et al. [30]
have generalized this result to alphabets of size ¢ and identified
the feasibility region for (v, 0) as a more complex region with
a piece-wise linear boundary.

D. Organization of the Paper

In Section II, we will provide proofs for claims presented
in Section I-C by formally introducing indexing based code
constructions and giving a minimal introduction to pseudo-
random strings used for indexing. In Section III, we discuss
several pseudo-random string properties, their constructions,
their repositioning algorithms and the decoding properties

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 19,2021 at 21:00:13 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2021.3056317, IEEE

Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY

that they enable once used to construct codes. We then
mention applications of synchronization strings and related
string properties in other communication problems such as
coding for block errors and interactive communication under
synchronization errors in Section IV.

II. CODE VIA INDEXING

In this section, we explain the construction of codes stated in
Section I-C. We start with a self-contained simplified proof of
Singleton bound approaching codes presented in Section I-C1
that encapsulates the major ideas behind synchronization
string-based code constructions while avoiding unnecessary
details.

A. Approaching the Singleton Bound: Technical Warm-up

We start by defining the notion of e-self-matching strings
that satisfy a weaker property than synchronization strings but
can be used in a similar fashion to construct synchronization
codes.

Definition II.1. String S € X" is e-self-matching if it contains
no two identical non-aligned subsequences of length ne or
more, i.e., there exist no two sequences ai,az; . ..,a|pe| and

bi,b2, ..., bine| where for all is a; # b; and S[a;] = S[b;].

1) Pseudo-random Property: We first point out that random
strings over an alphabet of size §2(¢~2) satisfy -self-matching
property with high probability. Note that the probability of
two given non-aligned subsequences of length ne in a random

string over alphabet ¥ being identical is 1. Also, there are

|Z‘ns
no more than (775)2 pairs of such subsequences. Therefore, by
the union bound, the probability of sgch random strQing satisfy-
ing e-self-matching property is ()" =t (2e)™

ne/ |X|"¢ = \ne

= =

ne
sez) and thus, if |Z| = Q(e72), the random string would
satisfy the e-self-matching property with high probability.

2) Indexing Scheme: Consider a communication channel
where a stream of n message symbols are communicated
from the sender to the receiver and assume that the com-
munication may suffer from up to nd adversarial insertions
or deletions for some 0 < § < 1. We introduce a simple
indexing scheme that will be used to construct synchronization
codes. Let my1,mo,..., m, represent the message symbols
that the sender wants to get to the receiver and s1, So,..., S,
be some e-self-matching string that the sender and the re-
ceiver have agreed upon beforehand. To communicate its
message to the receiver, we have the sender send the sequence
(mq,s1), (ma, 82), ..., (My, $,) through the channel. We will
refer to this sequence as m indexed by s and denote it by m x s.
Note that in this setting a portion of the channel alphabet is
designated to the e-self-matching string and thus, does not
contain information. This portion will be used to reposition the
message symbols on the receiving end of the communication
as we will describe in the next section.

3) Repositioning (Decoding): We now show that, hav-
ing the indexing scheme described above, the receiver can
correctly identify the positions of most of the symbols it
receives. Let us denote the sequence of symbols arriving at
the receiving end by (mf,s}), (mb,s5),...,(ml,,s.,). We
show the following.

Lemma IL.2. There exists an algorithm for the receiving party
that, having (m',s}),...,(m,,,s.,) and s1,...,s,, guesses
the position of all received symbols in the sent string such
that positions of all but O(n+/e) of the symbols that are not
deleted in the channel are guessed correctly. This algorithm
runs in O (n?) time.

Note that if no error occurs, the receiver expects the index
portion of the received symbols to be similar to the e-self-
matching string s. Having this observation, we present the
decoding procedure in Algorithm 1. The decoding algorithm
calculates the longest common subsequence (LCS) between
the synchronization string, s, and the index portion of the
received string, s’. It then assigns each of the symbols from the
received string that appear in the common subsequence to the
position of the symbol from s that corresponds to it under the
common subsequence. The algorithm repeats this procedure
1/4/ times and after each round eliminates received symbols
whose positions are guessed.

Algorithm 1 Insertion-Deletion Decoder

Input: s, (my,s}), -, (ml,,s.,)
L= [3/173/27' o 78;1’}
: for i =1 to n' do
Position|i] < Undetermined
end for
: for i =1 to &= do
Compute LCS(s, L)
for all Corresponding s[i] and L[j] in LCS(s, L) do
Position[j] + i
end for
10:  Remove all elements of LCS(s, L) from L
11: end for

A A o ey

0

Output: Position

Proof of Lemma I1.2. Clearly, Algorithm 1 takes quadratic
time as it mainly runs O.(1) instances of LCS computation
over strings of length O(n).

To prove the correctness guarantee, we remark that there
are two types of incorrect guesses for symbols that are not
deleted by the adversary and bound the number of incorrect
guesses of each type.

I) The position of the received symbol remains
Undetermined by the end of the algorithm:
Note that if by the end of the algorithm there are k
original symbols—i.e., symbols that are originally sent
by the sender and not inserted by the adversary—that
have undetermined positions, then the remainder of L
after 1//¢ rounds has a common subsequence of size
k with s. This implies that, in each round of the for
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loop, |LCS(s,L)| > k. Note the total size of these
LCSs cannot exceed the initial size of L that is n’.
Therefore, k - % <n' <2n=k<2en.

Il) The position of the received symbol is incorrectly
guessed in one recurrence of the for loop: We claim that
the number of such wrong assignments in each round of
the for loop is no more than ne. Let s[i] and L[j] be
corresponding elements under LCS(s, L) in Line 7 while
the received symbol that L[j] identifies is the ¢'th symbol
sent by the sender. This implies that s[:] = L[j] = s['].
If there are more than ne such incorrect guesses in one
LCS computation, we have ne such pairs of identical
symbols in s that constitute a self-matching of size ne
in s and violate the assumption of s being an e-self-
matching string. Therefore, overall there are no more
than ﬁ - ne = mny/e incorrect determination of the
original positions of received symbols. O

4) Codes Approaching the Singleton Bound: We now use
the discussions on e-self-matching strings and Lemma II.2 to
construct efficient synchronization codes that can approach the
Singleton bound.

Theorem IL.3. Forany e > 0, § € (0,1), and sufficiently large
n, there exists an encoding map E : ¥* — ¥" and a decoding
map D : ¥* — Y% such that, if ED(E(m),z) < én then
D(x) = m. Further, the rate is £ > 1—6—¢, || = exp(1/e),
and E and D are explicit and can be computed in linear and
quadratic time in n.

We use ED(z,y) to denote the edit distance between z
and y. Note that the indexing scheme from Section II-A2 and
Lemma II.2 essentially gives a way to reduce insertions and
deletions to symbol substitutions and erasures at the cost of
designating a portion of the message symbols to an e-self-
matching string. More precisely, with the indexing scheme
from Section II-A2 in place, a receiver can use Algorithm 1
to guess the position of the symbols it receives in the sent
message and rearrange them to recover the message sent by
the sender.

Let m denote the recovered message and Position denote
the output of Algorithm 1. More precisely, for any 1 <17 < n,
the decoder sets m[ij] = j if only for one value of j,
Position[j] = i. If there are zero or multiple received symbols
that are guessed to be at position ¢, the decoder simply decides
mli] = 2.

We claim that 7 is different from m by no more than n(J+
124/¢) half-errors. Note that if an adversary applies no errors
and Algorithm 1 guesses the positions perfectly, m = m. In
the following steps, we add these imperfections and see the
effect in the Hamming distance between m and m.

o Each deleted symbol turns a detection in m to a ? and,
therefore, adds one half-error to the Hamming distance
between m and m.

o Each inserted symbol can either turn a detection in m to
a ? or a ? to an incorrect value. Therefore, each insertion
also adds one half-error to the Hamming distance between
m and m.

o Each incorrectly guessed symbol can also change up to
two symbols in m and therefore increase the Hamming
distance between m and m by up to four.

This implies that the m and m are far apart by no more than
n(d+12+/¢). Having this reduction, we derive codes promised
in Theorem II.3 by taking the following near-MDS codes from
[43] and indexing their codewords with a self-matching string.

Theorem I1.4 (Guruswami and Indyk [43, Theorem 3]). For
every v, 0 < r < 1, and all sufficiently small ¢ > 0, there
exists an explicitly specified family of GF(2)-linear (also called
additive) codes of rate r and relative distance at least (1 —
r — €) over an alphabet of size 20 "7 10e(1/9)) guch that
codes from the family can be encoded in linear time and can
also be (uniquely) decoded in linear time from a fraction e of
errors and s of erasures provided 2e + s < (1 —r —¢).

