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Abstract 
 
We tested four hypotheses about the structure of spatial knowledge used for navigation: (1) the 

Euclidean hypothesis, a geometrically consistent map; (2) the Neighborhood hypothesis, 

adjacency relations between spatial regions, based on visible boundaries; (3) the Cognitive 

Graph hypothesis, a network of paths between places, labeled with approximate local distances 

and angles; and (4) the Constancy hypothesis, whatever geometric properties are invariant during 

learning. In two experiments, different groups of participants learned three virtual hedge mazes, 

which varied specific geometric properties (Control Maze, Elastic Maze, Swap Maze). Spatial 

knowledge was then tested using three navigation tasks (metric shortcuts, neighborhood 

shortcuts, route task).  They yielded the following results: (a) Metric shortcuts were insensitive to 

detectable shifts in target location, inconsistent with the Euclidean hypothesis. (b) Neighborhood 

shortcuts were constrained by path boundaries in the Elastic Maze, but not in the Swap Maze, 

contrary to the Neighborhood and Constancy hypotheses. (c) The route task indicated that a 

graph of the maze was acquired in all environments, including knowledge of local path lengths. 

We conclude that primary spatial knowledge is consistent with the Cognitive Graph hypothesis. 

Neighborhoods are derived from the graph, and local distance and angle information is not 

embedded in a geometrically consistent map.  

 Keywords: human navigation, cognitive map, cognitive graph, spatial cognition 
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1. Introduction 
 
 As they explore the world, humans and other animals acquire knowledge of the spatial 

relations among features of their environment that guide navigation, such as the relative locations 

of landmarks and familiar places. Although the geometry of such spatial knowledge might take a 

variety of forms (Tobler, 1976; Trullier, Wiener, Berthoz, & Meyer, 1997; Tversky, 1993), a 

prominent view is that we build a metric Euclidean cognitive map (Figure 1A) of the 

environment (Gallistel, 1990; O'Keefe & Nadel, 1978; Piaget & Inhelder, 1956; Siegel & White, 

1975; Tolman, 1948). At the other end of the spectrum, it has been proposed that spatial 

knowledge has a weak topological structure such as a graph. For example, a place graph captures 

only the network of paths connecting familiar places in the environment, with no metric 

information (Figure 1B, excluding labels) (Byrne, 1979; Kuipers, Tecuci, & Stankiewicz, 2003; 

Werner, Krieg-Brückner, & Herrmann, 2000). Another kind of topological structure is relations 

between neighborhoods, spatial regions bounded by paths or other environmental borders 

(Figure 1C). The location of a place may be described qualitatively by the neighborhood that 

contains it (Chase, 1983; Wiener & Mallot, 2003). 

 

Figure 1. Models of spatial knowledge. (A) Euclidean map: places A, B, C… are assigned 
locations in a metric coordinate frame. (B) Labeled graph. In a topological graph, nodes 
correspond to places and edges to the paths connecting places. In a labeled graph, edge weights 
correspond to approximate distances between places, and node labels correspond to approximate 
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angles between paths; edge weights and node labels in a labeled graph need not be geometrically 
consistent. (C) Topological neighborhoods: Adjacency relations between spatial regions P, Q, and 
R, bounded by paths. (D) Another possibility is that spatial knowledge opportunistically preserves 
whatever geometric properties remain constant during learning.  
 

An intermediate possibility that lies between Euclidean and topological structure is a 

labeled graph, such as a place graph augmented by approximate, local distance and angle 

information (Figure 1B, including labels) (Chrastil & Warren, 2014; Meilinger, 2008; Warren, 

Rothman, Schnapp, & Ericson, 2017).  This structure has been called a cognitive graph.  Others 

have proposed flexible or hybrid models combining the best features of Euclidean and 

topological models (Chown, Kaplan, & Kortenkamp, 1995; Kuipers, 2000; Mallot & Basten, 

2009; Poucet, 1993; Truillier, Wiener, Berthoz, & Meyer, 1997).   

To disentangle these models, experimenters have recently manipulated geometric 

properties of the environment using virtual reality displays (Warren, et al., 2017; Kluss, Marsh, 

Zetzsche, & Schill, 2015; Strickrodt, Meilinger, Bülthoff & Warren, 2020).  However, this 

approach raises the possibility that spatial knowledge reflects whatever geometric properties 

remain invariant during learning—a constancy hypothesis that to our knowledge has not been 

previously tested. 

 In the present study, we sought to systematically evaluate four hypotheses about the 

geometry of spatial knowledge: (1) the Euclidean hypothesis, which posits that primary spatial 

knowledge has the properties of a metric Euclidean map; (2) the Cognitive Graph hypothesis, 

that primary spatial knowledge is characterized by a labeled (cognitive) graph; (3) the 

Neighborhood hypothesis, that primary spatial knowledge consists of adjacency relations 

between spatial regions; and (4) the Constancy hypothesis, that spatial knowledge preserves the 

specific geometric properties that remain invariant during learning. Taken together, these four 

hypotheses span the spectrum of proposed forms of spatial knowledge. By testing them in a 
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single study, we aim to zero in on the geometric properties that constitute primary spatial 

knowledge, from which weaker properties might be derived.  We now elaborate each hypothesis 

in turn.  

1.1 Euclidean hypothesis 

 The term “cognitive map” was introduced into the field by Tolman (1948), who reported 

that rats often take direct (i.e., “as the crow flies”) novel shortcuts to a trained location. Similar 

behavior was subsequently reported in a variety of animals (Chapuis, Durup, & Thinus-Blanc, 

1987; Chapuis, Thinus-Blanc, & Poucet, 1983; Menzel, 1973; Gould, 1986; Wehner, Michel, & 

Antonsen, 1996), reinforcing the concept of a cognitive “survey map” with a metric Euclidean 

structure (O’Keefe & Nadel, 1978; Piaget & Inhelder, 1956; Siegel & White, 1975). Such a map 

could be constructed by means of path integration, based on idiothetic (proprioceptive, motor, 

and vestibular) information about distances traveled and angles turned while learning an 

environment, by embedding these local measurements into a geometrically consistent coordinate 

system (Gallistel, 1990; Bush, Barry, Manson & Burgess, 2015; McNaughton, Battaglia, Jensen, 

Moser & Moser, 2005; Moser, Moser & McNaughton, 2017). A Euclidean map would be 

advantageous because it captures all geometric relations among learned locations including 

distances and directions, and thus enables novel routes and shortcuts using trigonometry 

(Gallistel, 1990).   

 On the other hand, alternative explanations have been offered for claims of novel 

shortcuts in animals, including beacon homing (Dyer, 1991), familiar routes (Bennett, 1996; 

Collett & Collett, 2006), and “snapshot matching” (Cartwright & Collett, 1983; Wehner, et al., 

1996) (see Warren, 2019, for a review).  In humans, directional estimates are highly inaccurate 

and imprecise, with absolute directional errors ranging from 20 ̊ - 100 ̊, and standard deviations 
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reaching 30 ̊ (Chrastil & Warren, 2013; Foo et al., 2005; Ishikawa & Montello, 2006; Meilinger, 

Riecke, & Bülthoff, 2014; Schinazi et al., 2013; Waller & Greenauer, 2007). Most humans 

cannot successfully integrate separately-learned routes, even after repeated exposure (Ishikawa 

& Montello, 2006; Weisberg, Schinazi, Newcombe, Shipley, & Epstein, 2014). Many studies of 

human spatial cognition imply violations of the metric postulates, which must be satisfied by a 

Euclidean map (see Warren, et al., 2017, for a review).  

 Collectively, this research provides little evidence for the Euclidean hypothesis that 

humans and other animals acquire a geometrically consistent metric map. Nevertheless, opinion 

remains divided and the Euclidean view retains many supporters (Byrne, Becker, & Burgess, 

2007; Cheeseman et al., 2014; Jacobs & Schenk, 2003; Moser, Moser, & McNaughton, 2017; 

Nadel, 2013).  

1.2 Cognitive Graph hypothesis 
 
 A topological place graph captures a network of paths linking places in the environment.  

Nodes in the graph correspond to familiar places, and edges correspond to familiar paths 

between them (Mallot and Basten, 2009; Poucet, 1993).  A place graph preserves the 

connectivity among places and their ordinal relations, but no information about distances and 

angles. They thus enable novel routes and detours, but do not support novel shortcuts.  One 

advantage of a topological graph is that it is more robust and less vulnerable to noise and error 

than a Euclidean map, because the topology of the environment is preserved even when metric 

properties are not accurately acquired. 

A  labeled graph augments a purely topological graph with rough, local information about 

distances and angles (Figure 1B; Warren et al., 2017). Nodes corresponding to salient places are 

labeled with approximate junction angles between paths, while edge weights express 
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approximate path lengths between places. The path integration system is suited for registering 

such rough, piecewise path lengths and turn angles, given its poor resolution, systematic biases, 

and error accumulation (Warren, 2019). What distinguishes a labeled graph from a metric map is 

that this local information is not embedded into a geometrically consistent coordinate system (a 

‘global metric embedding’). Spatial knowledge may thus be geometrically inconsistent and 

violate the metric postulates.  Nevertheless, such a cognitive graph would support approximate 

novel shortcuts by vector addition through the graph, often sufficient to bring the navigator 

within sight of a beacon near the goal (Warren, et al., 2017). 

Previous studies have investigated several predictions that follow from the Cognitive 

Graph hypothesis. For example, Chrastil and Warren (2014, 2015) asked participants to take 

routes between learned places in a virtual hedge maze, and found that the metrically shortest 

paths were preferred when taking both direct routes and novel detours.  This result implies more 

than topological knowledge is acquired, consistent with a labeled graph.  

Warren et al. (2017) investigated the spatial knowledge acquired in a non-Euclidean 

virtual environment. Participants learned a geometrically impossible virtual hedge maze 

containing two ‘wormholes,’ which covertly teleported them 6m or 10m and rotated them by 90˚ 

visually. The Euclidean hypothesis predicts that the non-Euclidean maze should be more difficult 

to learn, but because participants are trained to the metric locations of target objects, shortcuts 

should be similar in the Wormhole maze and a matched Euclidean maze. In contrast, if a labeled 

graph of the environment is acquired, the course of learning should be similar in both mazes, and 

shortcuts should be biased by the wormholes. Consistent with the Cognitive Graph hypothesis, 

the mazes were equally difficult to learn, shortcuts were strongly biased by the wormholes, and 

participants were completely unaware of any geometric discrepancies. Path integration thus 
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failed to reveal the geometric inconsistency of the Wormhole maze.  The same results were 

obtained when visible distal landmarks were added, indicating that allocentric information 

likewise failed to reveal the inconsistency (Ericson & Warren, in preparation).  Because 

shortcuts were directional rather than uniformly distributed on the circle, however, the results 

were also inconsistent with a purely topological graph.  

Subsequently, Strickrodt, Meilinger, Bülthoff, and Warren (2020) asked participants to 

learn the locations of objects in another impossible maze, a loop of zig-zagging corridors that 

was completed by a covert teleportation.  They found that the magnitude of pointing error to 

each object was predicted by the local distances and angles participants had walked during 

learning. These findings indicate that the spatial knowledge preserves local metric information, 

but does not embed it in a geometrically consistent coordinate system, supporting the Cognitive 

Graph hypothesis.  

1.3 Neighborhood hypothesis 
 
 A complementary form of topological structure can be described in terms of 

neighborhoods. A neighborhood is a region whose boundaries are defined by a ‘skeleton’ of 

major paths or other salient environmental borders such as a river or forest edge (Figure 1C) 

(Kuipers, Tecuci, & Stankiewicz, 2003; Wiener & Mallot, 2003). Topological relations between 

neighborhoods include adjacency (regions sharing a common border) and inclusion (one region 

contained within another) (Randell, Cui & Cohn, 1992), and places can be localized by the 

neighborhood that contains them (Chase, 1983).  Conversely, to the extent that neighborhood 

boundaries are defined by paths between places, neighborhoods may be derived from a place 

graph1 (Kuipers, et al., 2003), such as the regions bounded by edges to nodes in Figure 1B.  

 
1 Note that one may construct a complementary neighborhood graph, in which nodes correspond to neighborhoods 
and edges to adjacency relations. 
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Alternatively, metric neighborhoods can be derived from Euclidean relations between the 

locations of places and the locations of environmental boundaries.      

Several studies suggest that humans use topological strategies when navigating to the 

remembered locations of targets, including the ordinal structure of places (Zhong et al., 2005, 

2007) and the neighborhoods defined by major paths (Chase, 1983; Pailhous, 1969; Weiner & 

Mallot, 2003; Wiener, Schnee, & Mallot, 2004; Zhong, et al., 2006). Research on the 

neurophysiological basis for navigation suggests that the hippocampus may be involved in 

building a topological graph (Dabaghian, Mémoli, Frank, & Carlsson, 2012; Muller, Stead, & 

Pach, 1996), and topological strategies have also proven successful in the context of robot 

navigation (Thrun & Bücken, 1996). 

