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Abstract
Space Syntax is an influential framework for quantifying the relationship between environmental
geometry and human behavior. Although many studies report high syntactic-behavioral
correlations, previous pedestrian data were collected at low spatiotemporal resolutions, and data
transformations and sampling strategies vary widely; here, we systematically test the robustness
of Space Syntax’s predictive strength by examining how these factors impact correlations. We
used virtual reality and motion-tracking to correlate 30 syntactic measures with high resolution
walking trajectories downsampled at ten grid resolutions, and subjected to various log
transformations. Overall, correlations declined with increasing grid resolution and were sensitive
to data transformations. Moreover, simulations revealed spuriously high correlations (e.g. R* = 1)
with sparsely sampled data (< 23 locations). These results strongly suggest that syntactic-
behavioral correlations are not robust to changes in spatiotemporal resolution, and that high
correlations obtained in previous studies could be inflated due to transformations, data

resolution, or sampling strategies.
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Introduction

Space syntax (Hillier, 1999a; Hillier et al., 1996; Hillier and Hanson, 1984) is a
prominent framework for examining the relationship between human behavior and the geometry
of the built environment. Syntactic measures are frequently used to quantify configurational
properties of urban and architectural environments, and many measures have been shown to
correlate with patterns of human movement and usage in a variety of settings, including
museums (Batty, 2001; Turner and Penn, 2002), malls (Okamoto et al., 2013; Omer and
Goldblatt, 2017), conference halls (Mashhadi et al., 2016), hospitals (Haq and Luo, 2012), and
large-scale urban spaces (Turner, 2003). However, previous studies have examined relatively
coarse pedestrian flow data collected at low spatial and temporal resolutions. As a result, the
predictive strength of syntactic measures has not been systematically examined across a variety
of spatial and temporal scales. If space syntax is to serve as a robust predictive framework, the
strength of its correlations with pedestrian movement patterns should be robust to changes in the
spatial and temporal resolution at which correlations are computed. To address this critical gap in
the literature, the present study investigated the robustness of correlations between space syntax
measures and /igh spatial and temporal resolution human walking data over a wide range of
spatiotemporal resolutions.
Overview of space syntax methods

This section provides an overview of space syntax methods and terminology with a focus
on a subset of issues that are relevant to the present study (for more comprehensive introductions
to space syntax concepts and terminology, see Bafna, 2003, and Klarqvist, 1993).

Visibility graph analysis (VGA). In the present study, we focus on syntactic measures

that can be computed from “visibility graphs” (Turner, 2003; Turner et al., 2001). A visibility
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graph is generated by superimposing a grid on a top-down view of a space (e.g., from a CAD
drawing) using space syntax software. Syntactic measures (e.g., isovist area) can then be
computed for each grid cell using topological methods for quantifying the proximity and inter-
visibility of grid cells (Turner, 2003). The resulting analyses and visualizations are frequently
used to examine configurational properties of spaces that may be relevant for predicting human
behavior. Integration, a commonly cited visibility graph measure, is examined in detail in the
present study. The Integration value for a cell is obtained by computing the average depth (i.e.,
topological distance) of that cell to neighboring cells within a specified topological distance,
effectively ranking cells “from the most integrated to the most segregated” (Klarqvist, 1993). A
large number of other syntactic measures have been derived from visibility graphs, yet many of
these measures have not been systematically investigated in a single study.

Pedestrian data. Previous studies have generally collected /ow spatiotemporal
resolution pedestrian data, often manually. Typical methods employed in these studies include
(Conroy, 2001): (1) gate counts, “the cumulative number of people passing over a specified
‘threshold’ within a given timeframe”; (2) spot counts, “the approximate location of all people
present in any room or space at a given moment in time”; (3) occupancy numbers, “the total
numbers of people present in a single space/room during specific time intervals throughout the
day”; and (4) movement traces, most often obtained by researchers transcribing sketched
approximations of paths taken as pedestrians walk through a space. The primary contribution of
the present study is to examine correlations with continuous 4igh spatiotemporal resolution
movement data. A key advantage of virtual reality systems leveraged in the present study is the
ability to automate collection of high resolution movement trajectories using electronic motion

tracking systems.
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Criticisms of space syntax

Space syntax remains the subject of lively debate. A number of thorough criticisms
(Batty, 2001; Jguirim et al., 2014; Kostakos, 2010; Montello, 2007; Netto, 2016; Pafka et al.,
2018; Peponis et al., 1997; Ratti, 2004a, 2004b; Turner et al., 2001), rebuttals (e.g., Hillier &
Penn, 2004), and counter-rebuttals (e.g., Ratti, 2004a) to these criticisms have been advanced.
Prior empirical studies investigating the relationship between space syntax measures and human
movement report a range of correlation values from ranging from weak (e.g., .142; Mora,
Astudillo, & Bravo, 2014) to strong (e.g., .98; Penn, Hillier, Banister, & Xu, 1998). As a result,
the predictive value of space syntax across a variety of spatial scales is in question, and a review
of the literature reveals a number of important criticisms and limitations of prior research. The
present study focuses on evaluating a subset of criticisms of space syntax with a focus on
methodological limitations of previous empirical studies. In the following sections, we discuss
each of these limitations in turn, and describe our experimental approach.

Data transformations and correlation methods. Table 2 (see Supplemental Material:
Tables) summarizes the results from a selection of previous studies (de Arruda Campos, 1997;
Desyllas and Duxbury, 2001; Hillier et al., 1996; Mora et al., 2014; Okamoto et al., 2013; Penn
et al., 1998; Turner, 2003; Turner and Penn, 1999). Taken together, these studies report a wide
range of syntactic-behavioral correlations, yet many studies do not report whether data
transformations were applied to pedestrian or configurational data, or do not report how
correlations were computed. As a result, replicating previous studies has been hindered, casting
doubt on whether high correlations may be a function of methodological decisions. In an
unpublished space syntax software manual, Turner (2014) notes that taking the natural logarithm

of observed pedestrian data is accepted practice when the data are not normally distributed, and
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that correlations of R? = .40 between space syntax measures and log-transformed (In) observed
variables are “expected in space syntax theory,” though the reasons for this expectation are not
made clear. In contrast, Penn, Hillier, Banister, and Xu (1998) investigated correlations between
configurational properties of street networks and flow rates (both pedestrian and vehicular) and
used a data transformation not often used in other studies (taking the fourth root of flow rates).
Sometimes, data transformations are also applied to syntactic measures themselves. For example,
Turner (2003) averaged gate counts from a previous study and applied a log transformation to
agent simulation data. While data transformations are sometimes justified, inconsistent
application of transformations is an important limitation of previous work. Finally, some authors
(e.g., Turner, 2003) report R? as well as significance values for correlations, while others do not.
The present study aimed to address these inconsistencies by systematically investigating the
effects of various data transformations on correlations for many visibility graph measures
computed for a single space.

