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Abstract—Research in social psychology has extensively shown
that in cohesive groups, individuals often mirror each other’s
prosody, facial expressions, and body movements. This mir-
roring effect can help determine the level of comfort or the
extent of engagement and genuine interest between two or
more interlocutors. In this work, using an annotated dataset
consisting of videos of three-person conversations, we aim to
analyze the extent of rapport in each of the triadic groups.
We generate behavioral curves from features extracted from the
participants’ face and body movements. These are the sampled
time series signals resulting from their multimodal features.
Next, the extents of synchrony are analyzed by aligning the
behavioral curves of pairs of participants. The alignment tests
show that basic correlation coefficient measures outperform more
advanced curve matching techniques when used to estimate the
similarities between multidimensional behavior curves. They also
show that in this dataset, synchrony is better observed from
facial expressions than body movements. For this reason, using
facial action units, we show that an end-to-end recursive neural
network (RNN) trained using a regression loss yields good results
in predicting the extent of synchrony in small groups.

Index Terms—Interactional Synchrony; Group Formation
Task; Long-short term memory networks (LSTM);

I. INTRODUCTION

Research has shown that up to two-thirds of human com-
munication occurs via nonverbal channels such as gestures
(or body movements), facial expressions, and affective speech
prosody [1]. Therefore, in the last couple of decades, an
extensive amount of computational work has been done in the
research of analyzing facial expressions and head movements,
and evaluating different prosodic cues for emotion recognition.

Studies have shown that interactional synchrony (the tem-
poral coordination of micro-level social signals between two
or more people communicating in a social setting) plays
an important role in maintaining positive social relationships
among people since it indicates increased affiliation, rapport
and feelings of empathy [2]-[4]. Similarly, relevant studies
recognize the role of synchrony in learning behaviors in work
teams [5]. The literature indicates that synchrony is a hallmark
of relationships, and is produced as a result of rapport [2], [6].
Developing and maintaining rapport is a critical component of
successful interactions in different social settings.
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Fig. 1. Sample video frame where three subjects are undergoing the group
formation task

We therefore expect pairs or groups of individuals with high
cohesion and established rapport to more strongly exhibit the
mirroring effect, a form of interactional synchrony. The mir-
roring effect is a phenomenon which occurs when individuals
mimic each other’s behavior subconsciously to gain and keep
rapport [7]. Thus, we expect the cohesion of a group to directly
correspond to the extent of synchrony occurring within the
group.

The ability to measure the extent of interactional synchrony
among the members in a group can be used as a metric for
cohesion or rapport within that group. The two main research
questions we intend to address in this study, therefore, are:

1) In a conversation involving two or more interlocutors,
can we computationally detect and measure the extent
of interactional synchrony, and if so, how well do these
computational measures compare with human percep-
tions of synchrony?

2) Compared with classical methods for evaluating time-
series data, how well does our proposed approach per-
form?

To this end, when given two or more time series signals,
our goal is to determine if they are interacting with each
other, and if so, to what extent. The specific social context
in which interactional synchrony is studied in this work is
the group formation task, involving in how well informal

234

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on February 19,2021 at 22:27:41 UTC from IEEE Xplore. Restrictions apply.



groups of strangers develop rapport in the presence/absence
of alcohol consumption. The real world data set used for this
work could potentially have some confounding factors as some
of the participants were imbibing alcohol before/during the
interaction. Due to the lack of associated labels!, we could
not account for such factors.

II. RELATED WORK ON COMPUTATIONALLY ANALYZING
INTERACTIONAL SYNCHRONY

While the notion of interactional synchrony has been studied
extensively in the social psychology literature, much less work
has been reported in the computational analysis literature on
this subject. [8] presented an extensive survey of synchrony
evaluation from a multidisciplinary perspective, focusing on
psychologists’ coding methods, non-computational evaluations
and early machine learning techniques [8].

Synchronicity analysis has also been previously approached
by using coupled hidden Markov models (cHMMs) [9], [10] to
classify taichi movements, under the assumption that different
parts of the body moving in taichi will be synchronous to
each other. In a related study, Pentland and collaborators [11]
performed a computational study which involved forms of
interactional synchrony and group influences. Li et al. [12]
presented a supervised model used to predict the outcomes of
video-conferencing conversations in the context of new recruit
negotiations [12]. Yu et al. [13] presented a technique to inves-
tigate interactive synchrony in facial expressions and showed
using the Pearson’s correlation measure, that synchrony fea-
tures were effective at detecting deception. Hammal et al. [14]
evaluated the temporal coordination of head movements in
couples with a history of interpersonal violence, and Chu et al.
[15] developed a search-based technique for unsupervised,
accelerated, multi-synchrony detection.

