
Distributed Computing (2021) 34:79–90

https://doi.org/10.1007/s00446-020-00383-2

Low-Congestion shortcuts without embedding

Bernhard Haeupler1 · Taisuke Izumi2 · Goran Zuzic1

Received: 11 December 2019 / Accepted: 3 July 2020 / Published online: 24 July 2020

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract

Distributed optimization algorithms are frequently faced with solving sub-problems on disjoint connected parts of a network.

Unfortunately, the diameter of these parts can be significantly larger than the diameter of the underlying network, leading

to slow running times. This phenomenon can be seen as the broad underlying reason for the pervasive �̃(
√

n + D) lower

bounds that apply to most optimization problems in the CONGEST model. On the positive side, [Ghaffari and Hauepler;

SODA’16] introduced low-congestion shortcuts as an elegant solution to circumvent this problem in certain topologies of

interest. Particularly, they showed that there exist good shortcuts for any planar network and more generally any bounded

genus network. This directly leads to fast O(D logO(1) n) distributed algorithms for MST and Min-Cut approximation, given

that one can efficiently construct these shortcuts in a distributed manner. Unfortunately, the shortcut construction of [Ghaffari

and Hauepler; SODA’16] relies heavily on having access to a genus embedding of the network. Computing such an embedding

distributedly, however, is a hard problem—even for planar networks. No distributed embedding algorithm for bounded genus

graphs is in sight. In this work, we side-step this problem by defining tree-restricted shortcuts: a more structured and restricted

form of shortcuts. We give a novel construction algorithm which efficiently finds such shortcuts that are, up to a logarithmic

factor, as good as the best restricted shortcuts that exist for a given network. This new construction algorithm directly leads to

an O(D logO(1) n)-round algorithm for solving optimization problems like MST for any topology for which good restricted

shortcuts exist—without the need to compute any embedding. This greatly simplifies the existing planar algorithms and

includes the first efficient algorithm for bounded genus graphs.

1 Introduction

1.1 Background andmotivation

Consider the problem of finding the Minimum Spanning Tree

(MST) on a distributed network with n independent process-

ing nodes. The network is abstracted as a graph G = (V , EG)

This work was supported in part by KAKENHI No. 15H00852 and

16H02878 as well as NSF grants CCF-1527110, CCF-1618280, CCF-

1814603, CCF-1910588, NSF CAREER award CCF-1750808, a Sloan

Research Fellowship and the 2018 DFINITY fellowship.

B Goran Zuzic

gzuzic@cs.cmu.edu

Bernhard Haeupler

haeupler@cs.cmu.edu

Taisuke Izumi

t-izumi@nitech.ac.jp

1 Carnegie Mellon University, Pittsburgh, PA, USA

2 Nagoya Institute of Technology, Gokiso-cho, Showa-ku,

Nagoya, Aichi, Japan

with n nodes and diameter D. The nodes communicate by

synchronously passing O(log n)-bit messages to each of its

direct neighbors. The goal is to design algorithms (protocols)

that minimize the number of synchronous message passing

rounds before the nodes collaboratively solve the optimiza-

tion problem.

The message-passing setting we just described is a model

called CONGEST [25]. The MST problem can be solved

in such a setting using O(
√

n log∗ n + D) rounds of com-

munication [18]1. Moreover, and perhaps more surprisingly,

this bound was shown to be the best possible (up to poly-

logarithmic factors). Specifically, there are graphs in which

one cannot do any better than �̃(
√

n + D) [1,3,26]2. While

clearly no algorithm can solve any global network optimiza-

tion problem faster than �(D), the �̃(
√

n) factor is harder

to discern. To make matters worse, the �̃(
√

n + D) lower

1 The algorithm can be easily modified to run in O(
√

n log∗ n + D)

rounds of communication by growing components to size
√

n/ log∗ n

in the first phase of the algorithm.

2 Throughout this paper, Õ(·), �̃(·) and �̃(·) hide polylogarithmic fac-

tors in n, the number of nodes in the network.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-020-00383-2&domain=pdf
http://orcid.org/0000-0002-9322-6329

80 B. Haeupler et al.

bound was shown to be far reaching. It applies to a multitude

of important network optimization problems including MST,

minimum-cut, weighted shortest-path, connectivity verifica-

tion and so on [1]

While this bound precludes the existence of more effi-

cient algorithms in the general case, it was not clear whether

it holds for special families of graphs. This question is espe-

cially important because any real-world application on huge

networks should exploit the special structure that the network

provides. The mere existence of “hard” networks for which

one cannot design any fast algorithm might not be a limiting

factor.

In the first result that utilizes network topology to cir-

cumvent the lower bound, Haeupler and Ghaffari designed

an Õ(D)-round distributed MST algorithm for planar grap-

hs [6]. Note that this algorithm offers a huge advantage

over older results for planar graphs with small diame-

ters.

They achieve this by introducing an elegant abstraction

for designing distributed algorithms named low-congestion

shortcuts. Their methods could in principle be used to

achieve a similar result for genus-bounded graphs, but their

presented algorithms have a major technical obstacle: they

require a surface embedding of the planar/genus bounded

graph to construct the low-congestion shortcuts. While com-

puting a distributed embedding for planar graphs has a

complex Õ(D)-round solution [5], this remains an open

problem for genus-bounded graphs [6].

This paper side-steps the issue by vastly simplifying

the construction of low-congestion shortcuts. We define a

more structured version of low-congestion shortcuts called

tree-restricted shortcuts and propose a simple and general

distributed algorithm for finding them. On many graphs of

interest these shortcuts are as powerful as the general ones

(see the discussion in Sect. 1.4 for a short comparison). More-

over, the algorithm is completely oblivious to any intricacies

of the underlying topology and finds universally near-optimal

tree-restricted shortcuts. As a simple consequence of our

construction technique we get an Õ(gD)-round algorithm

for genus g graphs, a result that was not known before the

conference version of this paper was published. We believe

that this simplicity makes the algorithm usable even in prac-

tice.

1.2 A brief overview of low-congestion shortcuts

We now give a short introduction to the general low-

congestion shortcut framework, as defined in [6]. Consider

the following recurring scenario throughout many distributed

optimization problems:

Definition 1 (Part-wise aggregation) Let G = (V , EG)

be a graph. Given disjoint and internally-connected parts

P1, P2, . . . , PN ⊆ V we want to distributedly compute

some simple part-wise aggregate (e.g., sum or max) of

nodes’ private values. Specifically, each node is initially

given its part ID (or ⊥ if none) and a private value xv;

at the end of the computation each node v belonging to

some part Pi should know the aggregate value of {xv | v ∈
Pi }.

A classical example for such a scenario is the 1926 algo-

rithm of Boruvka [23] for computing the MST: We start with a

trivial partition of singleton parts for each node. For O(log n)

iterations each part computes the minimum-weighted outgo-

ing edge, adds it to the MST, and merges with the other part

incident to this edge.

A key concern in designing a distributed version of Boru-

vka’s algorithm is finding good communication schemes that

allow the nodes of some part to collaborate without interfer-

ing with other parts. While a natural solution would be to

allow communication only inside the same part (which is

feasible since the parts are internally connected), this could

take a long time. The problem appears when the diameter of

a part in isolation is much larger than the diameter D of the

original graph G.

Low-congestion shortcuts [6] were introduced to over-

come this issue: each part Pi is allowed to use a set of

extra edges Hi ⊆ EG to more efficiently communicate

with other nodes in the same part. More precisely, part Pi

is permitted to use the edges EG[Pi] ∪ Hi for commu-

nication, where EG[Pi] are edges with both endpoints in

Pi .