Spatiotemporal resolution of pedestrian and configurational data. As Desyllas &
Duxbury (2001) note, “one of the methodological issues when using VGA is the effect of
changing the parameter of sampling grid resolution.” Yet the spatial and temporal resolutions at
which human walking data have been collected, as well as the spatial resolution at which
configurational data have been computed, have not been comprehensively and consistently
reported across studies. In general, pedestrian and configurational data have been examined at
the level of meters and minutes rather than at the level of millimeters and milliseconds, limiting
our understanding of space syntax’s predictive capabilities at high spatiotemporal resolution. The
present study is the first to examine correlations between space syntax measures and human

walking data collected at high temporal (~60Hz) and spatial (0.75mm, 0.05°) resolution—on the
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order of milliseconds and millimeters—and to explore how correlations depend on spatial and
temporal binning.

Sampling Strategies. Past studies also vary widely in sampling methods used. For
example, Turner and Penn (1999) calculated “mean isovist integration value[s] of nodes within a
1.5m buffer of each gate location.” And as Silva (2013) notes, when studies are conducted in
professional contexts, modeling of pedestrian and vehicular traffic patterns is frequently done on
an intuitive basis, “following tradition, rather than a statistically sound methodology.” The
present study addresses these limitations by clearly reporting how pedestrian and configurational
data were collected, by more systematically evaluating the robustness of correlations across a
variety of spatial scales and sampling resolutions, and by using a simulation approach to quantify
the impact of sampling strategies.

Characteristics of spaces examined. The underlying mathematical formulations of Space
Syntax theory embody an implicit hypothesis that human behavior is causally linked to the
geometry of the environment. Previous research on the predictive strength of syntactic measures
has primarily examined human movement patterns in rooms and urban spaces. If human
movement patterns are constrained by the geometry of the environment, one would expect that
movement patterns in narrow spaces (e.g., hallways or maze corridors, where movement is
relatively constrained) should be highly predictable relative to movement patterns in more open
spaces (e.g., interconnected rooms, where movement is relatively unconstrained). Testing the
predictive capabilities of syntactic measures by asking participants to navigate restricted maze
corridors provides a strong test of space syntax predictions in enclosed spaces.

The present study
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In sum, the present study contributes to the literature on space syntax by addressing three
key criticisms and limitations of previous work. First, data collection methods are not always
comprehensively reported, and details regarding data transformations applied to syntactic and
pedestrian data are inconsistently reported; the present study addresses this limitation by (a)
thoroughly documenting how the data were collected and transformed, and (b) assessing the
impact of data transformations on correlations. We asked whether (Q1) correlations are sensitive
to data transformations. Second, pedestrian data have generally been sampled at relatively low
spatial and temporal resolutions, and prior studies have not systematically examined the impact
of sampling grid resolution on syntactic-behavioral correlations; we address this by (a) sampling
continuous walking trajectories at high spatial and temporal resolution using a motion tracking
system, and (b) examining whether correlations vary as the spatial resolution of the sampling
grid is increased. We asked whether (Q2) correlations depend on the spatial resolution of the
sampling grid. Third, sampling strategies—in particular, the number of “gates”—used in
previous studies vary widely; to address this, we examined how correlations change when an
increasing number of randomly selected grid locations are used as the basis for computing
correlations. We asked whether (Q3) a small sample of spatial locations would yield spuriously
high correlations.

Methods
The present study was conducted at [removed for peer review].
Participants
A total of 36 participants were included in the analysis (18M, 18F). The mean age of

participants was 20.8 years (SD = 4.35 years). Participants provided written informed consent to
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participate in the experiment in accordance with [name of university removed for peer review]
Institutional Review Board (IRB) requirements, and were paid ($10/hour) for their participation.
Apparatus

Participants walked freely within a 10.5m x 12.5m area in the lab while a tracking system
(InterSense 1S-900, 1mm linear and 1° angular RMS error, 60 Hz sampling rate) recorded head
position and orientation. Stereoscopic images of the virtual environment were presented via a
head-mounted display (HMD, Rockwell-Collins SR80A, 1280x1024 pixels, 63° H x 53° V field
of view for each eye) calibrated to each participant’s inter-ocular distance. Displays were
generated on a Dell XPS 730X desktop computer (50ms total latency).
Displays

The virtual environment (Figure 1A) was a hedge maze containing a central “home”
location, eight unique target objects located at the ends of maze hallways, and four paintings that
provided local landmarks. The environment was created in 3DS Max (Autodesk) and presented
to the participant using Vizard (WorldViz, Version 4.0).

[Insert Figure 1]

Procedure

Participants were brought to the center of a virtual hedge maze, instructed to learn the
locations of the objects in maze while freely exploring for 10 minutes, and informed that they
would be tested on their knowledge of the object locations later in the experiment. When they
walked up to an object, an audio file played telling them the name of that object (e.g.,
“bookcase”). If participants left the 10.5 x 12.5m maze, virtual brick walls appeared to prevent
collisions with the lab’s walls. Background noise (night sounds) was played over headphones,

and a black cloth covered the HMD to block the view of the lab.
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Data Analysis

Here, we present an overview of the analytical approaches used to examine each of our
primary research questions (for additional detail on each approach, see Supplemental Material:
Methods). Both syntactic measures and human walking data were binned at 10 discrete spatial
scales in .01m increments to produce grids where the edge lengths of the cells ranged from
0.01m — 1.00m. Walking data were aggregated across all participants, yielding 1.5 million
positional data points (X, y, time); raw walking data values (W) were obtained by counting the
number of points in each grid cell, and raw syntactic measure (S) values were computed for
corresponding grid cells using depthmapX (Version 0.5b; Varoudis, 2015b). To examine
whether correlations are sensitive to data transformations (Q1), we applied 11 different data
transformations (see Table 1) to all 30 syntactic measures across 10 different spatial resolutions
(bin sizes), and compared the performance of each transformation. To examine whether
correlations decline with increasing spatial resolution (Q2), we used a regression analysis and
plotted R? values against bin size (see Figures 2 and 3). To examine whether spurious
correlations would be obtained when few relatively few sampling locations (NGates) within the
overall sampling grid are used to compute correlations (Q3), we used a simulation approach in
which an increasing number of randomly positioned sampling locations (Ncates) were used to
compute correlations for each measure and bin size using the most frequently effective data
transformation [logio(W)>0 vs. S] (see Figure 4, and Supplemental Material: Figure 7).

Results

Here, we present results with respect to our three primary research questions. Hillier

(1999a) notes that “in most studies the best performing spatial variable is Radius-3 Integration”

[denoted Visual Integration (R3) in the present study]. In contrast, in the present study, we found
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that Metric Node Count (RI) was the best performing spatial variable. Therefore, for simplicity
of presentation, aggregated results are presented for all thirty syntactic measures (see Table 1;
Figures 2 and 3), while more detailed results are presented for two key measures: Visual
Integration (R3), and Metric Node Count (R1) (see Supplemental Material).
Q1: Are correlations sensitive to data transformations?