Proof of Theorem I1.3. Let C be a code from Theorem I1.4
with relative distance dc = § + § and rate 1 — d¢ — e¢ for

ec = 5 and S be an eg-self-matching string with parameter

Es = %. We construct code C’ by simply taking the code C
and indexing each codeword of it with S. We claim that the
resulting code satisfies the properties promised in the statement
of the theorem.

We start with showing the decoding guarantee by describing
the decoder. Note that a decoder can use the procedure
described in Algorithm 1 to use the index portion of codewords
to reconstruct the codeword by up to a §+12ve’ = § +£ =dc
fraction of half-errors. The decoder then simply feeds the
resulting string into the decoder of C' to fully recover the
original string. The encoding and decoding complexities of
C’ follow from the fact that C' is encodable and decodable in
linear time and that Algorithm 1 runs in quadratic time.

We finish the proof with proving the rate guarantee. Note
that Yo = Yo X Xg.

ror - IC]
nlog|Ec/|  nlog(|Sc| x [Zs])
e log || __Tc 0
log |[Yc|+1log [Es| 1 4 koglZs]

log[Xc|
Note that the discussion in Section II-Al implies that S
can be over an alphabet of size |Yg| = O(¢72) and
Theorem IL.4 gives that log|Yc| = w(e~*log1/e). Thus,

llc(:;lgi‘l = O(e~*), which plugged in (1) implies that ror >
Hoic(sél) > rg — % Therefore, since the rate of code C is
rc=1-0c—ecc=1-9— %a, the rate of the code C’ is at
leastrc/:l—(S—%s—%:l—é—E. [

Note that the alphabet size of the codes from Theorem I1.3 is
exponentially large in terms of e~ !. This is in sharp contrast to
the Hamming error setting where there are codes known that
can get € close to unique decoding capacity with alphabets
of polynomial size in terms of 1/c. While large alphabet
sizes might seem as an intrinsic weakness of the indexing-
based code constructions, it turns out that an exponentially
large alphabet size is actually necessary. We present the
following theorem from [24] that shows any such code requires
exponentially large alphabet size in terms of exp(s~1).
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Theorem IL.5. There exists a function f : (0,1) — (0,1)
such that for every 9, > 0, every family of insertion-deletion
codes of rate 1 — § — ¢ that can be uniquely decoded from
d-fraction of synchronization errors must have alphabet size
f(5))'

€

qzeXp<

Proof Sketch. For simplicity, assume that 6 = ¢ for some
integer d. Consider a code of block length n and an adversary
that always deletes all occurrences of the d least frequent
symbols. With such an adversary, the string received on
receiver’s side will be a string of length n(1 — §) over an
alphabet of size ¢ — d = ¢(1 — §). This means that there are
a total of M = (qzd) (q — d)™1=9) possible strings that may
arrive at the receiver’s end which implies that the rate of any
such code is no more than

log M log(1 —0)
=(1-— 1+ —=—-= 1).
nloggq ( 6)( " log g o)

Therefore, to achieve arate of 1 — § — ¢,

1—6—e<(1-0) (1+bgl(o1g;5)>

log 1—;

<e=g> e(l—é)logﬁ
loggq

= (1-9)

For the general case where dq is not necessarily an integer, a
similar, more careful argument proves the theorem. (See [24].)
O

The alphabet reduction idea used in the proof of Theo-
rem IL.5 shows that deletions, in addition to reducing the
information by eliminating symbols, reduce the information
by essentially decreasing the information content of surviving
symbols; suggesting that designating a part of each symbol to
synchronization strings is not a waste of information. A similar
alphabet reduction argument is used in [24], [25] to derive
strong upper-bounds on the zero-error list-decoding capacity
of adversarial insertion-deletion channels.

B. Near-Linear Time Codes

In Section II-A, we presented a way to construct synchro-
nization codes that approach the Singleton bound by taking
a near-MDS error-correcting code and indexing its codewords
with self-matching strings. In this section, we explain how the
decoding complexity of such codes can be reduced to near-
linear time.

The main idea is to replace the e-self matching string
with one that satisfies a stronger pseudo-random property that
allows for a near-linear time repositioning algorithm. We will
thoroughly explain the construction of such a string and its
repositioning algorithm in Section III-F. We forward reference
the properties of this string in the following theorem and defer
the details to Section III-F.

Theorem I1.6 (Theorem II.11 withe; = %, Es = %, K= g,
v = 1). For any € > 0, there exist strings of any length n over

bgi#) that, if used as an index in

an alphabet of size exp (
a synchronization channel with § fraction of errors, enables a
repositioning in O¢(npoly(logn)) time which guarantees no

more than ne incorrect guesses.

Using these strings in the code construction, the following
can be achieved.

Theorem IL.7. For any ¢ > 0 and 6 € (0,1), and suffi-
ciently large n, there exists an encoding map E : ¥F —
™ and a decoding map D ¢ — X such that, if
ED(E(m),z) < dn then D(x) = m. Further, % >1-4§—¢
3| = exp (e *log(1/¢)), and E and D are explicit and
can be computed in linear and near-linear time in terms of n
respectively.

Proof Sketch. To construct such codes with a given €, we
use strings from Theorem I1.6 with parameter § as an index
string. We then take code C' from [43] as a code with distance

dc = 0 + 5 and rate 1 — 6c — £ over an alphabet of size
|¥c| > |Xg|*c. Note that |Sg| = exp (b%#), therefore,

the choice of |X¢| is large enough to satisfy the requirements
of [43]. C is also encodable and decodable in linear time.
With this choice of C' and S, the same analysis as in
Section II-A shows that the resulting synchronization code can
be encoded in linear time, be decoded in O, (npoly(logn))
time, corrects from any dn insertions and deletions, achieves

a rate of 1§gc\zs| > 171(3_23}2/4 >1—46—¢, and is over an
log [
alphabet of size exp (bgi#) O

C. List Decoding: High Rate Codes

In this section, we review the results described in Sec-
tion I-C3 that, for every 0 < § < 1, every 0 < v < oo and
every € > 0, gives list-decodable codes with rate 1 — § — ¢,
constant alphabet (so ¢ = Os..c(1)), and sub-logarithmic list
sizes. Furthermore, these codes are accompanied by efficient
(polynomial time) decoding algorithms. We stress that the
fraction of insertions can be arbitrarily large (more than
100%), and the rate is independent of this parameter. Here
is a formal statement of the result from [24].

Theorem IL.8. For every 0 < §,e < 1 and v > 0, there
exist a family of list-decodable insertion-deletion codes that
can protect against d-fraction of deletions and ~y-fraction
of insertions and achieves a rate of at lea+s1t 1—6—¢ or
more over an alphabet of size (L—";l)o(%) = 0,.(1).
These codes are list-decodable with lists of size L. ,(n) =
exp (exp (exp (log" n))), and have polynomial time encoding
and decoding complexities.

The construction of these codes is similar to the ones from
Theorem II.7 except that the error-correcting code used in the
construction is replaced with a high-rate list-recoverable code.
A code C given by the encoding function £ : ¥ — ™ is
called to be («,l, L)-list recoverable if for any collection of
n sets S1,5%,...,5, C X each of size [ or less, there are at
most L codewords for which more than an elements appear
in the list that corresponds to their position, i.e.,

[{zeC||{i€[n]|zi€S} >an}| <L

The main idea is to use indexes and the repositioning
algorithm from Algorithm 1 to come up with a list of candidate
symbols for each position of the original message and then
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feed these lists to the decoder of the list-recoverable code. To
prove Theorem II.8, the following family of list-recoverable
codes from [44] is utilized.

