Distributed Computing (2021) 34:79-90
https://doi.org/10.1007/s00446-020-00383-2

®

Check for
updates

Low-Congestion shortcuts without embedding
Bernhard Haeupler' - Taisuke Izumi? - Goran Zuzic'

Received: 11 December 2019 / Accepted: 3 July 2020 / Published online: 24 July 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract

Distributed optimization algorithms are frequently faced with solving sub-problems on disjoint connected parts of a network.
Unfortunately, the diameter of these parts can be significantly larger than the diameter of the underlying network, leading
to slow running times. This phenomenon can be seen as the broad underlying reason for the pervasive Q(y/n + D) lower
bounds that apply to most optimization problems in the CONGEST model. On the positive side, [Ghaffari and Hauepler;
SODA’16] introduced low-congestion shortcuts as an elegant solution to circumvent this problem in certain topologies of
interest. Particularly, they showed that there exist good shortcuts for any planar network and more generally any bounded
genus network. This directly leads to fast O (D log® () n) distributed algorithms for MST and Min-Cut approximation, given
that one can efficiently construct these shortcuts in a distributed manner. Unfortunately, the shortcut construction of [Ghaffari
and Hauepler; SODA’ 16] relies heavily on having access to a genus embedding of the network. Computing such an embedding
distributedly, however, is a hard problem—even for planar networks. No distributed embedding algorithm for bounded genus
graphs is in sight. In this work, we side-step this problem by defining tree-restricted shortcuts: a more structured and restricted
form of shortcuts. We give a novel construction algorithm which efficiently finds such shortcuts that are, up to a logarithmic
factor, as good as the best restricted shortcuts that exist for a given network. This new construction algorithm directly leads to
an O(D 1og®™M n)-round algorithm for solving optimization problems like MST for any topology for which good restricted
shortcuts exist—without the need to compute any embedding. This greatly simplifies the existing planar algorithms and
includes the first efficient algorithm for bounded genus graphs.

1 Introduction
1.1 Background and motivation
Consider the problem of finding the Minimum Spanning Tree

(MST) on a distributed network with n independent process-
ing nodes. The network is abstracted asagraph G = (V, Eg)

This work was supported in part by KAKENHI No. 15H00852 and
16H02878 as well as NSF grants CCF-1527110, CCF-1618280, CCF-
1814603, CCF-1910588, NSF CAREER award CCF-1750808, a Sloan
Research Fellowship and the 2018 DFINITY fellowship.

X Goran Zuzic
gzuzic@cs.cmu.edu

Bernhard Haeupler
haeupler@cs.cmu.edu

Taisuke Izumi
t-izumi@nitech.ac.jp
1 Carnegie Mellon University, Pittsburgh, PA, USA

Nagoya Institute of Technology, Gokiso-cho, Showa-ku,
Nagoya, Aichi, Japan

with n nodes and diameter D. The nodes communicate by
synchronously passing O (log n)-bit messages to each of its
direct neighbors. The goal is to design algorithms (protocols)
that minimize the number of synchronous message passing
rounds before the nodes collaboratively solve the optimiza-
tion problem.

The message-passing setting we just described is a model
called CONGEST [25]. The MST problem can be solved
in such a setting using O(y/nlog* n + D) rounds of com-
munication [18]'. Moreover, and perhaps more surprisingly,
this bound was shown to be the best possible (up to poly-
logarithmic factors). Specifically, there are graphs in which
one cannot do any better than ﬁ(ﬁ + D) [1,3,26]2. While
clearly no algorithm can solve any global network optimiza-
tion problem faster than (D), the §(ﬁ) factor is harder
to discern. To make matters worse, the ?2(\/5 + D) lower

! The algorithm can be easily modified to run in O(y/nlog*n + D)
rounds of communication by growing components to size \/n/log* n
in the first phase of the algorithm.

2 Throughout this paper, O(), ©(-) and Q(-) hide polylogarithmic fac-
tors in 7, the number of nodes in the network.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-020-00383-2&domain=pdf
http://orcid.org/0000-0002-9322-6329

80

B. Haeupler et al.

bound was shown to be far reaching. It applies to a multitude
of important network optimization problems including MST,
minimum-cut, weighted shortest-path, connectivity verifica-
tion and so on [1]

While this bound precludes the existence of more effi-
cient algorithms in the general case, it was not clear whether
it holds for special families of graphs. This question is espe-
cially important because any real-world application on huge
networks should exploit the special structure that the network
provides. The mere existence of “hard” networks for which
one cannot design any fast algorithm might not be a limiting
factor.

In the first result that utilizes network topology to cir-
cumvent the lower bound, Haeupler and Ghaffari designed
an O (D)-round distributed MST algorithm for planar grap-
hs [6]. Note that this algorithm offers a huge advantage
over older results for planar graphs with small diame-
ters.

They achieve this by introducing an elegant abstraction
for designing distributed algorithms named low-congestion
shortcuts. Their methods could in principle be used to
achieve a similar result for genus-bounded graphs, but their
presented algorithms have a major technical obstacle: they
require a surface embedding of the planar/genus bounded
graph to construct the low-congestion shortcuts. While com-
puting a distributed embedding for planar graphs has a
complex 0 (D)-round solution [5], this remains an open
problem for genus-bounded graphs [6].

This paper side-steps the issue by vastly simplifying
the construction of low-congestion shortcuts. We define a
more structured version of low-congestion shortcuts called
tree-restricted shortcuts and propose a simple and general
distributed algorithm for finding them. On many graphs of
interest these shortcuts are as powerful as the general ones
(see the discussion in Sect. 1.4 for a short comparison). More-
over, the algorithm is completely oblivious to any intricacies
of the underlying topology and finds universally near-optimal
tree-restricted shortcuts. As a simple consequence of our
construction technique we get an 9] (g D)-round algorithm
for genus g graphs, a result that was not known before the
conference version of this paper was published. We believe
that this simplicity makes the algorithm usable even in prac-
tice.

1.2 A brief overview of low-congestion shortcuts

We now give a short introduction to the general low-
congestion shortcut framework, as defined in [6]. Consider
the following recurring scenario throughout many distributed
optimization problems:

Definition 1 (Part-wise aggregation) Let G = (V, Eg)
be a graph. Given disjoint and internally-connected parts

@ Springer

P, P>,..., Py € V we want to distributedly compute
some simple part-wise aggregate (e.g., sum or max) of
nodes’ private values. Specifically, each node is initially
given its part ID (or L if none) and a private value x,;
at the end of the computation each node v belonging to
some part P; should know the aggregate value of {x, | v €
P;}.

A classical example for such a scenario is the 1926 algo-
rithm of Boruvka [23] for computing the MST: We start with a
trivial partition of singleton parts for each node. For O (log n)
iterations each part computes the minimum-weighted outgo-
ing edge, adds it to the MST, and merges with the other part
incident to this edge.

A key concern in designing a distributed version of Boru-
vka’s algorithm is finding good communication schemes that
allow the nodes of some part to collaborate without interfer-
ing with other parts. While a natural solution would be to
allow communication only inside the same part (which is
feasible since the parts are internally connected), this could
take a long time. The problem appears when the diameter of
a part in isolation is much larger than the diameter D of the
original graph G.

Low-congestion shortcuts [6] were introduced to over-
come this issue: each part P; is allowed to use a set of
extra edges H; € Eg to more efficiently communicate
with other nodes in the same part. More precisely, part P;
is permitted to use the edges Eg[P;] U H; for commu-
nication, where Eg[P;] are edges with both endpoints in
P;.