Determining the best overall data transformation. To identify the most effective overall
data transformation, syntactic-behavioral correlations were computed for 30 syntactic
measures across 10 sampling grid resolutions (see Methods). For each of the 300 resulting
measure-bin size pairs, a series of 11 data transformations (see Table 1) were applied to the data,
yielding 3,300 (300 x 11) correlation (R?) values. The transformation(s) yielding the highest R?
value(s) for each measure-bin size pair were then tabulated (Table 1, n column) and converted to
percentages for each data transformation (Table 1, % column). A summary of this analysis is
presented in Table 1. The logio(W)>0 vs. S transformation produced the highest correlation for
25.9% of the cases examined, followed by /n(W)>0 vs. S (23.7% of cases examined). The
percent score indicates that these two transformations tended to yield the highest correlation
values. In comparison, leaving data untransformed (W vs. S) yielded the highest correlation
values in only 6.8% of cases examined. In sum, we found that (Q1) syntactic-behavioral
correlations were sensitive to data transformations; in particular using logarithmically (log:o and
In) transformed walking data and untransformed syntactic values yielded the highest syntactic-
behavior correlations. Therefore, to ensure that subsequent analyses were charitable toward
space syntax measures (without resorting to algorithmically cherry-picking the best data
transformation for each specific case, as in the previous analysis) we present logio(W)>0 vs. S in

several of the analyses and figures that follow.
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Q2: Do correlations depend on the spatial resolution of the sampling grid?

Part 1: Best data transformation for each measure-bin size pair. For this analysis, we
used whichever data transformation yielded the highest correlation in order to obtain maximal R?
values for each measure-bin pair. For each syntactic measure, a simple linear regression was
calculated to predict syntactic-behavioral correlation strength (R?) as a function of spatial
resolution (bin size). We asked whether (Q2) correlations would decline as the spatial resolution
of the sampling grid is increased, corresponding to negative regression lines. Results appear in
Figure 2.

[Insert Figure 2]

Significant regression equations were found (p <.05) for 24 of the 30 (80%) syntactic measures.
Regression lines had significantly negative slopes for 22 of the 30 (73%) syntactic measures (p <
.05), significantly positive slopes for 2 of the 30 (6.7%) syntactic measures (Metric Node Count,
Gate Counts), and marginally negative (.05 < p <.1) for 2 measures [ Angular Total Depth;
Metric Mean Straight Line Distance (R2)]. Regression equations for the remaining 4 measures
(13.3%) did not reach significance. The syntactic measure that yielded the highest computed
correlation (R? = .54; 0.2 and 0.3m bin sizes) was Metric Node Count (R1); the slope of the
regression line was significantly positive (p <.05); equivalent correlation values (R*> = .54) were
obtained using both the In(W+1) vs. S>0 and logl0(W+1) vs. §>0 data transformations. Several
measures exhibited an apparently nonlinear trend with peaks at intermediate bin sizes [e.g.,
Metric Mean Shortest Path Distance (R1), Figures 2 and 3].

In sum, (Q2) correlations declined as spatial resolution was increased: regression
equations for a majority (22/30 or 73%) of syntactic measures revealed a significant (p <.05)

negative relationship between syntactic-behavioral correlation strength and spatial resolution
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(bin size), and a significant positive relationship was found for only a small percentage (2/30 or
6.7%) the syntactic measures.

Part 2: Correlation (R?) vs. spatial resolution for the best overall transformation
[log10(W)>0]. In this analysis, the best-performing logo(W)>0 vs. S data transformation was
used. For each syntactic measure, a simple linear regression was calculated to predict correlation
strength (R?) based on spatial resolution (bin size). Results appear in Figure 3.

[Insert Figure 3]
Significantly negative regression equations were found (p < .05) for 8 of the 30 (26.7%)
syntactic measures, and (Q2) correlations declined approximately linearly for these measures.
The syntactic measure that yielded the highest computed correlation (R> = .41 at 0.6m bin size)
was Metric Node Count (R1); this is the only measure that exhibited a positive regression
equation (p < .05) with a positive relationship between correlation strength and spatial resolution.
Marginally significant (.05 < p <.1) regression equations were found for 10 of the 30 (33.3%)
syntactic measures, and (Q2) associated regression line slopes exhibited a negative trend,
indicating that correlation strength declined approximately linearly for these measures.
Regression equations for the remaining 12 of 30 (40%) measures did not reach significance. In
sum, (Q2) correlations declined as spatial resolution was increased.
Q3: Does a small sample of spatial locations yield spuriously high correlations?

To examine our third research question, we used a simulation approach to examine the
relationship between correlation strength and the number of randomly-located gate locations
(Ncartes) at which pedestrian data are sampled. Specifically, we ran 100 replications for each of
100 randomly-located gates and 10 bin sizes (resolution). The key result we will examine here is

the change in the correlation as the spatial resolution increased. Prior to running these
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simulations, syntactic data and walking data were computed for each bin size using the
log10(W)>0 vs. S transformation; this transformation yielded the highest percentage of maximal
correlations in the foregoing analysis (see Table 1). Boxplots were used to summarize simulation
results for the two syntactic measures examined in the previous section: Visual Integration (R3)
(Figure 4) and Metric Node Count (R1) (Supplemental Material, Figure 7).

Visual Integration (R3). At all ten spatial resolutions examined, correlations between
Visual Integration (R3) and walking data decreased (4R*; M =-.22, SD = .019) as NGATES
increased. The first value of Ncartes (Figure 4, x-axis) at which a significant change (Ross, 2015)
in local polynomial regression (LPR) fitted R? values (Figure 4, y-axis, blue best fit line) was
detected was NgaTes = 23.

[Insert Figure 4]

This value was consistent across all ten of the spatial resolutions examined. Beyond 23 gates,
correlations tended to stabilize (R?s) at a low but relatively constant value (mean R’s = .095; SD
=.067). With respect to Q3, when fewer than 23 gates were used to compute correlations, perfect
positive correlations (R?> = 1) between Visual Integration (R3) and walking data were sometimes
obtained; this result strongly suggests that using a small number of sampling grid locations can
inflate correlations. Comparisons to random noise. To assess whether this measure correlated
with walking data above chance levels, random noise was substituted for syntactic data, and
correlated with walking data. Initial correlations (R’1) between syntactic data and walking data
(mean R*1= 32, SD = .06) were 28% higher than correlations between random noise and
walking data (mean R*1 = .25, SD = .02), #(10) = 3.58, p < .01. Stabilized correlations (R?s;
beyond Ngares = 23) with walking data were also higher for syntactic data (M = .095, SD = .067)

than random noise data (M = .022, SD = .01), #(9) = 3.47, p < .01. Thus, syntactic measures



SPACE SYNTAX VGA IS NOT ROBUST TO CHANGES IN RESOLUTION Page 15 of
24
performed better than chance. However, with respect to Q3, perfect positive correlations (R? = 1)
between random noise and walking data were sometimes obtained when fewer than 23 gates
were used, strongly suggesting that using a small number of sampling grid locations can inflate
correlations.

Discussion

In this section, we examine our results in relation to each of our three research questions,
and compare our findings to the results of previous studies.

Q1: Correlations are sensitive to data transformations. We examined the relationship
between (a) syntactic-behavioral correlation strength and (b) the underlying spatial resolution of
both syntactic and pedestrian data. At each of the ten spatial resolutions examined, we found that
correlations were highly sensitive to data transformations (see Table 1). The logio (W)>0 vs. S
data transformation yielded the highest correlation for a majority (25.5%) of measures examined,
followed by the /n(W)>0 vs. S transformation (23.4%). The results strongly suggest that
logarithmic (logio or In) transforming of positional data (to correct for departures from
normality) and excluding zero values from the calculation yields the highest correlations between
syntactic measures and continuous walking trajectories. Because data transformations are rarely
reported in prior research, we strongly recommend that researchers check the distribution of their
pedestrian data and clearly report whether the data were transformed.