Theorem I1.9 (Hemenway et al. [44, Theorem A.7]). Let q
be an even power of a prime, and choose l,e > 0, so that ¢ >
€ 2. Choose p € (0,1). There is an My, = O(llog,(I/€)/€?)
so that the following holds for all m > Mmyy.n. For infinitely
many n (all n of the form qe/Q(\/é — 1) for any integer e),
there is a deterministic polynomial-time construction of an Fy-
linear code C' : Fgf,i — Fym of rate p and relative distance
1 —p—O(e) that is (1 — p — €1, L)-list-recoverable in time

poly(n, L), returning a list of codewords that are all contained

log* (mmn)
. . . N2 _
in a subspace over F, 10f* (dmzenszon at most (;) ;
olog™ (mn

implying that L < q(l/e)

Proof of Theorem 11.8. By setting parameters p =1 — 4§ — 5,
[ = M, and € = % in Theorem II.9, one can obtain a
family of codes C that achieves rate p = 1 — ¢ — 5 and is
(o, 1, L)-recoverable in polynomial time for « =1 —§ —e/4
and some L = exp (exp (exp (log* n))) (by treating v and

€ as constants). Such a family of codes can be found over
ize q = (1/0)CWe) — (1x1)0(F) _
an alphabet X¢ of size ¢ = (I/¢) = () =

O, (1) or infinitely many integer numbers largser than q.

We index the codewords of this code with an ¢, = Wiv)
self-matching string S. We now show that these codes satisfy
the list-decoding properties presented in the statement of the
theorem.

The decoder starts with guessing the positions for the
symbols it receives using a repositioning algorithm similar to
Algorithm 1 with two minor differences:

1) Instead of reconstructing the original string with guessed
positions and ?s, the decoder compiles a list for each
position containing all received symbols that have been
guessed to be in that position.

2) The algorithm repeats the procedure of calculating LCS
and adding elements to the lists for a total of K =
8(1+v)

==L times.
£

A similar analysis to the one for Algorithm 1 shows that
the count of the lists that do not contain the original
symbol that corresponds to their position is no more than
n(6+ 2 + Ke,) = n(d +¢/4).

Then, the decoding algorithm feeds these lists into the
decoder of the list-recoverable code from C to obtain a list
of size L of potential original messages. Since the parameter
a was chosen to be 1 — & — £/4, the output list is guaranteed
to contain the original message.

The rate of.the resulting family of. codes is ﬁm@cl
which, by taking |3¢| large enough in terms of &, is larger than
1—§—e. As C is encodable and decodable in polynomial time,
the encoding and decoding complexities of the indexed code
will be polynomial as well. O

We remark that the self-matching string in the construction
of list-decodable synchronization codes from Theorem II.8 can
be replaced with the near-linear time repositionable indexes of
Theorem I1.6. This would reduce the time complexity of the

repositioning subroutine in the decoding algorithm to near-
linear time. Therefore, it would allow one to improve the
decoding complexity of these codes upon discovery of high-
rate list-recoverable codes with faster decoders, potentially to
near-linear time. A recent work of Kopparty et al. [45] has
broken this barrier and offers list-recoverable tensor codes with
a deterministic n'*t°(Y) time decoding. Using such codes in a
similar scheme would yield a near-linear time list-decodable
family of codes with similar properties as of Theorem II.8
albeit over alphabet sizes that grow in terms of the block length
of the code.

D. List Decoding: Optimal Resilience via Concatenation

In this section, we discuss the result presented in Sec-
tion I-C4 that fully characterizes error resilience for list-
decodable synchronization codes. More precisely, [30] exactly
identifies the maximal fraction of insertion and deletion errors
tolerable by g-ary list-decodable codes with non-vanishing
rate.

We start by describing the result for binary codes. Note that
no positive-rate code can be list-decoded from a § = % fraction
of deletions as an adversary can simply delete all instances
of the less frequent symbol. Similarly, no positive-rate code
can be list-decoded from a fraction v = 1 of insertions
since any string of length n can be turned into (01)" with n
insertions. A simple time-sharing argument would show that
an adversary that can apply any combination of § fraction of
deletions and ~-fraction of insertions that satisfy v + 20 = 1
can make the list-decoding impossible. The following theorem
from [30] shows the existence of positive-rate list-decodable
codes otherwise.

Theorem IL.10. For any € € (0,1) and sufficiently large n,
there exists a constant-rate family of efficient binary codes that
are L-list decodable from any én deletions and ~yn insertions
in poly(n) time as long as v+ 2§ < 1 — & where n denotes
the block length of the code, L = O (exp(exp(exp(log” n)))),
and the code achieves a rate of exp (76% log2 g)~

This result is generalized for larger alphabets in [30].
However, the feasibility region for larger alphabet sizes is
more complex. We start with showing that list-decoding is
impossible for several points (7,d) that lie on a quadratic
curve. This implies a piece-wise linear outer-bound for the
resilience region.

Theorem II.11. For any alphabet size q and any v =
1,2,---,q — 1, no positive-rate q-ary infinite family of

insertion-deletion codes can list-decode from § = % fraction
of deletions and v = @ fraction of insertions.
Proof. Take a codeword z € [g]™. With én = L . p, the

adversary can delete the ¢ — ¢ least frequent symbols to turn
x into ' € 23(1_6) for some Xq = {o1,---,0:} C [q].
Then, with yn = n(1—40)(¢ — 1) insertions, it can turn 2’ into
[01,00,--- 04" (7% ie., n(1 — §) repetitions of the string
01,09, ,0;. Such an adversary only allows O(1) amount
of information to pass to the receiver. Hence, no such family
of codes can yield a positive rate. O
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Fig. 1. Feasibility region for ¢ = 5.

It is shown in [30] that this is indeed the error resilience
region for list-decoding.

Theorem I1.12. For any positive integer q > 2, let F; be
(1472 )
for i = 1,--- q and (0,0). (An illustration for ¢ = 5 is
presented in Fig. 1). F, does not include the border except
the two segments [(0,0), (¢ — 1,0)) and [(0,0), (0,1 —1/q)).
Then, for any € > 0 and sufficiently large n, there exists a
family of q-ary codes that, as long as (v,9) € (1 —¢)F,,
are efficiently L-list decodable from any dn deletions and ~yn
insertions where n denotes the block length of the code, L =
O(exp(exp(exp(log™ n)))), and the code achieves a positive
rate of exp (—E%U log2 é)

defined as the concave polygon over vertices

We give a high-level description of the steps taken in the
proof of Theorem II.10. The proof of Theorem II.12 follows
the same blueprint but is more technically involved. For a
formal proof of both theorems, we refer the reader to [30].

Theorem II.10 is achieved via two main ingredients. The
first is a simple new concatenation scheme for list-decodable
synchronization codes which can be used to boost the rate
of insdel codes. The second component is a technically in-
tricate proof of the list-decoding properties of the Bukh-Ma
codes [46] which have good distance properties but a small
sub-constant rate.

(I) Concatenating List-Decodable Synchronization Codes:
The first ingredient is a simple but powerful framework for
constructing list-decodable insertion-deletion codes via code
concatenation. Recall that code concatenation comprises the
encoding of an outer code Cl,, with an inner code Cj,, whose
size equals the alphabet size of Cyyy.

In this approach, the outer code Cy,; is chosen to be a list-
decodable insdel code C,,; over an alphabet whose size is
some large function of 1/¢, has a constant rate, and is capable
of tolerating a huge number of insertions. Such a code is
introduced in [24] and presented in Theorem II.8.

The inner code Cj, is chosen to be a list-decodable insdel
code over the binary alphabet (or desired alphabet of size g for
Theorem II.12), which has non-trivial list decoding properties
for the desired fractions v and ¢ of insertions and deletions.
Most notably, the concatenation framework requires the inner
code to be chosen from a family of good list-decodable insdel
codes with an arbitrarily large number of codewords, and a
list-size bounded by some fixed function of 1/e. The codes of

Bukh and Ma [46] are shown to satisfy these properties and
are used in [30] as the inner code.

We show that even if Cj, has an essentially arbitrarily bad
sub-constant rate and is not efficient, the resulting g-ary insdel
code does have constant rate, and can also be efficiently list-
decoded from the same fraction of insertions and deletions as
Ciy. For the problem considered in this paper, this framework
essentially provides efficiency of codes for free.

The encoding is straightforwardly done by the standard
concatenation procedure. The decoding procedure on the other
hand, is considerably simpler than similar schemes introduced
in earlier works [18], [19], [20], [28]. The decoding is done
by (i) list-decoding a sliding substring of the received string
using the inner code Cj,, (ii) creating a single string from
the symbols in these lists, and (iii) using the list-decoding
algorithm of the outer code on this string (viewed as a version
of the outer codeword with some number of deletions and
insertions).