We evaluate the quality of the shortcut with conges-

tion and dilation. A shortcut has dilation d if the diameter

of EG[Pi] ∪ Hi is at most d for all parts; the con-

gestion is c when each edge is assigned to at most c

different parts. If one can efficiently construct shortcuts

with congestion c and dilation d, we can solve problems

such as MST and Min-Cut approximation in Õ(c + d)

rounds [6]. In other words, designing many distributed

algorithms can be reduced to constructing good-quality

shortcuts.

Definition 2 Let G = (V , EG) be an undirected graph with

vertices subdivided into disjoint and connected subsets

P = (P1, P2, . . . , PN), Pi ⊆ V . In other words, EG[Pi]
is connected and Pi ∩ Pj = ∅ for i
= j . The subsets Pi are

called parts. We define a shortcut H as (H1, H2, . . . , HN),

Hi ⊆ EG . A shortcut is characterized by the following

parameters:

i) H has congestion c if each edge e ∈ EG is used in at

most c different sets EG[Pi] ∪ Hi , i.e., ∀e ∈ EG : |{i :
e ∈ EG [Pi] ∪ Hi }| ≤ c. Note that the sets {EG[Pi]}N

i=1

are disjoint.

123

Low-Congestion shortcuts without embedding 81

ii) H has dilation d if for each i ∈ [N] the diameter of

EG[Pi] ∪ Hi is at most d.

While the pervasive �̃(
√

n + D) lower bound clearly

implies we cannot find shortcuts with congestion+dilation =
Õ(D)on general graphs, this might not be the case on specific

families of graphs. For example, planar graphs always offer

Õ(D) congestion and dilation shortcuts, thus bypassing the

�̃(
√

n + D) lower bound. Finally, we note that congestion

and dilation are traditional parameters that are extensively

used in routing (e.g., [20]).

1.3 Our contribution

Roughly speaking, there are two challenges in the design

of shortcut-based algorithms. Let G be the target class

of graphs we want to design distributed algorithms. The

first challenge is to identify the (small) values of c and d

such that G has shortcuts with congestion c and dilation

d. This is purely a graph-theoretic problem. The second

challenge is to convert the existential result proved by

the first challenge to the constructive result, i.e., we must

design a distributed algorithm constructing efficient short-

cuts for that class. This is a distributed computing problem

that might be distinctively harder than the former one.

Indeed, while one can prove that bounded genus graphs

have good shortcuts, the proof is not constructive because

it requires access to an embedding [6]; this is the pri-

mary reason why fast algorithms for bounded genus graphs

were not known. Even in the planar case, distributedly

constructing such an embedding is known, but compli-

cated.

A natural idea to simplify algorithm design would be to

come up with a generic procedure which finds a congestion

c and dilation d shortcut for the best (or approximately best)

c and d. Such a result would automatically lift a purely exis-

tential result to a constructive one and that is the primary

contribution of this paper.

We present a simple algorithm for constructing shortcuts

that resolves the issues mentioned above. We introduce a

more structured definition of shortcuts called tree-restricted

shortcuts and give a constructive algorithm that finds

the nearly optimal tree-restricuted shorcuts in any graph

that contains them. While the new shortcut definition is

a strict subset of the old definition, for many graphs of

interest one does not lose any power due to this restric-

tion.

The details of our contribution are summarized as follows:

• In Sect. 3, we introduce tree-restricted shortcuts, which

can only use edges of some fixed spanning tree T ⊆ G.

We substitute the classic dilation parameter with a new

block parameter more appropriate for tree-restricted

shortcuts due to their highly-structured nature: in par-

ticular, the new parameter is stronger in the sense that

it implies an upper bound on the dilation. The block

parameter (upper-)bounds the number of components

of Pi , where two nodes are in different components

if they cannot reach each other via Hi . In Sect. 3.3

we propose deterministic algorithms for broadcast, con-

vergecast, and leader election (for all parts in parallel)

utilizing tree-restricted shortcuts, which are simpler and

faster compared with the general-case randomized algo-

rithms shown in [6].

• In Sect. 4, we present a generic algorithm for con-

structing tree-restricted shortcuts. Let T be a span-

ning tree of G with depth at most D and assume

there exists a tree-restricted shortcut on T ⊆ G with

congestion c and block parameter b. We describe an

algorithm that constructs a tree-restricted shortcut with

congestion O(c log N) and block parameter O(b) in

O(D log n log N + bD log N + bc log N) CONGEST

rounds.

• An important consequence of our algorithm is to pro-

vide the first distributed algorithm constructing a good

shortcut for genus-g graphs, and by extension, fast

MST and Min-Cut approximations. Fortunately, one

can reinterpret known results to conclude that genus-g

graphs exhibit tree-restricted shortcuts with conges-

tion O(gD log D) and block parameter O(log D) with

respect to an arbitrary tree T of depth O(D) (e.g., BFS

tree). In Sect. 3.4, we can obtain a distributed algorithm

that constructs a tree-restricted shortcut with congestion

O(gD log D log N) and block parameter O(log D) for

graphs with genus at most g. For bounded genus graphs

(i.e. g = O(1)), the algorithms based on our shortcut

construction achieves near-optimal time complexity (up

to a polylogarithmic factor).

1.4 Subsequent work: a short survey

Significant progress has been made since the initial confer-

ence version of this paper was published [12]. Subsequent

work has expanded on the utility of the framework by extend-

ing it to new graph classes, new problems, and provided better

construction guarantees. We intend this section to serve as

a short and convenient survey of the tree-restricted shortcut

framework.

Tree-restricted shortcut quality and construction. We

define the quality q of a T -restricted shortcut as q =
b · depth(T) + c. Quality combines the congestion and

the block parameter into a single value that sufficiently

describes the shortcut construction and routing perfor-

mance.

123

82 B. Haeupler et al.

Definition 3 A graph G = (V , EG) of diameter D admits

tree-restricted shortcuts of quality q if for each spanning tree

T of depth O(D) and each set of disjoint and connected

parts (Pi ⊆ V)N
i=1 there exists a T -restricted shortcut of

congestion c and block parameter b satisfying b · D + c ≤ q.

The following theorem asserts that tree-restricted shortcuts

of quality q can be constructed and used in Õ(q) CONGEST

rounds. A particularly appealing property of tree-restricted

shortcuts is that one does not need to know the optimal

shortcut quality q∗ upfront. This can often yield much better

shortcuts than guaranteed by the theoretical bound, a prop-

erty often desired in practical applications.

Theorem 1 (Theorem 1.2 of [11]) Suppose that a graph

G = (V , EG) admits tree-restricted shortcuts of quality q.

Given any set of disjoint and connected parts (Pi ⊆ V)N
i=1

there exists a (randomized) distributed algorithm that solves

the part-wise aggregation problem in CONGEST using Õ(q)

rounds and sends at most Õ(m) messages during its execu-

tion with high probability. Moreover, the algorithm does not

need to know the value of q upfront.

Note: we slightly reworded the main Theorem of [11]. While

the paper typically assumes the algorithm knows the conges-

tion c and block parameter b, one can circumvent this issue

with a simple exponential parameter search. At iteration i one

can try to tree-restricted construct shortcuts with parameters

bi ← 2i , ci ← D · 2i and verify if the shortcuts were suc-

cessfully constructed (which can be done in Õ(bi · D + ci)

rounds and Õ(m) messages). Assuming the graph admits

tree-restricted shortcuts of quality q∗, the search will termi-

nate in Õ(q∗) rounds and will use Õ(m) messages.