Q2: Correlations decline as spatial resolution is increased. The results of the present
study strongly suggest that correlations between syntactic measures and continuous walking
trajectories are not robust to changes in scale. We found that when the most effective data
transformation is used, the relationship between correlation strength and spatial resolution is

significantly negative for a majority (24/30 or 80%) of syntactic measures (p <.05). Only one of
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the thirty (.03%) measures, Metric Node Count (R1), revealed a significantly positive
relationship between correlation strength and spatial resolution (p < .05). Thus, for the vast
majority of the syntactic measures examined, correlation strength declined with increasing
spatial resolution.

Q3: A small sample of spatial locations can result in spuriously high correlations.
When fewer than 23 locations (NgartEs) in the virtual environment used in the present study were
used to sample syntactic and pedestrian data, the probability of obtaining spuriously high
correlations increased dramatically. For each of the measures examined using the simulation
approach, using fewer than 23 gates to compute correlations sometimes yielded outlying perfect
positive correlations (R? = 1) between random noise and walking data. However, it is important
to note that stabilized R? values remained higher than chance (i.e., performed better than
correlations between random noise and walking data) when more than 23 gates were used,
suggesting that space syntax measures can at least partially account for the variance in pedestrian
movement patterns. Studies that use a small number of locations in space but show high
correlations should be regarded as spurious because correlations between random noise and
walking data exhibited the same behavior.
Relationship to previous research

Previous observational studies of people walking in real urban and architectural
environments have found correlations between space syntax and walking data ranging from weak
(e.g., .142; Mora, Astudillo, & Bravo, 2014) to strong (e.g., .98; Penn, Hillier, Banister, & Xu,
1998). Hillier (1999b) claims that “in most studies the best performing spatial variable is radius-
3 integration.” In comparison to previous studies, the present study used a controlled laboratory

experiment and virtual reality to examine syntactic-behavioral correlations, and found that Visual
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Integration (R3), reached a maximum correlation of R? = .30 (0.7m bin size, see both Figures 2
and 3). In the present study, the highest computed correlation with continuous walking data was
found for Metric Node Count (R1) [R? = .54 at 0.6m, see Figure 2; R?> = .41 at 0.6m, see Figure
3] using the logio (W)>0 vs. S data transformation; other measures were generally inconsistent
with this pattern of results. Results for Metric Node Count (R1) are all the more curious given
that most previous research has generally focused on Visual Integration.

Desyllas and Duxbury (2001) compared the predictive capabilities of axial maps and
visibility graph analysis (VGA) by sampling pedestrian flow data (NGaTes = 84) in a busy urban
area (St. Giles Circus, London) at a rate of five minutes per hour on two non-consecutive days
(Saturday and Tuesday). They computed syntactic-behavioral correlations for several axial map
measures, and one local VGA measure (the natural log of Mean Visibility at 3m and 5m grid
resolutions). Overall, they found that VGA significantly outperformed axial map analysis (best
VGA correlation: R? = .625; best axial map correlation: R? = .429), and that the correlation
between In Mean Visibility and In Mean Pedestrian Movement Data increased from R? = .456 to
.625 as spatial resolution was increased from 5m to 3m. The present study differs from Desyllas
and Duxbury’s study in several important ways. First, while they examined several axial map
measures and only one VGA measure, we systematically examined a wide variety of VGA
measures. Second, they examined only two spatial resolutions (5m and 3m), and these were
considerably lower than those used in the present study (1.0m — 0.1m). Our results revealed an
opposite pattern of results for a majority (80%) of syntactic measures, and only one measure
[Metric Node Count (R1)] exhibited an outlying pattern consistent with Desyllas & Duxbury's
(2001) results. Because the present study more systematically examined a wider range of spatial

resolutions, these results strongly suggest that correlations for most syntactic measures will be
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strongest when computed at low spatial resolution, and will decline at high spatial resolution. In
addition, we evaluated a relatively large number of syntactic measures, providing baseline data
for future examinations of whether syntactic measures might be grouped into classes that exhibit
similar behavior across spatial scales.
Limitations of the present study

In order to provide a strong test of syntactic predictions in enclosed spaces, we chose to
examine correlations between syntactic measures and continuous, naturalistic walking
trajectories in hallways (a virtual hedge maze), where locomotion is relatively constrained.
Future studies should examine correlations between syntactic measures and continuous walking
trajectories in a variety of large open spaces (e.g., buildings consisting of variably-sized rooms
linked by hallways and rings of circulation), using GIS methods (Lee and Seo, 2013; Liu et al.,
2015), and leveraging tracking data from mobile phones and smart cities to examine the
robustness of space syntax to changes in spatiotemporal resolution across a wider variety of
navigational modes, contexts (both real and virtual), and spatial structures. Based on the present
results, we expect that correlations will be even lower in open spaces because locomotion is
relatively less constrained in open spaces than in restricted corridors. Although our goal-directed
task is one that humans routinely perform in everyday life, it is unknown whether the cognitive
demands of goal-directed navigation match those of the more undirected tasks from previous
work. Thus, future work should also examine correlations when pedestrian data are drawn from a
variety of tasks, in addition to the goal-directed exploration task used in the present study. In
addition, because few comparisons of walking paths in real and virtual environments have been

reported, future work should directly compare environments with matched configurations.
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Past research has clearly demonstrated that space syntax measures correlate with human
movement. Although strong correlations have led some researchers to conclude that spatial
geometry causes particular behavior patterns, we recommend caution in drawing causal
conclusions from correlational data. Future studies should more rigorously explore whether the
features of environmental geometry that are encoded in space syntax measures play a
demonstrably causal role in shaping human behavior and spatial knowledge. To this end, future
studies should examine the robustness of syntactic predictions to parametric manipulations of
environmental geometry. For example, we found that syntactic-behavioral correlations tended to
stabilize when at least 23 gates were used to sample pedestrian data—a number that roughly
corresponds to the number of maze segments between junctions and corners. This suggests a
tentative hypothesis: that strong syntactic-behavioral correlations in enclosed spaces will be
found when the number of gates corresponds to the number of path segments. Our use of
randomly positioned gates underscores that spuriously high correlations can be obtained even
when the gate positions are not placed in principled locations (e.g., corresponding to major path
segments or junctions), which casts doubt on the hypothesis that strong syntactic-behavioral
correlations in enclosed spaces will be found when the number of gates corresponds to the
number of path segments.