The main driving force behind why this simplistic sounding
approach actually works is a judicious choice of the outer
code Cyyy. Specifically, these codes can tolerate a very large
number of insertions. This means that the many extra symbols
coming from the list-decodings of the inner code Cj, and the
choice of the (overlapping) sliding intervals does not disrupt
the decoding of the outer code. Further, as mentioned above,
the list size of the inner code only depends on ¢ and is
independent of the size of the code. This is a crucial property
for this concatenation scheme as the following order is used to
choose the parameters of Cy, and C,,;. Having the parameter
€, the fraction of insertions that the outer code needs to protect
against is determined. This would dictate the alphabet size of
the outer code and subsequently, the block length or the size
of the inner code.

(I) Analyzing the List-Decoding Properties of Bukh-Ma
Codes: For the inner code in the concatenation scheme
described above, we use a simple family of codes introduced
by Bukh and Ma [46], which consist of strings (0" 17)3r that
oscillate between Os and 1s with different frequencies. (Below
we will refer to r as the period, and 1/r should be thought of
as the frequency of alternation.) It is shown in [30] that these
codes satisfy the following properties.

Theorem I1.13. For any ¢ > 0 and sufficiently large n, let
Ch.e be the following Bukh-Ma code:

1\F
r= (E—4> Kk <logyjeam

For any 6,y > 0 where v+ 20 < 1 — ¢, it holds that C,, ¢ is
list decodable from any dn deletions and vyn insertions with
a list size of O (E%)

Che=1<(0"17) £l

In order to prove Theorem II.13, [30] first introduces a
new correlation measure which expresses how close a string
is to any given frequency (or Bukh-Ma codeword). Using this
measure, we want to show that it is impossible to have a single
string v which is more than e-correlated with more than ©,(1)
frequencies. Loosely speaking, the parameter ¢ in e-correlation
indicates how close the term 2D + I is to 1 where D denotes
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the number of deletions and I denotes the number of insertions
required to convert the string v into some Bukh-Ma codeword
when picking the set of insertions and deletions that minimizes
2D + 1.

The proof technique utilized by [30] is somewhat remi-
niscent of the one used to establish the polarization of the
martingale of entropies in the analysis of polar codes [47],
[48]. In more detail, [30] recursively sub-samples smaller and
smaller nested substrings of v, and analyzes the expectation
and variance of the bias between the fraction of 0’s and 1’s
in these substrings. More precisely, it orders the run lengths
r1,7T2,... that are e-correlated with v in decreasing order and
first samples a substring vy with r; > |vg| > 7o from v.
While the expected zero-one bias in v is the same as in v,
[30] shows that the variance of this bias is a strictly increasing
function in the correlation with (0717)27 . Intuitively, v
cannot be too uniform on a scale of length |v; | if it is correlated
with 7.

In other words, if v is e-correlated with r;, the sampled
substring v1 will land in a part of v which is either similar to
one of the long stretches of zeros in v or in a part which is
similar to a long stretch of ones in v, resulting in some positive
variance in the bias of v;. Furthermore, because the scales
r2,7T3,... are so much smaller than vy, this sub-sampling of
vy preserves the correlation with these scales intact, at least
in expectation.

Next, a substring vy with ro > |va| > r3 is sampled
within v;. Again, the bias in vy stays the same as the one in
v1 in expectation but the sub-sampling introduces even more
variance given that v; is still non-trivially correlated with the
string with period r2. The evolution of the bias of the strings
v1, V3, ... produced by this nested sampling procedure can
now be seen as a martingale with the same expectation but
an ever increasing variance. Given that the bias is bounded
in magnitude by 1, the increase in variance cannot continue
indefinitely. This limits the number of frequencies a string v
can be non-trivially correlated with and, subsequently, implies
the list-decodability property of the code.

III. SYNCHRONIZATION STRINGS

In this section, we discuss synchronization strings intro-
duced in [39] and review their combinatorial properties and
applications. We also overview extensions and enhancements
made to synchronization strings from [49], [21], [40], [24],
[42].

Definition III.1 (¢-synchronization strings). String S € X" is
an e-synchronization string if forevery 1 <1 < j <k <n+1
we have that ED (S]i, j), S[j, k)) > (1 —e)(k —9).

In this definition, ED represents the edit distance function
and S[z,y) denotes a substring of S starting from position x
and ending at position y — 1. We use similar notations S|z, y],
S(x,y], and S(z,y) to denote substrings of S where (,) and
[,] denote the exclusion and inclusion of the starting/end point
of the interval respectively.

In simpler terms, the e-synchronization property is a
pseudo-random property that requires all neighboring sub-
strings of the string to be far apart under the edit distance

metric. It is shown in [39] that e-synchronization is not only
a strictly stronger property than the e-self-matching property
but also a hereditary extension of it. More precisely, if all sub-
strings of a string satisfy the §-self matching string property,
then the string itself is an e-synchronization string.

A. Existence

It is shown in [39] that, similar to self matching strings,
arbitrarily long e-synchronization strings exist over alphabets
whose size is independent of the string length. More precisely,
[39] shows the existence of arbitrarily long strings over an
alphabet of size O(¢~2) that satisfy the e-synchronization
property for pairs of neighboring substrings of total length 6%
or more by utilizing the Lovdsz’s local lemma to show that
the probability of such an event for a random string is non-
zero. Indexing such a string with a string formed by repetitions
of 1,2,---,&2 ensures the e-synchronization property over
smaller substrings and gives an e-synchronization string over
an alphabet of O(s~%) size. With a non-uniform sample space,
[49] utilizes the Lovasz’s local lemma in the same manner to
reduce the alphabet size to O(¢~2) and gives the following.

Theorem IIL2. For any € € (0,1), there exists an alphabet
Y of size O(¢72) so that for any n > 1, there exists an e-
synchronization string of length n over X.

Extremal Properties: We would like to add a brief remark
regarding extremal questions that are raised by the definition of
the synchronization string property. One interesting question
is what is the minimal function of ¢ as alphabet size for which
Theorem II1.2 holds. It has been shown in [49] that any such
alphabet has to be of size Q(¢73/2). This leaves us with the
open question of where the minimal alphabet size lies between
Q(e=%/?) and O(e~2).

A similar question can be asked for non-specific values of
€, i.e., what is the smallest alphabet size over which arbitrarily
long e-synchronization strings exist for any ¢ < 1. It is easy
to observe that any binary string of length 4 or more contains
two identical neighboring substrings. Also, it has been shown
that arbitrarily long %-synchronization strings exist over an
alphabet of size four [49]. This leaves the open question of
whether arbitrarily long synchronization strings exist over a
ternary alphabet or not.

B. Online Decoding for Synchronization Strings

In this chapter, we introduce an online repositioning al-
gorithm for synchronization strings. In the same spirit as
Section II-A, we show that synchronization strings can be used
to guess the original position of symbols undergoing insertion-
deletion errors via indexing. However, for synchronization
strings, the repositioning can be done in an online fashion,
i.e., the position of each symbol is guessed upon its arrival
and without waiting for the rest of the communication to
take place. This enables a delay-free simulation of a channel
with Hamming-type errors over any given insertion-deletion
channel with adequately large alphabet size. We will discuss
this further in Section IV.
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To present the online repositioning algorithm, we introduce
the notion of relative suffix distance inspired by a similar
notion from [50].

Definition IIL.3 (Relative Suffix Distance). For any S,S’ €
¥, their relative suffix distance (RSD) is defined as follows:

ED(S(|S|— k,|S]], S (]S — k, |9
RSD(S,S") = max ( ( LS ])
k>0 2k

It is shown in [39] that RSD is a metric that takes a value
within [0, 1]. The interesting property of RSD that comes in
handy when devising an online repositioning algorithm is that
the prefixes of a synchronization string are far apart under the
RSD metric.

Proposition IIL.4. Ler S be an c-synchronization string. For
any i # j, RSD(S[1,4], S[1,7]) > 1 —e.

Note that an online repositioning algorithm is essentially
one that decides which prefix of the message string is sent
upon arrival of each symbol at the receiver side. Therefore,
the online repositioning algorithm only needs to decide which
prefix of the synchronization string is the most consistent to
the index portion of the received string up until the arrival
of each symbol. To this end, Proposition III.4 suggests the
natural repositioning strategy of finding the closest prefix of
the utilized synchronization string to the index part of the
received string under relative suffix distance and declaring the
length of that prefix as the position of that symbol.

The guarantees that this decoding strategy provides is dis-
cussed in details in [39]. However, we remark that the suffix
distance between a string s and a noisy version of it, s, that is
altered by insertions and deletions is particularly sensitive to
how dense the fraction of error occurrences is in small suffixes
of 5. This implies that occurrences of insertions and deletions
can only disrupt the correctness of this repositioning strategy
for some of the following symbols and the effect would
fade away as communication goes on. By formalizing these
observations and employing a similar yet more complicated
distance function, [39] gives the following.