Graph families. Various graph families admit good-quality

tree-restricted shortcuts. Table 1 lists the known results, all

of which fall within the extensive family of excluded minor

graphs. Reducing the shortcut quality of excluded minor

graphs from Õ(D2) to Õ(D) is an interesting open prob-

lem; the other results are tight up to polylogarithmic factors.

Applications. Numerous distributed optimization tasks can

be simplified and optimized by utilizing the part-wise aggre-

gation primitive as a black-box subroutine. Applications

include the MST, approximate Min-Cut, and approximate

single-source shortest path (SSSP) [6,11,14].

Corollary 1 Suppose that a graph G admits tree-restricted

shortcuts of quality q. One can compute an (exact) MST in

Õ(q) rounds and Õ(m) messages with high probability.

As a reminder, in the Min-Cut problem one is given a graph

G = (V , EG) with integer weights w : EG → [1, poly(n)]
and needs to compute a set of edges F ⊆ EG that discon-

nect G into at least 2 components while minimizing the sum∑
e∈F we. An α-approximation to Min-Cut finds a set of

edges that disconnects the graph whose aggregate weight is

at most a multiplicative α factor larger than the optimal value.

Corollary 2 Suppose that a graph G admits tree-restricted

shortcuts of quality q. One can compute an (1 + ε)-

approximate (weighted) Min-Cut in Õ(q) ·poly(1/ε) rounds

and Õ(m) · poly(1/ε) messages with high probability.

In the Single-Source Shortest Path (SSSP), one is given

a graph G = (V , EG) with integer weights w : EG →
[1, poly(n)] and a source s ∈ V , and needs to compute

a spanning tree T ⊆ EG such that for each node u we

have that dT (s, u) = d(s, t) where d(u, v) is the distance

between u, v ∈ V in G with respect to the weight w, and

dT (u, v) is their distance in the tree (with respect to w). An α-

approximation to SSSP requires the tree to satisfy dT (u, v) ≤
α · d(u, v) (note that the inequality dT (u, v) ≥ d(u, v) is

always satisfied).

Corollary 3 Suppose that a graph G = (V , EG) admits tree-

restricted shortcuts of quality q. Each edge e ∈ EG has a

weight we, and let L be the weight-diameter of G. For any

β = (log n)−�(1) one can compute an L O(log log n)/ log(1/β)-

approximate SSSP in Õ(q/β) rounds and Õ(m/β) messages

with high probability.

For instance, in the above corollary, setting β = n−ε, β =
2−�(

√
n), and β = log−�(1/ε) n for a constant ε > 0 one

obtains a logO(1) n, 2
√

log n and Lε approximations to SSSP,

respectively. [14]

General shortcuts vs. tree-restricted shortcuts. One can

easily construct pathological graph examples that admit

good-quality general shortcuts, but do not admit good-

quality tree-restricted shortcuts. For example, one can take

the lower bound graph of [1] which requires �̃(
√

n) rounds

to solve MST and replace each edge with
√

n parallel multi-

edge copies. This immediately yields a Õ(D) = Õ(1) MST

solution via general shortcuts, whereas tree-restricted short-

cuts are constrained by the original �̃(
√

n) lower bound.

Moreover, general shortcuts allow faster algorithms for sev-

eral important graph families. For example, expander graphs

and Erdős-Rényi random graphs admit general shortcuts

of dilation + congestion = Õ(1) for any set of parts; no

such result is possible in the tree-restricted setting. However,

it seems that distributed construction of general shortcuts

is a burdensome task even in highly structured graphs.

The best-known result for shortcut construction and part-

wise aggregation in expander graphs has round complexity

2O(
√

log n) = no(1), significantly worse than the best existen-

tial result [10].

1.5 Related work

The complexity-theoretic issues in the design of distributed

graph algorithms for the CONGEST model have received

123

Low-Congestion shortcuts without embedding 83

Table 1 Upper and lower

bounds for tree-restricted

shortcuts

Graph family Tree-restricted shorcut parameters Lower bound

Block Congestion Quality �(d + c)

General [6] 1 3 O(
√

n) O(D +
√

n) �̃(D +
√

n)

Pathwidth k [13] O(k) O(k) O(k D) �(k D)

Treewidth k [13] O(k) O(k log n) O(k D + k log n) �(k D)

Genus g [13] O(
√

g) O(
√

gD log D) O(
√

gD log D) �(
√

gD

log g
)

Planar [6] O(log D) O(D log D) O(D log D) �(D
log D

log log D
)

Minor-excluded [15] O(D) O(D log n + log2 n) Õ(D2) trivial �(D)

3For general graphs, each part of size |Pi | ≥
√

n is assigned the entire tree; giving them a block param. of 1

and congestion of at most
√

n. Smaller parts can be handled separately in Õ(
√

n) rounds by using intra-part

edges

much attention in the last decade. Researchers have stud-

ied many problems in-depth: Minimum-Spanning Tree [9,

18,19,26], Maximum flow [8], Minimum Cut [7,24], Shortest

Paths and Diameter [4,16,17,21,22], and so on. Most of those

problems have �̃(
√

n + D)-round upper and lower bounds

for some sort of approximation guarantee [1,2,7,21,26]. The

guarantee of exact results sometimes yield a nearly liner-

time bound [4]. Note that almost all lower bounds above

hold for graphs of small diameter (e.g., polylogarithmic in

n). In such graphs we have that
√

n � D, making Õ(D)

algorithms strictly better than those requiring Õ(D +
√

n)

rounds.

2 Preliminary: CONGESTmodel

We work in the classical CONGEST model [25]. In this set-

ting, a network is given as a connected undirected graph

G = (V , EG) with diameter D. Initially, nodes only know

their immediate neighbors and they collaborate to compute

some global function of the graph like the MST. Communi-

cation occurs in synchronous rounds; during a round, each

node can send O(log n) bits to each of its neighbors. The

nodes always correctly follow the protocol and never fail.

The goal is to design protocols that minimize the resource of

time - the number of rounds before the nodes compute the

solution.

We now precisely formalize the notion of solving a prob-

lem in this model, e.g., how is the input and output given.

While the formalization is specifically given for the MST,

any other problem is completely analogous. All nodes syn-

chronously wake up in the first round and start executing

some given protocol. Every node initially only knows its

immediate neighbors and the weight of each of its incident

edges. After a specific number of rounds, all nodes must

simultaneously output (i) the weight of the computed MST

τ (ii) for each edge e incident to it, a 0/1 bit indicating if

e ∈ τ .

3 Tree-restricted shortcuts

In this section we define tree-restricted shortcuts: a restricted

version of low-congestion (i.e., general) shortcuts that are

(i) simpler to work with, (ii) often equally powerful as the

general shortcuts, (iii) offer deterministic routing schemes

and, most importantly, (iv) can be efficiently constructed on

any graph that contains them. Following the definitions, we

rephrase the relevant prior work in our new term, showcase

an efficient deterministic routing scheme, and finally state

our main result and applications.

3.1 Definition

Tree-restricted shortcuts are low-congestion shortcuts with

the additional property that Hi is restricted to (the edges of)

some spanning tree T . The running time of algorithms will

depend on the depth of T , hence we will assume throughout

the paper that T is some tree of depth O(D) (e.g., a BFS

tree); the user of the framework is otherwise free to choose

any tree T .

Definition 4 Let H = (H1, H2, . . . , HN) be a (general)

shortcut on the graph G = (V , EG) with respect to the parts

P = (Pi)
N
i=1. Given a rooted spanning tree T = (V , ET) ⊆

G we say that a shortcut H is tree-restricted or T -restricted

if for each i ∈ [N], Hi ⊆ ET i.e., every edge of Hi is a tree

edge of T .