We evaluate the quality of the shortcut with conges-
tion and dilation. A shortcut has dilation d if the diameter
of Eg[P;] U H; is at most d for all parts; the con-
gestion is ¢ when each edge is assigned to at most ¢
different parts. If one can efficiently construct shortcuts
with congestion ¢ and dilation d, we can solve problems
such as MST and Min-Cut approximation in 5(6 + d)
rounds [6]. In other words, designing many distributed
algorithms can be reduced to constructing good-quality
shortcuts.

Definition2 Let G = (V, E¢) be an undirected graph with
vertices subdivided into disjoint and connected subsets
P = (P, Py,...,Py), P, € V. In other words, Eg[FP;]
is connected and P; N P; = () fori # j. The subsets P; are
called parts. We define a shortcut H as (Hy, Ha, ..., Hy),
H; C Eg. A shortcut is characterized by the following
parameters:

i) H has congestion c if each edge e € E is used in at
most ¢ different sets Eg[P;]U H;,i.e.,Ve € Eg : |{i :
e € EG[P;1U H;}| < c. Note that the sets {EG[P;1}Y_,
are disjoint.

Low-Congestion shortcuts without embedding

81

i) H has dilation d if for each i € [N] the diameter of
Eg[P;]U H; is at most d.

While the pervasive ﬁ(ﬁ + D) lower bound clearly
implies we cannot find shortcuts with congestion+dilation =
9] (D) on general graphs, this might not be the case on specific
families of graphs. For example, planar graphs always offer
O(D) congestion and dilation shortcuts, thus bypassing the
ﬁ(ﬁ + D) lower bound. Finally, we note that congestion
and dilation are traditional parameters that are extensively
used in routing (e.g., [20]).

1.3 Our contribution

Roughly speaking, there are two challenges in the design
of shortcut-based algorithms. Let G be the target class
of graphs we want to design distributed algorithms. The
first challenge is to identify the (small) values of ¢ and d
such that G has shortcuts with congestion ¢ and dilation
d. This is purely a graph-theoretic problem. The second
challenge is to convert the existential result proved by
the first challenge to the constructive result, i.e., we must
design a distributed algorithm constructing efficient short-
cuts for that class. This is a distributed computing problem
that might be distinctively harder than the former one.
Indeed, while one can prove that bounded genus graphs
have good shortcuts, the proof is not constructive because
it requires access to an embedding [6]; this is the pri-
mary reason why fast algorithms for bounded genus graphs
were not known. Even in the planar case, distributedly
constructing such an embedding is known, but compli-
cated.

A natural idea to simplify algorithm design would be to
come up with a generic procedure which finds a congestion
c and dilation d shortcut for the best (or approximately best)
c and d. Such a result would automatically lift a purely exis-
tential result to a constructive one and that is the primary
contribution of this paper.

We present a simple algorithm for constructing shortcuts
that resolves the issues mentioned above. We introduce a
more structured definition of shortcuts called tree-restricted
shortcuts and give a constructive algorithm that finds
the nearly optimal tree-restricuted shorcuts in any graph
that contains them. While the new shortcut definition is
a strict subset of the old definition, for many graphs of
interest one does not lose any power due to this restric-
tion.

The details of our contribution are summarized as follows:

e In Sect. 3, we introduce tree-restricted shortcuts, which
can only use edges of some fixed spanning tree 7 C G.
We substitute the classic dilation parameter with a new
block parameter more appropriate for tree-restricted

shortcuts due to their highly-structured nature: in par-
ticular, the new parameter is stronger in the sense that
it implies an upper bound on the dilation. The block
parameter (upper-)bounds the number of components
of P;, where two nodes are in different components
if they cannot reach each other via H;. In Sect. 3.3
we propose deterministic algorithms for broadcast, con-
vergecast, and leader election (for all parts in parallel)
utilizing tree-restricted shortcuts, which are simpler and
faster compared with the general-case randomized algo-
rithms shown in [6].

e In Sect. 4, we present a generic algorithm for con-
structing tree-restricted shortcuts. Let 7 be a span-
ning tree of G with depth at most D and assume
there exists a tree-restricted shortcut on 7 € G with
congestion ¢ and block parameter b. We describe an
algorithm that constructs a tree-restricted shortcut with
congestion O(clog N) and block parameter O(b) in
O(DlognlogN + bDlogN + bclog N) CONGEST
rounds.

e An important consequence of our algorithm is to pro-
vide the first distributed algorithm constructing a good
shortcut for genus-g graphs, and by extension, fast
MST and Min-Cut approximations. Fortunately, one
can reinterpret known results to conclude that genus-g
graphs exhibit tree-restricted shortcuts with conges-
tion O (gD log D) and block parameter O(log D) with
respect to an arbitrary tree T of depth O (D) (e.g., BFS
tree). In Sect. 3.4, we can obtain a distributed algorithm
that constructs a tree-restricted shortcut with congestion
O(gDlog Dlog N) and block parameter O (log D) for
graphs with genus at most g. For bounded genus graphs
(i.e. g = O(1)), the algorithms based on our shortcut
construction achieves near-optimal time complexity (up
to a polylogarithmic factor).

1.4 Subsequent work: a short survey

Significant progress has been made since the initial confer-
ence version of this paper was published [12]. Subsequent
work has expanded on the utility of the framework by extend-
ing it to new graph classes, new problems, and provided better
construction guarantees. We intend this section to serve as
a short and convenient survey of the tree-restricted shortcut
framework.

Tree-restricted shortcut quality and construction. We
define the quality g of a T-restricted shortcut as g =
b - depth(T) + c. Quality combines the congestion and
the block parameter into a single value that sufficiently
describes the shortcut construction and routing perfor-
mance.

@ Springer

82

B. Haeupler et al.

Definition3 A graph G = (V, Eg) of diameter D admits
tree-restricted shortcuts of quality ¢ if for each spanning tree
T of depth O(D) and each set of disjoint and connected
parts (P; C V)lN: | there exists a T'-restricted shortcut of
congestion ¢ and block parameter b satisfyingb- D +c¢ < q.

The following theorem asserts that tree-restricted shortcuts
of quality ¢ can be constructed and used in O () CONGEST
rounds. A particularly appealing property of tree-restricted
shortcuts is that one does not need to know the optimal
shortcut quality g, upfront. This can often yield much better
shortcuts than guaranteed by the theoretical bound, a prop-
erty often desired in practical applications.

Theorem 1 (Theorem 1.2 of [11]) Suppose that a graph
G = (V, Eg) admits tree-restricted shortcuts of quality q.
Given any set of disjoint and connected parts (P; C V)[N: 1
there exists a (randomized) distributed algorithm that solves
the part-wise aggregation problem in CONGEST using 0 (9)
rounds and sends at most O (m) messages during its execu-
tion with high probability. Moreover, the algorithm does not
need to know the value of q upfront.

Note: we slightly reworded the main Theorem of [11]. While
the paper typically assumes the algorithm knows the conges-
tion ¢ and block parameter b, one can circumvent this issue
with a simple exponential parameter search. Atiterationi one
can try to tree-restricted construct shortcuts with parameters
b; < 2, ¢; < D -2 and verify if the shortcuts were suc-
cessfully constructed (which can be done in O - D +¢;)
rounds and O (m) messages). Assuming the graph admits
tree-restricted shortcuts of quality g, the search will termi-
nate in O(Q*) rounds and will use O(m) messages.