Finally, past research suggests that a variety of contextual factors including the presence
of salient objects (e.g., paintings, Tzortzi, 2009), landmarks (Appleyard, 1970; Montello and
Pick, 1993), people (Appleyard, 1970; Dalton et al., 2011; Emo et al., 2012; Peponis et al.,
1990), shops (Hillier et al., 1993), and traffic (Emo et al., 2012) can serve as attractors that
impact pedestrian movement patterns. In contrast to prior observational studies—which have

been constrained by the configuration of existing spaces—the use of controlled laboratory
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experiments in conjunction with virtual reality offers researchers the ability to systematically test
the relationship between contextual factors, configurational properties, and human movement
patterns.
Conclusions

The goal of the present study was to systematically examine how syntactic-behavioral
correlations are impacted by data transformations, data resolution, and sampling strategies. The
present study contributes to the space syntax literature by clarifying the impact of data
transformations, comparing the performance of syntactic measures to a baseline of random noise,
and more closely examining the robustness of correlations to changes in spatiotemporal scale. In
sum, we found that syntactic-behavioral correlations (Q1) are sensitive to data transformations,
(Q2) decline as the spatial resolution of VGA sampling grids is increased, and (Q3) can reach
spurious levels when computed for only a subset of sampling locations in a visibility graph. We
also found that correlations tend to stabilize when at least 23 sampling locations are used in the
calculation, for our environmental configuration. Our results also provide useful baseline data for
assessing the performance of syntactic measures across a wide variety of spatial and temporal
scales. Finally, our findings strongly suggest that space syntax correlations are not robust to
changes in spatial or temporal scale, and that high correlations obtained in previous space syntax
studies may be spuriously high due to previously unexamined effects of data transformations,
data resolution, or sampling strategies. Therefore, we recommend that researchers employing
space syntax methods thoroughly report—and carefully consider—how each of these factors

impact syntactic-behavioral correlations.
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Table 1

Percentage of correlations (N = 410) for which each potential data transformation yielded the highest computed R’
value

oNOYTULT D WN =

Data Transformation n %

Wvs. S 28 68
W>0 vs. $>0 10 24
13 W vs. $>0 25 6l

15 In(W)>0 vs. S 97 23.7
16 In(W-+1) vs. $>0 35 85
17 In(W+1) vs. S 30 7.3
In(W)>0 vs. S>0 12 29

2 logio (W)>0 vs. S 106 259
22 logjo (W+1) vs. S>0 30 7.3
23 logo (W+1) vs. S 27 6.6
24 logio (W)>0vs. S>0 10 2.4

Note: W represents untransformed walking data, S represents untransformed syntactic measure, and parentheses
indicate the order of operations applied to untransformed walking data prior to computing correlations (R?). Overall,
percentages in the % column sum to >100%: at some bin sizes, more than one data transformations produced
equivalent maximal correlation values; this occurred for 110 cases, yielding a total of N =410 (300 + 110)
maximum correlations; in these cases, the counter (n) was incremented for more than one data transformation.

60 https://mc04.manuscriptcentral.com/epb
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Figures

Figure 1. Displays and data collection. (A) Birds-eye-view of the virtual hedge maze. (B) Raw aggregated
walking data from all study participants comprising 1.5 million data points collected at 1.5mm/0.10° spatial
resolution and 60Hz temporal resolution. (C) Low-resolution binned walking data (bin size = 1.0m). (D)
Example of low-resolution space syntax data (Connectivity; bin size = 1.0m) generated by depthmapX. With
respect to panels C and D, note that the simulation parameter NGATES denotes the number of individual grid
cells that have been randomly selected from among all of the available cells in the sampling grid to compute
correlations; in the space syntax literature, this corresponds to the number of experimenters stationed to count
pedestrian flows (i.e., obtain gate counts).
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predictions concerning spatial resolution, bin sizes are plotted in reverse order (i.e., in order of increasing spatial resolution) from left to right. Significance
tests and regression equations (y = mx + b) reported beneath facet titles (syntactic measures) indicate statistical results of linear regression. Significance
levels are indicated as follows: * p <.05; ** p <.01; *** p <.001, ¥ marginal (0.5 <p < 0.1), and results that failed to reach significance are also indicated
(n.s.). Metric Mean Shortest Path Angle (R1) could not be computed for bin sizes ranging from 0.6m to 1.0m.
https://mc04.manuscriptcentral.com/epb



oNOYTULT D WN =

Environment and Planning B: Urban Analytics and City Science

Gate Counts
R?=0.07,1(8) = -0.76, p = 0.472 n.s.
y=0.06x+0.2

Connectivity Ref
R?=0.42,48) =2.39, p=0.044* =
y=-0.14x+0.26

Angular Mean Depth
R®-0.6, t(8) =3.49, p =0.008 **
y=-0.07x+0.08

Angular Node Count
R%-0.38, 1(8) = 2.24, p= 0.056 t
y=-0.16x+0.22

Angular Total Depth
R®-0.39,1(8) =2.25,p=0.054 1 —
y=-0.16x+022

R?-047,1(8)=265,p=0029" -
y=-011x+0.14

=

@
1
1
1

L1 11

o
L}
|
1
|

031
023024 ®

- 016016 0.18
. 012 01 .11

0.19
a1 o101 @

- 2 0.060.05 0.04 0.04 0.03

.09

0.08
005004 9" 0020.030,020.02003

R

3% 020
028 ; 29027
025028025026 .
013
.

Isovist Area
R?-0.42, 1(8) =2.42, p=0.042*
y=-0.17x+0.29

Metric Mean Shortest Path Angle
R?-0.33,1(8)=2,p=0081
y=-0.04x +0.07

Metric Mean Shortest Path Angle (R1)
R?-0.64,1(3) =2.32, p=0.103ns.
y=-0.06x+0.07

Metric Mean Shortest Path Angle (R2)
R?-0.71,1(8) = 4.41, p=0.002 **
y =-0.05x+0.06

Metric Mean Shortest Path Angle (R3)
R?-081,1(8)=588,p=0*"
y=-0.14x+0.13

Metric Mean Shortest Path Distance
R?-0.21,1(8) = 1.46,p=0.182 n.s.
y=-0.08x+0.1

L1111

0.34
028 e
026 -

170190.18 019
L)

P16 -
02 —J 12 01 01 006006 o
.05 0.04 0 0.040.030.02 9 01 0.01 0.01

14 .
09 0.07 @ 008008 X
0.1 —{® 005004 " 0.020.08 g g 0.02 0.03 0.05 2002001001 001002  —TO—2g . 8800400300300
il 7 e e o o o e e O . .

LI I N D D I I B | | I A U I D D B I | LI N D D D I B | rrTrrrTr T 17T LI A I D D N I B | | I I U I I D I N |

S T T T Y

-

0.030030,010.020.01

By
n
: o 9Oc 2
@
1
1
1
T T S Y

Metric Mean Shortest Path Distance (R3)
R?=0.36, t(8) = 2.1, p = 0.068 1
y=-0.15x+0.24

Metric Mean Straight Line Distance
R?-0.26,1(8) = 1.66, p = 0.136 n.s.
y=-0.13x+0.19

Metric Mean Straight Line Distance (R1)
R®-0.35,1(8) =2.08,p=0.0711 -
y=-0.14x+0.24 =

Metric Mean Straight Line Distance (R2)
R?=0.26, t(B) = 1.66, p =0.136 n.s.
y=-0.11x+0.22

Metric Mean Shortest Path Distance (R1)
R?-0.35,1(8) =2.08, p=0.0711 -
y=-0.14x+0.24

Metric Mean Shortest Path Distance (R2)
R?-0.29, t(8) = 1.82, p =0.107 n.s. -
y=-0.12x+0.23 1

1

o
]

|

1

I

o
@

1

1

1
I |

o
@
|
1
1

R2

T 0.32
- 023 ®

. 017
— 014 14
P 0. .1 0.11 0,00

e ® 0.1

8
< %a22330.05 01 008
L]