Congestion and dilation are still well-defined for tree-

restricted shortcuts. However, it is more convenient to use

an alternative block parameter, which in turn also bounds

the dilation. The block parameter (upper-)bounds the num-

ber of components of Pi , where two nodes u, v ∈ Pi are in

different components if they cannot reach each other via Hi .

Definition 5 Let H = (H1, H2, . . . , HN) be a T -restricted

shortcut on the graph G = (V , EG) with respect to the parts

P = (Pi)
N
i=1. Fix a part Pi and consider the connected com-

ponents of the subgraph (V , Hi). If a component contains at

123

84 B. Haeupler et al.

Pi

b1

T

b2

b3 b4

Fig. 1 Illustration of a T -restricted shortcut subgraph for a part Pi ,

composed of block components b1, b2, b3 and b4

least one node of Pi , we call it a block component (e.g., an

isolated v ∈ Pi is a block component). Furthermore, we say

H has block parameter b if the number of block components

associated with each part is at most b.

Note that a connected component of (V , Hi) without

nodes in Pi does not need to be counted; it does not need

any information from the part-wise aggregation of part i . On

the other hand, an isolated vertex {v} where v ∈ Pi must be

counted. Lemma 1 argues that a block parameter of b implies

the dilation of b(2 · depth(T) + 1). From now on, we will

assume that T is chosen to have depth O(D), which is asymp-

totically minimal and achievable via a BFS tree. We note that

distributedly computing a BFS tree is a classic problem with

a simple O(D) rounds CONGEST algorithm [25].

Lemma 1 Let T be a spanning tree with depth at most D

and let H = (Hi : i ∈ [N]) be a T -restricted shortcut with

congestion c and block parameter b with respect to parts

P = (Pi : i ∈ [N]). Then the dilation of H is at most

b(2D + 1).

Proof Fix i ∈ [N]. Contract every block component of Hi

into a supernode and remove all other nodes. This super-

graph will contain b′ ≤ b supernodes and will be connected

(because EG [Pi] is connected). Hence its diameter is b′−1 ≤
b − 1. Every supernode corresponds to a block component

of diameter 2D, implying the diameter of EG [Pi] ∪ Hi is at

most 2bD + b − 1 < b(2D + 1). ��

3.2 Shortcuts on genus-bounded and planar graphs

Tree-restricted shortcuts are particularly useful on genus-

bounded (e.g., planar) graphs. In particular, we can reinter-

pret the low-congestion result of Haeupler and Ghaffari [6]

using our notation.

Theorem 2 (Haeupler and Ghaffari [6]) Let G be a graph

with genus g and diameter D, and let T be any tree with

depth O(D) (e.g., a BFS tree). There exists a T -restricted

shortcut with congestion O(gD log D) and block parameter

O(log D).

We note that the paper [6] proves the analogous claim

about general shortcuts and does not explicitly talk about

tree-restricted shortcuts. However, their proof implicitly

argues precisely about the congestion and block parameter of

tree-restricted shortcuts without explicitly referring to them.

In particular, their O(D log D) dilation bound is implicitly

derived by arguing about the block parameter being O(log D)

and using Lemma 1. However, note that their theorem proves

only the existence of such shortcuts. While the original paper

does describe an algorithm that can in principle be used to

compute them, it requires an embedding of G on a surface of

genus g. It is an open problem to compute such an embedding

efficiently in the CONGEST model.

3.3 Deterministic routing on tree-restricted
shortcuts

In this section, we show how the structure of tree-restricted

shortcuts can be useful in facilitating communication within

parts. From a high level, the tree-like structure allows for fast,

deterministic and simultaneous broadcasting/convergecast-

ing on block components; this can be easily extended to true

part-wise aggregation. For clarity, broadcast is defined as an

operation on a rooted (sub)tree that floods some value from

the root down to all other nodes; convergecast is defined as an

aggregation of nodes’ private values starting from the leaves

and towards the root (ending in the root knowing the final

aggregate). Lemma 2 gives a way how to simultaneously

perform these primitives on subtrees.

Lemma 2 (Routing on subtrees) Let T be a rooted tree of

depth O(D) and let T1, T2, . . . , Tk ⊆ T be a family of sub-

trees where each edge of T is contained in at most c subtrees,

i.e., |{i | e ∈ Ti , i ∈ [k]}| ≤ c. There is a simple determinis-

tic algorithm that can perform a convergecast/broadcast on

all of the subtrees in O(D + c) CONGEST rounds.

Proof We describe the convergecast algorithm. Each mes-

sage sent during the algorithm will have a subtree-ID i

associated with it. Suppose that a node v is in a subtree Ti

(a node can be contained in multiple subtrees). We say (v, i)

is active when v receives a message associated with i from

all of its Ti -children (if v is a leaf in Ti , then (v, i) is imme-

diately active). When (v, i) becomes active, it will schedule

an ID-i message to be sent along its T -parent edge; note that

two messages scheduled along the same edge cannot have

the same ID. Each round, if multiple messages are scheduled

over the same T -edge, the algorithm sends the message asso-

ciated with the ID i that minimizes depthT (root(Ti)). Here,

depthT (v) is the length of the unique path between root(Ti)

and v in T . Ties are broken by the ID i itself. The converge-

123

Low-Congestion shortcuts without embedding 85

cast and broadcasts operations are symmetric, so we will only

prove the lemma for convergecasts.

We now analyze the algorithm. Fix a node v. It is suf-

ficient to prove that no message gets transmitted along v’s

parent edge after heightT (v) + c = O(D + c) rounds where

heightT (v) is the maximum distance between v and any leaf

in T that is a descendant of v (the unique path between the

T -root and the leaf goes through v).

Note that any message that gets transmitted along v’s par-

ent edge must belong to a subtree Ti that contains that edge.

Let I = (i1, i2, . . . , ik) be the IDs of subtrees that contain

v’s parent edge, ordered by their priority (as described). In

particular, we say that Ti p has priority p. The congestion

condition stipulates that k ≤ c.

We will prove by induction that for p ∈ [k] the message

associated with i p will be transmitted no later than round

heightT (v) + p. The claim clearly holds for the leafs of

T . Note that (i) the relative priority-ordering between I is

unchanged with respect to any node of T (other than v), (ii)

any subtree Ti that is contained in the set of descendants of

v, but does not contain the parent edge of v will have lower

priority than any subtree in I .

Fix i p. By the induction hypothesis, messages corre-

sponding to {i1, . . . , i p−1} will be sent strictly before round

heightT (v) + p. It is sufficient to argue that v has received

messages corresponding to i p from all of its Ti p -children

before round heightT (v) + p. However, this can be directly

argued from the induction: for any child w ∈ Ti p we have

heightT (w) ≤ heightT (v) − 1, hence the priority of i p is at

most p with respect to w. Hence v will send the message

corresponding to i p no later than round heightT (v) + p and

we are done. ��

Convergecast and broadcast are used to facilitate routing

in tree-restricted shortcuts. We can intuitively envision the

shortcut edges Hi as a family of subtrees (in our notation:

block components). Aggregation of values within each block

component can be exactly achieved by simultaneously con-

vergecasting and broadcasting in all block components. We

extend this result to true part-wise aggregation.

Theorem 3 (Routing on tree-restricted shortcuts) Given a T -

restricted shortcut with congestion c and block parameter b,

there are deterministic distributed algorithms that terminate

in O(b(D + c)) rounds for the following problems.