Group cohesion analysis (not in the context of synchrony)
has been previously approached by using using SVMs on
extracted audiovisual features from group meeting videos
labeled as having high or low cohesion by human annotators
[16]. Bilakhia et al. [17] measured facial mimicry using long
short-term memory (LSTM) and detected facial activities and
Tervern et al. [18] evaluated head gesture mirroring using
smart glasses. In this paper we describe our work on studying
group rapport using both the traditional methods of measuring
time series similarities as well as using a neural network
model, specifically the LSTM.

ITII. REAL-LIFE DATA: THE SAYETTE GROUP FORMATION
TASK (GFT) DATASET

The data for this study was obtained from Girard et al.
[19] which was drawn from a larger study on the impact
of alcohol on group formation processes [20]. To obtain the
dataset, individual subjects were recruited to study the impact
of alcohol on how well individuals in a newly formed group
could establish rapport with one another.

'Due to experimental protocol constraints, the collectors of the data could
not provide labels of the persons in the groups that consumed alcohol

All participants in the study were previously unacquainted
and met for the first time at the experiment. They were in-
structed to consume a beverage and then engage with two other
study participants. The groups of interlocutors were made of
up three such subjects who were engaged for about 30-40
minutes of unstructured interactions. For many participants
we viewed, this was a rather awkward social setting, hence
our considering this as a somewhat abnormal social setting.
The data provided to us by [19] for this study focused on
a 1 minute portion of the entire video where the collectors
believed the participants in the group had become sufficiently
acquainted with each other, i.e. it was not likely that the group
would build additional rapport over the remaining course of
the experiment.

Separate wall-mounted cameras faced each participant and
another camera captured the overall group interaction, result-
ing in a total of four videos - one at the overall group level
showing body movements and three at the individual subject
level showing mainly the face. The dataset contained a total
of 172,800 frames, with 1,800 frames for each of the 96
participants (32 groups of three).

There was a total of 96 participants in this dataset (42%
female, 85% white) and they all consented to having their
audiovisual data used in further experiments.

A. Human annotations of GFT data

In the absence of ground truth labels for the data, we
requested five individual labelers to review all the videos in
the dataset and provide an aggregate group synchrony score
on a Likert scale, based on their perception of how well they
thought the group was interacting. The labelers were instructed
to also observe for synchrony across the entire group. The
scores were in the range of 1 to 5, with 1 implying the
group was completely unsynchronized, 5 being completely
synchronized. The labelers were instructed to judge overall
synchrony so that even if two people in the group were
interacting well with each other, but not with the third person,
the group could not receive a high score. Below are some
guidelines used in assigning scores to the videos.

Score = 1: The people are meeting for the first time
and not trying to form a group.

Score = 2: The people are meeting for the first time
and are trying to form a group.

Score = 3: The people know each other.

Score = 4: The people know each other and are in
the process of forming a group.

Score = 5: The people know each other well and
already function well as a group.

Unfortunately, many statistical methods used to account for
the subjectivity in the labeling, such as Cohen’s Kappa or
Correlations are designed to find disagreements between two
labelers. In this work, we had 5 labelers each annotating or
more videos so that each video had at least three labels.

To account for disagreements, we computed the total vari-
ances for the scores provided by all but one of the labelers (we
did this five times), and removed the set of annotations that
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Fig. 2. OpenPose output on a sample frame from the GFT dataset.

caused the largest variance in the set. We also spot-checked
the variances across each group and when this was larger than
a preset threshold and had additional labelers re-annotate the
video to break the discrepancy. This was done for only two
groups in the entire dataset. The average scores obtained from
the human labelers for each group was now considered as
the human impression of rapport, the new gold-standard we
used to train the network. We utilize human labelers in order
to investigate whether our computational methods can behave
similar to human perceptions of rapport.