Graph families. Various graph families admit good-quality
tree-restricted shortcuts. Table 1 lists the known results, all
of which fall within the extensive family of excluded minor
graphs. Reducing the shortcut quality of excluded minor
graphs from 5(D2) to O (D) is an interesting open prob-
lem; the other results are tight up to polylogarithmic factors.
Applications. Numerous distributed optimization tasks can
be simplified and optimized by utilizing the part-wise aggre-
gation primitive as a black-box subroutine. Applications
include the MST, approximate Min-Cut, and approximate
single-source shortest path (SSSP) [6,11,14].

Corollary 1 Suppose that a graph G admits tree-restricted
shortcuts of quality q. One can compute an (exact) MST in
O (q) rounds and O (m) messages with high probability.

As areminder, in the Min-Cut problem one is given a graph
G = (V, Eg) with integer weights w : Eg — [1, poly(n)]
and needs to compute a set of edges F' C E that discon-
nect G into at least 2 components while minimizing the sum
> ecF We. An a-approximation to Min-Cut finds a set of
edges that disconnects the graph whose aggregate weight is
atmost a multiplicative « factor larger than the optimal value.

@ Springer

Corollary 2 Suppose that a graph G admits tree-restricted
shortcuts of quality q. One can compute an (1 + ¢)-
approximate (weighted) Min-Cut in é(q) -poly(1/¢e) rounds
and O (m) - poly(1/€) messages with high probability.

In the Single-Source Shortest Path (SSSP), one is given
a graph G = (V, Eg) with integer weights w : Eg —
[1, poly(n)] and a source s € V, and needs to compute
a spanning tree T C E¢ such that for each node u we
have that dr (s, u) = d(s,t) where d(u, v) is the distance
between u, v € V in G with respect to the weight w, and
dr (u, v) is their distance in the tree (with respect to w). An -
approximation to SSSP requires the tree to satisty dr (u, v) <
o - d(u, v) (note that the inequality dr (u, v) > d(u,v) is
always satisfied).

Corollary 3 Suppose that a graph G = (V, Eg) admits tree-
restricted shortcuts of quality q. Each edge e € Eg has a
weight w,, and let L be the weight-diameter of G. For any

B = (logn)~*W one can compute an LO10glogm/log(1/)_
approximate SSSP in 0 (g/B) rounds and O(m /B) messages
with high probability.

For instance, in the above corollary, setting 8 = n~¢, § =
2-9WM and B = log=®1/9) u for a constant & > 0 one

obtains a log@" n, 2vIogn gng ¢ approximations to SSSP,
respectively. [14]

General shortcuts vs. tree-restricted shortcuts. One can
easily construct pathological graph examples that admit
good-quality general shortcuts, but do not admit good-
quality tree-restricted shortcuts. For example, one can take
the lower bound graph of [1] which requires Q(ﬁ) rounds
to solve MST and replace each edge with /n parallel multi-
edge copies. This immediately yields a O(D) = O(1) MST
solution via general shortcuts, whereas tree-restricted short-
cuts are constrained by the original ﬁ(ﬁ) lower bound.
Moreover, general shortcuts allow faster algorithms for sev-
eral important graph families. For example, expander graphs
and Erd6s-Rényi random graphs admit general shortcuts
of dilation + congestion = 0(1) for any set of parts; no
such result is possible in the tree-restricted setting. However,
it seems that distributed construction of general shortcuts
is a burdensome task even in highly structured graphs.
The best-known result for shortcut construction and part-
wise aggregation in expander graphs has round complexity

20Wlogm) — po(D) sionificantly worse than the best existen-
tial result [10].

1.5 Related work

The complexity-theoretic issues in the design of distributed
graph algorithms for the CONGEST model have received

Low-Congestion shortcuts without embedding

83

Table 1 Upper and lower

. Graph family Tree-restricted shorcut parameters Lower bound
bounds for tree-restricted
shortcuts Block Congestion Quality Q(d+c)
General [6] 13 0 (Y1) O (D + /n) QD + /n)
Pathwidth k [13] 0wk 0 (k) O (kD) QD)
Treewidth k [13] 0 (k) O (klogn) O (kD + klogn) Q (kD)
D
Genus g [13] 0/ 0(/gDlog D) 0(\/gDlog D) Q(]gg)
Planar 6] OlogD) O(DlogD) O(Dlog D) QD giep)
Minor-excluded [15] 0(D) O(Dlogn + log? n) 0(D?) trivial (D)

3For general graphs, each part of size | P;| > /1 is assigned the entire tree; giving them a block param. of 1
and congestion of at most 4/n. Smaller parts can be handled separately in O (4/n) rounds by using intra-part

edges

much attention in the last decade. Researchers have stud-
ied many problems in-depth: Minimum-Spanning Tree [9,
18,19,26], Maximum flow [8], Minimum Cut [7,24], Shortest
Paths and Diameter [4,16,17,21,22], and so on. Most of those
problems have (:)(ﬁ + D)-round upper and lower bounds
for some sort of approximation guarantee [1,2,7,21,26]. The
guarantee of exact results sometimes yield a nearly liner-
time bound [4]. Note that almost all lower bounds above
hold for graphs of small diameter (e.g., polylogarithmic in
n). In such graphs we have that \/n >> D, making 5(D)
algorithms strictly better than those requiring O(D + 1)
rounds.

2 Preliminary: CONGEST model

We work in the classical CONGEST model [25]. In this set-
ting, a network is given as a connected undirected graph
G = (V, Eg) with diameter D. Initially, nodes only know
their immediate neighbors and they collaborate to compute
some global function of the graph like the MST. Communi-
cation occurs in synchronous rounds; during a round, each
node can send O(logn) bits to each of its neighbors. The
nodes always correctly follow the protocol and never fail.
The goal is to design protocols that minimize the resource of
time - the number of rounds before the nodes compute the
solution.

We now precisely formalize the notion of solving a prob-
lem in this model, e.g., how is the input and output given.
While the formalization is specifically given for the MST,
any other problem is completely analogous. All nodes syn-
chronously wake up in the first round and start executing
some given protocol. Every node initially only knows its
immediate neighbors and the weight of each of its incident
edges. After a specific number of rounds, all nodes must
simultaneously output (i) the weight of the computed MST
T (ii) for each edge e incident to it, a 0/1 bit indicating if
ecT.

3 Tree-restricted shortcuts

In this section we define tree-restricted shortcuts: a restricted
version of low-congestion (i.e., general) shortcuts that are
(i) simpler to work with, (ii) often equally powerful as the
general shortcuts, (iii) offer deterministic routing schemes
and, most importantly, (iv) can be efficiently constructed on
any graph that contains them. Following the definitions, we
rephrase the relevant prior work in our new term, showcase
an efficient deterministic routing scheme, and finally state
our main result and applications.

3.1 Definition

Tree-restricted shortcuts are low-congestion shortcuts with
the additional property that H; is restricted to (the edges of)
some spanning tree 7. The running time of algorithms will
depend on the depth of T, hence we will assume throughout
the paper that T is some tree of depth O(D) (e.g., a BFS
tree); the user of the framework is otherwise free to choose
any tree 7.