1.4 Constancy hypothesis 

Shortcuts and pointing to learned locations exhibit large variable errors that are similar in 

impossible virtual environments, matched Euclidean environments, and real environments 

(Section 1.1), implying a comparable imprecision in spatial knowledge.  Nevertheless, it is 

logically possible that participants in an impossible maze learned a labeled graph, whereas those 

in a Euclidean maze and the real world learned a metric map, consistent with a hybrid model 

(e.g. Mallot & Basten, 2009; Poucet, 1993; Truillier, et al., 1997).  In other words, spatial 

knowledge may opportunistically reflect whatever geometric properties remain invariant during 

learning, which we refer to as the Constancy hypothesis.  

1.5 The present study 
 
 The present experiments aimed to test these four hypotheses about spatial knowledge 

(Euclidean, Neighborhood, Graph, Constancy hypotheses) by selectively varying the geometric 

properties of the environment during learning (metric, neighborhood, and graph structure).  This 
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was accomplished by manipulating three virtual hedge mazes, as follows. (i) The Control Maze 

was a Euclidean environment that preserved all geometric properties.  (ii) In the Elastic Maze, 

certain corridors alternately stretched from a short to a long length, so that the same object 

occupied two metric locations (short and long) in different neighborhoods or on different paths. 

This varied the Euclidean structure and the metric neighborhood containing the object, while 

preserving the original place graph.  (iii) In the Swap Maze, pairs of objects alternated between 

two locations within the same neighborhood; this varied the nodes and edges in the graph that led 

to the ‘place’ defined by an object, while holding constant the neighborhood that contained that 

object. 

In the test phase we probed the resulting spatial knowledge using three corresponding 

navigation tasks: (a) the metric shortcut task asked participants to take direct shortcuts from a 

start object to a target object, with only the ground plane visible; (b) the neighborhood shortcut 

task modified this by adding visible neighborhood boundaries (outlines of the three major paths) 

on the ground during shortcuts; and (c) the route task asked participants to walk in the maze to 

the path containing the target, and then down a visually infinite corridor to the remembered 

position of that target.  Each task in each maze was performed by a different group of 

participants. 

 This design yielded the following predictions for each hypothesis.  (1) The Euclidean 

hypothesis posits that primary spatial knowledge corresponds to a metric Euclidean map.  When 

building a map, given that normal path integration is somewhat noisy, the varying measurements 

would be embedded in the map at coordinates corresponding to the average location, with some 

uncertainty. In the Elastic Maze, the metric location of the elastic target varies, so the hypothesis 

predicts that metric shortcuts should be close to the average position of the short and long 
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targets, and be more variable than in the Control Maze. Second, if neighborhoods are derived 

from Euclidean relations, then participants should be able to detect when a target is in the short 

or long neighborhood, even when the boundary is not visible, based on path integration.  

Consequently, neighborhood shortcuts (and possibly metric shortcuts) should be more variable 

and more bimodal in the Elastic Maze than the Control Maze.  Finally, if a labeled graph is 

derived from Euclidean knowledge, path choice in the route task should be bimodal in the Elastic 

Maze, because the target is stretched to coordinates that fall on a different path.  The target’s 

estimated position along the stretched path should be similar to metric shortcuts to the same 

coordinates. 

 (2) The Neighborhood hypothesis proposes that the primary structure of spatial 

knowledge consists of adjacency relations between topological neighborhoods bounded by 

visible paths (the ‘skeleton’). Zhong et al. (2006) found that when paths were visible during 

learning and testing, shortcuts were more precise, implying that neighborhoods are acquired.  In 

the Elastic Maze, a target is stretched to coordinates that lie in a different neighborhood, so 

metric neighborhoods vary; however, the participant does not cross a visible boundary (an 

intersection) when walking down a stretched path, so the target remains in the same topological 

neighborhood.  Thus, the Neighborhood hypothesis predicts that neighborhood shortcuts should 

be unimodal, and comparable to those in the Control Maze. In the Swap Maze, targets switch 

locations within in the same neighborhood, so the hypothesis also predicts that neighborhood 

shortcuts should be unimodal and comparable to the Control Maze.  

(3) The Cognitive Graph hypothesis posits that the primary structure of spatial knowledge 

corresponds to a labeled place graph, with approximate path length and angle information. In the 

Elastic Maze, when metric structure is varied, the hypothesis predicts that the chosen path to a 
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target should be correct and unimodal, similar to the Control Maze.  However, because the graph 

is labeled with rough path lengths, the estimated target position along the path should be close to 

the average location, and be more variable than in the Control Maze.  In contrast, in the Swap 

Maze, when edges in the graph leading to the same ‘place’ alternate, the hypothesis predicts that 

path choice to a target should be bimodal.  

(4) Finally, the Constancy hypothesis posits that spatial knowledge reflects the specific 

geometric properties that remain invariant during learning.  If this hypothesis is correct, 

performance should always be consistent with whatever environmental properties are held 

constant as other properties are varied.  Specifically, in the Control Maze, when metric structure 

is invariant, shortcut performance should reflect Euclidean knowledge.  In the Elastic Maze, 

when the place graph is invariant while metric structure is varied, performance should reflect 

graph knowledge.  In the Swap Maze, when the place graph is varied while neighborhoods 

(defined by visible boundaries) are constant, performance should reflect neighborhood 

knowledge. 

 We found that the spatial knowledge acquired in these environments was neither 

Euclidean nor purely topological, nor did it reflect the geometric properties that were invariant 

during learning.  The results support the Cognitive Graph hypothesis. 

 
2. Experiment 1: The Elastic Maze (invariant graph) 
 

Experiment 1 investigated the Euclidean, Neighborhood, and Graph hypotheses by 

comparing the Elastic Maze to the Control Maze. The Elastic Maze was designed to vary 

Euclidean structure (and hence metric neighborhoods) during learning, while holding the place 

graph (and hence topological neighborhoods) constant.  In contrast, the Control Maze held 

Euclidean structure constant, and so all geometric properties remained invariant during learning.  
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The experiment consisted of three phases: free exploration, in which the participant 

explored the maze to learn object locations; the training phase, in which the participant was 

trained to find each object from a central home location until they reached criterion; and the test 

phase, in which participants performed a navigation task without feedback. (We refer to first two 

jointly as the learning phase.)  The three navigation tasks assessed acquired knowledge of the 

corresponding properties: metric shortcuts assessed Euclidean knowledge, neighborhood 

shortcuts assessed knowledge of metric and topological neighborhoods, and the route task 

assessed graph knowledge. This design resulted in six conditions (2 Environments x 3 Tasks), 

with a separate group of 12 participants in each condition. 

 
2.1 Predictions 
 

The hypotheses described in Section 1.5 yield specific predictions for each navigation 

task, which we state here (refer to Table 1). 

 
2.1.1 Metric shortcut task 
 
 Prediction 1: If primary spatial knowledge is Euclidean, then metric shortcuts in 

the Elastic Maze should shift to the average of the short and long target locations, and be 

more variable, compared to the Control Maze.  This should also be the case for probe 

trials compared to control trials in the Elastic Maze.  Prediction 2: Alternatively, if 

primary spatial knowledge resembles a rough labeled graph, we might expect that metric 

shortcuts are directional but similarly unreliable in both mazes, and on both types of 

trials; although this could also result from Euclidean spatial knowledge that is highly 

imprecise.  

 
2.1.2 Neighborhood shortcut task 
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 Prediction 3: If metric neighborhoods are derived from Euclidean knowledge, then 

shifting the target between the short and long neighborhoods in the Elastic Maze should yield 

neighborhood shortcuts that are bimodal and more variable than in the Control Maze, and on 

probe trials than control trials.  Prediction 4: Under the Neighborhood hypothesis, topological 

neighborhoods are defined by visible boundaries, yet no visible path intersections were crossed 

in the stretched hallways.  The hypothesis thus predicts that neighborhood shortcuts in the Elastic 

Maze should be unimodal (in the short neighborhood) and similar to those in the Control Maze, 

and probe trials should also be similar to control trials.  In addition, they should be less variable 

than the corresponding metric shortcuts. 

 
2.1.3 Route task 
 
 Although the Elastic Maze varied metric structure, the topological graph of the 

environment was preserved.  The route task was designed to probe graph knowledge, leading to 

the following predictions.  Prediction 5: If graph knowledge is derived from Euclidean structure 

(i.e., from metric relations among places and paths), (5a) path choice should be bimodal in the 

Elastic Maze because the coordinates of short and long targets fall on different paths, and (5b) 

estimated target positions along the stretched paths should be similar to metric shortcuts to the 

same targets.  Prediction 6: If primary spatial knowledge resembles a labeled graph, then (6a) 

path choice should be unimodal and correct (to the ‘short’ target location) in the Elastic Maze 

despite varying metric structure, and (6b) estimated target position along the stretched path in the 

Elastic Maze should shift to the average target location compared to the Control Maze, and be 

less variable than metric shortcuts.  

 
2.2 Method 
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2.2.1 Participants 

 
 A total of 91 people participated in the experiment; of these, 72 (36M, 36F) completed 

the study and were included in the analysis.  Eight participants withdrew due to symptoms of 

simulator sickness.  Two participants in the Control Maze were excluded for failing to reach 

criterion during the training phase.  Nine participants were excluded due to technical problems in 

the first session.  This resulted in six groups, each consisting of 12 participants (6M, 6F). 

Participants were recruited through advertisements and were paid for their participation.  All 

participants provided informed consent in accordance with the requirements of Brown 

University’s Institutional Review Board. 

 
2.2.2 Apparatus 
 
 Participants walked freely within a 10.5m x 12.5m tracking area during the experiment; if 

they walked outside this area, virtual brick walls appeared approximately 1m in front of them to 

prevent collisions with the physical walls.  Stereo images of the virtual environment were 

generated on a graphics workstation (Dell XPS 730X, NVIDIA GTX 280 graphics) and 

presented in a head-mounted display (HMD, Rockwell-Collins SR80, 1280x1024 pixels, 63° H x 

53° V field of view for each eye).  The computed disparity and lens separation were calibrated to 

each participant's measured inter-ocular distance.  An ultrasonic/inertial tracking system 

(InterSense IS-900, 50ms total latency, 1.5mm/0.10° spatial resolution) recorded the 

participant’s head position, and they carried a wireless mouse with response buttons.  

Background noise (crickets) was played over wireless headphones, and the view of the lab was 

blocked by a dark cloth draped over the HMD. 

 

2.2.3 Displays 
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 The virtual environments were hedge mazes containing a central home location (home 

plate), three primary corridors in a ‘Y’ configuration, with ten distinctive objects (moon, 

bookcase, etc.; see Figure 2A) located at the ends of secondary (i.e. terminal) corridors.  Four 

paintings also appeared on the walls in the main corridors to serve as orientation aids.  Objects 

were not visible from the main corridors, so participants had to walk between them.  The Control 

Maze had a constant Euclidean geometry similar to the real environment.   

The Elastic Maze was identical except for four hallways that covertly changed length on 

each pass during the free exploration and training phases.  Four probe objects at the ends of these 

elastic hallways alternately appeared in the canonical location (short position), matching the 

Control Maze, and stretched by 3m (long position) (see Figure 2B).  For two of these probes 

(Moon and Gear), the stretched target shifted across a primary path into an adjacent 

neighborhood, and for three probes (Moon, Bookcase, Clock), the stretched target shifted into a 

different terminal corridor.  As the participant walked down the stretched hallway, however, no 

intersections were visible. The alternation was triggered by invisible gates near the hallway 

entrance, which loaded the appropriate hallway before it came into sight.  The initial view 

(canonical or stretched) was randomized across participants and probe objects.  Alternations 

were visually seamless and all textural elements (wall, floor) in the maze were matched and 

updated in one frame (roughly 1/60s).  Stretched targets were in principle detectable based on (1) 

the visually perceived distance to the probe target from the start of the hallway, or (2) the walked 

distance to the probe target from the start of the hallway, by path integration. 

  
2.2.4 Design 
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 Experiment 1 had a 2 x 3 x 2 design, with two environments in the learning phase (Elastic 

Maze, Control Maze) crossed with three navigation tasks (Metric Shortcut, Neighborhood 

Shortcut, Route) and two trial types (Probe, Control) in the test phase. Environment and task 

were between-subjects factors, and trial type was the within-subject factor. Each participant 

experienced only one virtual environment and one response task, and trial order was randomized 

for each participant. 

 
2.2.5 Procedure 
 
 Each participant completed two sessions. The first session included the free exploration 

phase (12 minutes), training phase (< 25 min), and test phase (18 trials), and lasted 

approximately 1hr. The second session included refresher training (< 25 min), further testing (54 

trials), and a debriefing, and lasted 1.5 - 1.75 hours.  At the beginning of free exploration, 

participants were instructed to try and find all the objects in the maze and learn their locations, 

for they would be tested on their knowledge of the objects and their locations later.  They then 

freely explored the maze for 12 min. 

During the training phase, participants were trained to find each of the objects from 

home until they reached the criterion of finding each object in less than 30s two times.  If a 

participant found an object in 30-45s, the object was repeated later.  If the participant could not 

find an object after 45s, they returned home and the experimenter silently guided them by the 

shoulders along the most direct route to the object, and they were asked to find the object again 

later. If a participant failed to reach the training criterion within 25 min, testing was terminated 

and they were removed were removed from the experiment.  