028

021 @
L]

012 g4
° ® 3 e 00600604

T T A |

Metric Mean Straight Line Distance (R3)
R®=0.29,1(8)=1.79, p=0.112n.s.
y=-0.13x+0.23

Metric Node Count
R?-0.3, 1(8) =1.84, p=0.103 n.s.
y=-0.12x+0.21

-1 12%050.12

DS 0,09 0.08 0,08

N T Y I |

Metric Node Count (R1)
R?=0.03, 1(8) = -0.52, p = 0.616 n.s.
y =0.05x+0.25

r T rrrrTr T T T1TT

Metric Node Count (R2)
R®=0.08, 1(8) = 0.86, p=0.414 ns.
y =-0.06x+0.27

I T T Y I I |

T Y A |

Metric Node Count (R3)
R®=0.34, 1(8) = 2.08, p=0.077 t
y=-0.14x+0.31

039
026%2° o2

¥ ®o22028
0160.14
. L]

Point First Moment
R®=0.57,1(8) = 3.23, p=0.012"
y=-0.12x+0.2

17 170'22
017017 @ 014013012

. 0.08 9.0 0.07

Point Second Moment
R*=0.71,1(8) = 4.41, p = 0.002 **
y=-0.11x+0.15

0.18
120.12043 757011 01 g g9

0.05 0.04 0.05

- 0.260.26
L]

11T T 1T T 1771771

Through vision

-] R*=028,1(8)=1.77,p=0.114ns.
- y=-0.1x+0.25

022025022
e g 018

L1111

Visual Integration

R =0.39, 4(8) =2.26, p =0.054
y=-0.15x+0.28

0.33
ozang‘ .
7 0.2 0480.18
'y -13 013012

Visual Integration (R1)
A*=0.3,1(8) = 1.84,p =0.103 n.s.
y=-0.12x+0.21

N T |

015
o 12 901205 0.08 0.8

117117 1T T TT

Visual Integration (R2)
R®=0.35, 1(8) = 2.07, p = 0.072
y=-0.17x+0.27

L] 0.130.18
ry 1011900
O

R

1

Visual Integration (R3)
R*=-0.33,1(8) = 1.96,p=0.085 1
y=-014x+0.29

.23 @ 0.21
] 0.2 0.2

14 0.130.13
.

L L L L
10 08 06 04 02
Bin Size

1.0 0.8 06 0.4 0.2
Bin Size

10 08 06 04 02
Bin Size

Fr T 1T rrrrr 1
10 08 06 04 02
Bin Size

Fr T rrrrrr7J
10 08 06 04 02
Bin Size

10 08 06 04 02
Bin Size

Figure 3. Correlation (R?) vs. Spatial Resolution for Best Overall [log10 (W)>0 vs. S| Data Transformation. In order to facilitate interpretation with
respect to predictions concerning spatial resolution, bin sizes are plotted in reverse order (i.e., in order of increasing spatial resolution) from left to right.
Significance tests and equations (y = mx + b) reported beneath facet titles (syntactic measures) indicate statistical results of linear regression. Significance
levels are indicated as follows: * p <.05; ** p <.01; *** p <.001, T marginal (0.5 <p <0.1), and results that failed to reach significance are also indicated
(n.s.). Note: The Metric Mean Shortest Path Angle (R1) calculation in depthmapX could not be computed for bin sizes ranging from 0.6m to 1.0m.
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Figure 4. Simulations: Visual Integration (R3). x-axes (Noares): number of randomly sampled gate locations; 100 replica-
tions were simulated for each value of Neares. y-axes: R? values between the 100 simulations and the walking data. The
mean and range are displayed for each value of Noares. Boxplot whiskers: min/max of 1.5x interquartile range. Black dots:
outliers. Trend lines: best fit line for local polynomial regression (LPR) fit. CP (red vertical line): first estimated change
point value in LPR fitted R* values. R’/ initial R* value of LPR fit line (at Noates = 3). R’s: stabilized R* value, estimated by
obtaining the mean of all LPR fitted R” from Neares = CP gates to Noares = 100. AR” = R’, — R’. For each value of Neares,
100 simulation runs were performed. Boxplot hinges: 25™ and 75™ percentiles.
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SUPPLEMENTAL MATERIAL
Methods
Data Analysis

Data were analyzed using R (Version 3.3.1; R Core Team, 2016), R Studio (Version
1.0.136), Python (van Rossum and Drake, 2001), and depthmapX (Version 0.5b; Varoudis,
2015b). Points (x,y) defining the maze boundaries were imported into Adobe Illustrator’s graph
tool, converted to lines, and then exported to .dxf format. The maze and human data were
imported into depthmapX (Figure 1B), and then binned at a variety of spatial resolutions.

Spatial binning. Because the walls of the maze corridors in the present study were 1.25m
wide, employing bin sizes larger than 1.0m did not produce sensible results (e.g., a bin size of
1.1m produced cells that straddled both maze corridors and the inaccessible spaces between
corridors). Due to the combinatorial explosion associated with computing space syntax measures
at very high spatial resolution, it was impractical to compute space syntax measures for bin sizes
smaller than .01 meters (3.94 inches).

Agent analysis. Default depthmapX settings for agent analysis were used, with the
exception of a few parameters that were set to approximate those of the experimental design (for
a detailed discussion of setting parameters for agent-based analysis using visibility graphs, see
Turner 2003). First, the “Analysis length (timesteps)” parameter was set to 43,200 in order to
approximate the parameters of the exploration phase (12 mins of exploration x 60 seconds per
min x 60 Hz walking data sampling rate). Agents were released from a position at the center of
the maze roughly corresponding to the location at which participants began the experiment.

Finally, “Record trails for N agents was set to N = 36, corresponding to the number of
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participants in the experiment. As Turner (2003) notes, these agent based analyses “approximate
a Markov chain operating through locations on the visibility graph.”

Data alignment and correlation method. Due to minor inconsistencies between
depthmapX’s coordinate system and the coordinate system employed in R (which ranged from -
10 to 10), a custom R script was used to align the configurational bins and binned pedestrian
count data. Matrices containing binned walking data (Figure 1C) and syntactic measures
computed with the same spatial resolution (Figure 1D) were superimposed and then
systematically shifted (up, down, left, and right) until an optimal overlap was found using a least-
squares criterion (maximum Pearson’s product moment R? value).

Data Transformation Analysis: Examining whether (Q1) correlations are sensitive
to data transformations. Silva (2013) explicitly recommends log transforming pedestrian
movement data to ensure that both movement and syntactic data follow normal distributions,
enabling statistical comparisons between them. Exploratory data analysis suggested a variety of
possible related data transformations beyond those recommended by Silva (2013), so we decided
to systematically examine the impact of additional data transformations on correlation strength.
First, raw walking data (W) values were correlated with raw syntactic (S) values (W vs S).
Second, because it was possible to obtain syntactic or walking data values of zero, the analysis
was restricted to values that were greater than 0 for both the walking data and space syntax data
(W>0 vs §>0). Third, the natural logarithm of values produced using the previous method was
also examined. Finally, because log;¢(0) and In(0) are undefined, and because the log+1
transformation is commonly used to correct for departures from normality, log+1 transformed

walking data was also compared to raw syntactic values [e.g., log(W+1) vs. S, and In(W+1) vs.