Definition4 Let H = (H;, Hy,..., Hy) be a (general)
shortcut on the graph G = (V, E¢) with respect to the parts
P = (Pi)f\lzl. Given a rooted spanning tree T = (V, ET) C
G we say that a shortcut H is tree-restricted or T -restricted
if foreachi € [N], H; C E7 i.e., every edge of H; is a tree
edge of T.

Congestion and dilation are still well-defined for tree-
restricted shortcuts. However, it is more convenient to use
an alternative block parameter, which in turn also bounds
the dilation. The block parameter (upper-)bounds the num-
ber of components of P;, where two nodes u, v € P; are in
different components if they cannot reach each other via H;.

Definition5 Let H = (Hi, H», ..., Hy) be a T-restricted
shortcut on the graph G = (V, E¢) with respect to the parts
P = (Pi)lN: |- Fix a part P; and consider the connected com-
ponents of the subgraph (V, H;). If a component contains at

@ Springer

84

B. Haeupler et al.

Fig. 1 Illustration of a T-restricted shortcut subgraph for a part P;,
composed of block components by, b>, bz and by

least one node of P;, we call it a block component (e.g., an
isolated v € P; is a block component). Furthermore, we say
'H has block parameter b if the number of block components
associated with each part is at most b.

Note that a connected component of (V, H;) without
nodes in P; does not need to be counted; it does not need
any information from the part-wise aggregation of part i. On
the other hand, an isolated vertex {v} where v € P; must be
counted. Lemma 1 argues that a block parameter of b implies
the dilation of b(2 - depth(7T) + 1). From now on, we will
assume that 7 is chosen to have depth O (D), whichis asymp-
totically minimal and achievable via a BFS tree. We note that
distributedly computing a BES tree is a classic problem with
a simple O (D) rounds CONGEST algorithm [25].

Lemma1 Let T be a spanning tree with depth at most D
and let H = (H; : i € [N]) be a T -restricted shortcut with
congestion ¢ and block parameter b with respect to parts
P = (P; : i € [N]). Then the dilation of 'H is at most
b2D +1).

Proof Fix i € [N]. Contract every block component of H;
into a supernode and remove all other nodes. This super-
graph will contain ' < b supernodes and will be connected
(because Eg[P;]is connected). Hence its diameteris b’ —1 <
b — 1. Every supernode corresponds to a block component
of diameter 2D, implying the diameter of Eg[P;] U H; is at
most 2bD +b —1 < b(2D + 1). O

3.2 Shortcuts on genus-bounded and planar graphs

Tree-restricted shortcuts are particularly useful on genus-
bounded (e.g., planar) graphs. In particular, we can reinter-
pret the low-congestion result of Haeupler and Ghaffari [6]
using our notation.

Theorem 2 (Haeupler and Ghaffari [6]) Let G be a graph
with genus g and diameter D, and let T be any tree with
depth O (D) (e.g., a BFS tree). There exists a T -restricted

@ Springer

shortcut with congestion O (g D log D) and block parameter
O(log D).

We note that the paper [6] proves the analogous claim
about general shortcuts and does not explicitly talk about
tree-restricted shortcuts. However, their proof implicitly
argues precisely about the congestion and block parameter of
tree-restricted shortcuts without explicitly referring to them.
In particular, their O (D log D) dilation bound is implicitly
derived by arguing about the block parameter being O (log D)
and using Lemma 1. However, note that their theorem proves
only the existence of such shortcuts. While the original paper
does describe an algorithm that can in principle be used to
compute them, it requires an embedding of G on a surface of
genus g. Itis an open problem to compute such an embedding
efficiently in the CONGEST model.

3.3 Deterministic routing on tree-restricted
shortcuts

In this section, we show how the structure of tree-restricted
shortcuts can be useful in facilitating communication within
parts. From a high level, the tree-like structure allows for fast,
deterministic and simultaneous broadcasting/convergecast-
ing on block components; this can be easily extended to true
part-wise aggregation. For clarity, broadcast is defined as an
operation on a rooted (sub)tree that floods some value from
the root down to all other nodes; convergecast is defined as an
aggregation of nodes’ private values starting from the leaves
and towards the root (ending in the root knowing the final
aggregate). Lemma 2 gives a way how to simultaneously
perform these primitives on subtrees.

Lemma 2 (Routing on subtrees) Let T be a rooted tree of
depth O(D) and let Ty, T, ..., Ty C T be a family of sub-
trees where each edge of T is contained in at most c subtrees,
ie, |{i | e eTi,i € lkl]} <c. Thereis a simple determinis-
tic algorithm that can perform a convergecast/broadcast on
all of the subtrees in O(D + ¢) CONGEST rounds.

Proof We describe the convergecast algorithm. Each mes-
sage sent during the algorithm will have a subtree-ID i
associated with it. Suppose that a node v is in a subtree T;
(anode can be contained in multiple subtrees). We say (v, i)
is active when v receives a message associated with i from
all of its T;-children (if v is a leaf in 7;, then (v, i) is imme-
diately active). When (v, i) becomes active, it will schedule
an ID-i message to be sent along its T -parent edge; note that
two messages scheduled along the same edge cannot have
the same ID. Each round, if multiple messages are scheduled
over the same T -edge, the algorithm sends the message asso-
ciated with the ID i that minimizes depthy (root(7;)). Here,
depthy (v) is the length of the unique path between root(7;)
and v in T'. Ties are broken by the ID i itself. The converge-

Low-Congestion shortcuts without embedding

85

cast and broadcasts operations are symmetric, so we will only
prove the lemma for convergecasts.

We now analyze the algorithm. Fix a node v. It is suf-
ficient to prove that no message gets transmitted along v’s
parent edge after height; (v) + ¢ = O (D + ¢) rounds where
height (v) is the maximum distance between v and any leaf
in 7T that is a descendant of v (the unique path between the
T -root and the leaf goes through v).

Note that any message that gets transmitted along v’s par-
ent edge must belong to a subtree 7; that contains that edge.
Let I = (i1, i2, ..., i) be the IDs of subtrees that contain
v’s parent edge, ordered by their priority (as described). In
particular, we say that 7;, has priority p. The congestion
condition stipulates that k < c.

We will prove by induction that for p € [k] the message
associated with i, will be transmitted no later than round
heighty (v) + p. The claim clearly holds for the leafs of
T. Note that (i) the relative priority-ordering between I is
unchanged with respect to any node of 7 (other than v), (ii)
any subtree 7; that is contained in the set of descendants of
v, but does not contain the parent edge of v will have lower
priority than any subtree in /.

Fix i,. By the induction hypothesis, messages corre-
sponding to {i1, ..., i,—1} will be sent strictly before round
height, (v) + p. It is sufficient to argue that v has received
messages corresponding to i, from all of its 7;, -children
before round height; (v) 4+ p. However, this can be directly
argued from the induction: for any child w € T;, we have
height; (w) < heighty(v) — 1, hence the priority of i), is at
most p with respect to w. Hence v will send the message
corresponding to i, no later than round height; (v) + p and
we are done. O

Convergecast and broadcast are used to facilitate routing
in tree-restricted shortcuts. We can intuitively envision the
shortcut edges H; as a family of subtrees (in our notation:
block components). Aggregation of values within each block
component can be exactly achieved by simultaneously con-
vergecasting and broadcasting in all block components. We
extend this result to true part-wise aggregation.

Theorem 3 (Routing on tree-restricted shortcuts) Givena T -
restricted shortcut with congestion ¢ and block parameter b,
there are deterministic distributed algorithms that terminate
in O(b(D + c)) rounds for the following problems.