1. Electing a leader for each of the parts in parallel.

2. Convergecasting O(log n)-bit messages to the leader of

each part in parallel.

3. Broadcasting a O(log n)-bit message from the leader of

each part in parallel.

Proof All of these algorithms have a common flavor: for

each part we perceive its shortcut edges Hi as a supergraph

of at most b supernodes where each supernode corresponds

to a block component. We proceed to describe each of the

algorithms on the supergraph and implicitly assume that

intra-block communication happens after each step of the

algorithm.

Communication within block components can be done in

parallel using Lemma 2: all the nodes of a block component

convergecast the relevant information to the block-root and

subsequently the block-root broadcasts the result back.

Electing a leader for each part is performed by electing

a leader for each supernode (block component) and broad-

casting the leader to all neighborhood supernodes for b steps.

Every supernode keeps the smallest leader ID ever seen as

its current leader. After b rounds all the supernodes have the

same leader. The algorithm requires O(b(D + c)) rounds as

each of the b broadcasting steps is followed by an O(D + c)

intra-block communication step.

Broadcasting/convergecasting from/to the leader for

each part can be done by building a BFS tree from the

leader-supernode. We can utilize the standard distributed

BFS algorithm on the supergraph requiring O(b) steps. The

algorithm similarly requires O(b(D + c)) rounds as each

of the O(b) BFS steps is followed by an O(D + c)-round

intra-block communication step. ��

We also state a simple technical lemma we use for the

construction of tree-restricted shortcuts.

Lemma 3 Given a T -restricted shortcut with congestion c, a

deterministic distributed algorithm can identify all parts with

at most b′ block components. Specifically, after the algorithm

terminates each node within a part i knows if Pi is composed

of more than b′ block components. The algorithm executes

in O(b′(D + c)) rounds.

Proof Similarly to the proof of Theorem 3, for each part Pi

we consider the (connected) supergraph where each supern-

ode corresponds to a block component of Hi . We need to find

all parts whose supergraphs have at most b′ supernodes.

Each supernode broadcasts its leader for exactly b′ rounds

and every supernode keeps the minimum ID as their current

leader. Subsequently, each leader r (there may be multiple

ones as we have not bounded the block parameter) tries to

build a BFS tree comprised of all the nodes that believe r is

the leader. We can detect the existence of multiple leaders

as in that case each BFS tree will contain two neighboring

supernodes in different BFS trees and report failure. If this is

not the case (all the supernodes of a part belong to the same

BFS tree), we can convergecast the number of supernodes

back to the root and subsequently broadcast their count back.

��

Comparison with routing on general shortcuts: Ghaf-

fari and Haeupler [6] give a method for routing on general

123

86 B. Haeupler et al.

shortcuts in O(dilation · log n + congestion) rounds that

is randomized and assumes a leader is already elected for

each part. They describe a process of leader election via

a complicated randomized bootstrapping process that takes

O(dilation · log2 n + congestion · log n) rounds. We contrast

those results with our current tree-restricted shortcut routing

where leader election is simple, deterministic and essen-

tially no more difficult than a single convergecast+broadcast.

The downside is that non-tree-restricted shortcuts sometimes

offer better quality guarantees and therefore better perfor-

mance.

3.4 Main result and applications

The main contribution of the paper is to introduce a general

framework for finding near-optimal tree-restricted shortcuts

in graphs where the only assurance is that they exist.

Theorem 4 Let G be a graph with a spanning tree T ⊆ G

such that there exists a T -restricted shortcut with conges-

tion c and block parameter b. There exists a distributed

algorithm that finds a T -restricted shortcut with congestion

O(c log N) and block parameter 3b with high probability

(with probability at least 1 − n−O(1), where any constant

can be chosen in the exponent). The shortcut can be found in

O(D log n log N + bD log N + bc log N) rounds.

We note that the Theorems 2 and 4 immediately give

a novel result: an algorithm for constructing shortcuts on

bounded genus graphs.

Corollary 4 Given a genus-g graph with diameter D and

N parts there is a (randomized) distributed algorithm

that computes a tree-restricted shortcut with congestion

O(gD log D log N) and block parameter O(log D) in

O(gD log2 D log N) rounds with high probability.

Next, we explain how to use tree-restricted shortcuts to

distributedly compute the MST on genus-g graphs. Simi-

larly to [6], we incorporate the shortcuts into the classic 1926

algorithm of Boruvka [23].

Lemma 4 Given a genus-g graph with n nodes and diameter

D, there is a (randomized) distributed algorithm that com-

putes the Minimum Spanning Tree in O(gD log2 D log2 n)

rounds with high probability.

For completeness we give a brief proof outline:

Proof Boruvka’s algorithm runs in O(log n) phases. Each

phase starts with a partition of the graph into connected parts;

each part has previously computed the MST on the subgraph

induced by the part. Initially, the algorithm starts with the triv-

ial partition in which each node is in its own part. During each

phase, each part Pi suggests a merge along the minimum-

weighted edge going out of Pi . It is well-known that all such

edges belong to some MST. By computing a tree-restricted

shortcut for each part in O(gD log2 D log n) rounds and

using our convergecast algorithm on it in O(gD log2 D)

rounds we can compute the min-weight outgoing edge from

each part. A slight difficulty remains: many parts could chain

together to form a new part, making the assignment of part

IDs in the newly merged part difficulty. This can be avoided

by restricting the merge shapes to be star graphs: each part can

independently mark itself as a head or tail with probability
1
2

; we are only allowed to merge tails to heads. The number of

phases remains O(log n) as every minimum-weighted out-

going edge will be used for merging with probability at least
1
4

, thus reducing the expected number of parts by a constant.��

4 Constructing tree restricted shortcuts

In this section, we describe an algorithmic framework that

solves the problem of finding near-optimal tree-restricted

shortcuts.

4.1 Overview of the algorithmic framework

Our algorithm FindShortcut uses two separate subrou-

tines:

• Core: This subroutine finds a good-quality shortcut with

respect to at least a constant fraction of the parts. As

a prerequisite, we assume we constructed a tree T with

depth O(D) such there exists a T -restricted shortcut with

congestion c and block parameter b. Note that we only

assume the tree-restricted shortcut’s existence.

Lemma 5 Let T be a spanning tree with depth O(D) and

assume there exists a T -restricted shortcut with congestion

c and block parameter b. The subroutine CoreFast finds

a T -restricted shortcut H′ = (H ′
i)

N
i=1 with the following

properties:

1. The congestion of H′ is at most 8c with high probability.

2. There exists a subset of parts P ′ ⊆ P with size at least

|P ′| ≥ |P |
2

such that each part in P ′ has at most 3b block

components.

The subroutine takes O(D log n + c) CONGEST rounds to

execute with high probability. Upon completion, each node

knows for each of its incident edges which parts are they

assigned to in H′.

We present two versions of the core subroutine for pur-

poses of exposition. We present a deterministic and simper

CoreSlow requiring O(D · c) rounds and a randomized

CoreFast requiring O(D log n + c) rounds. We note that

123

Low-Congestion shortcuts without embedding 87

the CoreFast subroutine is the only randomized building

block of our framework. Therefore, we can replace it with a

deterministic (albeit slower) version at a cost of an addition
c

log n
factor.

• Verification: This subroutine is used to identify the parts

i for which the shortcut edges Hi have a sufficiently small

number of block components. The following result fol-

lows directly from Lemma 3.

Corollary 5 Given a tree T with depth at most D and a

tentative T -restricted shortcut H′ with congestion c, the

deterministic subroutine Verification finds all parts

P ′ ⊆ P whose designated shortcuts have at most b′ block

components. The subroutine takes O(b′(D + c)) CON-

GEST rounds to execute. Upon completion, each node knows

whether its part is in the set P ′ or not.