In the test phase, participants were instructed to perform one of the three navigation tasks 

to assess the spatial knowledge acquired during learning.  Eight object pairs were tested: four  
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Figure 2. Experiment 1: mazes and displays.  Both the Control Maze (A) and Elastic Maze (B) 
contained 10 distinctive objects, four paintings (p1-4) that served as local landmarks, and a central 
home location (home plate).  Objects were designated control (well, sink, cactus, rabbit, flamingo, 
earth) objects if they remained in the same location in both environments, and probe (bookcase, 
clock, moon, gear) if their paths were alternately stretched in the Elastic Maze. In the Elastic Maze 
(B), two probe objects were stretched (D) across a neighborhood boundary (moon, gear), and three 
targets (moon, bookcase, clock) were shifted to coordinates in a different terminal corridor. 
Overhead views of each maze (shown in the top left corner of panels C and D) were not visible to 
participants. 

 

control pairs (sink→earth, rabbit→well, earth→sink, well→flamingo) and four probe pairs 

(sink→bookcase, rabbit→gear, earth→moon, well→clock) (Figure 2).  For each pair, the 
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participant first walked to a start object in the maze corridors, and then to the remembered 

location of a target object (note that the same four objects served as start objects in probe and 

control trials, whereas the target objects differed).  On probe trials the target was in an elastic 

hallway, whereas on control trials the target was in a normal hallway. Each participant made a 

total of 72 responses ((4 probe pairs + 4 control pairs) x 9 repetitions) during the test phase.  

 The metric shortcut task was designed to assess metric Euclidean knowledge.  On each 

trial, the participant walked from home to the start object; at that point the maze walls, objects, 

and paths disappeared, leaving only a randomly textured ground plane (Figure 4A).  The 

participant then faced the remembered location of the target object and clicked the mouse to 

indicate their alignment with the target.  Finally, they walked in a straight line to the remembered 

location of the target, stopped and clicked the mouse again.  Participants did not receive 

feedback, and were passively wheeled in a wheelchair back to home along a circuitous route for 

the next trial. 

 The neighborhood shortcut task was designed to assess neighborhood knowledge.  The 

procedure was the same as the metric shortcut task, except that the outlines of the three primary 

paths (neighborhood boundaries) remained visible on the ground during shortcuts in the test 

phase (Figure 4B).  Recall that no path intersections appeared in the stretched hallways during 

learning. Thus, if participants learned which topological neighborhood contains the target based 

on visible boundaries, shortcuts to probe targets in the Elastic Maze should be unimodal (within 

the short neighborhood), similar to the Control Maze and to control trials, and less variable than 

the metric shortcut task.  On the other hand, if neighborhoods are derived from metric 

information about the locations of objects and hallways, shortcuts should be more variable than 

in the Control Maze, and those to the Moon and the Gear more bimodal.  
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 In the Route Task, participants walked from Home to the start object, whereupon all 

objects disappeared, but the maze walls remained visible.  Participants then walked within the 

maze corridors to the remembered location of the target.  If they entered a terminal hallway that 

had contained an object, it was displayed as a visually infinite (~300m) corridor with no 

intersections (Figure 4C); this was done for all terminal hallways on both control and probe trials 

to prevent feedback about the correct path.  They then walked down the infinite corridor to the 

remembered location of the target, stopped and clicked the mouse.  If participants learn a place 

graph of the maze, path selection should be highly accurate.  If they also acquire local 

information about distance or path length (i.e., edge weights), the responses should be biased 

toward the average target position in the elastic hallways. Recall, however, that the ‘short’ and 

‘long’ coordinates of the Moon, Bookcase, and Clock fell in different terminal corridors.  So if 

participants derive a graph from Euclidean locations, one would expect a bimodal pattern of path 

choice on these probe targets.      

In a debriefing, participants were given a list of objects and asked to create a hand-drawn 

map of the maze, and answered a series of questions about their experience in the virtual 

environment and prior experience playing video games. Then then completed three spatial 

abilities tests, to assess any differences in spatial abilities between groups: (1) the Santa Barbara 

Sense of Direction Scale (SBSOD; Hegarty, Richardson, Montello, Lovelace & Subbiah, 2002), 

(2) a Road Map Test (RMT; Money & Alexander, 1966; Zacks, Mires, Tversky, & Hazeltine, 

2000); and (3) the Perspective-Taking and Spatial Orientation Test (PTSOT; Kozhevnikov & 

Hegarty, 2001; Hegarty & Waller, 2004).  The SBSOD asks for self-ratings of spatial abilities 

along a number of dimensions.  The RMT assesses perspective-taking ability by having 

participants name the sequence of left and right turns they would need to make to follow a route 
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plotted on a road map.  The PTSOT assesses perspective-taking ability by having participants 

estimate directional relationships among iconic representations of objects arranged on a page. 

Finally, they were asked to verbally report anything they noticed about the virtual environment. 

2.2.6 Data analysis 

 

 We analyzed the positional data (x, y, t) from the Intersense IS-900 head-tracking system.  

Data were analyzed using Python, R (version 2.15.2; “Circular” package, Agostinelli & Lund, 

2013; “Circstats” package, Lund & Agostinelli, 2007), MATLAB (MathWorks), Oriana (Kovach 

Computing Services) and SPSS (IBM). 

To quantify the extent and homogeneity of free exploration, invisible “gates” were placed 

throughout the maze that recorded when a participant passed that location.  Several measures 

were extracted from the training phase to assess the learning process, including the total number 

of trials needed to reach criterion, and the number of trials in which a participant needed to be 

guided to the objects.  

 For test trials, dependent measures were extracted from walking trajectories between the 

button press at the start object and that at the target.  Shortcut trajectories that intersected with 

the emergency walls during the test phase (Control Maze:  metric shortcuts, 35%; neighborhood 

shortcuts, 15.3%; route task, 0%; Elastic Maze: metric shortcuts, 43.8%; neighborhood shortcuts, 

18.7%; route task, 0%) were excluded from the calculation of 95% confidence ellipses.  

The primary dependent measures were based on directional (angular) errors. Although 

the (unsigned) absolute error (AE) is a common measure in the navigation literature, it 

confounds the (signed) constant error (CE), a measure of accuracy, and the variable error (VE), a 

measure of precision. Angular CEs were computed with respect to the “canonical” locations of 

targets in the Control Maze.  Specifically, constant error was the signed angle (-180º, +180º] 
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between two vectors defined by (1) the participant’s starting location and the endpoint of their 

response, and (2) the participant’s starting location and the canonical target location.  CEs on 

probe trials were normalized so that 0º corresponded to walking toward the canonical target 

location and positive values corresponded to walking in the direction of the stretched target 

location.  The von Mises distribution—a circular analogue of the normal distribution—was used 

to model directional responses, and the Watson-Williams test—a circular analogue of 

ANOVA—was used to compare angular CEs. Because two-way Watson-Williams tests are not 

currently available, main effects for CEs were examined using one-way Watson-Williams tests, 

and the results of pairwise, post-hoc Watson-Williams tests are shown as Duncan groupings in 

graphs.  

Variable error was measured by the between-subject angular deviation (AD), the circular 

equivalent of the standard deviation (SD).  To estimate individual precision, we also computed 

the mean within-subject AD (mean within-subject SD for linear variables) for each participant.  

Circular means were computed for all angular variables.  Absolute error and variable error were 

analyzed using ANOVA. Following Howell (2008), follow-up tests on repeated measures 

(mixed-model) ANOVAs were conducted using Tukey’s HSD procedure, to maintain a family-

wise error rate of α = .05 for multiple comparisons. 

 To complement these frequentist statistics, we also took a Bayesian approach. First, 

Jeffrey-Zellner-Siow (JZS) Bayes Factors were computed from the ANOVA results to compare 

the strength of evidence for the Null (M0) and Alternative (M1) hypotheses (Faulkenberry, 2018). 

In addition, when two of our hypotheses could be modeled by the von Mises distribution (model 

Mi, with parameters i =[i  ]) and predicted unique responses, we compared models by 

computing the JZS Bayes factor, BF10 = p(Data|M1)/p(Data|M2), where p(Data|Mi) is the 
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likelihood of the data under Mi.  The concentration parameter  was estimated from the AD for 

the same task in the Control Maze and held constant (Batschelet, 1981). According to the revised 

scheme of Nuijten, Wetzels, Matzke, Dolan, & Wagenmakers (2015; based on Jeffreys, 1998), 

BF10 < 1 indicates no evidence for M1; 1 < BF10 < 3, anecdotal evidence for M1; 3 < BF10 <10, 

substantial evidence for M1; 10 < BF10 < 30, strong evidence for M1; 30 < BF10 < 100, very 

strong evidence for M1; and BF > 100, decisive evidence for M1 (and the inverse for M0). To 

avoid over-fitting and for purposes of clarity, only effects relevant to the predictions of the four 

hypotheses will be described. 

 Just noticeable differences (JNDs) were estimated to determine whether targets in the 

Elastic Maze were stretched far enough to be detectable by the participant during learning, given 

the observed variability in the Control Maze.  Estimated JNDs were obtained for each task by 

multiplying the mean within-subject AD for each probe target in the Control Maze by 0.8099, 

corresponding to 75% of the area under the von Mises distribution (with =1).  The stretch angle 

of each target in the Elastic Maze was the angle subtended by the short and long target locations, 

as measured from the start object (the vertex) (Earth → Moon, 40.3º; Sink → Bookcase, 23º; 

Well → Clock, 15.2º; Rabbit → Gear, 37.2º); the circular mean was 28.9º. If the JND is smaller 

than the stretch angle, then that target was stretched far enough to be detectable during learning.  

Two approaches were taken to analyzing the bimodality of metric and neighborhood 

shortcuts.  First, CEs for shortcuts to each of the probe targets were submitted to two-component 

cluster analyses using the k-means algorithm (Forgy, 1965; Hartigan & Wong, 1979; Lloyd, 

1982). The k-means method attempts to divide a collection of data points into k groups (k = 2 

assesses bimodality) using a least squares criterion. Following Hill & Lewicki (2005) we 

compared the magnitude of the resulting F-ratio in the Elastic and Control Maze.  Second, 



PROBING THE INVARIANT STRUCTURE OF SPATIAL KNOWLEDGE 24 

constant errors were examined by fitting kernel density estimates for mixtures of von Mises 

distributions using the maximum likelihood cross-validation (MLCV) method, which is sensitive 

to bimodality in directional data (Agnostinelli & Lund, 2011; Sharma & Tarboton, 1997). 

 Endpoint analysis provided measures of how often shortcut endpoints fell in different 

neighborhoods (Figure 3A).  For example, in the Elastic Maze, the Moon and the Gear were 

stretched from the canonical (short) neighborhood into an adjacent (long) neighborhood during 

learning.  Classifying the number of endpoints falling in the short or the long neighborhood 

allows us to assess the neighborhood knowledge in each maze.  Shortcuts that ended on a maze 

path or in a neighborhood that did not contain the target were classified as path and wrong 

respectively. 

To determine whether participants learned the graph of the maze, path choices in the 

Route Task were classified as correct if they walked down the hallway that contained the target, 

and incorrect if they walked down any other terminal hallway (Figure 3B). M and SD of the 

number of correct and incorrect path choices were obtained for each target for each participant. 

To analyze the bimodality of path choices, we compared the number of paths (i) corresponding 

to short and long target locations in Experiment 1 (see Figure 3) and (ii) corresponding to 

canonical (A) and non-canonical (B) target locations in Experiment 2 (see Figure 7).  

 Finally, sketch maps were analyzed using Gardony’s (2016) Map Drawing Analyzer 

Software, which provided measures of both relative and absolute landmark placement, and 

bidimensional regression analyses (Friedman & Kohler, 2003; Tobler, 1994) compared drawn 

configurations to the actual configuration of objects in the Control Maze. 
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Figure 3. Experiment 1: classification scheme for endpoints and path choices. For example, in the 
Elastic Maze, the Moon alternately occupied short (yellow circle) or long (yellow diamond) 
neighborhood locations during learning. The following endpoint (A) and path choice (B) 
classification schemes were applied to shortcuts in both Mazes. (A) Percentages of endpoints 
falling in each of the four possible regions (long, short, wrong neighborhood, or path) were 
computed for each participant. (B) Paths were classified as correct if they walked down the target 
object’s path, and incorrect if they walked down any other path. 
 

2.3 Results 
 
 Sample traces of shortcuts (earth→moon) in the Control Maze and the Elastic Maze are 

plotted for each of the three tasks in Figure 4.  For each object pair, a mean shortcut vector was 

computed based on the mean CE, and the mean distance from start points to endpoints.   

2.3.1 Free exploration and training phases 

Visual inspection of position traces confirmed that participants in the Elastic Maze 

physically walked to the stretched locations of probe objects during free exploration.  An 

ANOVA on the mean number of visits to probe and control objects revealed a significant main 

effect of trial type, F(1,66) = 19.42, p < .001, ηG2 = .044, and a Bayesian equivalent indicated  
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anecdotal evidence for the alternative hypothesis (BF10 = 2.858). A post-hoc Tukey test revealed 

that participants visited probe objects (M = 4, SD = 0.89) more frequently than control objects 

(M = 3.66, SD = 0.08), p < .05.  No other significant effects, interactions, or between-subject 

differences were found, and the Bayes Factor for the main effect of environment indicated 

substantial evidence for the null hypothesis (BF01 = 5.5).  During the training phase, there were 

no significant effects of environment, task, or trial type on number of trials to criterion or number 

of guided trials.  Thus, although probe objects attracted slightly more interest during exploration, 

the non-Euclidean environment was no more difficult to learn than the Euclidean environment. 