S].
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Regression Analysis: Examining whether (Q2) correlations depend on the spatial
resolution of the sampling grid. We wished to be conservative in testing (Q2) whether
correlations would decrease with increased spatial resolution. This required identifying data
transformations that would be most charitable (i.e., that would allow space syntax measures the
greatest chance to remain high as we increased the spatial resolution of the underlying sampling
grid) toward a wide variety of measures and spatial resolutions (bin sizes). To accomplish this,
two complementary approaches were taken. First (Part 1), we identified and opportunistically
applied whichever data transformation (of the 11 transformations examined) produced the
highest correlation for a given measure-bin pair. Second (Part 2), we identified a single (best
overall) data transformation that produced maximal correlations for the largest percentage of
measure-bin size pairs (see Table 2).

Simulations: Examining whether (Q3) a small sample of spatial locations would
yield spuriously high correlations. Past research has generally sampled pedestrian data at
subsets of locations (“gates” or grid cells) within the overall VGA sampling grid, rather than
sampling pedestrian data at all possible sampling grid locations. Historically, the number of
“gate” locations (Ngatgs) has been limited due to data collection constraints (e.g., needing large
numbers of researchers to collect data, or relative ease of counting pedestrians passing through
doorways), and because gates are often positioned at locations convenient for researchers, it is
possible that high correlations obtained in previous studies may be due to selection bias. In
contrast, the motion tracking system used in the present study recorded all possible locations
within the sampling grid, providing a more comprehensive assessment of syntactic predictions.
In addition, we examined how correlations vary as increasingly large subsets of grid cells are

randomly selected, simulating how stationing an increasing number of randomly located
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“experimenters” (NgaTes) to record gate counts impacts correlations. We evaluated whether
using small subsets (n = 3) of grid cells to compute R? values would yield spuriously high
correlations, and whether sampling from an increasing number of locations (up to n = 100)
would yield more reliable or “stable” correlations (denoted RZ%s).

Several approaches were used to quantify how syntactic-behavioral correlations (R?
values) vary as the number of “gates” (Ngargs) is increased. First, 100 replications (R? values)
were computed for each simulated value of Ngatgs (this corresponds to randomly distributing
100 distinct sets of N “experimenters” to count pedestrian flows for each Ngargs value, where N
= NgaTEs), yielding a total of 100,000 simulated R? values [(100 gates) * (100 replications/gate)
* (10 bin sizes)] for each syntactic measure. Exploratory data analysis suggested that (a) R?
values were highest when the number of sampling grid locations (Ngates) was relatively low,
and that (b) the mean R? value appeared to decline exponentially, before stabilizing above a
critical value of Ngatgs. Therefore, a change point approach was used quantify the presence of
inflections or “change points” (CP, the gate count at which correlations tended to stabilize) in
simulation data; thus, CP is the critical measure used to assess the minimum number of sampling
grid locations (NgaTes) required to obtain reliable estimates of correlation strength at a given grid
resolution.

Change points were detected by first computing local polynomial regression (LPR) fits
for simulated R? values as a function of Ngatgs (using the “loess” function from R’s “stats”
package), and then obtaining the first detected change point in these regression fits (using R’s
“cpm” package) (Ross, 2015). The initial LPR fitted the R? value at the minimum number of
gates examined (Ngatgs = 3), indicated by R?. The arithmetic mean of the LPR fitted R? values

between Ngates = CP and Ngates = 100 was used to estimate the point at which R? stabilized at a
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relatively constant value (R%s). Finally, the difference between the two R? values (AR? = R —
R?%5) was computed to examine how correlations vary as the number of sampling grid locations
(NgatEes) was increased.

Results
Q2: Do correlations depend on the spatial resolution of the sampling grid?
Heatmaps for Leading Syntactic Measures

This section examines whether (Q2) correlations depend on the spatial resolution of the
sampling grid by discussing data for a syntactic measure that generally performs well in the
space syntax literature [Visual Integration (R3)], and for the syntactic measure that yielded the
highest correlation obtained in the present study [Metric Node Count (R1)]. Heatmaps in Figures
5 and 6 plot syntactic values and binned walking data at corresponding grid resolutions for
Visual Integration (R3) and Metric Node Count (R1) respectively. Heatmap values and
correlations were computed at each bin size after applying a Log;o(W)>0 vs. S data
transformation; color scales indicate data ranges and color mappings.

Heatmaps and Correlations for Visual Integration (R3). As previously noted,
Integration is a commonly reported measure in the space syntax literature. Visualizations of
Visual Integration (R3) and binned walking data for all 10 bin sizes appear in Figure 5.

[Insert Figure 5]
For this measure, R? values increased from R? = .17 at the lowest spatial resolution (1.0m) to a
maximum of R? = .37 at an intermediate resolution (0.7m), and decreased to R? = .13 at the
highest spatial resolution (0.1m) examined. Thus, we found that (Q2) correlation strength

decreased (by .05) as spatial resolution was increased. It is worth nothing that R? values reached
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a peak at R? = .37, which may provide support for the notion that there is an ideal resolution for
syntactic measures (Al Sayed et al., 2014; Turner et al., 2001).

Heatmaps and Correlations for Metric Node Count (R1). Visualizations of Metric

Node Count (R1) and binned walking data for all 10 bin sizes appear in Figure 6.

[Insert Figure 6]
Metric Node Count (R1) yielded the highest correlation value found in the present study. For this
measure, R? values increased from R? = .18 at the lowest spatial resolution (1.0m) to a maximum
of R> = .41 at an intermediate resolution (0.6m), and decreased to R*> = .19 at the highest spatial
resolution (0.1m) examined. With respect to Q2, this syntactic measure exhibited a more
complex pattern of results than we predicted, with correlations peaking at intermediate bin sizes
(see Figures 2 and 3), which may be consistent with the claim that there is an ideal spatial scale
for computing syntactic-behavioral correlations (Al Sayed et al., 2014; Turner et al., 2001).
Q3: Does a small sample of spatial locations yield spuriously high correlations?

Each boxplot (Figures 4 and 7) shows simulated R* values (y-axis) against the number of
randomly sampled gate locations (x-axis NgaTgs) for a given bin size. Boxes and whiskers
summarize the distribution of the results from all 100 replications at each value of Ngatgs;
whiskers extend to the minimum and maximum simulated R? values, and extend no further than
1.5 times the interquartile range (IQR); box hinges indicate the 25" and 75t percentiles of the
simulated R? values; outlying points are indicated as black dots.