We use the subroutines in FindShortcut that implements

the construction of Theorem 4.

Algorithm FindShortcut: We run the CoreFast sub-

routine that computes a shortcut H′ = {H ′
1, . . . , H ′

N } with

congestion 8c, but possibly an unacceptably large block

parameter. The next step is to run the Verification sub-

routine that finds all parts whose computed shortcut edges H ′
i

have at most 3b block components. We call those parts good

and fix their computed shortcut edges and discard the rest.

The subroutine is iteratively repeated for O(log N) rounds

at which point the parts have been marked as good.

Proof of Theorem 4 By Lemma 5, in each iteration we find

a shortcut with congestion 8c and block parameter 3b for

at least a half of the parts that have not yet been marked

as good, w.h.p. This implies that after O(log N) iterations

all the parts are marked as good. This further implies that

the congestion of H′ is O(c log N) as the congestion of the

union of partial shortcuts is at most the sum of congestion of

individual partial shortcuts.

Finally, the number of rounds is at most O(log N) times

the combined number of rounds of the CoreFast and

Verification subroutines, namely O(log N · (D log n +
c + bD + bc)) = O(D log N log n + bD log N + bc log N)

w.h.p. ��

4.2 Warm-up: anO(D · c)-round version of the core
subroutine

In this section, we explain a simple and deterministic, but

slower version of the core subroutine named CoreSlow that

terminates in O(D · c) CONGEST rounds. We improve its

round complexity to O(D log n+c) in the following section.

On a high level, the subroutine takes each part Pi and tries

to assign the T -ancestors of nodes in Pi to its shortcut edges

H ′
i . However, this might lead to a large congestion on some

edges. We address this issue by declaring an edge unusable

if more than 2c different parts try to use it. This ensures

the congestion is at most 2c. We show the process provably

leads to a constant fraction parts having small congestion and

a small block parameter.

Preliminaries: As standard, assume we fix a spanning tree

T = (V , ET) of depth O(D) such that G has a T -restricted

shortcut with congestion c and block parameter b. During the

execution of the algorithm some of the edges will be marked

as unusable. Furthermore, we say that a tree edge e ∈ ET

can see a node v ∈ V if v is in the subtree of e and no edge

on the unique path between the lower endpoint of e and v

is unusable. Analogously, an edge can see a part Pi if it can

see any node in Pi . Outline of the CoreSlowsubroutine:

Initially, no edge is unusable. We process the (tree) edges of

T in order of decreasing depth (bottom to top). An edge e is

assigned to all parts Pi that e can see. If an edge is assigned to

more than 2c different part, we mark this edge e as unusable

disallow e from being used at all by any part.

Detailed description of the CoreSlow subroutine:

Each node v maintains a list Lv of part IDs that v’s T -parent

edge can see. The lists Lv are initially empty. The subrou-

tine runs in depth(T) phases where in phase k each node v

at depth depth(T) − k updates Lv simultaneously and send

the entire list Lv to its (v’s) T -parent. Consider a node v that

receives Lv′ for all its T -children v′. We assign the union of

all received lists and the singleton part ID of v (if any) to Lv .

If |Lv| ≤ 2c, we assign the parent edge of v to all the parts

in Lv and transmit Lv to its parent (potentially requiring 2c

rounds). Otherwise, if |Lv| > 2c, we declare the parent edge

as unusable. A direct implementation of this would lead to

a subroutine that takes O(D · c) rounds in the CONGEST

model. Each of the O(D) levels of T must propagate at most

2c part IDs to their parent nodes. However, this bottleneck

can be improved by random sampling, as we show in the next

section with the subroutine CoreFast.

Algorithm 1 CoreSlow

1. At time k each node v at depth depth(T) − k does the following

in parallel:

(a) if v is an element of Pi , set Lv ← {i}, otherwise Lv ← ∅
(b) receive all the part IDs from v’s children and assign their union

to L ′

(c) Lv ← Lv ∪ L ′

(d) if |Lv | > 2c, mark v’s parent edge as unusable

(e) otherwise (serially) send all the part IDs of Lv up to v’s parent

node

2. For each node v:

(a) if the parent edge e of v is marked as unusable, e will not be

assigned to any part

(b) otherwise e will be assigned to all Hi ,∀i ∈ Lv

123

88 B. Haeupler et al.

Lemma 6 Let T be a spanning tree of depth O(D) and

assume there exists a T -restricted shortcut with congestion

c and block parameter b. The subroutine CoreSlow finds

a T -restricted shortcut H′ = (H ′
1, H ′

2, . . . , H ′
N) with the

following properties:

1. The congestion of H′ is at most 2c.

2. There exists a subset of parts P ′ ⊆ P with size at least

|P ′| ≥ |P |
2

such that each part in P ′ has at most 3b block

components.

The subroutine is deterministic and takes O(D·c) CONGEST

rounds to execute. Upon completion, each node knows for

each of its incident edges which parts are they assigned to in

H′.

Proof Let H = (Hi) be any T -restricted shortcut with con-

gestion c and block parameter b and let H′ = (H ′
i) be the

shortcut computed by CoreSlow. We call H the canonical

shortcut and H′ the computed shortcut.

By construction, the congestion of H′ is 2c as any edge

that would be assigned to more than 2c parts is marked as

unusable. Hence we proved property 6.

Let U ⊆ ET be the set of unusable edges marked by the

subroutine. In this paragraph we find an upper bound for |U |.
Consider blaming a part Pi for congesting an unusable edge

e ∈ U when e /∈ EG[Pi] ∪ Hi and e can see Pi , i.e., edge e

was not in the canonical shortcut Hi , but e was congested by

part Pi (and ultimately declared unusable). Each part can be

blamed at most b times because each block component can

only be blamed for the first unusable edge in his T -tree path

towards the T -root. Furthermore, if e is unusable, it takes at

least 2c−c different block components (from different parts)

to be blamed for congesting e. Therefore |U | ≤ N b
c
.

We say that a part Pi missed an edge e when e ∈ EG [Pi]∪
Hi and e ∈ U (consequently, e /∈ H ′

i). Furthermore, call a

part bad if it missed at least 2b edges and good otherwise.

Note that if a part Pi is good, the block parameter of H ′
i is at

most 2b + blockParameter(H) = 3b. This is because each

missed edge induces a new block component in H′ (more

precisely, we can identify each block component of H′ with

either an unique block component of H or an unique missed

edge e ∈ U). Consequently, it is sufficient to prove that the

subroutine finds at least 1
2

N good parts.

As any unusable edge is assigned to at most c parts in the

canonical shortcut, and for a part to be bad we need at least

2b edges to be missed, we have that the number of bad parts

is at most |U | c
2b

≤ 1
2

N . Hence, the subroutine finds at least
1
2

N good shortcuts, proving property 6.

The subroutine terminates in O(D · c) rounds: on each of

the O(D) levels of the tree T all the nodes in parallel must

send the part IDs trying to use its parent edge up the tree. A

node can send up to 2c IDs, each requiring a round for its

transmission. ��

4.3 A fasterO(D log n + c)-round version of the core
subroutine

In this section, we describe a faster version of the core sub-

routine named CoreFast. On a high level, we lower the

running time of CoreSlow by estimating the number of

parts trying to use an edge by random sampling. In partic-

ular, each part becomes active with probability p and we

declare an edge unusable when �(c · p) active parts try to

use that edge.