2.3.2 Metric shortcut task  

 For the metric shortcut task, if primary spatial knowledge is Euclidean, shortcuts should 

be close to the average location of the stretched target (higher CE) and be more variable (higher 

mean within-subject AD) in the Elastic Maze compared to the Control Maze, and on probe trials 

compared to control trials (Prediction 1).  Mean CE and AD appear in Figure 5A,B. Watson-

Williams tests did not reveal any significant effects of environment or trial type on either 

constant (CE) or variable (VE) error (p > .05).  Moreover, the equivalent Bayesian analysis 

revealed substantial evidence in favor of the null hypothesis for CE when comparing 

environments (BF01 = 4.15) and trial types (BF01 = 3.61).  There was also substantial evidence in 

favor of the null hypothesis for AD in the two environments (BF01 = 6.02) and the two trial types 

(BF01 = 6.32). Thus, metric shortcuts were substantively the same in the Elastic and Control 

Mazes, and on stretched and control trials, contrary to Prediction 1 but consistent with 

Prediction 2. 

Given the high variability in metric shortcuts observed in the Control Maze (mean 

within-subject AD = 37.92˚), the estimated JNDs (M = 30.7˚) indicated that only one of the four  
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Figure 4. Experiment 1: example shortcuts (black paths) for earth (blue circle) → moon trials.  
(A) Metric shortcut task, (B) Neighborhood shortcut task, (C) Route task. Aggregated shortcuts 
for all participants are plotted in each panel. Individual shortcuts are shown as black paths 
radiating from the mean starting point (object A’s approximate location), and small yellow dots 
indicate shortcut endpoints. Canonical and stretched locations of the targets represented by large 
yellow circles and diamonds respectively. Yellow ellipses represent 95% confidence ellipses for 
shortcut endpoints. 

 

stretched targets in the Elastic Maze was detectable during learning. This implies two 

possibilities: (1) Euclidean knowledge is so imprecise that participants cannot discriminate 

locations 3m (or 30˚) apart, or (2) spatial knowledge is not Euclidean (Prediction 2). 

2.3.4 Neighborhood shortcut task 
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For the Neighborhood Shortcut Task (Figure 5C), a Watson-Williams test on CE found 

no effect of environment (p > .05; BF01 = 4.22, substantial evidence for H0).  We did observe a 

significant main effect of trial type on CE, F(1,46) = 8.2, p < .01 (BF10 = 1.46, anecdotal 

evidence for H1). However, the bias on probe trials (M = -7.05º, AD = 8.66º) was in the opposite 

direction of the stretched target, compared to control trials (M = -.88º, AD = 5.63º).  In effect, 

neighborhood shortcuts shifted toward the center of the neighborhood in both mazes (e.g. Figure 

4B), consistent with the hypothesis that objects are qualitatively localized in neighborhoods.  We 

believe this bias was not observed on control trials because more of these objects were 

positioned closer to the center of their neighborhood (see Fig. 2A).  Moreover, there was no 

effect of environment or trial type on within-subject AD (Figure 5D), and the corresponding 

Bayesian analysis showed substantial evidence for the null hypothesis (BF01 = 3.48 for 

environment; BF01 = 3.03 for trial type). Neighborhood shortcuts were thus comparable in the 

Elastic and Control Mazes, contrary to Euclidean hypothesis (Prediction 3) but consistent with 

the Neighborhood hypothesis (Prediction 4).   

We also compared specific predictions of the Euclidean and Neighborhood hypotheses. 

Because participants did not cross a visible boundary on stretched paths during learning, the 

topological Neighborhood model (MN) predicts shortcuts toward the middle of the neighborhood 

(to the short target location, to be conservative), with an expected CE of N=0˚.  In contrast,  

because participants walked to short and long target positions during learning, the Euclidean 

model (ME) predicts shortcuts, on average, to the mean target position, with an expected CE of 

E=14.45˚.  The concentration parameter was =15, corresponding to AD=15.30º on 

neighborhood shortcuts in the Control Maze.  The resulting BFNE >> 100 indicated decisive 

evidence in favor of the Neighborhood hypothesis, and the same result is obtained for each of the 
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four probe targets individually.  These results are contrary to Prediction 3 and support Prediction 

4. 

Because JNDs for neighborhood shortcuts in the Control Maze (M = 11.0˚) were smaller 

than the stretch angles for all four probe targets in the Elastic Maze, the stretched target was 

detectable during learning.  Yet neighborhood shortcuts did not shift towards the stretched 

location in the Elastic Maze, and thus did not demonstrate sensitivity to metric neighborhoods.  

The Neighborhood hypothesis also predicts that if neighborhoods are defined by visible 

topological boundaries (paths), neighborhood shortcuts should be less variable than metric 

shortcuts in the Elastic Maze (Prediction 4).  Indeed, the mean within-subject AD for 

neighborhood shortcuts (M = 15.9º, SD = 9.8º) was half that for metric shortcuts (M = 32º, SD = 

18.8º).  The ANOVA on AD confirmed a main effect of task, F(1,22) = 7.27, p < .05, ηG2 = .23 

(BF10 = 6.28, substantial evidence for H1). Thus, consistent with Prediction 4, variable error was 

lower for neighborhood shortcuts, indicating that neighborhoods depend upon visible topological 

boundaries.  Watson-Williams tests on CE did not reveal any significant effects of task. 

Results for the metric shortcut and neighborhood shortcut tasks are consistent with (but 

do not distinguish between) two possibilities: (1) Euclidean knowledge is too imprecise to 

support shortcuts to discriminable locations (Prediction 2), or (2) neighborhoods are not derived 

from Euclidean relations, but topological boundaries (Prediction 4).  

 
2.3.5 Route task 
 
 For the Route Task, CE on probe trials shifted toward the stretched target in the Elastic 

Maze (M = 5.73º, AD = 4.5º) compared to the Control Maze (M = -4.01º, AD = 3.5º) (Figure 5E).  

The Watson-Williams test on CE confirmed a main effect of environment, F(1,190) = 37.4, p < 

.001 (BF10  >> 100, decisive evidence for H1). Results of post-hoc Watson-Williams tests  
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Figure 5.  Experiment 1: Mean constant and variable errors. Constant errors (CE) were 
normalized so that 0º corresponded to perfect accuracy to the control target on control trials, or the 
unstretched location of the probe trial target on probe trials. Thus, for probe trials (gray bars), a 
positive shift in constant error indicates a shift towards the stretched location of the target. 
Variable errors (VE) are mean within-subject angular deviations (AD).  Dotted lines indicate the 
average of the short and long target positions (14.45º). Error bars for CE indicate circular 95% 
confidence limits; error bars for VE indicate the standard error of the mean within-subject ADs.  
Duncan flags indicate significant (p < .05) post-hoc Tukey tests, and bars with the same flag were 
not significantly different; n.s. indicates that no significant differences were found between the 
four bars.  
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(indicated by Duncan flags in Figure 5C) also revealed a significant shift on stretched trials 

compared to control trials in the Elastic Maze (p < 0.05).  Using the CE for probe targets in the 

Control Maze (-4.01˚) to correct for path integration error to the same targets in the Elastic maze 

(CE 5.73˚), we estimate the angular shift in the Elastic Maze (9.74˚) as being 67.4% of the way 

to the average target position (14.45º), and the corresponding Bayes factor was large (BF10 >> 

100, decisive support for H1).  

JND analysis (M = 3.0˚) revealed that the all elastic targets were detectable during 

learning; moreover, the significant shift in CE in the Elastic Maze confirms that they were 

actually detected.  Given the absence of any shift in the metric shortcut task, this finding is 

strikingly consistent with the acquisition of local information about traversed distance (edge 

weights in a labeled graph), but not with object coordinates in a Euclidean map.  This pattern of 

results supports the Cognitive Graph hypothesis (Prediction 6b). 

Variable error was higher overall in the Elastic Maze (M = 9.74º, AD = 1.15º) than in the 

Control Maze (M = 4.01º, AD = 1.15º). The ANOVA on within-subject AD confirmed a 

significant main effect of environment, F(1,22) = 4.47, p < .05, ηG2 = .16, and a significant 

environment x trial type interaction, F(1,22) = 7.32, p < .05, ηG2 = .017 (Figure 5F).  The 

Bayesian equivalent comparing environments found substantial evidence for the alternative 

hypothesis (BF10 =  8.45). Thus, the route task was sensitive to the varying target position. 

However, an ANOVA revealed that within-subject AD for the route task (M = 6.93º, SD = 6.77) 

was significantly smaller than that for metric shortcuts (M = 33.31º, SD = 18.67), F(1,44)= 41.5, 

p < .001, ηG2 = .47 (BF10 >> 100, decisive evidence for H1), contrary to Prediction 5b and 

supporting Prediction 6b.  

2.3.6 JND Analysis 
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 Computed JNDs for the metric shortcut task were too large to conclude that the elastic 

target was detectable during learning.  However, JNDs for both Neighborhood and Route tasks 

indicate that the elastic target was detectable.  Given that the three groups all learned the same 

Elastic Maze, this strongly implies that the target was stretched far enough to be detectable in all 

conditions.  Nevertheless, no shifts were observed in metric or neighborhood shortcuts, whereas 

a significant shift was found in route responses.  Taken together, this implies that (a) Euclidean 

knowledge is too imprecise to support shortcuts to discriminable locations, (b) consequently, 

neither neighborhoods nor the place graph are derived from Euclidean knowledge, but (c) local 

path lengths (edge weights) are acquired during learning.  This pattern of results is consistent 

with the Cognitive Graph hypothesis. 

2.3.7 Bimodality 
 
 The Euclidean hypothesis predicts (Prediction 3) that if metric neighborhoods are derived 

from Euclidean structure, neighborhood shortcuts to the Moon and Gear should be more bimodal 

in the Elastic Maze than in the Control Maze.  However, contrary to Prediction 3, the cluster 

analysis did not show stronger evidence for bimodality in the Elastic Maze than the Control 

Maze, and the other bimodality analyses did not indicate more than one mode for any individual 

target. The same was true for the metric shortcut task and the route task.  These results were 

contrary to the Euclidean hypothesis. 

 
2.3.8 Endpoints 
 
 The percentage of endpoints falling in each of the four possible neighborhood categories 

(wrong, path, short, long) was computed for the probe trials in each task.  For the metric shortcut 

and neighborhood shortcut tasks, there were no significant differences between the Elastic and 

Control Mazes for any of the elastic targets in any endpoint category (p>.05).  Bayes Factors 
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indicated anecdotal support for the null hypothesis.  Thus, we found no evidence that 

neighborhood boundaries influenced shortcuts. The Neighborhood hypothesis predicts 

(Prediction 4) that if neighborhoods are defined by visible topological boundaries, then more 

neighborhood shortcuts than metric shortcuts should end in the short neighborhood in the Elastic 

Maze.  The mean number of endpoints falling in short neighborhoods was significantly higher 

for the neighborhood shortcut task (M = 83.8%, SD = 17.1%) than the metric shortcut task (M = 

47%, SD = 27.9%), F(1,22) = 15.2, p < .001, ηG2 = .38 (BF10 =  111.5, decisive evidence for H1).  

This result is consistent with Prediction 4 that neighborhoods are defined by visible boundaries. 

 In the route task, the mean percentage of endpoints falling in the short or long 

neighborhood shifted significantly for the two probe targets that were stretched across paths.  

Specifically, for the Moon, fewer endpoints fell in short neighborhood in the Elastic Maze 

(47.45%) than in the Control Maze (96.3%), F(1,22) = 22.17, p <.001, ηG2= .502 (BF10 >> 100, 

decisive evidence for H1), while more fell on nearby paths, F(1,22) = 16.70, p < .001, ηG2 = .432 

(BF10 >> 100, decisive Evidence for H1).  For the Gear, fewer endpoints fell in the Short 

neighborhood in the Elastic Maze (27.8%) than the Control Maze (84.3%), F(1,22) = 16.95, p < 

.05, ηG2 = .435 (BF10 >> 100, decisive evidence for H1), while more fell in the Long 

neighborhood (30% vs 0%), F(1,22) = 9.69, p < 0.01, ηG2 = .306 (BF10 = 16.2, strong evidence 

for H1). There were no significant shifts for the Clock and the Bookcase, as overshooting the 

Short position would not cross into an adjacent neighborhood. These results are consistent with 

Prediction 6b, that participants learn local path lengths to the average target position.

 
2.3.9 Path choices 
 
 The Cognitive Graph hypothesis predicts that path selection will be correct (to the ‘short’ 

target location) in all conditions, whereas if a graph is derived from Euclidean coordinates, path 
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choices in the Elastic Maze should be bimodal to the Moon, Bookcase, and Clock.  In the route 

task, the percentage of correct path choices was near ceiling in both the Control (M = 99.8%, SD 

= 1%) and Elastic (M = 97.3%, SD = 4.4%) Mazes. ANOVAs on the number of correct and 

incorrect path choices found no significant differences between the Elastic and Control Mazes 

for any target; Bayes Factors yielded anecdotal evidence for the null hypothesis for each target. 