1. Electing a leader for each of the parts in parallel.

2. Convergecasting O (log n)-bit messages to the leader of
each part in parallel.

3. Broadcasting a O(logn)-bit message from the leader of
each part in parallel.

Proof All of these algorithms have a common flavor: for
each part we perceive its shortcut edges H; as a supergraph

of at most b supernodes where each supernode corresponds
to a block component. We proceed to describe each of the
algorithms on the supergraph and implicitly assume that
intra-block communication happens after each step of the
algorithm.

Communication within block components can be done in
parallel using Lemma 2: all the nodes of a block component
convergecast the relevant information to the block-root and
subsequently the block-root broadcasts the result back.

Electing a leader for each part is performed by electing
a leader for each supernode (block component) and broad-
casting the leader to all neighborhood supernodes for b steps.
Every supernode keeps the smallest leader ID ever seen as
its current leader. After b rounds all the supernodes have the
same leader. The algorithm requires O (b(D + ¢)) rounds as
each of the b broadcasting steps is followed by an O (D +¢)
intra-block communication step.

Broadcasting/convergecasting from/to the leader for
each part can be done by building a BFS tree from the
leader-supernode. We can utilize the standard distributed
BFS algorithm on the supergraph requiring O (b) steps. The
algorithm similarly requires O(b(D + ¢)) rounds as each
of the O(b) BFS steps is followed by an O (D + ¢)-round
intra-block communication step. O

We also state a simple technical lemma we use for the
construction of tree-restricted shortcuts.

Lemma 3 Given a T -restricted shortcut with congestion c, a
deterministic distributed algorithm can identify all parts with
at most b’ block components. Specifically, after the algorithm
terminates each node within a part i knows if P; is composed
of more than b’ block components. The algorithm executes
in O(b' (D + ¢)) rounds.

Proof Similarly to the proof of Theorem 3, for each part P;
we consider the (connected) supergraph where each supern-
ode corresponds to a block component of H;. We need to find

all parts whose supergraphs have at most »’ supernodes.
Each supernode broadcasts its leader for exactly b’ rounds
and every supernode keeps the minimum ID as their current
leader. Subsequently, each leader r (there may be multiple
ones as we have not bounded the block parameter) tries to
build a BFS tree comprised of all the nodes that believe r is
the leader. We can detect the existence of multiple leaders
as in that case each BFS tree will contain two neighboring
supernodes in different BFS trees and report failure. If this is
not the case (all the supernodes of a part belong to the same
BFS tree), we can convergecast the number of supernodes
back to the root and subsequently broadcast their count back.
O

Comparison with routing on general shortcuts: Ghaf-
fari and Haeupler [6] give a method for routing on general

@ Springer

86

B. Haeupler et al.

shortcuts in O(dilation - logn + congestion) rounds that
is randomized and assumes a leader is already elected for
each part. They describe a process of leader election via
a complicated randomized bootstrapping process that takes
O (dilation - log? n + congestion - log) rounds. We contrast
those results with our current tree-restricted shortcut routing
where leader election is simple, deterministic and essen-
tially no more difficult than a single convergecast+broadcast.
The downside is that non-tree-restricted shortcuts sometimes
offer better quality guarantees and therefore better perfor-
mance.

3.4 Main result and applications

The main contribution of the paper is to introduce a general
framework for finding near-optimal tree-restricted shortcuts
in graphs where the only assurance is that they exist.

Theorem 4 Let G be a graph with a spanning tree T C G
such that there exists a T -restricted shortcut with conges-
tion ¢ and block parameter b. There exists a distributed
algorithm that finds a T -restricted shortcut with congestion
O(clog N) and block parameter 3b with high probability
(with probability at least 1 — n= %Y, where any constant
can be chosen in the exponent). The shortcut can be found in
O(Dlognlog N +bDlog N + bclog N) rounds.

We note that the Theorems 2 and 4 immediately give
a novel result: an algorithm for constructing shortcuts on
bounded genus graphs.

Corollary 4 Given a genus-g graph with diameter D and
N parts there is a (randomized) distributed algorithm
that computes a tree-restricted shortcut with congestion
O(gDlogDlog N) and block parameter O(log D) in
O (gD log? Dlog N) rounds with high probability.

Next, we explain how to use tree-restricted shortcuts to
distributedly compute the MST on genus-g graphs. Simi-
larly to [6], we incorporate the shortcuts into the classic 1926
algorithm of Boruvka [23].

Lemma 4 Given a genus-g graph with n nodes and diameter
D, there is a (randomized) distributed algorithm that com-
putes the Minimum Spanning Tree in O (gD log? D log? n)
rounds with high probability.

For completeness we give a brief proof outline:

Proof Boruvka’s algorithm runs in O(logn) phases. Each
phase starts with a partition of the graph into connected parts;
each part has previously computed the MST on the subgraph
induced by the part. Initially, the algorithm starts with the triv-
ial partition in which each node is in its own part. During each
phase, each part P; suggests a merge along the minimum-
weighted edge going out of P;. It is well-known that all such

@ Springer

edges belong to some MST. By computing a tree-restricted
shortcut for each part in O(gD log? Dlogn) rounds and
using our convergecast algorithm on it in O (gD log? D)
rounds we can compute the min-weight outgoing edge from
each part. A slight difficulty remains: many parts could chain
together to form a new part, making the assignment of part
IDs in the newly merged part difficulty. This can be avoided
by restricting the merge shapes to be star graphs: each part can
independently mark itself as a head or tail with probability
% ; we are only allowed to merge tails to heads. The number of
phases remains O(logn) as every minimum-weighted out-
going edge will be used for merging with probability at least
}P thus reducing the expected number of parts by a constant.0l

4 Constructing tree restricted shortcuts

In this section, we describe an algorithmic framework that
solves the problem of finding near-optimal tree-restricted
shortcuts.

4.1 Overview of the algorithmic framework

Our algorithm FindShortcut uses two separate subrou-
tines:

e Core: This subroutine finds a good-quality shortcut with
respect to at least a constant fraction of the parts. As
a prerequisite, we assume we constructed a tree 7 with
depth O (D) such there exists a T -restricted shortcut with
congestion ¢ and block parameter b. Note that we only
assume the tree-restricted shortcut’s existence.

Lemma5 Let T be a spanning tree with depth O (D) and
assume there exists a T -restricted shortcut with congestion
c and block parameter b. The subroutine CoreFast finds
a T-restricted shortcut H' = (H))N_| with the following
properties:

1. The congestion of H' is at most 8¢ with high probability.

2. There exists a subset of parts P’ C P with size at least
[P'| > @ such that each part in P’ has at most 3b block
components.

The subroutine takes O (D logn + c¢) CONGEST rounds to
execute with high probability. Upon completion, each node
knows for each of its incident edges which parts are they
assigned to in H'.

We present two versions of the core subroutine for pur-
poses of exposition. We present a deterministic and simper
CoreSlow requiring O(D - ¢) rounds and a randomized
CoreFast requiring O(D logn + ¢) rounds. We note that

Low-Congestion shortcuts without embedding

87

the CoreFast subroutine is the only randomized building
block of our framework. Therefore, we can replace it with a
deterministic (albeit slower) version at a cost of an addition

C
Togn factor.

e Verification: This subroutine is used to identify the parts
i for which the shortcut edges H; have a sufficiently small
number of block components. The following result fol-
lows directly from Lemma 3.