Theorem IIL.S. There exists an online repositioning algorithm
for a communication of length n over a channel with up to
nd synchronization errors that, assuming that the message is
indexed by an e-synchronization string, guesses the position of
each received symbol in O(n*) time and incorrectly guesses

L. 5 R
the positions of no more than % received symbols.

Note that, as opposed to the repositioning algorithm in
Section II-A, the number of incorrect guesses does not tend
to zero by taking smaller values for e. In fact, if one
constructs synchronization codes as in Section II-A with e-
synchronization strings and uses this repositioning algorithm
instead of Algorithm 1, the rate achieved is 1 — 36 — 91,

C. Construction: Long-Distance Synchronization Strings

To construct synchronization strings, [40] utilizes the al-
gorithmic Lovész local lemma of Chandrasekaran et al. [51]
with a similar random space to the one used in Section III-A
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and obtains an efficient construction of such strings over an
alphabet of size O(¢~*). In this section, we review the steps
taken in [40] to obtain a linear-time explicit construction
for synchronization strings. In order to do so, we start with
presenting the long-distance synchronization string property
that generalizes the requirement of large edit distance to non-
adjacent substrings that are at least logarithmically long in
terms of the length of the string.

Definition IIL.6 (c-long-distance e-synchronization string).
String S € X" is a c-long-distance e-synchronization string
if for every pair of substrings S[i,j) and S[i',j') that
are either adjacent or of total length clogn or more,
ED (S[i,j),S[i',j") > (1 —¢e)l where l =7 —i+j —1i.

We now describe construction algorithms for (long-distance)
synchronization strings.

1) Boosting Step I: Linear Time Construction: [40] pro-
vides a simple boosting step which allows a polynomial speed-
up to any synchronization string construction at the cost of
increasing the alphabet size by proposing a construction of
an O(g)-synchronization string of length O.(n?) having an
e-synchronization string of length n.

Lemma IIL.7. Fix an even n € N and ~ > 0 such that yn €
N. Supposze S € X" is an e-synchronization string. The string
S" e X with ¥ = %3 and

(S[i mod nl, S[(i + n/2) mod n], S Hvﬂ D @)

is an (& + 67)-synchronization string of length yn>.

S'li] =

Proof Sketch. S’ is formed by the symbol-wise concatenation
of three strings as presented in Eq. (2). The first two elements
form repetitions of S which guarantee the synchronization
property over small intervals and the third element that guar-
antees the synchronization property over larger intervals. [

Employing this boosting technique for an adequately large
number of times can turn the polynomial-time construction
of synchronization strings obtained by the algorithmic Lovasz
local lemma of [51] into a linear time construction at the cost
of a larger alphabet that is still of e~ size.

2) Boosting Step II: Explicit Linear-Time Long-Distance
Construction: We now describe a second boosting step in-
troduced in [40] that takes the linear-time construction from
the previous section and turns it into a linear-time construction
for long-distance synchronization strings that is also highly-
explicit, i.e., for any index i, it can compute the substring
[i,7 4+ logn] in O(logn) time.

To describe the construction, we first point out a connection
between long-distance synchronization strings and synchro-
nization codes. Note that if one splits a c-long-distance e-
synchronization string into substrings of length clogn, the
long-distance synchronization property will require that any
pair of resulting substrings to have an edit distance of at least
2(1—¢)clogn, i.e., form an insertion-deletion code of relative
distance 1 — ¢.

Similarly, given a synchronization code C' of distance 1 —¢,
rate » > 0 and block length N, one can construct a string
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Fig. 2. Pictorial representation of the construction of a long-distance e-
synchronization string of length n.

of length n = exp(Nr) by appending the codewords of C
together which satisfies the c-long-distance €’-synchronization
property for pairs of substrings of total length £2(logn) where
¢’ = O(e) and ¢ = O.(1). This claim is proved by a simple
combinatorial argument using the distance property of the code
C. We refer the reader to [40] for a formal proof.

The second boosting step uses this observation and makes
a long-distance synchronization string by symbol-wise con-
catenation of the string described above with a string that
guarantees the e-synchronization property for neighboring
intervals of total length O(logn). More formally, having the
code C of block length N the construction is as follows.

1

sil= (¢ (| 5] )imeamy i), @

where 1" is the symbol-wise concatenation of two shifted rep-
etitions of some synchronization string S” of length O(logn),
i.e., T[i] = (S'[¢ mod 1], S’[(i + L/2) mod []) for I = |S’|. A
pictorial description of the construction is available at Fig. 2.
Given that the codewords of the code C' take care of the long-
distance synchronization property for longer pairs of intervals
and repetitions of S provide the synchronization string guar-
antee for short neighboring intervals, this construction yields
a long-distance synchronization string. In order to show the
linear-time and highly-explicit construction, the following two
ingredients are necessary:

e A linear time construction for synchronization string S.
This is provided by boosting step 1.

o Linear time construction for code C. To obtain this, a
family of high-rate synchronization codes with linear-
time construction is necessary. To obtain such a family
of codes, [40] takes the near-MDS code of Guruswami
and Indyk [43] and concatenates it with an inner code
to reduce its alphabet to e2(1). Note that the size of the
inner code is O.(1). Therefore, the encoding time of the
resulting family of codes remains linear and its rate is
still positive. [40] then indexes the codewords of this code
with an e-self matching string as in Section II-A to obtain
the necessary synchronization code for this construction.

The details of this construction are available in [40]. We
summarize the guarantees of the construction in the following
theorem.
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Theorem IIL8. There is a deterministic algorithm that, for
any constant 0 < ¢ < 1 and n € N, computes a ¢ = e 0)-
long-distance e-synchronization string S € X" where |X| =
e=OW) . This construction runs in linear time and, moreover,
any substring S[i,i + logn] can be computed in O.(logn)
time.

D. Infinite Synchronization Strings

An infinite e-synchronization string is naturally defined as
an infinite string, in which, any two neighboring intervals [¢, j)
and [j, k) have an edit distance of at least (1 —¢)(k — ). Ex-
istence of infinite e-synchronization strings can be proved via
a simple topological argument. Fix any ¢ € (0, 1). According
to Theorem IIL.2 there exist an alphabet ¥ of size O(1/¢2)
such that there exists at least one e-synchronization strings
over X for every length n € N. We will define an infinite
synchronization string S = s1- 89 -s3--- with s; € X for any
1 € N inductively. We fix an ordering on ¥ and define s; €
to be the first symbol in this ordering such that an infinite
number of these strings start with s;. Given that there is an
infinite number of e-synchronization strings over X, such an
51 exists. Furthermore, the subset of e-synchronization strings
over X which start with s; is infinite by definition, allowing
us to define s5 € X to be the lexicographically first symbol in
> such there exists an infinite number of e-synchronization
strings over X starting with s; - so. In the same manner,
we inductively define the whole string. Since each prefix of
this string satisfies the e-synchronization property, all pairs of
adjacent intervals satisfy the e-synchronization property and
this whole string is indeed an infinite e-synchronization string.

The construction from Theorem II1.8 can be generalized for
infinite synchronization strings as follows.

Theorem IIL.9. For all 0 < ¢ < 1, there exists an infinite e-
synchronization string S over a poly(e~')-sized alphabet so
that any prefix of it can be computed in linear time. Further,
for any i, S[i,i + logi] can be computed in O(log1) time.

The proof of Theorem III.9 utilizes a construction for infi-
nite synchronization strings obtained by concatenation of finite
synchronization strings of exponentially increasing length.
More precisely, let S; denote a O(g)-synchronization string
of length ¢. Further, let U and V be as follows:

U = (Sk, Sk, Sps,...), V= (Sk2, Sga, Sps, . ..)

Then [40] shows that the symbols-wise concatenation of
these strings, i.e., string 7' where T'[i] = (U[i],V[i]) is an
infinite synchronization string. A pictorial representation of
the construction of 7' is available in Fig. 3. The proof of
Theorem II1.9 is derived by simply using the above-mentioned
construction and utilizing Theorem IIL.8 to construct the finite
strings used to form U and V.