Thus, participants learned the place graph of both mazes despite the shifting positions of probe 

targets. These results are inconsistent with Euclidean Prediction 5a, but consistent with Graph 

Prediction 6a.  

2.3.10 Debriefing 

Detailed comparisons of debriefing results for Experiments 1 and 2 are presented in the 

Supplementary Material (Section 6, Comparison of Experiments).  No significant differences on 

tests of spatial ability were found between groups, implying that the experimental results are not 

attributable to group differences.  Three participants in the Control Maze reported thinking that 

some of the objects might be “overlapping” or in the same physical location despite being 

located down different paths.  However, none of the participants in the Elastic Maze reported 

noticing that paths stretched. 

2.4 Discussion 
 

 Table 1 summarizes the predictions for each task and the corresponding results of 

Experiment 1 (check-marks indicate consistent and Xs inconsistent results). We review them 

here. 

Predictions 1 and 2: The Euclidean hypothesis predicts that if primary spatial knowledge 

is Euclidean, metric shortcuts in the Elastic Maze should shift to the average target location and 

be more variable compared to the Control Maze; the same should be true on probe trials 
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compared to control trials in the Elastic Maze (Prediction 1).  Contrary to this prediction, the 

analyses of angular errors found that CE and VE were comparable in the two mazes, and on 

probe and control trials, with substantial support for the null hypothesis. These results supported 

Graph Prediction 2, that metric shortcuts are similarly unreliable in both mazes, although this 

could also result from Euclidean knowledge that is too imprecise to enable metric shortcuts to 

locations that were discriminable during learning (3m or 29˚ apart).   

 Prediction 3: The Euclidean hypothesis predicts that if neighborhoods are derived from 

Euclidean structure, neighborhood shortcuts in the Elastic Maze should be more bimodal, and 

more variable, than in the Control Maze, and on probe trials than on control trials.  The results 

failed to support any of these predictions, but provided substantial evidence for the null 

hypothesis. Notably, we found no evidence of bimodality in any condition. The results thus 

contradicted Prediction 3. 

 Prediction 4: The Neighborhood hypothesis states that topological neighborhoods are 

defined by visible boundaries; this predicts that neighborhood shortcuts in the Elastic Maze 

should be unimodal and similar to those in the Control Maze, and more unimodal and less 

variable than metric shortcuts.  The data supported these predictions.  Neighborhood shortcuts 

were comparable in the two mazes, with substantial support for the null hypothesis.  Compared 

to metric shortcuts, they also had smaller within-subject ADs, CEs closer to the short location, 

and more endpoints in the short neighborhood, with decisive support for the alternative 

hypothesis, providing clear evidence for Prediction 4.  The neighborhood shortcut data thus 

support the topological Neighborhood hypothesis. 

 Predictions 5 and 6: If the graph of the environment is derived from Euclidean 

knowledge, path choices to the elastic target should be bimodal, because the coordinates of short 
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and long targets fall in different corridors in the Elastic Maze, compared to the Control Maze 

(Prediction 5a). In contrast, if the graph is primary, then chosen paths should be correct and 

unimodal (Prediction 6a).  Path choices in the route task were over 97% correct, and hence 

unimodal, in both environments, contrary to Prediction 5a but consistent with Prediction 6a.    

Further, the Euclidean hypothesis predicts that CE and VE in the route task should be 

comparable to metric shortcuts, given that participants walk to the same target coordinates in 

both tasks (Prediction 5b).  In contrast, the Cognitive Graph hypothesis predicts that CEs on the 

route task should shift to the average location, with smaller VE than metric shortcuts, because 

approximate local path lengths are learned via path integration (Prediction 6b). In the route task, 

CEs (corrected for path integration error) shifted two-thirds of the way to the average target 

location in the Elastic Maze, whereas the metric shortcuts showed no such effect.  This was 

reasonably close to the expected shift, given that path integration errors are incorporated into a 

labeled graph.  Moreover, the VE was significantly smaller than for metric shortcuts.  These 

results are inconsistent with Prediction 5b but consistent with Prediction 6b. Participants thus 

acquired approximate local path lengths, but this information was not embedded in a consistent 

Euclidean structure. 

We acknowledge that participants only spent a total of 2.5 hours in the virtual maze. It is 

possible that additional time learning the maze would have enabled them to acquire a Euclidean 

map. Nevertheless, shortcuts on control trials in the Euclidean maze were accurate on average 

(mean CE = 5.3º) with a large variability (mean within-subject AD = 24.4º).  This level of 

performance is comparable to other experiments in VR (Warren et al., 2017) and to previous 

studies of extended learning in real environments (Ishikawa & Montello, 2006; Moeser, 1988; 
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Schinazi et al., 2013), suggesting that further experience is unlikely to improve shortcut 

performance significantly.  

 
2.5 Conclusions 
 
 Experiment 1 reveals a pattern of results consistent with the Cognitive Graph hypothesis, 

which states that primary spatial knowledge can be characterized as a rough labeled graph.  

Metric shortcuts were reasonably accurate on average, but highly imprecise, and did not shift 

toward the average location of short and long targets. In contrast, endpoints in the route task 

were accurate, precise, and shifted towards the average target location.  These results imply that 

spatial knowledge resembles a graph that is labeled with approximate information about local 

path lengths.  The metric shortcut data could be explained by vector addition through a noisy 

graph, yielding variable shortcuts that are insensitive to moderate changes in metric structure 

(Warren, et al., 2017).   

Highly variable metric shortcuts do not by themselves rule out Euclidean spatial 

knowledge, for they could also result from an imprecise metric map.  However, the Euclidean 

hypothesis that a noisy map is the primary form of spatial knowledge cannot explain the pattern 

of findings in Experiment 1.  Neighborhood shortcuts were more precise than metric shortcuts, 

and depended on visible boundaries rather than metric relations; this strongly implies that 

neighborhoods were not derived from imprecise Euclidean knowledge.  Similarly, the route task 

was more accurate, more precise, and reflected local path lengths; this also implies that a labeled 

graph was not derived from Euclidean knowledge.  The results of Experiment 1 are thus contrary 

to the Euclidean hypothesis, but consistent with both the Neighborhood and Graph hypotheses. 
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3. Experiment 2: The Swap Maze (invariant neighborhoods) 
 
 Experiment 1 varied Euclidean structure and metric neighborhoods while holding the 

place graph constant; the results were consistent with both the topological Neighborhood and 

Cognitive Graph hypotheses.  The purpose of the second experiment was to dissociate these two 

hypotheses, and to test the Constancy hypothesis.  Experiment 2 thus, conversely, varied the 

place graph while holding neighborhoods constant, thereby pitting them against each other. 

Specifically, the Swap Maze was designed to vary the nodes and edges in the graph that 

correspond to the same place, while preserving neighborhoods, by having pairs of objects 

alternate between two locations (A and B) within the same neighborhood during learning.  The 

neighborhood shortcut and route tasks were performed in the Swap Maze, and the results were 

compared with the corresponding conditions in the Control Maze from Experiment 1.   

 According to the Neighborhood hypothesis, topological neighborhoods are defined by 

visible boundaries, such as the Y-shaped skeleton of the virtual maze (Figure 6). For example, 

the Clock place and the Flamingo place both lie between the left and right paths, and hence fall 

in the same constant neighborhood. Neighborhood shortcuts to these targets should thus be 

equally successful in the Swap and Control Mazes. In the route task, if neighborhoods are 

primary, participants should take any path that leads to the neighborhood containing the swapped 

targets, so the chosen path would be expected to vary. 

 According to the Cognitive Graph hypothesis, neighborhood relations are derived from 

the place graph, where places are defined by salient objects.  In Figure 6A, for example, one 

neighborhood lies to the right of the edge leading to the Clock place and to the left of the edge 

leading to the Flamingo place; this neighborhood contains the Flamingo.  In the Swap Maze, 

however, the Clock and the Flamingo switch locations, so two different edges lead to the Clock 
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place.  Hence, “right of the edge leading to the Clock” defines two different neighborhoods, only 

one of them containing the Flamingo (Figure 6B).  This renders neighborhood boundaries 

inconsistent, so neighborhood shortcuts should be more unreliable in the Swap Maze than the 

Control Maze. For the route task, path choices to the Clock should be unimodal in the Control 

Maze (to node A) but bimodal in the Swap Maze (to nodes A and B).  Consequently, estimates of 

target position should be more variable in the Swap Maze, and may fall outside the correct 

neighborhood, because they are based on local path lengths in two different corridors.   

 Finally, according to the Constancy hypothesis, spatial knowledge preserves whatever 

geometric properties remain invariant during learning. Because neighborhoods defined by the Y-

shaped skeleton are constant in the Swap Maze, predictions are the same as for the 

Neighborhood hypothesis: neighborhood shortcuts should be successful, and participants should 

choose varying paths that all lead to the neighborhood containing the swapped targets. 

 
3.1 Predictions 
 
 These hypotheses lead to specific predictions for the two tasks (refer to Table 1). 

 
3.1.2 Neighborhood shortcut task 
 
 Prediction 7: If Neighborhood knowledge is primary, or spatial knowledge preserves 

constant geometric properties, neighborhood shortcuts should be (7a) similar in the Swap and 

Control Mazes, and (7b) their endpoints should fall within the neighborhood containing the two 

swapped targets, in both mazes.  Prediction 8:  If neighborhood relations are derived from the 

place graph, neighborhood shortcuts in the Swap Maze should (8a) be less accurate or more 

variable than in the Control Maze, and (8b) more shortcut endpoints may fall outside of the 

correct neighborhood than in the Control Maze. 
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3.1.3 Route task 
 
 Prediction 9: If neighborhood knowledge is primary, or spatial knowledge preserves 

constant properties, participants should choose any path that leads to the neighborhood that 

contained the two swapped targets during learning, so the chosen path would be expected to 

vary.  Prediction 10:  If graph knowledge is primary, (10a) path choices should be bimodal (to 

the swapped nodes) in the Swap Maze, but unimodal in the Control Maze, and consequently 

(10b) estimates of target position based on local path lengths should be more variable in the 

Swap Maze, and may fall outside the correct neighborhood. 

3.2 Method 
 

3.2.1 Participants 
 

A total of 24 (12M, 12F) new participants were run the in the two Swap Maze conditions.  

Each group consisted of 12 participants (6M, 6F), and the mean age of participants who 

completed the study was 20.8 (SD = 3.2).  One participant was dropped from the Swap / Route 

condition due to symptoms of simulator sickness.  

 
3.2.2 Design 
  
 Including the two groups in the Swap Maze (Experiment 2) and the two corresponding 

groups in the Control Maze (from Experiment 1), this yielded a 2 x 2 x 2 design, with two 

environments (Control Maze, Swap Maze) in the learning phase crossed with two navigation 

tasks (Neighborhood Shortcut, Route) and two trial types (Probe, Control) in the test phase. 

Environment and task were between-subjects factors, and trial type was a within-subject factor. 

Each participant experienced only one virtual environment and one response task, and trial order 

was randomized for each participant.
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3.2.3 Displays 
 
 The Swap Maze was identical to the Control Maze except that pairs of probe objects 

(bookcase/gear; clock/flamingo) switched locations repeatedly during the free exploration and 

training phases (Figure 6).  The initial position of each object was randomized between 

participants.  For example, the first time a participant walked down the canonical path for the  

 

Figure 6. Experiment 2: mazes. (A) The layout of the Control Maze was the same as before. (B) 
The Swap Maze was identical to the Control Maze except that pairs of probe objects 
(bookcase/gear; clock/flamingo) exchanged locations repeatedly during free exploration and 
training phases.  

 

flamingo, they would see the flamingo; the next time they walked down the same path, they 

would see the clock; next, they would see the flamingo; and so on.  If participants walked to the 

incorrect path when trying to find an object during the training phase, they were guided to the 

alternative location for that object.  This was done to ensure that participants would learn that a 

given object could appear in multiple locations, rather than learning that multiple objects appear 
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in a particular location.  Thus, in the Swap Maze a particular path could lead to two different 

“places” as defined by the objects. 

 
3.2.4 Procedure 
 
 The procedure in Experiment 2 was the same as before, except for the training phase, 

which was modified based on pilot testing that showed some participants were not able to reach 

the training criterion in the Swap Maze.  To reduce attrition and ensure sufficient data in the test 

phase, participants in the Swap Mazes continued to the test phase after 25 min of training, even if 

they had not met the criterion of finding each object within 30 s.  The number of training trials 

required to reach the criterion (or before 25 min had elapsed) were counted to assess how 

difficult it was for participants to learn the Swap Maze. 

 
3.2.5 Data analysis 
 
 The analysis was the same as before, except that probe objects in the Swap Maze were 

the clock, flamingo, gear, and bookcase, and control objects were the moon, well, earth, cactus, 

rabbit, sink.  Therefore, objects in the Control Maze from Experiment 1 were re-coded to match 

their control/probe designations in the Swap Maze, for statistical comparisons.  For 

Neighborhood shortcut and Route tasks, CEs on probe trials were normalized so that 0º 

corresponded to walking toward the canonical location (A) and positive values corresponded to 

walking in the direction of the swapped target location (B), in this case toward the middle of the 

neighborhood;  and endpoints were classified as falling within the correct neighborhood 

(containing the A/B locations of the swapped targets), the wrong neighborhood, or on paths 

(Figure 7A).  For the Route task, path choices were classified as correct if paths terminated in the 
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correct neighborhood, and at either the canonical (A) or swapped (B) target location; path 

choices were classified as wrong if they terminated in any other hallway (Figure 7B).  