Metric Node Count (R1). At all ten spatial resolutions examined, correlations between
Metric Node Count (R1) and walking data decreased (4R?; M = -.18, SD = .042) as NGaTes

increased. The first value of Ngares (Figure 7, x-axis) at which a significant change (Ross, 2015)
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in LPR fitted R? values (Figure 7, y-axis, blue best fit line) was detected was Ngates = 23, just as
we found for Visual Integration (R3).
[Insert Figure 7]
This value was consistent across all ten of the spatial resolutions examined. Beyond 23 gates,
correlations tended to stabilize (R%g) at a low but relatively constant value (mean R’s = .258; SD
=.151). With respect to Q3, when fewer than 23 gates were used to compute correlations, perfect
positive correlations (R? = 1) between random noise and walking data were obtained, strongly
suggesting that using a small number of sampling grid locations can inflate correlations.
Comparisons to random noise. To assess whether this measure correlated with walking data
above chance levels, random noise was substituted for syntactic data, and correlated with
walking data. Initial correlations (R?) between syntactic data and walking data (mean R* = .43,
SD = .13) were 72% higher than correlations between random noise and walking data (mean R*
=.25,8D = .01), 1(9) = 4.37, p < .01. Stabilized correlations (R?s; beyond Ngatgs = 23) with
walking data were also higher for syntactic data (M = .257, SD = .15) than random noise data (M
=.02, 8D =.001), 1(9) = 4.98, p <.001. Thus, syntactic measures performed better than chance.
However, with respect to Q3, when fewer than 23 gates were used to compute correlations,
perfect positive correlations (R? = 1) between random noise and walking data were obtained,
strongly suggesting that using a small number of sampling grid locations can inflate correlations.
Discussion
Local maxima. Some measures exhibited a small “hump” or local maximum in
correlation strength (R?) at an intermediate spatial resolution near 0.7m (see Figures 2 and 3). In
an effort to adopt a scale of analysis commensurate with typical human walking behavior, Turner

et al. (2001) employed a Im grid spacing, and Al Sayed et al. (2014; depthmapX handbook)
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recommends that researchers depthmapX users select “a sensible grid spacing values that match
the human scale (0.6 - 0.7 meters).” Thus, our results could be interpreted as supporting the
claim that there is an optimal spatial scale for correlating space syntax measures with pedestrian
behavior; the large number of syntactic measures examined in the present seems to support the
recommendations made by other researchers. However, we urge caution with respect to this
interpretation of our results. While several previous studies (Emo et al., 2012; Ferguson et al.,
2012; Turner, 2003) cite Gibson’s (1950, 1986) ecological approach to visual perception as the
theoretical basis for positing a causal relationship between syntactic variables and pedestrian
behavior, they do not clearly articulate why syntactic-behavioral correlations should be maximal
at human scale. Moreover, operational definitions of “human scale” have been extensively

debated, and remain controversial (see Ewing & Handy, 2009 for a review).
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Tables

[Insert Table 2]
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1 Table 2

2 Summary of syntactic-behavioral correlations found in selected previous studies

3

4 Study Mode Environment Syntactic Measure(s) Data Transformations Correlations

5

6 Hillier et al. (1996) Walking Museum Integration In (movement rates) 37<R*<.86

7

8

9 de Arruda Campos Walking Urban area Integration (R3) (Unknown) 81 <R*< .88

10 (1997) Integration (RN) .80 <R?*< .80

11 e . . .

12 Penn, Hillier, Banister, Vehicle Urban area Integration (R3, R5, R7, R9) Fourth root of 34<R*< 83

13 and Xu (1998) flow rates

14 Walking Urban area Mean integration (R3) and Net capacity R>= 98

15 development density

16

17 Turner & Penn (1999)  Walking Museum Isovist Integration Log of mean R?>= 585

18 occupancy levels

;g Store Isovist Area 324 <R?>= 578

21

22 Desyllas & Duxbury Walking Urban area Axial Map Analysis In (mean visibility) and In (mean ~ R? = .456 (5m)

23 (2001) (5m and 3m) pedestrian movement data) R?>=.625 (3m)

24

25

26 Turner (2003) Walking Urban area Various Log transformed agent simulation .29 < R?<.73

27 (3m) data

28

29 Turner (2007) Walking Museum Through vision In (movement rates) 68 < R*<.74

30 (agent simulation)

31 Mora, Astudillo, and Walking Urban area Gate counts Mean gate counts over six 142 <R?2< 271

32 Bravo (2014) (Ngates = 203) consecutive workdays

33

34 Okamoto et al. (2013)  Walking Commuter rail mall ~ Gate counts Connectivity, visual step depth, 2 <R*<.598

35 (Ngates = 50) shortest distance, integration

36

g; Note: Mode column indicates whether pedestrian (walking) data or vehicular data were correlated with syntactic measure(s). Correlations column includes

39 minimum and maximum syntactic-behavioral correlations found in the study. Ngargs = the reported number of gate locations at which pedestrian flows were
counted.

40

41

42

43

44
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Bin Visual Walking Bin Visual Walking
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Figure 5. Heatmaps and Correlations for Visual Integration (R3). Heatmap values and correlations were
computed at each bin size after applying a Logl0(W)>0 vs. S data transformation. For Visual Integration
(R3), colors indicate raw syntactic measure values (S). As previously noted, the Integration value for a grid
cell is obtained by computing the average depth (i.e., topological distance) of that cell to neighboring cells
within a specified topological distance (radius), effectively ranking cells “from the most integrated to the
most segregated” (Klarqvist, 1993). For the walking data, colors indicate Log10(W)>0 transformed position
data count values computed for each grid cell; the same walking data are plotted in both Figures 5 and 6.

https://mc04.manuscriptcentral.com/epb



Page 49 of 50

oNOYTULT D WN =

QuuuuuuuuuubdbbdDDdDDDDMDMNDEDMNDWWWWWWWWWWRNNNNNNNNNN= =2 2 29299230999
VWO NOOCULLhAWN-_rOCVONOOCTULDWN—_,rOCVOONOOCULDDWN=—_,rOUOVUONOOCULPMNWN—_ODOVUONOUVPSD WN =0

Environment and Planning B: Urban Analytics and City Science

Bin Metric Node Walking Bin
Size R? Count (R1) Data Size R?

- % E .

09m .16 [ 0.4m .40
u

0.3m .27

0.2m .25

2 34567289 2 4 6 8 10

N % E ‘19

3456 7 8 9

S Logl0(W)>0

Metric Node
Count (R1)

8 10 12 2 4 6 8 10

IS
o4

8 10 12 14 16 18 20 2 4 6 8 10

10 15 20 25 30 35 2 4 6 8 10

100 150 200 250 300 2 4 6 8

S Logl0(W)>0

Figure 6. Heatmaps and Correlations for Metric Node Count (R1). Heatmap values and correlations were
computed at each bin size after applying a Logl0(W)>0 vs. S data transformation. For Metric Node Count (R1),
colors indicate raw syntactic measure values (S). Metric Node Count (R1) is the number of neighboring nodes
within a specified topological distance (radius) (Turner, 2004). For the walking data, colors indicate
Logl10(W)>0 transformed position data count values computed for each grid cell; the same walking data are

plotted in both Figures 5 and 6.
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tions were simulated for each value of Noares. y-axes: R? values between the 100 simulations and the walking data. The

mean and range are displayed for each value of Noares. Boxplot whiskers: min/max of 1.5x interquartile range. Black dots:

outliers. Trend lines: best fit line for local polynomial regression (LPR) fit. CP (red vertical line): first estimated change

point value in LPR fitted R* values. R’ initial R* value of LPR fit line (at Noares = 3). R’ stabilized R* value, estimated by
obtaining the mean of all LPR fitted R from Neares = CP gates to Noares = 100. AR =

R’ — R’ For each value of Ngars,

100 simulation runs were performed. Boxplot hinges: 25" and 75™ percentiles.
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