E. Local Decoding for Long-Distance Synchronization Strings

In this section, with a slight modification to the construction
from (3) for long-distance synchronization strings, we give an
index sequence which facilitates local repositioning. A local
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Fig. 3. Construction of infinite synchronization string T’

repositioning algorithm is one that guesses the position of a re-
ceived symbol using only the knowledge of a small O(logn)-
sized neighborhood of the surrounding received symbols, as
opposed to all received symbols which is what Algorithm 1
does.

Consider the following indexing sequence that is obtained
from the construction of (3) by concatenating an extra term
that essentially works as a circular index counter for insertion-
deletion code blocks.

i ) ) 8
(C ({NJ) [i (mod N)], T[], LNJ <m0d 6—3> )
“4)
We claim that indexing the symbols of a communication over a

synchronization channel with this string allows a repositioning
algorithm which is both local and online.

Rli] =

Theorem IIL.10. For a communication over a synchronization
channel that is indexed by string R specified in (4), there exists
an online and local repositioning algorithm that guesses the
position of each received symbol using only the symbol itself
and O (logn) symbols preceding it in O, (log® n) time. Also,
among all symbols that are not deleted by the adversary, the

position of no more than % will be incorrectly guessed.

We remark that, similar to Theorem III.5, the number of
incorrect guesses does not tend to zero by taking smaller
values for € and synchronization codes constructed using such
an index string would achieve a rate of 1 — 3§ — 91,

Proof Sketch of Theorem III.10. The details of the decoding
algorithm and the proof of its properties are presented in [40].
Here, we only give a high-level description of the algorithm
and an informal justification of its correctness.

The analysis uses a notion called suffix error density, that
is the maximum density of errors that have occurred over all
suffixes of the communication up to that point. The algorithm
guarantees to make a correct guess as long as the suffix error
density is less than 1 — O(e).

The decoding algorithm begins with using the first and the
third elements of (4) (that are the codeword of C and the
circular counter) to find the vicinity of the location; more
precisely, which codeword of C' the symbol belongs to or the
quantity |- |. In order to do so, the algorithm looks at the
o%) =0 (k’;# last received symbols. If the value of
the suffix error density is small, at least one of the previous
é codewords of C appear inside this window with less than
1 — O(e) synchronization errors. Let the value of the counter
for the received symbol be c. With this observation, the reposi-
tioning algorithm runs the decoder of C' over the subsequences

of symbols with counter values ¢,c — 1,¢ —2,--- ,¢c— % in

€
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this window and comes up with a list of candidate vicinities
for the position of the symbol. A second step uses the long-
distance property of the string to choose one of these vicinities.
Then, the exact position of the symbol within that vicinity is
recovered using the repetitions of the small synchronization
string that forms string 7'. (see (4)) O

F. Edit Distance Indexing and Near-linear Time Repositioning

As the final step in this section, we introduce a pseudo-
random property for strings that, indexed to any given string,
can facilitate edit distance computation. We then use such
strings to enhance the construction of self-matching strings
to obtain near-linear time repositioning algorithms.

1) Edit Distance Approximation via Indexing: In this sec-
tion, we introduce an indexing scheme which can be used to
approximate edit distance in near-linear time if one of the
strings is indexed by an edit-distance-approximating string
I. In particular, for every length n and every € > 0, one
can, in near-linear time, construct a string I € X with
|~'| = Oc(1), such that, indexing any string S € X" with
I results in the string S x I € ¥'™ where ¥/ = ¥ x ¥/
and there is an algorithm that approximates the edit distance
between S x I and any other string within a 1 4 ¢ factor and
in O(n - poly(logn)) time.

The construction of the index string I resembles the con-
struction proposed for long-distance synchronization strings
in Section III-C2. Namely, the index string I is simply
constructed by writing, back-to-back, the codewords of a
synchronization code that is list-decodable from high rates of
synchronization errors, or more specifically, from any 1 — &’
fraction of insertions and 1 — &’ fraction of deletions for some
¢’ = O(g). As we mentioned in Section II-C, it is shown in
[24] that there exist families of codes that can be efficiently
L-list-decoded from any 1—¢&’ fraction of insertions and 1—¢&’
fraction of deletions, achieve a rate of ¢’/2, and are defined
over an alphabet of size exp(c’~3log Z) = O (1). Here, L
is some sub-polynomial function of the block length of the
code.

Note that the properties of the code directly implies that
the index string I is defined over an alphabet of size O.(1)
and can be computed in near-linear time. Let us take a
member of the above-mentioned family of codes like C'
with block length N and denote its block length and its
decoding function respectively with N and Decc(+). Since
the code has a positive rate, the length of the string formed by
appending the codewords of C together would be n = exp(N)
and therefore, the construction time for index string I is
& - Poly(V) = O(n - polylog(n)).

We now describe the algorithm that approximates the edit
distance of S indexed with I (S x I) to any given string 5.
The algorithm starts by splitting the string S’ into blocks of
length NV in the same spirit as S x I. We denote the ith such
block by S’(i) and the ith block of S x I by [S x I](%). Note
that the blocks of S x I are substrings of .S indexed by the
codewords of an insertion-deletion code with high distance
([S x I|(i) = S[N(i — 1),Ni — 1] x C(i)). Now, consider
the set of insertions and deletions that correspond to the edit
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distance between S x I and S’ or n arbitrary one of them
if there are more than one. One might expect that any block
of S that is not significantly altered by such insertions and
deletions, (i) appears in a set of consecutive blocks in S’ and
(ii) has a small edit distance to at least one of those blocks.

Following this intuition, our proposed algorithm works
thusly: For any block of S’ like S’(7), the algorithm uses
the list-decoder of C to find all (up to L) blocks of S that
can be turned into S’(7) by N (1 —¢) deletions and N (1 —¢)
insertions only considering the index portion of the alphabet
and ignoring the content portion of it. In other words, let
S'(i) = C! x S{[N(i — 1), Ni — 1]. We denote the set of
such blocks by Decc(C?). Then, the algorithm constructs a
bipartite graph G with |S| and |S’| vertices on each side
(representing symbols of S and S’) as follows: a symbol in
S’(i) is connected to all identical symbols in the blocks that
appear in Decc(C/) or any block that is in their w = O (1)
neighborhood, i.e., is up to O (1) blocks away from at least
one of the members of Decc(CY).

Note that any non-crossing matching in G corresponds
to some common subsequence between S and S’ because
G’s edges only connect identical symbols. In the next step,
the algorithm finds the largest non-crossing matching in G,
Marg, and outputs the corresponding set of insertions and
deletions as the output. Finally, an algorithm proposed by
Hunt and Szymanski [52] is used to compute the largest
non-crossing matching of G with n vertices and r edges
in O((n+r)loglogn). A formal description is available
in Algorithm 2. As the number of edges of G cannot exceed
102 — -log?n = nlogn and code C is efficiently list-decodable,
the run time for this algorithm is O(n - polylog(n)).

Algorithm 2 (1 + O(¢’))-Approximation for Edit Distance
Input: S x I, 5’ N,Dece(+)
1: Make empty bipartite graph G(|S|, |.S’|)
2w = i,
3: for each S'(i) = C! x S{[N(i —1),Ni—1] do

4:  List + Decc(CY)

5:  for each j € List do

6: for k € [j —w,j+w] do

7: Connect pairs of vertices in G that correspond to
identical symbols in S(k) and S’(3).

8: end for

9:  end for

10: end for

11: Mg < Largest non-crossing matching in G ([52])
Output: Mo

The detailed proof of the approximation guarantee is avail-
able in [42]. We provide a general proof sketch here.

Note that if graph G from Algorithm 2 contains the match-
ing that corresponds to the LCS between S x I and S’, then
the algorithm will find the longest common subsequence in
Line 11 and compute the exact edit distance. To show that
Algorithm 2 finds a 1 + O(¢’) approximation of the edit
distance, [42] associates any edge from the LCS missing in
G to O(1/€’) insertions or deletions from the optimal edit
distance solution.
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Consider the matching that corresponds to the LCS. If some
block of S like S’(i') is connected to more than 1+ 2 blocks
in S, the unmatched vertices among those blocks account
for n x 5 deletions in the optimal edit distance solution.
Therefore, even if none of the edges of LCS that have an
endpoint in such blocks appear in G, the size of the edit
distance would increase by a factor of 1+ O(e’). This is why
the parameter w is chosen as % in Algorithm 2.

Further, if some block of S’ is only connected to one block
of S and has no more than g edges to it, N — g of its symbols
are insertions in the optimal edit distance solution. Therefore,
the absence of its edges from G in Algorithm 2 may only
increase the size of the edit distance solution by a factor of
14+ 0().