B. Processing the GFT dataset

1) Facial Expressions: Each individual’s facial expression
was parsed using OpenFace [21], an open-source toolkit
capable of facial landmark detection, head pose estimation,
facial action unit recognition, and eye-gaze estimation. Action
units (AUs) correspond to various muscle groups on the face
and can range from being fully activated to not activated
[22]. For each trio in the group, we took the three most
active AUs in the dataset. Since the AUs are measured over
time, we obtained a collection of behavioral signals (based
on the face dynamics). The AUs of interest are AU6, AU7
and AUI2 (AU 6 and AU 12 are associated with positive,
happy emotions).

2) Body Joint Movements: Unlike AUs that fully charac-
terize face movements and expressions, there is no similar
well established set of elemental features that govern the
movements and gestures made by the rest of the body. We
therefore employ an open source toolkit for upper body joints
location estimation.

OpenPose [23], [24] is a real-time multi-person open source
toolkit used to detect human body parts in images and videos.
Figure 2 shows an illustration of the OpenPose output when
applied to a sample video from the Sayette GFT dataset.

OpenPose produces 2D locations and confidence values
for 18 keypoints of a body model. For our dataset, we used
only the seven keypoints from upper body parts as subjects

in our dataset are sitting around the table and not moving
around; keypoints from lower body, in our case, are not really
relevant to study the synchrony among them, especially since
the camera could not always have access to the lower body
often occluded by the table or other participants.

3) Augmenting the GFT dataset: We took a sliding window
corresponding to one second (30 frames) and denoted this as
look-back temporal distance of the model we are analyzing.
By sliding over the 1-minute videos with a stride of 1, we
boosted the size of the data significantly. Similarly, as there
was no logical ordering to how we selected the first, second
or third persons, we rotated the orders of the subjects so that
each set of sequences was processed six different times over
six new configurations i.e. for three given sequences A, B, and
C, we had the following configurations - ABC; ACB; BCA;
BAC; CAB; CBA. Each 30-frame length window was labeled
with the overall value that the annotators had ranked the extent
of cohesion of the video of the drinking trio.

IV. ALIGNING BEHAVIORAL CURVES

In this section, we describe three techniques for aligning
behavioral curves to better study the phenomenon of interac-
tional synchrony. We treated the AUs as one set of behavioral
curves and the OpenPose joints as another set and using the
various alignment techniques, our goals were twofold: (i) to
determine the best technique for curve alignment using the
annotations provided by human labelers; and (ii) to determine
whether interactional synchrony was better evaluated at the
facial expression level or at the body movements level.

The three techniques investigated are correlation coefficient,
dynamic time warping and the Riemannian elastic metric.

A. Correlation coefficient - Baseline

Correlation is a statistical measure that indicates the extent
to which two or more variables change together. A positive
correlation indicates the extent to which those variables in-
crease or decrease in parallel. The correlation coefficient is a
statistical measure of the degree to which changes to the value
of one variable predict change to the value of another.

If two signals are correlated but have a time delay or latency
d between them, the latency can be accounted for in form of
a sliding window of size d. The correlation coefficient with
latency d between a pair of sequences X and Yis therefore
given as:

N - Dea—)
Vo~ TP S (i — )

where T and ¢ are the sample means of X and Y.

r(d) ey

B. Dynamic Time Warping

Dynamic Time Warping (DTW) is a pattern recognition
technique used for obtaining a measure of similarity between
two sets of sequentially sampled points. DTW accomplishes
this by computing the deformation cost accrued when aligning
one set of points to the other. The goal of DTW is to solve
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the correspondence problem between the pair of sequential
points by employing an efficient elastic analysis to compute
an accurate and informative similarity metric. DTW alignment
cost can be treated as inverse similarity or inverse-synchrony.

C. Riemannian elastic metric-based curve alignment [25]

The basic idea of this elastic metric is that it gives the
cost required to connect the points with arbitrary paths and to
iteratively straighten the paths, using the gradient of an energy
function, until the path becomes a geodesic. This framework
is general enough to be applied to closed curves in R2. Our
goal is to investigate how well this metric captures the changes
that occur between interlocutors, during conversation.

