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Abstract

We tested four hypotheses about the structure of spatial knowledge used for navigation: (1) the
Euclidean hypothesis, a geometrically consistent map; (2) the Neighborhood hypothesis,
adjacency relations between spatial regions, based on visible boundaries; (3) the Cognitive
Graph hypothesis, a network of paths between places, labeled with approximate local distances
and angles; and (4) the Constancy hypothesis, whatever geometric properties are invariant during
learning. In two experiments, different groups of participants learned three virtual hedge mazes,
which varied specific geometric properties (Control Maze, Elastic Maze, Swap Maze). Spatial
knowledge was then tested using three navigation tasks (metric shortcuts, neighborhood
shortcuts, route task). They yielded the following results: (a) Metric shortcuts were insensitive to
detectable shifts in target location, inconsistent with the Euclidean hypothesis. (b) Neighborhood
shortcuts were constrained by path boundaries in the Elastic Maze, but not in the Swap Maze,
contrary to the Neighborhood and Constancy hypotheses. (¢) The route task indicated that a
graph of the maze was acquired in all environments, including knowledge of local path lengths.
We conclude that primary spatial knowledge is consistent with the Cognitive Graph hypothesis.
Neighborhoods are derived from the graph, and local distance and angle information is not
embedded in a geometrically consistent map.

Keywords: human navigation, cognitive map, cognitive graph, spatial cognition
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1. Introduction

As they explore the world, humans and other animals acquire knowledge of the spatial
relations among features of their environment that guide navigation, such as the relative locations
of landmarks and familiar places. Although the geometry of such spatial knowledge might take a
variety of forms (Tobler, 1976; Trullier, Wiener, Berthoz, & Meyer, 1997; Tversky, 1993), a
prominent view is that we build a metric Euclidean cognitive map (Figure 1A) of the
environment (Gallistel, 1990; O'Keefe & Nadel, 1978; Piaget & Inhelder, 1956; Siegel & White,
1975; Tolman, 1948). At the other end of the spectrum, it has been proposed that spatial
knowledge has a weak topological structure such as a graph. For example, a place graph captures
only the network of paths connecting familiar places in the environment, with no metric
information (Figure 1B, excluding labels) (Byrne, 1979; Kuipers, Tecuci, & Stankiewicz, 2003;
Werner, Krieg-Briickner, & Herrmann, 2000). Another kind of topological structure is relations
between neighborhoods, spatial regions bounded by paths or other environmental borders
(Figure 1C). The location of a place may be described qualitatively by the neighborhood that
contains it (Chase, 1983; Wiener & Mallot, 2003).

A B C D
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Figure 1. Models of spatial knowledge. (A) Euclidean map: places A, B, C... are assigned
locations in a metric coordinate frame. (B) Labeled graph. In a topological graph, nodes
correspond to places and edges to the paths connecting places. In a labeled graph, edge weights
correspond to approximate distances between places, and node labels correspond to approximate
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angles between paths; edge weights and node labels in a labeled graph need not be geometrically
consistent. (C) Topological neighborhoods: Adjacency relations between spatial regions P, Q, and
R, bounded by paths. (D) Another possibility is that spatial knowledge opportunistically preserves
whatever geometric properties remain constant during learning.

An intermediate possibility that lies between Euclidean and topological structure is a
labeled graph, such as a place graph augmented by approximate, local distance and angle
information (Figure 1B, including labels) (Chrastil & Warren, 2014; Meilinger, 2008; Warren,
Rothman, Schnapp, & Ericson, 2017). This structure has been called a cognitive graph. Others
have proposed flexible or hybrid models combining the best features of Euclidean and
topological models (Chown, Kaplan, & Kortenkamp, 1995; Kuipers, 2000; Mallot & Basten,
2009; Poucet, 1993; Truillier, Wiener, Berthoz, & Meyer, 1997).