In [42], the authors show that all LCS edges that are absent
from G fall under these two categories and, therefore, the
outcome of Algorithm 2 is an 1+O(e’) = 14-¢ approximation.

2) Near-linear Time Repositioning: Note that the reposi-
tioning algorithm for strings indexed with e-synchronization
strings that was presented in Algorithm 1 consists of multiple
rounds of edit distance computation between the synchroniza-
tion string used and a distorted version of it. To reduce the
run time of the repositioning algorithm, one can use the edit-
distance approximating indexes from Section III-F1 and index
e-synchronizations strings with them. Then, use edit distance
approximations instead of exact computations in Algorithm 1.
We formally summarize this in the following.

Theorem III.11 (Theorem 7.1 of [42]). Let S be a string
of length n that consists of the symbol-wise concatenation
of an eq-synchronization string and an edit distance indexing
sequence from Section III-F1 with parameter ej. Assume
that a stream of messages indexed by S goes through a
channel that might impose up to § - n deletions and v - n
symbol insertions for some 0 < § < 1 and 0 < ~. For
any positive integer K, there exists a repositioning algorithm
that runs in O(Kn - polylog(n)) time, guarantees up to

14y er(14+v/2)
n (K(1+EI) + 1+er + Kes
not decode more than K received symbols to any number in

[1,n].

incorrect guesses and does

IV. FURTHER APPLICATIONS OF SYNCHRONIZATION
STRINGS

A. Codes for Block Transpositions and Replications

We showed in Section III-E that using long-distance syn-
chronization strings in the indexing-based synchronization
code construction allows local repositioning, i.e., the decoder
will be able to guess the original position of each symbol by
only looking at a logarithmically long neighborhood of the
received symbol. In this section, we show that this property
enables the code to protect from block transposition and block
duplication errors as well.

Block transposition errors allow for arbitrarily long sub-
strings of the message to be moved to another position in the
message string. Similarly, block duplication errors are ones
that pick a substring of the message and copy it between two
symbols of the communication.
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We will present codes that can achieve a rate of 1 — 9§ — ¢
and correct from some O(9) fraction of synchronization errors,
a O(d/logn) fraction of block errors, or a combination of
them. A similar result for insertions, deletions, and block
transpositions was shown by Schulman and Zuckerman [18]
where they provided the first constant-distance and constant-
rate synchronization code correcting from insertions, deletions,
and block errors. They also show that the O(d/logn) re-
silience against block errors is optimal up to constants.

Theorem IV.1. For any 0 < r < 1 and sufficiently small
€, there exists a code with rate r that corrects Ndinsdel
synchronization errors and nopjocr, block transpositions or
replications as long as 63;psder + (clogn)opioer <1 —1r —¢
for some ¢ = O(1). The code is over an alphabet of size
O.(1) and has O(n) encoding and O(N log®n) decoding
complexities where N is the length of the received message.

Proof Sketch. Similar to Section II-A, this code is constructed
by indexing near-MDS codes of Guruswami and Indyk [43]
with a pseudo-random string, particularly, long-distance syn-
chronization strings. The decoding procedure also follows the
same steps as Section II-A. Namely, the decoder uses the
repositioning algorithm presented in Theorem III.10 to guess
the actual position of the symbols and then runs the decoder
of the Guruswami-Indyk code over the reconstructed string.

Note that the repositioning guarantee from Theorem III.10
implies that with the choice of some small ¢ parameter
for the long-distance synchronization string, the repositioning
algorithm correctly guesses the position of all but O (nd;nsder)
symbols where n is the length of the communication if only
insertions and deletions are allowed.

Additionally, the local quality of the repositioning algorithm
implies that any symbol at the receiver that does not have any
synchronization errors or block error borders in its O(logn)
neighborhood, is correctly repositioned by the local reposition-
ing algorithm. Therefore, with ndpcr block errors, no more
than ndpcr logn repositioning guesses would be incorrect.
This implies an O(n/logn) block error resilience. Combining
the two remarks above gives that the code can correct 10,4, sde;
synchronization errors and ndy.c; block transpositions or
replications as long as 60;,sder + (¢logn)dpiock < 1 — 1 — ¢
for some constant c.

The encoding and decoding complexities simply follow the
properties of the Guruswami-Indyk codes, linear time con-
structions of long-distance synchronization strings from The-
orem III.8 and time complexity of the repositioning algorithm
from Theorem III.10. O

B. Channel Simulation

The construction of codes based on indexing presented in
this paper suggests that indexing with pseudo-random strings
can reduce synchronization errors to more benign Hamming-
type errors (substitutions and erasures). In this section, we
present results from [21], [40] which shows that this is indeed
true.

More precisely, having a channel afflicted by synchro-
nization errors, one can put two simulation agents on the
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two ends of the channel who can simulate a channel with
Hamming-type errors over the given channel. In other words,
the sender/receiver sends/receives symbols to/from their corre-
sponding agent and the simulation guarantees that the channel
would seem like a channel with Hamming-type errors to the
parties.

Note that the indexing scheme from Section II-A almost
achieves this goal by reducing synchronization errors to half-
errors through indexing. However, this procedure requires
all symbols to be communicated before the repositioning
procedure of Algorithm 1 can start running and, therefore,
introduces a delay. A true channel simulation would not add
such delay. More precisely, a round of error-free communica-
tion in a simulated channel is one that communicates the ith
symbol sent by the sender as the ¢th symbol to the receiver
once it arrives at the other side and prior to the i+ 1st symbol
being sent by the sender.

This subtle requirement can be satisfied through using
synchronization strings as the indexing sequence and utilizing
the online repositioning algorithm introduced in Section III-B.

Before presenting the channel simulations, we remark an
interesting negative result of [21] stating that, as opposed
to codes, when it comes to channel simulations, no channel
simulator can reduce J fraction of synchronization errors to
0 + ¢ half-errors for arbitrarily small e.

Theorem IV.2. Assume that n uses of a synchronization
channel over an arbitrarily large alphabet ¥ with a §
fraction of insertions and deletions are given. There is no
deterministic simulation of a half-error channel over any
alphabet X4;y, where the simulated channel guarantees more
than n (1 —46/3) uncorrupted transmitted symbols. If the
simulation is randomized, the expected number of uncorrupted
transmitted symbols is at most n(1 — 76/6).

We now present the channel simulations that can be
achieved via indexing with synchronization strings. Simula-
tions are presented for channels with large constant alphabets,
binary alphabets, one-way communication or interactive com-
munication.

Theorem IV.3. [Channel Simulations]

(a) Suppose that n rounds of a one-waylinteractive
insertion-deletion channel over an alphabet 3. with a
0 fraction of insertions and deletions are given. Using
a long-distance e-synchronization string over alphabet
Ysyn, it is possible to simulate n (1 — O.(9)) rounds
of a one-way/interactive substitution channel over X g,
with at most O (nd) symbols corrupted so long as
|Xsim| % |28yn| < I3

Suppose that n rounds of a binary one-way/interactive
insertion-deletion channel with a § fraction of in-
sertions and deletions are given. It is possible to
simulate n(1 — ©(y/dlog(1/0))) rounds of a bi-
nary one-way/interactive substitution channel with

O(4/61og(1/4)) fraction of substitution errors between

two parties over the given channel.

(b)

All of the simulations mentioned above take O(1) time per
symbol for the sending/starting party of one-way/interactive
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communications. Further, on the other side, the simulation
spends O(log3 n) time upon arrival of each symbol and only
looks up O(logn) recently received symbols. Overall, these
simulations take a O(nlog®n) time and O(logn) space to
run. These simulations can be performed even if parties are
not aware of the communication length.

Proof Sketch. We highlight the main ideas behind each of
these simulations in the following.

(a) In this simulation, the simulating agents do the indexing
as done in the case of coding. Meaning that on the sender
side, the simulation simply indexes the messages of the
sender with symbols of a long-distance synchronization
string and on the receiving end, the receiver-side simu-
lating agent runs the online repositioning algorithm from
Section III-E to identify the position of the symbols it
receives and relays them to the receiver.

Note that the online repositioning algorithm for long-
distance synchronization strings allows the simulator on
the receiving end to guess the positions of the received
symbols as they arrive. However, we stress that the
simulated channel has to behave as an actual channel
and therefore cannot reveal the symbols to the receiver
out of order. For instance, if the repositioning algorithm
incorrectly identifies the first symbol as the tenth symbol
and reveals it as the tenth symbol to the receiver, it
cannot reveal the second to ninth symbols to the receiver
afterwards even if the repositioning for those symbols is
done correctly.