Corollary 5 Given a tree T with depth at most D and a
tentative T -restricted shortcut H' with congestion c, the
deterministic subroutine Verification finds all parts
P’ C P whose designated shortcuts have at most b’ block
components. The subroutine takes O(b'(D + c¢)) CON-
GEST rounds to execute. Upon completion, each node knows
whether its part is in the set P or not.

We use the subroutines in FindShortcut that implements
the construction of Theorem 4.

Algorithm FindShortcut: We run the CoreFast sub-
routine that computes a shortcut H' = {Hj, ..., Hy} with
congestion 8¢, but possibly an unacceptably large block
parameter. The next step is to run the Verification sub-
routine that finds all parts whose computed shortcut edges H/
have at most 36 block components. We call those parts good
and fix their computed shortcut edges and discard the rest.
The subroutine is iteratively repeated for O (log N) rounds
at which point the parts have been marked as good.

Proof of Theorem 4 By Lemma 5, in each iteration we find
a shortcut with congestion 8c and block parameter 35 for
at least a half of the parts that have not yet been marked
as good, w.h.p. This implies that after O(log N) iterations
all the parts are marked as good. This further implies that
the congestion of H' is O(clog N) as the congestion of the
union of partial shortcuts is at most the sum of congestion of
individual partial shortcuts.

Finally, the number of rounds is at most O (log N) times
the combined number of rounds of the CoreFast and
Verification subroutines, namely O(log N - (D logn +
¢c+bD +bc)) = O(DlogNlogn+bDlog N + bclog N)
w.h.p. O

4.2 Warm-up: an O(D - ¢)-round version of the core
subroutine

In this section, we explain a simple and deterministic, but
slower version of the core subroutine named CoreS1ow that
terminates in O (D - ¢) CONGEST rounds. We improve its
round complexity to O (D log n+c) in the following section.

On a high level, the subroutine takes each part P; and tries
to assign the T-ancestors of nodes in P; to its shortcut edges

H/. However, this might lead to a large congestion on some
edges. We address this issue by declaring an edge unusable
if more than 2¢ different parts try to use it. This ensures
the congestion is at most 2c. We show the process provably
leads to a constant fraction parts having small congestion and
a small block parameter.

Preliminaries: As standard, assume we fix a spanning tree
T = (V, Er) of depth O(D) such that G has a T -restricted
shortcut with congestion ¢ and block parameter b. During the
execution of the algorithm some of the edges will be marked
as unusable. Furthermore, we say that a tree edge ¢ € Er
can see a node v € V if v is in the subtree of e and no edge
on the unique path between the lower endpoint of e and v
is unusable. Analogously, an edge can see a part P; if it can
see any node in P;. Outline of the CoreSlowsubroutine:
Initially, no edge is unusable. We process the (tree) edges of
T in order of decreasing depth (bottom to top). An edge e is
assigned to all parts P; that e can see. If an edge is assigned to
more than 2c¢ different part, we mark this edge e as unusable
disallow e from being used at all by any part.

Detailed description of the CoreSlow subroutine:
Each node v maintains a list L,, of part IDs that v’s T -parent
edge can see. The lists L, are initially empty. The subrou-
tine runs in depth(7") phases where in phase k each node v
at depth depth(7T") — k updates L, simultaneously and send
the entire list L, to its (v’s) T-parent. Consider a node v that
receives L, for all its T-children v’. We assign the union of
all received lists and the singleton part ID of v (if any) to L.
If |Ly| < 2c¢, we assign the parent edge of v to all the parts
in L, and transmit L, to its parent (potentially requiring 2¢
rounds). Otherwise, if |L,| > 2¢, we declare the parent edge
as unusable. A direct implementation of this would lead to
a subroutine that takes O (D - ¢) rounds in the CONGEST
model. Each of the O (D) levels of T must propagate at most
2c part IDs to their parent nodes. However, this bottleneck
can be improved by random sampling, as we show in the next
section with the subroutine CoreFast.

Algorithm 1 CoreSlow

1. At time k each node v at depth depth(T) — k does the following
in parallel:

(a) if v is an element of P;, set L, < {i}, otherwise L, <« ¢

(b) receive all the part IDs from v’s children and assign their union
to L’

(¢) Ly~ L,UL’

(d) if |L,| > 2c¢, mark v’s parent edge as unusable

(e) otherwise (serially) send all the part IDs of L, up to v’s parent
node

2. For each node v:

(a) if the parent edge e of v is marked as unusable, e will not be
assigned to any part
(b) otherwise e will be assigned to all H;,Vi € L,

@ Springer

88

B. Haeupler et al.

Lemma6 Let T be a spanning tree of depth O(D) and
assume there exists a T -restricted shortcut with congestion
¢ and block parameter b. The subroutine CoreS1ow finds
a T-restricted shortcut H' = (Hj, H,, ..., Hy) with the
following properties:

1. The congestion of H' is at most 2c.

2. There exists a subset of parts P’ C P with size at least
|P'| > @ such that each part in P’ has at most 3b block
components.

The subroutine is deterministic and takes O (D-c) CONGEST
rounds to execute. Upon completion, each node knows for

each of its incident edges which parts are they assigned to in
H.

Proof Let H = (H;) be any T-restricted shortcut with con-
gestion ¢ and block parameter b and let H" = (H]) be the
shortcut computed by CoreSlow. We call H the canonical
shortcut and H’ the computed shortcut.

By construction, the congestion of H’ is 2¢ as any edge
that would be assigned to more than 2¢ parts is marked as
unusable. Hence we proved property 6.

Let U C E7 be the set of unusable edges marked by the
subroutine. In this paragraph we find an upper bound for |U|.
Consider blaming a part P; for congesting an unusable edge
e € Uwhene ¢ Eg[P;]U H; and e can see P;, i.e., edge e
was not in the canonical shortcut H;, but e was congested by
part P; (and ultimately declared unusable). Each part can be
blamed at most b times because each block component can
only be blamed for the first unusable edge in his 7'-tree path
towards the 7 -root. Furthermore, if e is unusable, it takes at
least 2¢ — ¢ different block components (from different parts)
to be blamed for congesting e. Therefore |U| < N %.

We say that a part P; missed an edge e whene € Eg[P;]U
H; and e € U (consequently, e ¢ H/). Furthermore, call a
part bad if it missed at least 2b edges and good otherwise.
Note that if a part P; is good, the block parameter of H/ is at
most 2b + blockParameter(H) = 3b. This is because each
missed edge induces a new block component in H’ (more
precisely, we can identify each block component of H’ with
either an unique block component of H or an unique missed
edge e € U). Consequently, it is sufficient to prove that the
subroutine finds at least %N good parts.

As any unusable edge is assigned to at most ¢ parts in the
canonical shortcut, and for a part to be bad we need at least
2b edges to be missed, we have that the number of bad parts
is at most |U| ﬁ < %N . Hence, the subroutine finds at least
%N good shortcuts, proving property 6.

The subroutine terminates in O (D - ¢) rounds: on each of
the O(D) levels of the tree T all the nodes in parallel must
send the part IDs trying to use its parent edge up the tree. A

@ Springer

node can send up to 2¢ IDs, each requiring a round for its
transmission. O

4.3 Afaster O(Dlog n + c)-round version of the core
subroutine

In this section, we describe a faster version of the core sub-
routine named CoreFast. On a high level, we lower the
running time of CoreSlow by estimating the number of
parts trying to use an edge by random sampling. In partic-
ular, each part becomes active with probability p and we
declare an edge unusable when 2(c - p) active parts try to
use that edge.