 
 
Figure 7. Experiment 2: classification scheme for endpoints and path choices. (A) Percentages of 
endpoints falling in each of the three possible neighborhoods (A/B, paths, wrong) were computed 
for each participant. (B) Wrong path choices were further subdivided into paths to objects located 
in the wrong neighborhood (thick red line), and non-A/B paths in the same neighborhood as the 
A/B target (thin red line). 

 
3.3 Results 
 
3.3.1 Free exploration phase 
 
 No statistically significant differences between groups were found, suggesting that 

participants explored Control and Swap Mazes to similar extents. 

3.3.2 Training phase 
 
 Participants required more training trials per object in the Swap Maze (M = 5.2, SD = 1.1) 

than in the Control Maze (M = 4.2, SD = 0.4) to reach criterion (or before 25 min had elapsed), 
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F(1,44) = 27.1, p < .001, ηG2 = .12 (BF10 >> 100, decisive evidence for H1).  This implies that the 

Swap Maze was harder to learn than the Control Maze.   

3.3.3 Neighborhood shortcut task 
 
 Sample neighborhood shortcuts appear in Figure 8A, and mean constant and variable 

errors in Figure 9A and 9B respectively.  Watson-Williams tests on CE did not find any main  

effects of environment or trial type.  Pairwise post-hoc Watson-Williams tests revealed that, in 

the Swap Maze, CE was significantly more negative on control trials (M = -17.3, AD = 25º) than  

 

Figure 8. Experiment 2: example shortcuts (black paths) for well (blue circle) → clock/flamingo 
(green/pink circles) large trials. (A) Neighborhood shortcut task, (B) Route task. Aggregated 
shortcuts for all participants are plotted in each panel. Individual shortcuts are shown as black 
paths originating at the mean starting point (object A’s approximate location), and small green 
dots indicate shortcut endpoints. Swapped locations of the targets represented by large (green and 
pink) circles linked by checkered lines. Green ellipses represent 95% confidence ellipses for 
shortcut endpoints. 
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Figure 9.  Experiment 2: Mean constant errors (CE) and variable errors (within-subject angular 
deviations, AD). Constant errors were normalized so that 0º corresponded to perfect accuracy to 
the control target on control trials, or the A location of the swapped target on probe trials. Thus, 
for probe trials, a positive shift in angular error indicates a shift towards the B location of swapped 
targets. Error bars and Duncan flags (p < .05) are the same as in Figure 5. 

 

on probe trials (M = 2.11º, AD = 13.8º), indicating a bias toward the edge of the neighborhood 

(see Duncan flags in Figure 9A); there is no apparent reason why this was the case.  

Variable Errors, on the other hand, were larger in the Swap Maze than in the Control Maze 

Figure 9B.  The ANOVA on mean within-subject AD revealed a main effect of environment, 
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F(1,22) = 7.81, p < .05, ηG2 = .25 (BF10 =  7.8, substantial evidence for H1), a main effect of trial 

type, F(1,22) = 8.22, p < .01, ηG2 = .03, and an environment x trial type interaction, F(1,22) = 

4.45, p < .05, ηG2 = .016 (BF10 = 9.2, substantial evidence for H1). Post- hoc Tukey tests revealed 

that mean AD was approximately twice as large in the Swap Maze (M = 30.9º, SD = 5.7º) as in 

the Control Maze (M = 16º, SD = 1.15º), but did not confirm the interaction (see Duncan flags in 

Figure 9B). These results are contrary to Prediction 7a, but consistent with Prediction 8a: 

neighborhood shortcuts were more variable in the Swap Maze than the Control Maze, suggesting 

that neighborhoods are derived from the varying place graph. The significant interaction 

indicates that VE may be greater for swapped targets than control targets.   

 
3.3.4 Route task 
 
 Sample route task shortcuts appear in Figure 8B, and mean constant and variable errors in 

Figure 9C and 9D respectively. For the Route Task, the Watson-Williams tests on CE (Figure 

9C) revealed a small but significant main effect of environment, such that target position was 

slightly underestimated in the Control Maze (M = -3.12º, AD = 2.73º) compared to the Swap 

Maze (M = .31º, AD = 5.9º), F(1,46) = 6.37, p < .05 (BF10 =  3.2, substantial evidence for H1). 

No other significant effects were found.  Results of post-hoc Watson-Williams tests appear as 

Duncan flags in Figure 9C.  

The VE in estimated target position (Figure 9D) was significantly higher on probe trials 

in the Swap Maze (M = 25.5º, SD = 11.75º) than in any other condition. There was a main effect 

of environment F(1,22) = 39.7, p < .001, ηG2 = .46 (BF10 >> 100, decisive evidence for H1), a 

main effect of trial type, F(1,22) = 13.5, p < .01, ηG2 = .25, and a significant interaction, F(1,22) 

= 18.3, p < .001, ηG2 = .31 (BF10 = 63.6, very strong evidence for H1). The interaction was 

confirmed by post-hoc Tukey tests (see Duncan flags in Figure 9D). This finding is consistent 
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with Prediction 10b, for position estimates are based on local path lengths that lead to two 

different endpoints (Figure 8).  

3.3.5 Endpoints 
  
 Neighborhood shortcuts. For the neighborhood shortcuts, the mean number of endpoints 

falling in correct (A/B) neighborhoods dropped from 85.8% (SD = 14.1%) in the Control Maze 

to 67% (SD = 32.9%) in the Swap Maze, and the SD doubled.  Specifically, there were fewer 

correct endpoints on probe trials in the Swap Maze (M = 64.7%, SD = 33.9%) than the Control 

Maze (M = 88.3%, SD = 14.9%), and somewhat fewer on control trials in the Swap Maze (M = 

69.3%, SD = 32.8%) than in the Control Maze (M = 83.3%, SD = 14.1%).  The corresponding 

ANOVA indicated a marginally significant main effect of environment, F(1,22) = 3.32, p = .082, 

ηG2 = .128, but the Bayes factor indicated substantial evidence for the alternative hypothesis 

(BF10 = 5.39). The ANOVA also indicated a significant environment x trial type interaction, 

F(1,22) = 6.89, p < .05, ηG2 = .01 (BF10 = 1.14, anecdotal evidence for the H1). Post hoc Tukey 

tests only confirmed the main effect of environment (p < .05).  

Conversely, more endpoints fell into the wrong neighborhood in the Swap Maze (M = 

24.1%, SD = 24%) than the Control Maze (M = 9.1%, SD = 10.5%), and again the SD doubled. 

Specifically, on probe trials there were more endpoints in the wrong neighborhood in the Swap 

Maze (M = 25.9%, SD = 25.5%) than the Control Maze (M = 6.9%, SD = 8.2%), as well as more 

on control trials in the Swap Maze (M = 22.3%, SD = 23.1%) than the Control Maze (M = 

11.5%, SD = 13.2%). The corresponding ANOVA revealed a marginally significant main effect 

of environment, F(1,22) = 3.86, p = .062, ηG2 = .145, but the Bayes factor indicated substantial 

evidence for the alternative hypothesis (BF10 = 5.78). There was also a significant environment x 
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trial type interaction, F(1,22) = 7.4, p < .05, ηG2 = .012 (BF10 = 1.66, anecdotal evidence for the 

H1). Post hoc Tukey tests only confirmed the main effect of environment (p < .01).  

This pattern of results suggests that varying the edges and nodes in the graph destabilized 

the neighborhoods of all objects, not only probe objects. Overall, neighborhood shortcuts support 

the hypothesis that neighborhoods are derived from the place graph (Prediction 8b), and are 

inconsistent with the Constancy hypothesis (Prediction 7). 

 Route task. In the Route Task, over 90% of the endpoints fell in the correct (A/B) 

neighborhood in all conditions.  Nevertheless, consistent with Prediction 10b, more endpoints 

fell in the wrong neighborhood on probe trials in the Swap Maze (M = 8.7%, SD = 10.1%) than 

on control trials in that maze (M = 2.5%, SD = 4.4%), or on probe trials (M = 0%, SD = 0%) or 

control trials (M = 0.4%, SD = 1.1%) in the Control Maze. The corresponding ANOVA on 

endpoints in the wrong neighborhood revealed a significant main effect of environment, F(1,22) 

= 8.54, p < .01, ηG2= .206 (BF10 = 14.1, strong evidence for H1), a significant main effect of trial 

type, F(1,22) = 6.98 (BF10 = 1.22, anecdotal evidence for H1), p < 0.05, ηG2= .095, and a 

significant interaction, F(1,22) = 5.12, p < 0.05, ηG2= .071 (BF10 = 23.2, strong evidence for H1).  

Post hoc Tukey tests revealed that probe trials in the Swap Maze had significantly more 

neighborhood errors than the other three conditions (p < .05). This finding is consistent with the 

Cognitive Graph hypothesis that target position estimates are based on local path lengths 

corresponding to edge weights in a place graph (Prediction 10b), and inconsistent with the 

Constancy hypothesis that they are based on constant neighborhood boundaries (Prediction 7).  

 
3.3.6 Path choices 
 

In the Control Maze, path choices were unimodal on both probe and control trials, with 

participants taking the correct path to the canonical target location (A) on 100% of control trials 
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and 99.8% of probe trials (SD = 0.8%).  In the Swap Maze, on the other hand, path choices to the 

probe target were bimodal, with paths to the canonical location (A) on 36.7% (SD = 21.7%) of 

trials and paths to the non-canonical location (B) on 54.1% (SD = 20.8%) of trials; in contrast, 

path choices to control targets were unimodal, with 96.3% (SD = 6.6%) to the canonical location 

(A) and 0% to location B. ANOVAs confirmed that the path to the canonical location (A) was 

chosen less often on probe trials than on control trials in the Swap Maze, F(1,11) = 74.8, p < .001, 

ηG2 = .79 (BF10 >> 100, decisive evidence for H1).  Conversely, the path to the non-canonical 

location (B) was chosen more often on probe trials than control trials, F(1,11) = 81.4, p < .001, 

ηG2 = .88 (BF10 >> 100, decisive evidence for H1). Participants thus acquired a place graph despite 

varying node and edge assignments; moreover, they learned the two different edges that led to the 

same place, consistent with the Cognitive Graph hypothesis (Prediction 10a).  

Contrary to the Neighborhood and Constancy hypotheses (Prediction 9), participants in the 

Swap Maze never took other (non-A/B) paths leading to the correct neighborhood on probe trials, 

yet they chose paths to the wrong neighborhood on 8.25% (SD = 10.7%) of these trials, despite the 

fact that the swapped targets remained in the same neighborhood. This percentage was 

significantly higher than control trials in the Swap Maze (M = 1.56%, SD = 3.88%), F(1,11) = 

6.77, p < .05, ηG2 = .16 (BF10 = 5.13, substantial evidence for H1).  In the Control Maze, paths to 

the wrong neighborhood were never chosen on probe trials.  

In sum, despite constant neighborhoods, participants failed to take alternative paths to the 

correct neighborhood, and took paths to the wrong neighborhood on a significant number of trials.  

Yet they acquired a place graph of the maze, even with swapping nodes and edges. The pattern of 

results is contrary to both the Neighborhood and Constancy hypotheses (Prediction 9), but 

consistent with the Cognitive Graph hypothesis (Predictions 8 and 10). 
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3.3.7 Response Time 

The ANOVAs on mean response time found no significant effects of environment (p > 

.05; BF01 = 0.59, no evidence for H0) or trial type (p > .05; BF01 = 3.4, substantial evidence for 

H0). 

 
3.3.8 Debriefing responses 
 
 Detailed comparisons of debriefing results for Experiments 1 and 2 are presented in the 

Supplementary Material (Section 6, Comparison of Experiments). All Swap Maze participants 

reported noticing that some of the objects were swapping with one another, variously describing 

the pattern as the objects “changing,” “alternating,” “switching,” “swapping.” All participants 

reported noticing the outlines of the major paths superimposed on the ground plane during 

shortcuts.   

 
3.4 Discussion 
 

The four hypotheses and their predictions for each task in Experiment 2 are summarized 

in Table 1, together with the experimental outcome (rightmost column). Let us walk through the 

predictions and results.  

For the neighborhood shortcut task, both the Constancy and Neighborhood hypotheses 

predicted that (Prediction 7a) shortcuts should be comparable in the Swap and Control Mazes, 

and (Prediction 7b) their endpoints should fall within the neighborhood containing the swapped 

targets, because visible neighborhood boundaries (the Y-shaped skeleton) were constant during 

learning.  Conversely, the Cognitive Graph hypothesis predicted that if neighborhoods are 

derived from the place graph, neighborhood shortcuts should be (Prediction 8a) less accurate or 
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more variable in the Swap Maze than the Control Maze, and (Prediction 8b) endpoints may fall 

outside the constant neighborhoods.  

The results indicated that the VE of neighborhood shortcuts was significantly greater in 

the Swap Maze, especially for swapped targets, as predicted by the Cognitive Graph hypothesis.  