To disentangle these models, experimenters have recently manipulated geometric
properties of the environment using virtual reality displays (Warren, et al., 2017; Kluss, Marsh,
Zetzsche, & Schill, 2015; Strickrodt, Meilinger, Biilthoff & Warren, 2020). However, this
approach raises the possibility that spatial knowledge reflects whatever geometric properties
remain invariant during learning—a constancy hypothesis that to our knowledge has not been
previously tested.

In the present study, we sought to systematically evaluate four hypotheses about the
geometry of spatial knowledge: (1) the Euclidean hypothesis, which posits that primary spatial
knowledge has the properties of a metric Euclidean map; (2) the Cognitive Graph hypothesis,
that primary spatial knowledge is characterized by a labeled (cognitive) graph; (3) the
Neighborhood hypothesis, that primary spatial knowledge consists of adjacency relations
between spatial regions; and (4) the Constancy hypothesis, that spatial knowledge preserves the
specific geometric properties that remain invariant during learning. Taken together, these four

hypotheses span the spectrum of proposed forms of spatial knowledge. By testing them in a
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single study, we aim to zero in on the geometric properties that constitute primary spatial
knowledge, from which weaker properties might be derived. We now elaborate each hypothesis
in turn.

1.1 Euclidean hypothesis

The term “cognitive map” was introduced into the field by Tolman (1948), who reported
that rats often take direct (i.e., “as the crow flies’) novel shortcuts to a trained location. Similar
behavior was subsequently reported in a variety of animals (Chapuis, Durup, & Thinus-Blanc,
1987; Chapuis, Thinus-Blanc, & Poucet, 1983; Menzel, 1973; Gould, 1986; Wehner, Michel, &
Antonsen, 1996), reinforcing the concept of a cognitive “survey map” with a metric Euclidean
structure (O’Keefe & Nadel, 1978; Piaget & Inhelder, 1956; Siegel & White, 1975). Such a map
could be constructed by means of path integration, based on idiothetic (proprioceptive, motor,
and vestibular) information about distances traveled and angles turned while learning an
environment, by embedding these local measurements into a geometrically consistent coordinate
system (Gallistel, 1990; Bush, Barry, Manson & Burgess, 2015; McNaughton, Battaglia, Jensen,
Moser & Moser, 2005; Moser, Moser & McNaughton, 2017). A Euclidean map would be
advantageous because it captures all geometric relations among learned locations including
distances and directions, and thus enables novel routes and shortcuts using trigonometry
(Gallistel, 1990).

On the other hand, alternative explanations have been offered for claims of novel
shortcuts in animals, including beacon homing (Dyer, 1991), familiar routes (Bennett, 1996;
Collett & Collett, 2006), and “snapshot matching” (Cartwright & Collett, 1983; Wehner, et al.,
1996) (see Warren, 2019, for a review). In humans, directional estimates are highly inaccurate

and imprecise, with absolute directional errors ranging from 20°- 100°, and standard deviations
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reaching 30°(Chrastil & Warren, 2013; Foo et al., 2005; Ishikawa & Montello, 2006; Meilinger,
Riecke, & Biilthoff, 2014; Schinazi et al., 2013; Waller & Greenauer, 2007). Most humans
cannot successfully integrate separately-learned routes, even after repeated exposure (Ishikawa
& Montello, 2006; Weisberg, Schinazi, Newcombe, Shipley, & Epstein, 2014). Many studies of
human spatial cognition imply violations of the metric postulates, which must be satisfied by a
Euclidean map (see Warren, et al., 2017, for a review).

Collectively, this research provides little evidence for the Euclidean hypothesis that
humans and other animals acquire a geometrically consistent metric map. Nevertheless, opinion
remains divided and the Euclidean view retains many supporters (Byrne, Becker, & Burgess,
2007; Cheeseman et al., 2014; Jacobs & Schenk, 2003; Moser, Moser, & McNaughton, 2017;
Nadel, 2013).

1.2 Cognitive Graph hypothesis

A topological place graph captures a network of paths linking places in the environment.
Nodes in the graph correspond to familiar places, and edges correspond to familiar paths
between them (Mallot and Basten, 2009; Poucet, 1993). A place graph preserves the
connectivity among places and their ordinal relations, but no information about distances and
angles. They thus enable novel routes and detours, but do not support novel shortcuts. One
advantage of a topological graph is that it is more robust and less vulnerable to noise and error
than a Euclidean map, because the topology of the environment is preserved even when metric
properties are not accurately acquired.