If we treat the feature-under-investigation for each interlocu-
tor (action units, pose points, efc.) as functions on an interval
[a, b], then, given two curves f; and fo, we need to find a
warping process v : [a,b] — [a,b], so that f; is optimally
aligned to fso+. The resulting alignment criteria should result
in proper distances between aligned functions such that the
solutions are symmetric i.e. the optimal alignment of f; to fo
is the same as that of f5 to f;. Srivastava et al. [25] presented a
distance formulation, the square-root velocity function (SRVF)
which combines the strengths of an elastic metric with a path
straightening method for finding geodesics.

The SRVF of a function f is given as:

q(t) = sign(f(£))\/|£ ()] 2)

Hence, if ¢; and ¢o are the SRVF for f; and f5, and ~ is
the warping coefficient, then,

lgr(8) = a2 (&)l = llax — (g2(¢) o ) V/Al 3)

The goal now is to solve for the optimal ~x that preserves
distances under identical mappings (isometric property). For
interactional synchrony measures, visual cues of synchrony are
obtained as discrete time points so dynamic programming is
used to solve for optimal alignment.

In a nutshell, the algorithm uses the visual cue values from
each of the three interlocutors to form a finite grid over [0, 1]3.
It then seeks to compute the optimal piecewise linear warping
function passing through the grid points.

This metric is similar to DTW rather than working with
Euclidean distances in the space of the original curve function-
als, the elastic metric performs the alignment using geodesics.
The input to the algorithm consists of the two curves being
evaluated; when curves are of different lengths, they are re-
sampled to have the same number of points. The ¢ function is
applied to two curves and the optimal re-parameterization is
applied from one curve to the other using dynamic program-
ming. The geodesic distance between the registered curves is
then computed as the final alignment or warping cost, which
we again interpret as inverse-synchrony.

V. EVALUATIONS BASED ON CURVE ALIGNMENT
A. Computing synchrony metrics

We compute the correlation coefficients, DTW costs and
elastic metrics, first using all the AU values and then using

the three most intense AUs across each group as described
previously. Similarly, we compute the correlation coefficients
and DTW costs separately on the coordinates of the seven
upper body keypoints. The following describe the different
measurements computed:

1) AIIAUCorr: For each video, we consider all 18 fa-
cial AU across 1800 frames and three user pairs, and
calculate the correlation coefficient between each pair
of individuals, i.e.- Individual A-B, Individual B-C,
Individual A-C, in each video for all the 18 AUs. We
then sum the correlation coefficients of the 3 pairs of
individuals to get one aggregate value for each group.
We do this for each of the 32 groups.

2) AIAUDTW: We perform exactly the same process as
described above but instead compute the DTW align-
ment cost. Since DTW is a cost measure, we take the
inverse of the three DTW values and sum across these
inverted cost values to get one value for each group. We
do this for each of the 32 groups.

3) 3AUCorr: For each video, we consider all 18 facial AUs
across 1800 frames but use only the 3 AUs with the
highest values across individuals. Similar to calculating
AlIAUCorr above, we compute this feature using only
three action units.

4) 3AUDTW: We perform exactly the same process as de-
scribed above but instead compute the DTW alignment
cost using only the top 3 AUs.

5) 3AUElastic: We perform exactly the same process as
described above for DTW but instead compute the
elastic metric, which is also a form of alignment cost.
Similar to the process above, we use only the top 3 AUs.
Since the elastic metric is a cost measure, we take the
inverse of the three elastic metric values and sum across
these inverted costs to get one value for each group. We
do this for each of the 32 groups.

6) Pose7DTW: We perform exactly the same process as
described above but instead consider the 7 upper body
joints across a large number of chosen frames and
calculate the DTW alignment costs for each video.

7) Pose7Corr: For each video, we consider the 7 upper
body joints across a large number of chosen frames
and calculate the correlation coefficient between each
pair of individuals, i.e.- Individual A-B, Individual B-C,
Individual A-C, in each video for all the 7 keypoints.
We then sum the correlation coefficients of the 3 pairs
of individuals to get one aggregate value for each group.
We do this for each of the 32 groups.