Moreover, there was substantial evidence that fewer shortcut endpoints fell in the correct 

neighborhood, and more fell in the wrong neighborhood, in the Swap Maze than the Control 

Maze, contrary to the Neighborhood and Constancy hypotheses.  Despite a significant 

environment by trial type interaction, post-hoc tests only supported the main effect, suggesting 

that varying node and edge assignments in the graph destabilized neighborhood boundaries for 

all target objects. This pattern of results supports the hypothesis that neighborhoods are derived 

from the place graph.   

 For the Route Task, both the Neighborhood and Constancy hypotheses predicted that 

(Prediction 9) participants should take any path leading to the neighborhood that contained the 

target, in both the Swap and Control Mazes, because neighborhoods were constant during 

learning.  In contrast, the Cognitive Graph hypothesis predicted that (Prediction 10a) path choice 

should be unimodal (to A) in the Control Maze and on control trials, but bimodal (to A and B) on 

probe trials in the Swap Maze, given that graph knowledge is composed of edges (paths) to 

nodes (places).  Consequently, (Prediction 10b) the final estimated target position should be 

more variable on probe trials in the Swap Maze, because local path lengths yield two different 

endpoints (Figure 8); they may also fall outside the neighborhood containing the target. 

We found that path choices were overwhelmingly unimodal (99.8% to correct path A) in 

the Control Maze and bimodal (36.7% to A and 54.1% to B) on probe trials in the Swap Maze, 

consistent with the Cognitive Graph hypothesis.  Despite constant neighborhoods, participants 
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never took alternative paths to the correct neighborhood, but occasionally took paths to the 

wrong neighborhood on probe trials in the Swap Maze.  Similarly, more route endpoints fell into 

the wrong neighborhood on those trials than in any other condition.  Finally, estimated target 

positions were also more variable on those trials, consistent with local information about path 

length.  This pattern of results contradicts the Neighborhood and Constancy hypotheses, but 

supports the Cognitive Graph hypothesis. 

 Overall, when the graph was varied, the environment was more difficult to learn: more 

training trials were required to reach criterion, and more guidance to targets was needed, in the 

Swap Maze than the Control Maze.  Nevertheless, participants still acquired reliable graph 

knowledge, choosing a correct path on 93.6% of trials in the Swap Maze.  In contrast, VEs and 

endpoint errors indicate that participants did not learn constant neighborhoods defined by the Y-

shaped skeleton.  Rather, the results strongly imply that neighborhoods are derived from nodes 

and edges in the place graph.  

 
3.5 Conclusions 
 
 The results of Experiment 2 provide support for the Cognitive Graph hypothesis but 

militate against the Neighborhood and Constancy hypotheses.  Graph structure appears to be the 

primary form of spatial knowledge: an environment in which the place graph varies is more 

difficult to learn and interferes with the acquisition of neighborhoods.  Despite this variation, 

participants were able to learn that two different edges lead to the same place and acquired a 

reliable place graph.  Conversely, despite a constant skeleton of visible paths, participants did not 

learn stable neighborhoods, but derived them from the place graph.  These results converge with 

those of Experiment 1 to support the hypothesis that primary spatial knowledge is best described 

as a labeled place graph.   
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4. General Discussion 
 

 The present study examined the geometric structure of spatial knowledge by evaluating 

four main hypotheses: the Euclidean hypothesis, which posits that spatial knowledge corresponds 

to a metric map; the Neighborhood hypothesis, which proposes that it consists of adjacency 

relations among spatial regions;  the Cognitive Graph hypothesis, which states that it is 

characterized by a labeled place graph; and the Constancy hypothesis, which posits that it 

preserves whatever geometric properties are invariant during learning.  

 To test these hypotheses and identify the primary form of spatial knowledge, we 

selectively varied three geometric properties during learning: metric relations, metric 

neighborhoods, and the place graph. The Elastic Maze varied metric structure while holding the 

place graph constant; the Swap Maze varied graph structure while holding neighborhoods 

constant; and the Control Maze preserved all three properties.  We asked participants to learn one 

of these environments and then perform a navigation task that assessed their metric, 

neighborhood, and graph knowledge.   

Table 1 

Summary: Summary of predictions and results 

Task Hypothesis  Experiment Prediction Results BF 

 
Metric 
Shortcut 

 
Euclidean 
Primary spatial knowledge is 
Euclidean 
  

 
1 

 
1 

 
Metric shortcuts in the Elastic Maze 
should shift to the average target 
location, and be more variable, 
compared to the Control Maze; same 
on probe compared to control trials.  

 
✖ 

 
BF01 = 4.15 
BF01 = 3.61 
BF01 = 6.02 
BF01 = 6.32 
 

 
Cognitive Graph 
Primary spatial knowledge resembles a 
rough labeled place graph (or is highly 
imprecise)  

1 2 Metric shortcuts should be directional 
but similarly unreliable in the Elastic 
and Control Mazes, and on probe and 
control trials 
  

✓ Same 

 
Neighborhood 
Shortcut 

 
Euclidean 
Neighborhoods are derived from 
metric relations between places and 
boundaries 

 
1 

 
3 

 
Neighborhood shortcuts to stretched 
targets should be bimodal and more 
variable in the Elastic Maze than in 
the Control Maze; and on probe trials 
than control trials 
 

 
✖ 

 
BF01 = 4.22 
BF01 = 3.48 
BF01 = 3.03 
BFNE >> 100 
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 Neighborhood 
Primary spatial knowledge consists of 
topological neighborhood relations  
 

1 4 Neighborhood shortcuts in the Elastic 
Maze should be similar to the Control 
Maze; less variable than metric 
shortcuts, with more endpoints in the 
short neighborhood 

✓ Same 
BF10 = 6.28 
BF10 =  111.5 
 

 Cognitive Graph 
Neighborhood relations are derived 
from the place graph  

1 4 Same ✓ Same 
 

 
Constancy 
Spatial knowledge preserves whatever 
geometric properties remain constant  

2 7a Neighborhood shortcuts should be 
comparable in the Swap and Control 
Mazes  

✖ 
 

BF10 = 5.39 
BF10 = 1.14 
BF10 = 5.78 
BF10 = 1.66 

  2 7b Shortcut endpoints should fall within 
the neighborhood containing the 
swapped targets, in the Swap and 
Control Mazes 
 

✖ 
 

BF10 >> 100 
BF10 >> 100 
BF10 >> 100 
BF10 = 16.2 

 Neighborhood 
Primary spatial knowledge consists of 
topological neighborhood relations 

2 7a,b Same ✖ 
 

Same 

 Cognitive Graph 
Neighborhood relations are derived 
from the place graph 

2 8a Neighborhood shortcuts in the Swap 
Maze should be less accurate or more 
variable than in the Control Maze 

✓ BF10 =  7.8 
BF10 =  9.2 
 

  2 8b Shortcut endpoints in the Swap Maze 
may fall outside the correct 
neighborhood more than in the 
Control Maze 

✓ BF10 = 5.39 
BF10 = 1.14 
BF10 = 5.78 
BF10 = 1.66 

 
Route 

 
Euclidean 
Graph knowledge is derived from 
metric relations among places and 
paths 

 
1 

 
5a 

 
Path choice should be bimodal in the 
Elastic Maze because short and long 
targets fall on different paths 

 
✖ 

 

 
>97% correct 
(unimodal) 

 

   1 5b Estimated target positions should be 
similar to metric shortcuts to the same 
targets  
 

✖ 
 

BF10 >> 100 
BF10 =  8.45 

 
Cognitive Graph 
Primary spatial knowledge resembles a 
rough labeled place graph 

1 6a Path choice should be unimodal and 
correct in the Elastic and Control 
Mazes, 
 
 

✓ >97% correct  
(unimodal) 
 

 

  1 6b Position estimates in the Elastic Maze 
should shift to the average target 
location compared to the Control 
Maze, and be less variable than metric 
shortcuts. 
 

✓ BF10  >> 100 
BF10 =  8.45 

 

Constancy 
Spatial knowledge preserves whatever 
geometric properties remain constant 
 
 

2 9 Path choice should vary but lead to the 
neighborhood that contained the 
swapped targets the Swap and Control 
mazes 

✖ 
 

BF10 = 5.13 

 

Neighborhood 
Primary spatial knowledge consists of 
topological neighborhood relations 
 

2 9 Same ✖ 
 

Same 

 

Cognitive Graph 
Primary spatial knowledge resembles a 
labeled place graph 

2 10a Path choice should be bimodal in the 
Swap Maze, but unimodal in the 
Control Maze and on control trials 

✓ 
 

BF10 >> 100 
BF10 >> 100 

 

Neighborhood relations are derived 
from the place graph 

2 10b Estimated target position should be 
more variable in the Swap Maze and 
may fall outside the correct 
neighborhood 
 

✓ 
 

BF10 >> 100 
BF10 = 63.6 
BF10 = 14.1 

 
Note: ✓ indicates that results were consistent with the hypothesis. ✖ indicates that results were inconsistent with the 
hypothesis. “BF” indicates Bayes Factor(s) (strength of evidence favoring the corresponding result); BFs following 
checks and crosses support acceptance or rejection of the corresponding hypothesis respectively. 
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The overarching predictions for each of the four hypotheses were as follows: (1) The 

Euclidean hypothesis predicts that performance on all three tasks should be higher when metric 

structure is constant (Control Maze) than when it is varied (Elastic Maze), because geometrically 

weaker forms of knowledge are derived from metric spatial knowledge.  (2) The Neighborhood 

hypothesis predicts that performance on neighborhood shortcuts should be higher when 

neighborhoods are constant (Swap Maze and Control Maze) than when they are varied (Elastic 

Maze).  (3) The Cognitive Graph hypothesis predicts that performance on the route task should 

be higher when the place graph is constant (Elastic Maze and Control Maze) that when it is 

varied (Swap Maze).  (4) The Constancy hypothesis predicts that participants will acquire 

whatever geometric properties are constant during learning, and thus perform best on metric 

shortcuts in the Control Maze, the route task in the Elastic Maze, and neighborhood shortcuts in 

the Swap Maze.  

 Experiment 1 compared the Control Maze and Elastic Maze.  The results were generally 

consistent with the Cognitive Graph hypothesis.  Even though we varied metric structure in the 

Elastic Maze, metric shortcuts were highly imprecise in both mazes, and did not shift in the 

direction of stretched targets even though they were detectable.  This suggests two possibilities: 

(1) spatial knowledge is Euclidean, but too imprecise to support metric shortcuts to discriminable 

locations, or (2) spatial knowledge is non-Euclidean, and best described as a labeled graph. 

Unreliable shortcuts alone do not rule out Euclidean spatial knowledge, for they could result 

from an imprecise metric map.  However, such an imprecise map cannot be the basis for the 

neighborhood and graph knowledge required to explain reliable performance in the 

neighborhood shortcut and route tasks. 



PROBING THE INVARIANT STRUCTURE OF SPATIAL KNOWLEDGE 56 

The route task revealed that participants acquired a labeled place graph.  They chose the 

correct path to the target on over 97% of test trials in the Elastic Maze, despite varying Euclidean 

structure. In addition, they walked down the path to the approximate target position, 

demonstrating knowledge of local metric path lengths, corresponding to edge weights in the 

graph.  Participants also learned neighborhoods based on visible boundaries (e.g. paths and 

intersections): neighborhood shortcuts were unimodal and less variable than metric shortcuts in 

both the Control and Elastic Maze.  Moreover, route endpoints were unimodal and clustered in 

the near neighborhood, implying that neighborhoods are based on topological boundaries, not 

derived from metric relations.  This pattern of results is consistent with the Cognitive Graph 

hypothesis, in which a labeled graph (Figure 1B) incorporates local information about path 

lengths (edge weights). 

 Experiment 2 was designed to provide a clear test of the Graph, Neighborhood, and 

Constancy hypotheses, by varying the place graph in the Swap Maze while holding 

neighborhoods constant.  Even though the neighborhoods bounded by the skeleton of primary 

paths were constant, participants had difficulty learning them when the node and edge 

assignments in the graph were bistable.  Neighborhood shortcuts were more variable, and more 

shortcut endpoints fell in the wrong neighborhood, in the Swap Maze than the Control Maze.  

Nevertheless, participants still chose the correct path to the (A/B) target on over 96% of test 

trials in the Swap Maze.  They thus learned the graph of the Swap Maze, including bistable 

edges and nodes, despite this variation.  These results strongly support the Cognitive Graph 

hypothesis.  In contrast, they are inconsistent with the Neighborhood and Constancy hypotheses, 

for participants were less successful at acquiring neighborhoods in the Swap Maze, even though 

they were constant during learning.  
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 Taken together, the results of Experiments 1 and 2 are contrary to the Euclidean, 

Neighborhood, and Constancy hypotheses, but support the Cognitive Graph hypothesis.  A place 

graph was acquired in all environments, even when we attempted to vary it in the Swap Maze.  

Neighborhoods were also learned, but their boundaries were derived from the place graph.  Thus, 

primary spatial knowledge resembles a labeled place graph (Figure 1B) which incorporates local 

information about approximate path lengths and junction angles.  