Preliminaries: In addition to the preliminaries of Core-

Slow we need shared randomness between all the nodes

within a part. In other words, all the nodes of the same part

must have access to the same seeds for a pseudorandom

generator. This can be done by sharing O(log2 n) random

bits among all the nodes of G in O(D + log n) rounds, as

described in [6].

Outline of theCoreFast subroutine: Each part becom-

es active with probability p = γ log n
2c

where γ > 0 is suffi-

ciently large constant. We basically follow the CoreSlow

subroutine, but instead of propagating all O(c) part IDs of

Lv , we propagate only the active ones. An edge is declared

unusable if at least 4c·p = �(log n) (active) part IDs want to

use it. Hence, by a standard Chernoff bound argument we can

claim with high probability that (i) we never propagate more

than O(log n) part IDs through an edge, (ii) each unusable

edge has at least 2c part IDs trying to use that edge, and (iii)

each usable (non-congested) edge has at most 8c part IDs.

After determining which edges are unusable in O(D log n)

rounds, CoreFast must nevertheless find the complete set

of part IDs that can use each edge. This is a tree routing prob-

lem where each message (part ID) has to be routed up the tree

T until the first unusable edge. No message needs to travel

more than D edges and no edge needs to transmit more than

8c different part IDs w.h.p. Hence this routing can be done

in O(D + c) using Lemma 2.

Detailed description of theCoreFast subroutine: Due

to shared randomness, each part independently becomes

active with probability p = γ log n
2c

(all the nodes within the

part agree on this label). Similarly as in CoreSlow, each

node v maintains a list L̃v of active part IDs that its (T) parent

edge can see. The lists L̃v are initially empty. The subroutine

runs in depth(T) phases where in phase k all the nodes at

depth depth(T) − k try to update L̃v in parallel and send L̃v

to its T -parent. Consider a node v that receives Lv′ for all its

T -children v′. We assign the union of all received lists and

the singleton part ID of v (if any) to Lv . If |Lv| ≤ 4c · p, we

assign the parent edge of v to all the parts in Lv and trans-

mit Lv to its parent (potentially requiring O(log n) rounds).

Otherwise, if |Lv| > 4 · p, we declare the parent edge as

123

Low-Congestion shortcuts without embedding 89

unusable. This finalizes the first part of the subroutine where

we determine all unusable edges. It remains to forward the

complete set of part IDs (and not just the sampled ones) that

can use some edge e to the endpoints of e. This is a classic

tree routing problem where no route has its length larger than

D and no edge intersects more than 8c paths w.h.p. Lemma

2 provides a method to route all part IDs in at most O(D +c)

rounds. Note that any two part IDs whose routes share an edge

have the same endpoint (lowest unusable ancestor edge), so

any routing priority between the messages gives the afore-

mentioned O(D + c) bound w.h.p.

Algorithm 2 CoreFast

1. Each part becomes active with probability p = γ log n
2c

2. At time k each node v at depth depth(T) − k does the following

in parallel:

(a) if v is an element of Pi and Pi is active, set L̃v ← {i}, otherwise

L̃v ← ∅
(b) receive all the active part IDs from v’s children and assign their

union to L ′

(c) L̃v ← L̃v ∪ L ′

(d) if |L̃v | ≥ 4c · p, mark v’s parent edge as unusable

(e) otherwise send all the part IDs L̃v up to v’s parent node

3. Each node v initializes Qv with its part ID (or ∅ if not in any part)

4. Each node v does the following in parallel:

(a) add all received IDs to the Qv

(b) if parent edge of v is not unusable and ∃i ∈ Qv that was never

forwarded

i. forward minimum such i along the parent edge

5. Each part ID in Qv can use the parent edge of v, unless it is unusable

Lemma (Restated Lemma 5) Let T be a spanning tree with

depth O(D) and assume there exists a T -restricted shortcut

with congestion c and block parameter b. The subroutine

CoreFast finds a T -restricted shortcut H′ = (H ′
i)

N
i=1 with

the following properties:

1. The congestion of H′ is at most 8c with high probability.

2. There exists a subset of parts P ′ ⊆ P with size at least

|P ′| ≥ |P |
2

such that each part in P ′ has at most 3b block

components.

The subroutine takes O(D log n + c) CONGEST rounds to

execute with high probability. Upon completion, each node

knows for each of its incident edges which parts are they

assigned to in H′.

Proof This proof extensively utilizes methods used in the

proof of Lemma 6. For completeness, we redefine all of the

used terminologies and reprove all of the intermediate results.

Let H = (Hi) be any T -restricted shortcut with conges-

tion c and block parameter b and let H′ = (H ′
i) be the

shortcut computed by CoreFast. We call H the canoni-

cal shortcut and H′ the computed shortcut.

Consider any tree edge. Suppose that the edge can see

t different part IDs. Denote by X1, . . . , X t whether those t

parts are active (in which case X i = 1, otherwise X i = 0).

Let S := X1 + X2 + . . . + X t . Due to sampling, we have

that the expectation E[S] = pt . Since X i ∈ {0, 1} and they

are independent we can apply a standard Chernoff bound

argument giving us that Pr[X1 + . . . + X t ≤ 1
2
E[S]] ≤

exp(−δE[S]) for some constant δ > 0. Suppose now that t ≥
8c, we have that Pr[X1+. . .+X t ≤ 4c· p] ≤ exp(−δ8pc) =
exp(−δ4γ log) = n−γ ′

for a sufficiently large constant γ ′ >

0 (since we choose γ > 0 sufficiently large). We conclude

that if t ≥ 8c, the considered edge will become unusable with

high probability. Since there are only a polynomial number of

different edges, we can use a union bound to conclude that the

congestion of H′ is 8c (for all edges) with high probability

(since the probability of this being violated is at most n ·
n−γ ′ = n−γ+1, i.e., with high probability).

Let U ⊆ ET be the set of unusable edges marked by the

subroutine. In this paragraph we find an upper bound for |U |.
Consider blaming a part Pi for congesting an unusable edge

e ∈ U when e /∈ EG[Pi] ∪ Hi and e can see Pi , i.e., edge

e was not in the canonical shortcut Hi , but e was congested

by part Pi (and ultimately declared unusable). We argue via

a Chernoff bound that each unusable edge e ∈ U can see at

least 2c parts.

The bound is argued in a completely analogous way as

proving the congestion being at most 8c, except the Chernoff

bound we use here is the following one. As before, let S :=
X1 + X2 + . . . X t be the sum of indicator variables of the

part IDs that can see an edge the fixed edge e. Our bound

stipulates that for independent {0, 1} variables X i we have

that Pr[X1 + X2 + . . . + X t ≤ 2E[S]] ≤ exp(−δE[S]) for

some δ > 0. Using it, we conclude that if t ≤ 2c parts can

see e ∈ U , then Pr[S ≥ 2E[S]] = Pr[S ≥ 4c · p] ≤ n−γ ′
for

some sufficiently large γ ′ > 0, giving us that in such a case

the would not be declared unusable with high probability.

Union bounding, we get the same holds for each e ∈ U .

Since each unusable edge e ∈ U can see at least 2c parts,

we blame at least 2c − congestion(H) = c parts for congest-

ing e. Each part can be blamed at most b times because each

block component can only be blamed for the first unusable

edge in his T -tree path towards the T -root. Furthermore, if

e is unusable, it takes at least 2c − c different block compo-

nents (from different parts) to be blamed for congesting e.

Therefore |U | ≤ N b
c
.

We say that a part Pi missed an edge e when e ∈ EG[Pi]∪
Hi and e ∈ U (consequently e /∈ H ′

i). Furthermore, call a

part bad if it missed at least 2b edges and good otherwise.