B. Comparisons with ground-truth

In order to compare the the different metrics calculated with
the annotated label values, we again run Pearson’s correlation
between the human-labeled values and the metrics computed
by each alignment technique. Table I shows the resulting
correlation values, indicating how well the metrics match up
with the annotated label values.
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TABLE I
CORRELATIONS WITH HUMAN-ANNOTATED SYNCHRONY SCORES

Feature combination | Corr with GT

| l |
l AllIAUCorr ‘ 0.3833 ‘
| AlIAUDTW | 0.0318 |
l 3AUCorr ‘ 0.3667 ‘
| 3AUDTW | 00736 |
| 3AUElastc | 00318 |
| Pose7DTW | 0.0264 |
| Pose7Corr | 0.0252 |

C. Discussion on curve alignments

From the comparisons provided in the work, we observe that
although correlation is a relatively simple matching method,
it gives the closest to human-perception synchrony measures,
when compared with more sophisticated curve matching tech-
niques such as DTW and elastic curve alignment metric tested
on both the facial and body parts/pose features. When com-
pared with the human generated label values, the correlation
coefficient resulted a correlation value of 0.3833 and 0.3667
for facial features; while the correlation value was 0.2634 and
0.2052 between the upper body pose features and the human
annotations. Both are statistically significant, when compared
with the other measures and combinations of features. Corre-
lation measures of facial and/or body features can therefore
be used as a quantifiable and repeatable metric for measuring
interactional synchrony among two interlocutors.

VI. DEEP NETWORK FOR PREDICTING SYNCHRONY

Because the facial features were shown to consistently out-
perform body movements, as observed from the experiments
in Section IV, we train various regression neural networks
on the facial features to predict the extent of synchrony
between the interlocutors. We train our main proposed end-
to-end LSTM network using a regression loss function and
follow with training other supporting regression networks,
to investigate their efficacy in estimating synchrony. We in-
volve the supporting methods in order to determine if the
use of coupled features (features extracted from 2 signals
simultaneously) can yield better results than the end-to-end
LSTM, when estimating interactional synchrony. To this end,
the main proposed method is trained all at once, while the
other supporting methods involve a 2-step process where (i)
time-based features are extracted from coupled data; and (ii)
those features are fed into a neural network with a regression
loss function.

All the methods used the same regression architecture on
the same GFT data, where each video is one-minute or 1800
frames long. We used an overlapping window of size 30 and
fed the sub-signals to various architectures. We split the entire
dataset consisting of 32 groups into 25 for training and the
remaining 7 for testing, and rotate through for cross-validation.

Regression
output

Person 3

Person 1

Fig. 3. An LSTM network to predict the synchrony among 3 sets of input
signals, where each set represents a subject. In this diagram, each set has
3 channels - the three strongest AUs. For the sake of clarity, not all the
connections are shown in the input layer, but in reality, every channel of data
from each subject is connected to all the input nodes of every LSTM network.
Note: the number of LSTM networks does not necessarily equal the number
of subjects at the input.

A. Method 1: The end-to-end LSTM network

The main proposed model is an end-to-end LSTM network,
shown in Figure 3, where all the action unit sequences for all
the three subjects are simultaneously fed into every LSTM in
the network. The inputs consisted of 3 sets of 3 channels each
(the 3 most prominently changing AUs). In the input layer,
each LSTM network has a neuron for each channel of the
input for all three individuals.

A total of six LSTM nodes were used to learn coupling in
our dataset. The LSTM network output feeds directly into a
neural network regression module, and learning is performed
end-to-end. We employ this architecture to learn the extent of
interaction between two or more sets of input signals. The net-
work utilizes a lookback feature of one second (or 30 frames).
It is important to note that the number of LSTM networks does
not necessarily have to be equal to the number of subjects or
channels at the input. More information is provided on how
we selected the optimal number of input networks in Section
VI-Al. All neurons use the ReLLU activation function.

During training, the sub-signals were assigned labels by
human annotators who assigned the value to the entire group
of three, as a measure of their perceived level of interaction -
between 1 and 5. A simplified model can be seen in Figure 3.