To ensure in-order revealing of symbols, the simulation
uses a lazy revealing strategy to avoid over-reacting
to incorrect guesses by the repositioning algorithm.
More precisely, if the guessed position of a symbol is
far beyond where the communication length is at that
moment, the receiver-side simulator moves the commu-
nication forward by outputing two dummy symbols to
the reciever. For the analysis of this strategy, we refer
the reader to [21].

(b) The simulation for channels with a binary alphabet is
very similar except that the indexing is not possible
due to the size of the alphabet. To overcome this, the
simulation splits the communication into several blocks.
In each block, the sender-side simulator first sends a
fixed header of size O(log }) (indicating the start of a
new block), then sends a binary encoding of a symbol of
the long-distance synchronization string, and then ends
the block by relaying the messages of the sender for

log 1
r =4/ %/6 rounds.

Time and space guarantees of these simulations are inferred
from highly-explicit constructions of infinite long-distance
synchronization strings (Theorem III.9) and their local repo-
sitioning algorithms (Theorem III.10). Similar simulations
can be performed in interactive communication channels by
taking the steps mentioned above in one direction of the
communication. O
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C. Interactive Communication for Synchronization Errors

The channel simulations via indexing presented in Sec-
tion IV-B can be used to obtain interactive coding schemes
for synchronization errors. Interactive communication between
two parties is one in which any round of the communication
consists of a message transmission from one party to the
other one. Each party is assumed to hold a private information
denoted by X and Y and the goal is for both parties to compute
some function f(X,Y’). Any strategy for computing f(X,Y)
is called a protocol.

A coding scheme for interactive communication is one that
takes any protocol that computes some function f in noiseless
communication and converts it into a protocol that computes f
over a noisy channel. The rate of an interactive coding scheme
is defined as the minimal ratio of the length of the protocol
in the absence of noise over the length of the protocol in the
presence of noise over all functions f.

The channel model used in the results of this section is the
commonly used model of Braverman et al. [50] that considers
an alternating protocol, i.e., protocols in which parties take
alternating turns in sending and receiving symbols.

Using channel simulations, [21], [40] provide coding
schemes for interactive communication over channels suffering
from synchronization errors by simply simulating a half-error
channel over the given synchronization channel and applying
interactive protocols for channels with symbol substitution
errors over the simulated channel. Using simulations for chan-
nels with large alphabets along with the interactive protocol
of Haeupler and Ghaffari [53], [40] gives the following.

Theorem IV.d4. For a sufficiently small 6 and n-round al-
ternating protocol 11, there is a randomized coding scheme
simulating 11 in the presence of § fraction of synchroniza-
tion errors with constant rate (i.e., in O(n) rounds) and in

near-linear time. This coding scheme works with probability
1— 200,

Similarly, using binary alphabet simulations and the inter-
active protocol of Haeupler [54], [21] gives the following.

Theorem IV.5. For sufficiently small O, there is an effi-
cient interactive coding scheme for fully adversarial binary
synchronization channels which is robust against § fraction
of edit-corruptions, achieves a communication rate of 1 —
O(y/d1log(1/6)), and works with probability 1 — 299,

D. Binary Synchronization Codes

A similar approach is taken to design binary synchroniza-
tion error-correcting codes in [21] by simulating a half-error
channel over the given synchornization channel and then using
a binary error-correcting code on top of it.

Theorem IV.6. For any sufficiently small 0, there is a binary
synchronization code with rate 1 — © ( 4/ log %) which is
decodable from § fraction of insertions and deletions.

It is shown in [10] that the optimal rate for binary synchro-
nization codes with distance ¢ is 1—O (5 log %) Recent works
by Cheng et al. [22] and Haeupler [23] have simultaneously
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improved over the codes from Theorem IV.6 by introducing
efficient binary codes with rate 1 — O(4 log? $) via providing
deterministic document exchange protocols.

E. Document Exchange

Document exchange is a problem in which a server and a
client hold two versions of the same string, say F' and F’
respectively, where F’ is an outdated version that is different
from F' by up to k insertions or deletions. The goal is for the
server to compute a small summary and send it to the client
so the client can update its string to F'.

There is a close connection between deterministic document
exchange protocols and systematic synchronization codes.
Having a systematic synchronization code, one can construct
a document exchange protocol with using the non-systematic
part of the code as the summary. On the other hand, having a
document exchange protocol, one can construct a systematic
code by taking the summary of the document exchange
protocol, encoding it using a synchronization code, and using
the encoded summary as the non-systematic part of the code.

For document exchange with & errors, Q(klog ) bits
of information is necessary as the summary. Orlitsky [55]
showed in 1991 that protocols with this amount of redundancy
exist, however, fell short of providing efficient ones. In 2005,
Irmak, Mihaylov and Suel [56] provided an efficient document
exchange protocol with O(klog % logn) redundancy. Since
then, there have been several works on randomized document
exchange protocols (mostly for k sublinear in n) by [57],
[58], [599], [60]. Recent works of Cheng et al. [22] and Haeu-
pler [23] provide deterministic document exchange protocols
with redundancy O(k log? 7).

Haeupler [23] first provides a randomized document ex-
change protocol with redundancy O(6 log %) through a mod-
ification and careful analysis of the protocol of Irmak et
al. [56]. Then, it derandomizes the protocol using a deran-
domizarion technique reminiscent of one used in [40] of
synchronization strings. The techniques of Cheng er al. [22]
also make use of notions called e-self-matching hash functions
and e-synchronization hash functions which are sequences of
hash functions whose outputs satisfy properties resembling the
corresponding string properties introduced in [39].

F. Linear Insertion-Deletion Codes

A recent work of Cheng et al. [61] studies qualities like
linearity and affinity in the context of synchronization cod-
ing. They propose an efficient synchronization string-based
transformation that can convert any asymptotically good linear
error-correcting code into an asymptotically good insertion-
deletion code. Using this transformation along with well-
known linear error-correcting codes, such as Hamming codes,
results in explicit constructions for linear insertion-deletion
codes.

The indexing scheme introduced in Section II inherently
leads to codes that are non-linear as it specifies a fixed
value to a portion of each symbol. To circumvent this, [61]
uses pseudo-random strings to design linear insertion-deletion
codes in the following manner: To encode a message = € F}*,
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they first encode it using a linear error-correcting code for
Hamming-type errors C' : Fi" — F}' to become y = C(x).
They then take care of the synchronization issues by inserting
several sequences of 0 symbols into the message and gener-
ating the final codeword as follows:

R = (051’y17052ay27"' 705n7yn)'

The string S = (51,52, -+ ,S5,) is a pseudo-random string
having synchronization properties similar to the ones studied
in this survey.

More precisely, [61] defines a A-synchronization sepa-
rator sequence as a sequence S for which any z =
(051,2,0%2,2, ... 0%, 7) does not have self-matchings with
more than A undesirable matches. An undesirable match is
one between two ‘?’s like the ith and the jth *?” where ¢ # j
and p; —p;» = p; —p;» where (¢, j') is the immediate previous
match to (¢, 7) in the matching and p; denote the position of
the ith ‘?” in z-.

[61] provides explicit constructions for synchronization sep-
arator sequences and shows that, if used in the above con-
struction, they enable the decoder to reconstruct the codeword
y up to a number of Hamming-type errors that is within
a constant factor of the number of insertions and deletions
applied; Hence, proving that this conversion preserves both
linearity and the asymptotic goodness of the code.

G. Coded Trace Reconstruction

A recent work by Brakensiek et al. [62] provides novel
results for the coded trace reconstruction problem. Coded
trace reconstruction asks for codes that satisfy the following:
Assuming that a sender chooses a codeword of the code and
sends multiple copies of it over independent binary deletion
channels (called traces), the receiver wants to be able to
recover the original codeword with high probability. Using
synchronization strings, [62] provides a high-rate coded trace
reconstruction scheme that is efficiently decodable from a
constant number of traces.

H. Coding for Binary Deletion Channels and Poisson Repeat
Channels

Con and Shpilka [63] use the synchronization string-
based Singleton-bound-approaching synchronization codes
from Section I-C1 to provide an efficient and explicit code for
binary deletion channels that improve over the state-of-the-art
in terms of error resilience. They, additionally, show that their
code also works for the Poisson repeat channel where each
bit appears on the receiver’s side a number of times which
follows some Poisson distribution.
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