 One objection to a labeled graph is that the spatial knowledge acquired in these 

experiments is also consistent with distorted Euclidean knowledge.  However, in other 

experiments we have found that spatial knowledge violates the metric postulates, but is 

consistent with a labeled graph (Warren et al., 2017; Strickrodt, et al., 2020).  Although these 

findings imply that ‘navigation space’ is non-Euclidean, it remains possible that spatial 

knowledge is locally Euclidean within ‘vista space’ (Meilinger, 2008; but see Warren, 2020). 

The present results are also compatible with the proposal that spatial knowledge has a 

hierarchical organization (Hirtle & Jonides, 1985; Montello, 1992), or that it is characterized by 

different spatial scales (Anooshian, 1996; Montello, 1992).  We propose that a labeled graph 

structure provides the best description of knowledge at each level or scale.   

Finally, we note that the present study was not designed to assess individual differences 

in primary spatial knowledge (Weisberg, et al, 2014).  We hope that the ‘impossible world’ 

paradigm offers a useful method for testing specific hypotheses about the geometry of spatial 

knowledge in a larger subject population.  

 
5. Conclusion 
 
 The present study critically examined the structure of human spatial knowledge by testing 

four hypotheses about its geometric properties. The results are contrary to three of these 



PROBING THE INVARIANT STRUCTURE OF SPATIAL KNOWLEDGE 58 

hypotheses: that primary spatial knowledge is Euclidean, consists of topological neighborhoods, 

or preserves whatever geometric properties are constant during learning.  Our findings support 

the hypothesis that primary spatial knowledge is best described as a place graph in which edges 

are labeled with local information about the approximate path lengths between places and 

intersections, and nodes are labeled with local information about objects and the approximate 

angles between paths.  
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Supplementary Material 
 
The supplementary material for this article includes an additional comparison of experiments. 
The data supporting this article may be accessed from the Brown University Digital Repository 
https://repository.library.brown.edu/studio/item/bdr:1095248/ 
  

https://repository.library.brown.edu/studio/item/bdr:1095248/
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Supplementary Material 

 

Comparison of experiments 
 

 To integrate the findings of Experiments 1 and 2, we compare the results of the three 

tasks (metric shortcut, neighborhood shortcut, route) across the three environments (Control, 

Elastic, and Swap Mazes). To simplify the comparison, we analyze the absolute angular error in 

each condition.  The mean absolute error (AE) was computed from the absolute value of the CE 

[0º, 180º] on each trial, and thus reflects both CE and VE.  For each task, the predictions of the 

four main hypotheses (Euclidean, Neighborhood, Cognitive Graph, and Constancy hypotheses) 

and the experimental outcomes are summarized in Table 3.  

1. Metric shortcut task 

The metric shortcut task was primarily designed to investigate the Euclidean hypothesis 

by varying metric relations (Elastic Maze) or holding them invariant (Control Maze).  If primary 

spatial knowledge is Euclidean, shortcuts should be less accurate or more variable in the Elastic 

Maze (because target locations were stretched 3m) than in the Control Maze.  Contrary to this 

expectation, we found no significant differences in CE or VE between the Elastic Maze and the 

Control Maze (see Section 2.3.2).  However, shortcuts were highly variable in both mazes, with 

mean within-subject VEs of 30.9˚-36.6˚. This is reflected in the large mean AEs (Figure 10A,B).  

Separate ANOVAs on angular errors in probe and control trials found no effects of environment 

(p > .05), and Bayes factors indicated anecdotal evidence for the null hypothesis (BF01 = 2.58 

and 2.64 respectively).  
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These results are consistent with two possibilities: (1) spatial knowledge is Euclidean but 

highly imprecise, or (2) spatial knowledge is a non-Euclidean labelled graph.  However, a noisy 

Euclidean map cannot explain the results of the neighborhood shortcut and route tasks.  

 
 

Figure 10. Comparison of experiments by task.  Left column (A, B): performance on the Metric 
Shortcut Task as measured by mean absolute angular error (AE).  Center column (C, D): 
performance on the Neighborhood Shortcut Task as measured by mean percentage of endpoints 
falling in wrong neighborhoods (defined as any non-short/long neighborhood in the Elastic Maze, 
and any non-A/B neighborhood in the Swap Maze).  Endpoints falling on maze paths were 
excluded from percentage calculations.  Right column (E, F): performance on the Route Task as 
measured by the mean percentage of trials in which participants walked down an incorrect path.  
Top row: probe trials.  Bottom row: control trials. Error bars indicate ±1 SEM. Duncan flags 
denote significant Tukey tests (p < .05); n.s. denotes non-significant one-way ANOVA. 

 
2. Neighborhood shortcut task   
 
 The neighborhood shortcut task was designed to investigate the Neighborhood hypothesis 

by holding only neighborhoods constant (Swap Maze), only the place graph constant (Elastic 

Maze), or all geometric properties constant (Control Maze) during learning.  The Neighborhood 

and Constancy Hypotheses predict that neighborhood shortcuts should be equivalent in the Swap 
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and Control Mazes, for neighborhoods (defined by the Y-shaped skeleton) were invariant.  On 

the other hand, if neighborhoods are derived from metric relations among places and boundaries, 

then performance should decline in the Elastic Maze, where those relations varied.  Finally, if 

neighborhoods are derived from the place graph, then performance should decline in the Swap 

Maze, where node and edge assignments in the graph varied while the skeleton remained 

constant. 

 We found that neighborhood shortcuts were equivalent in the Elastic Maze and the 

Control Maze, indicating that neighborhoods are not derived from Euclidean structure (see 

Section 2.3.4).  We also observed that VE was significantly larger in the Swap Maze than the 

Control Maze, despite constant neighborhoods (see Section 3.3.3), contrary to both the 

Neighborhood and Constancy hypotheses. Across experiments, we also find significantly more 

neighborhood shortcut errors on probe trials in the Swap Maze than the other mazes (Figure 

10C,D): a one-way ANOVA on endpoints found a significant effect of environment, F(2,33) = 

3.30, p < .05, ηG2 = .16; post-hoc Tukey tests revealed that the wrong neighborhood was chosen 

more often in the Swap Maze (M = 25.9%, SD = 25.5%) than in the Control Maze (M = 6.9%, 

SD = 0.08%). No significant effects were found. 

 Thus, results for the neighborhood shortcut task contradict the Neighborhood and 

Constancy Hypotheses, but are consistent with the Cognitive Graph hypothesis. When the place 

graph was varied in the Swap Maze, shortcuts deteriorated, despite the fact that neighborhoods 

were constant. This strongly implies that neighborhoods are derived from the place graph. 

3. Route Task   
 
 The route task was designed to investigate the Cognitive Graph hypothesis by holding 

only the place graph constant (Elastic Maze), only neighborhoods constant (Swap Maze), or all 



PROBING THE INVARIANT STRUCTURE OF SPATIAL KNOWLEDGE 69 

geometric properties constant (Control Maze) during learning.  If graph knowledge is primary, 

then path choices should be unimodal (to A) in the Elastic and Control Mazes, but bimodal (to A 

and B) in the Swap Maze.  On the other hand, if graph knowledge is derived from Euclidean 

structure, path choices should be bimodal in the Elastic Maze, because the stretched target falls 

in a different corridor.  Finally, the Constancy hypothesis predicts that participants should choose 

the correct path (unimodal) in the Elastic Maze because the graph was constant, but take various 

paths to the correct neighborhood in the Swap Maze because only neighborhoods were constant. 

 Performance on the Route Task was overwhelmingly accurate in all three mazes (Figure 

10E,F), with unimodal path choices in the Elastic and Control Mazes and bimodal choices in the 

Swap Maze.  These results were consistent with the Graph hypothesis but not the Euclidean and 

Constancy hypotheses.  Due to the variation in the graph of the Swap Maze, it was harder to 

learn in the training phase, and there were slightly more path errors in the test phase.  For probe 

trials, an ANOVA on the percentage of wrong paths revealed a significant effect of environment, 

F(2,32) = 6.88, p < .01, ηG2 = .30 (BF10 = 12.9, strong evidence for H1); post-hoc Tukey tests 

revealed that wrong paths were chosen more often in the Swap Maze (M = 9.8%, SD = 10.5%) 

than in the Elastic (M = 2.7%, SD = 4.4%) or Control (M = 0.24%, SD = 0.82%) Mazes.  For 

control trials, there was a significant effect of environment, F(2,32) = 3.8, p < .05, ηG2 = .19 

(BF10 = 2.14, anecdotal evidence for H1), with more wrong paths chosen in the Swap Maze (M = 

5.13%, SD = 6.96%) than in the Control Maze (M = 0%, SD = 0%); no other significant 

differences were found. Varying the place graph of the Swap Maze thus led to slightly more path 

errors.   But despite this variation, participants chose correct routes on over 96% of trials, 

indicating that they successfully learned the graph of the Swap Maze.  These results support the 

Cognitive Graph hypothesis that the primary form of spatial knowledge resembles a place graph.   
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4. Debriefing 
 

An ANOVA on self-reported average number of hours spent playing video games 

revealed a significant effect of participant group, F(7,89) = 2.33, p < .05, ηG2 = .16. A Tukey’s 

HSD test revealed that participants in the Swap Maze / Neighborhood task group reported 

spending more time playing games that do not involve learning a spatial layout (M = 4.03 

hr/week, SD = 4.63 hr/week) than in the Euclidean Maze / Route task group (M = 0.80, SD = 

1.09 hr/week). However, the corresponding Bayes Factor was small (BF10 = 1.6) indicating only 

anecdotal evidence for the alternative hypothesis. Thus, differences in performance between 

groups are not attributable to video game experience. 

An ANOVA on self-reported level of immersion in the virtual environment revealed a 

significant main effect of participant group, F(7,89) = 2.69, p < .05, ηG2 = .17 (BF10 = 3.26, 

substantial evidence for H1) .  However, none of the pairwise Tukey tests reached significance 

(all ps > .05), while Bayes factors only supported a higher level of immersion in the Swap 

Maze/route task group than groups doing other tasks (Swap Maze/neighborhood shortcuts, BF10 

= 8.21; Control Maze/neighborhood shortcuts, BF10 = 4.86; Control Maze/metric shortcuts, BF10 

= 7.93). Overall, however, differences in performance between groups are not attributable to 

self-reported level of immersion. 

Separate ANOVAs on individual items of the SBSOD failed to reach significance (all ps 

> .05, all BF10 < 1), indicating no evidence for any differences between participant groups. 

Across the 15 items, support for the null hypothesis ranged from anecdotal (BF01 = 1.07) to very 

strong (BF01 = 33.6). Thus, differences in performance between groups are not attributable to 

differences in self-rated spatial ability. 
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ANOVAs on the total number of responses and total number of correct responses for the 

RMT failed to reveal a significant effect of participant group (all ps > .05). The corresponding 

Bayesian analysis revealed strong evidence for the null hypothesis (12.9 < BF01 < 17.4). Thus, 

differences in performance between groups are not attributable to mental rotation ability. 

ANOVAs on the CE and VE of responses to the PTSOT failed to reach significance (all 

ps > .05). The corresponding Bayesian analysis revealed decisive evidence (CE: BF01 >> 100) 

and substantial evidence (VE: BF01 = 3.66) for the null hypothesis respectively. Thus, differences 

in performance between groups are not attributable to perspective-taking ability. 

The bidimensional regression analysis, which correlated the coordinates of objects in the 

sketch maps with their actual coordinates in the maze, failed to yield any inter-group differences 

in the main indices of translation, rotation, expansion, or general distortion (Tukey HSD > .05; 

2.95 < BF01 < 11.7, anecdotal to strong evidence for the null hypothesis).  The one exception was 

a minor measure: the maximum value of unexplained variance was significantly greater for the 

route task group in the Elastic Maze than for the neighborhood shortcut group in the Elastic 

Maze (p < .001; BF10 = 140.9, decisive evidence for H1) and the metric shortcut group in the 

Euclidean Maze (p < .05; BF10 = 22.8, strong evidence for H1). 

5. Conclusions   
 
 Taken together, the results of Experiments 1 and 2 are inconsistent with the Euclidean, 

Neighborhood and Constancy Hypotheses, but support the Cognitive Graph hypothesis (see 

Table 1, “Results” column).  We expected that the primary geometry of spatial knowledge would 

be revealed by a specific pattern of results:  performance on a given task should be high when the 

corresponding geometric property was constant during learning, but lower when that property 

was varied.  (1) Euclidean structure does not fit this pattern, for metric shortcuts were always 
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poor, and were unaffected when metric structure was varied (Elastic and Control Mazes).  (2) 

Neither does Neighborhood structure, for neighborhood shortcuts declined when neighborhoods 

were held constant (Swap Maze); this result also contradicts the Constancy hypothesis.  (3) 

Graph structure explains the data better than expected:  performance on the route task is 

uniformly high across all mazes, both when the place graph was invariant (Elastic Maze) and 

when it was varied (Swap Maze).  Learning and path choice decline slightly in the Swap Maze, 

as might be expected, but participants managed to learn bistable edge and node assignments and 

acquire a reliable place graph.   

These findings lead us to conclude that primary spatial knowledge is best described as a 

labelled place graph, which incorporates local information about approximate path lengths and 

junction angles between known places.  Neighborhood relations are derived from the place 

graph, based on information for neighborhood boundaries carried by edges and nodes.   
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