1) Estimating the number of LSTMs required: In the testing
methodology, the time series data is input to the LSTM
architecture and the output codes from all the LSTMs are
trained using a regression-based mean-squared error (MSE)
loss (Figure 5). To determine the optimal number of LSTM
nodes required, we fixed a working version of the architecture
and recorded the losses when varying the number of input
LSTM networks, from 1 to 9 as shown in Figure 4. The
optimal number of LSTMs for this dataset was 6, although it
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Fig. 4. x-axis is the number of LSTM networks and y-axis is the lowest error
obtained from the model on the same data. The red (or lower curve) represents
the results obtained from training data and the blue (or upper) represents the
results obtained from the validation data.

can be seen that the overall number of LSTMs in this range.
makes only a small difference to the end resu

B. Method 2: The two-step regression netwoi
features

Coupled features are extracted on pairs o
ments, where each AU segment was only 30 fi
coupled features we were interested in included
from autoencoder pairs, those extracted using
coefficients, DTW and elastic metrics. For al
was important to separate the training from
the group level rather than at the segment |
segments from a group are used in training,
from the same group cannot be used in testin;

1) Features from an LSTM autoencoder: A
pling autoencoder is trained to predict the nex
signals when presented with an input set of s
same sequence. The purpose here is to lea
parameters that encode any interactions bet
signals, as well as the parameters that gover
at time t 4+ 1 given the value of time ¢, for ea

The LSTM is trained until convergence on t
and for feature extraction, new data is input for
the representative code generated is the featur

Fig. 5. An LSTM based autoencoder used to extract time-based codes with
any coupling information embedded within the codes (the purple bar). Image
best viewed in color.

The resulting codes were then fed into a traditional neural
network with the mean-squared-error loss function, for predict-
ing real-valued human annotations of perceived synchrony.

2) Features from curve alignment techniques: For the data
setup here, segments of AU data were extracted from the
videos and correlation coefficient and DTW curve alignment
techniques were applied to each segment pair. Unlike the
autoencoder which simultaneous encodes all three participants,
the curve alignments compute scores on pairs of segments
and all three combinations of scores are fed into regression-
based neural network as shown in Figure 6. Each combination
of segment pairs inherits the synchrony label of the entire
3-person video. For example, for a triadic video involving
participants ABC, we break the video into overlapping seg-

AD D~ A

B S L e I o S YL D A AN

regression
network

coupled
features

Fig. 6. The regression network which takes the coupled features from
the combinations of pairs of participants as inputs, and the human labeled
synchrony values as targets. Image best viewed in color.

C. Results and discussion on predicting synchrony

To test the effectiveness of our model, we computed
the mean of the absolute percent error g, given as:

He = % Zfil ‘Yl%ln‘
where NN is the number of samples tested, Y; is the target value
and Y; is the final value predicted by the regression network.
We compute this for the end-to-end network.

The full set of results on the real-life dataset are shown in
Table II below.

We observe that our proposed end-to-end model can learn a
measure of synchrony in-step with the human annotated labels.
It performs better than the other two-step techniques tested
against it, including those based on features extracted from
the LSTM auto-encoder. This is because the proposed model
trains end-to-end from feature extraction to target matching
and propagates its losses over the entire network. This is
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Mean Abs | Mean Abs
Error Error
Method (Training) (Testing)
LSTM end-to-end 0.1728 0.3551
Autoencoder features 0.4551 0.5492
Correlation features 0.6588 0.7235
DTW features 0.6609 0.65315
TABLE T

BEST RESULTS AFTER RUNNING 5-FOLD VALIDATION ON THE DATASET

unlike the other models where any errors incurred in the
feature extraction stage is simply transferred to the regression
stage and there is no opportunity to propagate such errors.
From comparing the training and testing errors, it is not
even clear that the regression network is learning any patterns
when provided the input features extracted from the two curve
alignment techniques tested.

Furthermore, although the LSTM based end-to-end archi-
tecture has the modeling power of traditional deep networks,
it also works well in the presence of limited data as is the case
with the GFT dataset. Hence, based on the analysis and results
reported, we can be confident that the proposed architecture
looks to measure the extent of synchrony even in presence of
limited data.

VII. CONCLUSION

We have successfully addressed the main research ques-
tions we intended to address at the onset of this study. We
extensively analyzed the use of different curve alignment
techniques to determine whether human perceived interac-
tional synchrony is better modeled via facial expressions or
body pose movements. We observed that facial expressions
consistently outperformed body movements, and the standard
correlation coefficient estimation was the best-in-class time
series matching technique (from the tests we performed).

We have also shown that in the presence of limited data,
we are able to computationally detect and measure the extent
of interactional synchrony with minimal errors, when trained
with metrics representing human perceptions of synchrony. We
compared several classical methods for evaluating time-series
data with our proposed approach and show that they do not
perform as well as an end-to-end recurrent neural network in
the presence of multiple interacting signals.
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