Preliminaries: In addition to the preliminaries of Core-
Slow we need shared randomness between all the nodes
within a part. In other words, all the nodes of the same part
must have access to the same seeds for a pseudorandom
generator. This can be done by sharing O (log® n) random
bits among all the nodes of G in O (D + logn) rounds, as
described in [6].

Outline of the CoreFast subroutine: Each part becom-
es active with probability p = % where y > 0 is suffi-
ciently large constant. We basically follow the CoreSlow
subroutine, but instead of propagating all O(c) part IDs of
L,, we propagate only the active ones. An edge is declared
unusableifatleast4c-p = Q(logn) (active) part IDs want to
use it. Hence, by a standard Chernoff bound argument we can
claim with high probability that (i) we never propagate more
than O (logn) part IDs through an edge, (ii) each unusable
edge has at least 2¢ part IDs trying to use that edge, and (iii)
each usable (non-congested) edge has at most 8c part IDs.
After determining which edges are unusable in O (D logn)
rounds, CoreFast must nevertheless find the complete set
of part IDs that can use each edge. This is a tree routing prob-
lem where each message (part ID) has to be routed up the tree
T until the first unusable edge. No message needs to travel
more than D edges and no edge needs to transmit more than
8c different part IDs w.h.p. Hence this routing can be done
in O(D + ¢) using Lemma 2.

Detailed description of the CoreFast subroutine: Due
to shared randomness, each part independently becomes
active with probability p = £ 1205" (all the nodes within the
part agree on this label). Similarly as in CoreSlow, each
node v maintains a list L, of active part IDs thatits (') parent
edge can see. The lists L, are initially empty. The subroutine
runs in depth(7") phases where in phase k all the nodes at
depth depth(T') — k try to update L, in parallel and send L,
to its T -parent. Consider a node v that receives L, for all its
T-children v’. We assign the union of all received lists and
the singleton part ID of v (if any) to L,. If |L,| < 4c - p, we
assign the parent edge of v to all the parts in L, and trans-
mit L, to its parent (potentially requiring O (logn) rounds).
Otherwise, if |L,| > 4 - p, we declare the parent edge as

Low-Congestion shortcuts without embedding

89

unusable. This finalizes the first part of the subroutine where
we determine all unusable edges. It remains to forward the
complete set of part IDs (and not just the sampled ones) that
can use some edge e to the endpoints of e. This is a classic
tree routing problem where no route has its length larger than
D and no edge intersects more than 8c paths w.h.p. Lemma
2 provides a method to route all part IDs in at most O (D +¢)
rounds. Note that any two part IDs whose routes share an edge
have the same endpoint (lowest unusable ancestor edge), so
any routing priority between the messages gives the afore-
mentioned O (D + ¢) bound w.h.p.

Algorithm 2 CoreFast

1. Each part becomes active with probability p = M

2
2. At time k each node v at depth depth(T) — k doe(s the following
in parallel:

(a) ifvisanelementof P; and P; is active, set iv <« {i}, otherwise
Ly <0

(b) receive all the active part IDs from v’s children and assign their
union to L’

(¢) Ly < L,uL’

(d) if |Ly| > 4c - p, mark v’s parent edge as unusable

(e) otherwise send all the part IDs L, up to v’s parent node

3. Each node v initializes Q, with its part ID (or ¢ if not in any part)
4. Each node v does the following in parallel:

(a) add all received IDs to the Q,,
(b) if parent edge of v is not unusable and 3i € Q, that was never
forwarded

i. forward minimum such i along the parent edge

5. EachpartIDin Q, canuse the parent edge of v, unless it is unusable

Lemma (Restated Lemma 5) Let T be a spanning tree with
depth O (D) and assume there exists a T -restricted shortcut
with congestion ¢ and block parameter b. The subroutine
CoreFast finds a T-restricted shortcut H' = (H))_, with
the following properties:

1. The congestion of H' is at most 8¢ with high probability.

2. There exists a subset of parts P’ C P with size at least
[P'| > \TPI such that each part in P’ has at most 3b block
components.

The subroutine takes O (D logn + ¢) CONGEST rounds to
execute with high probability. Upon completion, each node
knows for each of its incident edges which parts are they
assigned to in H'.

Proof This proof extensively utilizes methods used in the
proof of Lemma 6. For completeness, we redefine all of the
used terminologies and reprove all of the intermediate results.

Let H = (H;) be any T -restricted shortcut with conges-
tion ¢ and block parameter b and let H' = (Hl.’) be the

shortcut computed by CoreFast. We call ‘H the canoni-
cal shortcut and H’ the computed shortcut.

Consider any tree edge. Suppose that the edge can see
t different part IDs. Denote by X7, ..., X; whether those ¢
parts are active (in which case X; = 1, otherwise X; = 0).
Let S := X; + X2 + ... + X;. Due to sampling, we have
that the expectation E[S] = pr. Since X; € {0, 1} and they
are independent we can apply a standard Chernoff bound
argument giving us that Pr[X; 4+ ... + X; < lIE[S]] <
exp(—d8E[S]) for some constant § > 0. Suppose now that¢ >
8c, we have that Pr[X +...+X; < 4c-p] < exp(—88pc) =
exp(—d4y log) = n~" fora sufficiently large constant y’ >
0 (since we choose y > 0 sufficiently large). We conclude
thatifz > 8c, the considered edge will become unusable with
high probability. Since there are only a polynomial number of
different edges, we can use a union bound to conclude that the
congestion of ' is 8¢ (for all edges) with high probability
(since the probability of this being violated is at most n -
n~?" =n=v*! ie. with high probability).

Let U C E7r be the set of unusable edges marked by the
subroutine. In this paragraph we find an upper bound for |U|.
Consider blaming a part P; for congesting an unusable edge
e € U whene ¢ Eg[P;]U H; and e can see P;, i.e., edge
e was not in the canonical shortcut H;, but e was congested
by part P; (and ultimately declared unusable). We argue via
a Chernoff bound that each unusable edge e € U can see at
least 2¢ parts.

The bound is argued in a completely analogous way as
proving the congestion being at most 8¢, except the Chernoff
bound we use here is the following one. As before, let S :=
X1 + X7 + ... X, be the sum of indicator variables of the
part IDs that can see an edge the fixed edge e. Our bound
stipulates that for independent {0, 1} variables X; we have
that Pr[X| + Xo + ... + X, < 2E[S]] < exp(—4§E[S]) for
some § > 0. Using it, we conclude that if ¢+ < 2¢ parts can
see e € U, then Pr[S > 2E[S]] = Pr[S > 4c- p] < n~"' for
some sufficiently large y’ > 0, giving us that in such a case
the would not be declared unusable with high probability.
Union bounding, we get the same holds for each e € U.

Since each unusable edge e € U can see at least 2¢ parts,
we blame at least 2¢ — congestion(7H) = ¢ parts for congest-
ing e. Each part can be blamed at most b times because each
block component can only be blamed for the first unusable
edge in his T-tree path towards the T -root. Furthermore, if
e is unusable, it takes at least 2¢ — ¢ different block compo-
nents (from different parts) to be blamed for congesting e.
Therefore |U| < N2.