A labeled graph augments a purely topological graph with rough, local information about
distances and angles (Figure 1B; Warren et al., 2017). Nodes corresponding to salient places are

labeled with approximate junction angles between paths, while edge weights express
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approximate path lengths between places. The path integration system is suited for registering
such rough, piecewise path lengths and turn angles, given its poor resolution, systematic biases,
and error accumulation (Warren, 2019). What distinguishes a labeled graph from a metric map is
that this local information is not embedded into a geometrically consistent coordinate system (a
‘global metric embedding’). Spatial knowledge may thus be geometrically inconsistent and
violate the metric postulates. Nevertheless, such a cognitive graph would support approximate
novel shortcuts by vector addition through the graph, often sufficient to bring the navigator
within sight of a beacon near the goal (Warren, et al., 2017).

Previous studies have investigated several predictions that follow from the Cognitive
Graph hypothesis. For example, Chrastil and Warren (2014, 2015) asked participants to take
routes between learned places in a virtual hedge maze, and found that the metrically shortest
paths were preferred when taking both direct routes and novel detours. This result implies more
than topological knowledge is acquired, consistent with a labeled graph.

Warren et al. (2017) investigated the spatial knowledge acquired in a non-Euclidean
virtual environment. Participants learned a geometrically impossible virtual hedge maze
containing two ‘wormholes,” which covertly teleported them 6m or 10m and rotated them by 90°
visually. The Euclidean hypothesis predicts that the non-Euclidean maze should be more difficult
to learn, but because participants are trained to the metric locations of target objects, shortcuts
should be similar in the Wormhole maze and a matched Euclidean maze. In contrast, if a labeled
graph of the environment is acquired, the course of learning should be similar in both mazes, and
shortcuts should be biased by the wormholes. Consistent with the Cognitive Graph hypothesis,
the mazes were equally difficult to learn, shortcuts were strongly biased by the wormholes, and

participants were completely unaware of any geometric discrepancies. Path integration thus
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failed to reveal the geometric inconsistency of the Wormhole maze. The same results were
obtained when visible distal landmarks were added, indicating that allocentric information
likewise failed to reveal the inconsistency (Ericson & Warren, in preparation). Because
shortcuts were directional rather than uniformly distributed on the circle, however, the results
were also inconsistent with a purely topological graph.

Subsequently, Strickrodt, Meilinger, Biilthoff, and Warren (2020) asked participants to
learn the locations of objects in another impossible maze, a loop of zig-zagging corridors that
was completed by a covert teleportation. They found that the magnitude of pointing error to
each object was predicted by the local distances and angles participants had walked during
learning. These findings indicate that the spatial knowledge preserves local metric information,
but does not embed it in a geometrically consistent coordinate system, supporting the Cognitive
Graph hypothesis.

1.3 Neighborhood hypothesis

A complementary form of topological structure can be described in terms of
neighborhoods. A neighborhood is a region whose boundaries are defined by a ‘skeleton’ of
major paths or other salient environmental borders such as a river or forest edge (Figure 1C)
(Kuipers, Tecuci, & Stankiewicz, 2003; Wiener & Mallot, 2003). Topological relations between
neighborhoods include adjacency (regions sharing a common border) and inclusion (one region
contained within another) (Randell, Cui & Cohn, 1992), and places can be localized by the
neighborhood that contains them (Chase, 1983). Conversely, to the extent that neighborhood
boundaries are defined by paths between places, neighborhoods may be derived from a place

graph! (Kuipers, et al., 2003), such as the regions bounded by edges to nodes in Figure 1B.

! Note that one may construct a complementary neighborhood graph, in which nodes correspond to neighborhoods
and edges to adjacency relations.
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Alternatively, metric neighborhoods can be derived from Euclidean relations between the
locations of places and the locations of environmental boundaries.