Note that if a part Pi is good, the block parameter of H ′
i is at

most 2b + blockParameter(H) = 3b. This is because each

missed edge induces a new block component in H′ (more

123

90 B. Haeupler et al.

precisely, we can identify each block component of H′ by

either an unique block component of H or an unique missed

edge e ∈ U). Consequently, it is sufficient to prove that the

subroutine finds at least 1
2

N good parts.

As any unusable edge is assigned to at most c parts in the

canonical shortcut and for a part to be bad we need at least

2b edges to be missed, we have that the number of bad parts

is at most |U | c
2b

≤ 1
2

N . Hence, the subroutine finds at least
1
2

N good shortcuts.

The subroutine takes O(D log n + c) rounds: on each of

the O(D) levels of the tree T all the nodes in parallel must

send the active part IDs that its parent edge can see. If an

edge e is not unusable, we argued via a Chernoff bound that

at most O(c · p) = O(log n) active part IDs can be seen

from e, hence the number of rounds for determining unus-

able edges is O(D log n), w.h.p. Finally, propagating the part

IDs upwards along T described in Lemma 2 takes

O(D + c) rounds, bringing the total number of rounds to

O(D log n + c). ��

References

1. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D.,

Pandurangan, G., Peleg, D., Wattenhofer, R.: Distributed verifica-

tion and hardness of distributed approximation. In: Proceedings of

the Symposium on Theory of Computing (STOC), pp. 363–372

(2011)

2. Elkin, M.: Unconditional lower bounds on the time-approximation

tradeoffs for the distributed minimum spanning tree problem. In:

Proceedings of the Symposium on Theory of Computing (STOC),

pp. 331–340 (2004)

3. Elkin, M.: An unconditional lower bound on the time-

approximation trade-off for the distributed minimum spanning tree

problem. SIAM J. Comput. 36(2), 433–456 (2006)

4. Frischknecht, Silvio., Holzer, Stephan., Wattenhofer, Roger.: Net-

works cannot compute their diameter in sublinear time. In: Proceed-

ings of ACM-SIAM Symposium on Discrete Algorithms (SODA),

pp. 1150–1162 (2012)

5. Ghaffari, M., Haeupler, B.: Distributed algorithms for planar net-

works I: Planar embedding. Manuscript, (2015)

6. Ghaffari, M., Haeupler, B.: Distributed algorithms for planar

networks II: Low-congestion shortcuts, mst, and min-cut. In:

Proceedings of ACM-SIAM Symposium on Discrete Algorithm

(SODA), pp. 202–219. SIAM, (2016)

7. Ghaffari, M., Kuhn, F.: Distributed minimum cut approximation.

In: Proceedings of the International Symposium on Distributed

Computing (DISC), pp. 1–15 (2013)

8. Ghaffari, M., Karrenbauer, A., Kuhn, F., Lenzen, C., Patt-Shamir,

B.: Near-optimal distributed maximum flow: Extended abstract. In:

The Proceedings of the International Symposim on Principles of

Distributed Computing (PODC), pp. 81–90 (2015)

9. Garay, J.A., Kutten, S.., Peleg, D.: A sub-linear time distributed

algorithm for minimum-weight spanning trees. In: Proceedings

of the Symposium on Foundations of Computer Science (FOCS),

(1993)

10. Ghaffari, M., Li, J.: New distributed algorithms in almost mixing

time via transformations from parallel algorithms. arXiv preprint

arXiv:1805.04764, (2018)

11. Haeupler, B., Hershkowitz, D Ellis., Wajc, D.: Round-and message-

optimal distributed graph algorithms. In: Proceedings of the 2018

ACM Symposium on Principles of Distributed Computing, pp.

119–128. ACM (2018)

12. Haeupler, B., Izumi, T., Zuzic, G.: Low-congestion shortcuts with-

out embedding. In: Proceedings of the 2016 ACM Symposium on

Principles of Distributed Computing, pp. 451–460. ACM (2016)

13. Haeupler, B., Izumi, T., Zuzic, G.: Near-optimal low-congestion

shortcuts on bounded parameter graphs. In: International Sympo-

sium on Distributed Computing, pp. 158–172. Springer (2016)

14. Haeupler, B., Li, J.: Faster distributed shortest path approximations

via shortcuts. arXiv preprint arXiv:1802.03671 (2018)

15. Haeupler,B., Li, J., Zuzic, G.: Minor excluded network families

admit fast distributed algorithms. In: Proceedings of the 2018 ACM

Symposium on Principles of Distributed Computing, pp. 465–474.

ACM (2018)

16. Holzer, S., Wattenhofer, R.: Optimal distributed all pairs shortest

paths and applications. In: The Proceedings of the International

Symposium on Principles of Distributed Computing (PODC), pp.

355–364 (2012)

17. Izumi, T., Wattenhofer, R.: Time lower bounds for distributed dis-

tance oracles. In: Proceedings of the International Conference on

Principles of Distributed Systems, pp. 60–75 (2014)

18. Kutten, S., Peleg, D.: Fast distributed construction of k-dominating

sets and applications. In: Proceedings of the International Sympo-

sium on Principles of Distributed Computing (PODC), pp 238–251

(1995)

19. Khan, M., Pandurangan, G.: A fast distributed approximation

algorithm for minimum spanning trees. Distrib. Comput. 20(6),

391–402 (2008)

20. Frank Thomson, L., Bruce M, M., Satish B, R.: Packet routing and

job-shop scheduling in O(congestion+ dilation) steps. Combina-

torica 14(2), 167–186 (1994)

21. Lenzen, C., Patt-Shamir, B., Peleg, D.: Distributed distance com-

putation and routing with small messages. Distrib. Comput. 32(2),

133–157 (2019)

22. Nnongkai, D.: Distributed approximation algorithms for weighted

shortest paths. In: Proceedings of the Symposium on Theory of

Computing (STOC), pp. 565–573 (2014)

23. Nešetřil, J., Milková, E., Nešetřilová, H.: Otakar boruvka on min-

imum spanning tree problem translation of both the 1926 papers,

comments, history. Discrete Math. 233(1), 3–36 (2001)

24. Nanongkai, D., Su, H.-H.: Almost-tight distributed minimum cut

algorithms. In: Proceedings of the International Symposium on

Distributed Computing (DISC), pp 439–453 (2014)

25. Peleg, D.: Distributed Computing: A Locality-sensitive Approach.

Society for Industrial and Applied Mathematics, Philadelphia

(2000)

26. Peleg, D., Rubinovich, V.: A near-tight lower bound on the time

complexity of distributed MST construction. In: Proceedings of the

Symposium on Foundation of Computer Science (FOCS), p 253

(1999)

Publisher’s Note Springer Nature remains neutral with regard to juris-

dictional claims in published maps and institutional affiliations.

123

	Low-Congestion shortcuts without embedding
	Abstract
	1 Introduction
	1.1 Background and motivation
	1.2 A brief overview of low-congestion shortcuts
	1.3 Our contribution
	1.4 Subsequent work: a short survey
	1.5 Related work

	2 Preliminary: CONGEST model
	3 Tree-restricted shortcuts
	3.1 Definition
	3.2 Shortcuts on genus-bounded and planar graphs
	3.3 Deterministic routing on tree-restricted shortcuts
	3.4 Main result and applications

	4 Constructing tree restricted shortcuts
	4.1 Overview of the algorithmic framework
	4.2 Warm-up: an O(Dcdotc)-round version of the core subroutine
	4.3 A faster O(Dlogn + c)-round version of the core subroutine

	Acknowledgements
	References