We say that a part P; missed an edge e whene € Eg[P;]U
H; and e € U (consequently e ¢ H!). Furthermore, call a
part bad if it missed at least 2b edges and good otherwise.
Note that if a part P; is good, the block parameter of H/ is at
most 2b + blockParameter(H) = 3b. This is because each
missed edge induces a new block component in H’ (more

@ Springer

90

B. Haeupler et al.

precisely, we can identify each block component of H' by
either an unique block component of H or an unique missed
edge e € U). Consequently, it is sufficient to prove that the
subroutine finds at least %N good parts.

As any unusable edge is assigned to at most ¢ parts in the
canonical shortcut and for a part to be bad we need at least
2b edges to be missed, we have that the number of bad parts
is at most |U| ﬁ < %N . Hence, the subroutine finds at least
%N good shortcuts.

The subroutine takes O (D logn + ¢) rounds: on each of
the O(D) levels of the tree T all the nodes in parallel must
send the active part IDs that its parent edge can see. If an
edge e is not unusable, we argued via a Chernoff bound that
at most O(c - p) = O(logn) active part IDs can be seen
from e, hence the number of rounds for determining unus-
able edges is O (D log n), w.h.p. Finally, propagating the part
IDs upwards along 7T described in Lemma 2 takes
O (D + c) rounds, bringing the total number of rounds to
O(Dlogn + c¢). O

References

1. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D.,
Pandurangan, G., Peleg, D., Wattenhofer, R.: Distributed verifica-
tion and hardness of distributed approximation. In: Proceedings of
the Symposium on Theory of Computing (STOC), pp. 363-372
(2011)

2. Elkin, M.: Unconditional lower bounds on the time-approximation
tradeofts for the distributed minimum spanning tree problem. In:
Proceedings of the Symposium on Theory of Computing (STOC),
pp. 331-340 (2004)

3. Elkin, M.: An unconditional lower bound on the time-
approximation trade-off for the distributed minimum spanning tree
problem. SIAM J. Comput. 36(2), 433-456 (2006)

4. Frischknecht, Silvio., Holzer, Stephan., Wattenhofer, Roger.: Net-
works cannot compute their diameter in sublinear time. In: Proceed-
ings of ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 1150-1162 (2012)

5. Ghaffari, M., Haeupler, B.: Distributed algorithms for planar net-
works I: Planar embedding. Manuscript, (2015)

6. Ghaffari, M., Haeupler, B.: Distributed algorithms for planar
networks II: Low-congestion shortcuts, mst, and min-cut. In:
Proceedings of ACM-SIAM Symposium on Discrete Algorithm
(SODA), pp. 202-219. SIAM, (2016)

7. Ghaffari, M., Kuhn, F.: Distributed minimum cut approximation.
In: Proceedings of the International Symposium on Distributed
Computing (DISC), pp. 1-15 (2013)

8. Ghaffari, M., Karrenbauer, A., Kuhn, F., Lenzen, C., Patt-Shamir,
B.: Near-optimal distributed maximum flow: Extended abstract. In:
The Proceedings of the International Symposim on Principles of
Distributed Computing (PODC), pp. 81-90 (2015)

9. Garay, J.A., Kutten, S.., Peleg, D.: A sub-linear time distributed
algorithm for minimum-weight spanning trees. In: Proceedings
of the Symposium on Foundations of Computer Science (FOCS),

(1993)

@ Springer

10. Ghaffari, M., Li, J.: New distributed algorithms in almost mixing
time via transformations from parallel algorithms. arXiv preprint
arXiv:1805.04764, (2018)

11. Haeupler, B., Hershkowitz, D Ellis., Wajc, D.: Round-and message-
optimal distributed graph algorithms. In: Proceedings of the 2018
ACM Symposium on Principles of Distributed Computing, pp.
119-128. ACM (2018)

12. Haeupler, B., Izumi, T., Zuzic, G.: Low-congestion shortcuts with-
out embedding. In: Proceedings of the 2016 ACM Symposium on
Principles of Distributed Computing, pp. 451-460. ACM (2016)

13. Haeupler, B., Izumi, T., Zuzic, G.: Near-optimal low-congestion
shortcuts on bounded parameter graphs. In: International Sympo-
sium on Distributed Computing, pp. 158—172. Springer (2016)

14. Haeupler, B., Li, J.: Faster distributed shortest path approximations
via shortcuts. arXiv preprint arXiv:1802.03671 (2018)

15. Haeupler,B., Li, J., Zuzic, G.: Minor excluded network families
admit fast distributed algorithms. In: Proceedings of the 2018 ACM
Symposium on Principles of Distributed Computing, pp. 465-474.
ACM (2018)

16. Holzer, S., Wattenhofer, R.: Optimal distributed all pairs shortest
paths and applications. In: The Proceedings of the International
Symposium on Principles of Distributed Computing (PODC), pp.
355-364 (2012)

17. Izumi, T., Wattenhofer, R.: Time lower bounds for distributed dis-
tance oracles. In: Proceedings of the International Conference on
Principles of Distributed Systems, pp. 60-75 (2014)

18. Kutten, S., Peleg, D.: Fast distributed construction of k-dominating
sets and applications. In: Proceedings of the International Sympo-
sium on Principles of Distributed Computing (PODC), pp 238-251
(1995)

19. Khan, M., Pandurangan, G.: A fast distributed approximation
algorithm for minimum spanning trees. Distrib. Comput. 20(6),
391-402 (2008)

20. Frank Thomson, L., Bruce M, M., Satish B, R.: Packet routing and
job-shop scheduling in O(congestion+ dilation) steps. Combina-
torica 14(2), 167-186 (1994)

21. Lenzen, C., Patt-Shamir, B., Peleg, D.: Distributed distance com-
putation and routing with small messages. Distrib. Comput. 32(2),
133-157 (2019)

22. Nnongkai, D.: Distributed approximation algorithms for weighted
shortest paths. In: Proceedings of the Symposium on Theory of
Computing (STOC), pp. 565-573 (2014)

23. Nesetiil, J., Milkova, E., NeSetfilova, H.: Otakar boruvka on min-
imum spanning tree problem translation of both the 1926 papers,
comments, history. Discrete Math. 233(1), 3-36 (2001)

24. Nanongkai, D., Su, H.-H.: Almost-tight distributed minimum cut
algorithms. In: Proceedings of the International Symposium on
Distributed Computing (DISC), pp 439—453 (2014)

25. Peleg, D.: Distributed Computing: A Locality-sensitive Approach.
Society for Industrial and Applied Mathematics, Philadelphia
(2000)

26. Peleg, D., Rubinovich, V.: A near-tight lower bound on the time
complexity of distributed MST construction. In: Proceedings of the
Symposium on Foundation of Computer Science (FOCS), p 253
(1999)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

	Low-Congestion shortcuts without embedding
	Abstract
	1 Introduction
	1.1 Background and motivation
	1.2 A brief overview of low-congestion shortcuts
	1.3 Our contribution
	1.4 Subsequent work: a short survey
	1.5 Related work

	2 Preliminary: CONGEST model
	3 Tree-restricted shortcuts
	3.1 Definition
	3.2 Shortcuts on genus-bounded and planar graphs
	3.3 Deterministic routing on tree-restricted shortcuts
	3.4 Main result and applications

	4 Constructing tree restricted shortcuts
	4.1 Overview of the algorithmic framework
	4.2 Warm-up: an O(Dcdotc)-round version of the core subroutine
	4.3 A faster O(Dlogn + c)-round version of the core subroutine

	Acknowledgements
	References