Several studies suggest that humans use topological strategies when navigating to the
remembered locations of targets, including the ordinal structure of places (Zhong et al., 2005,
2007) and the neighborhoods defined by major paths (Chase, 1983; Pailhous, 1969; Weiner &
Mallot, 2003; Wiener, Schnee, & Mallot, 2004; Zhong, et al., 2006). Research on the
neurophysiological basis for navigation suggests that the hippocampus may be involved in
building a topological graph (Dabaghian, Mémoli, Frank, & Carlsson, 2012; Muller, Stead, &
Pach, 1996), and topological strategies have also proven successful in the context of robot
navigation (Thrun & Biicken, 1996).

1.4 Constancy hypothesis

Shortcuts and pointing to learned locations exhibit large variable errors that are similar in
impossible virtual environments, matched Euclidean environments, and real environments
(Section 1.1), implying a comparable imprecision in spatial knowledge. Nevertheless, it is
logically possible that participants in an impossible maze learned a labeled graph, whereas those
in a Euclidean maze and the real world learned a metric map, consistent with a hybrid model
(e.g. Mallot & Basten, 2009; Poucet, 1993; Truillier, et al., 1997). In other words, spatial
knowledge may opportunistically reflect whatever geometric properties remain invariant during
learning, which we refer to as the Constancy hypothesis.

1.5 The present study

The present experiments aimed to test these four hypotheses about spatial knowledge

(Euclidean, Neighborhood, Graph, Constancy hypotheses) by selectively varying the geometric

properties of the environment during learning (metric, neighborhood, and graph structure). This
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was accomplished by manipulating three virtual hedge mazes, as follows. (i) The Control Maze
was a Euclidean environment that preserved all geometric properties. (ii) In the Elastic Maze,
certain corridors alternately stretched from a short to a long length, so that the same object
occupied two metric locations (short and long) in different neighborhoods or on different paths.
This varied the Euclidean structure and the metric neighborhood containing the object, while
preserving the original place graph. (iii) In the Swap Maze, pairs of objects alternated between
two locations within the same neighborhood; this varied the nodes and edges in the graph that led
to the ‘place’ defined by an object, while holding constant the neighborhood that contained that
object.

In the test phase we probed the resulting spatial knowledge using three corresponding
navigation tasks: (a) the metric shortcut task asked participants to take direct shortcuts from a
start object to a target object, with only the ground plane visible; (b) the neighborhood shortcut
task modified this by adding visible neighborhood boundaries (outlines of the three major paths)
on the ground during shortcuts; and (c) the route task asked participants to walk in the maze to
the path containing the target, and then down a visually infinite corridor to the remembered
position of that target. Each task in each maze was performed by a different group of
participants.

This design yielded the following predictions for each hypothesis. (1) The Euclidean
hypothesis posits that primary spatial knowledge corresponds to a metric Euclidean map. When
building a map, given that normal path integration is somewhat noisy, the varying measurements
would be embedded in the map at coordinates corresponding to the average location, with some
uncertainty. In the Elastic Maze, the metric location of the elastic target varies, so the hypothesis

predicts that metric shortcuts should be close to the average position of the short and long
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targets, and be more variable than in the Control Maze. Second, if neighborhoods are derived
from Euclidean relations, then participants should be able to detect when a target is in the short
or long neighborhood, even when the boundary is not visible, based on path integration.
Consequently, neighborhood shortcuts (and possibly metric shortcuts) should be more variable
and more bimodal in the Elastic Maze than the Control Maze. Finally, if a labeled graph is
derived from Euclidean knowledge, path choice in the route task should be bimodal in the Elastic
Maze, because the target is stretched to coordinates that fall on a different path. The target’s
estimated position along the stretched path should be similar to metric shortcuts to the same
coordinates.

(2) The Neighborhood hypothesis proposes that the primary structure of spatial
knowledge consists of adjacency relations between topological neighborhoods bounded by
visible paths (the ‘skeleton’). Zhong et al. (2006) found that when paths were visible during
learning and testing, shortcuts were more precise, implying that neighborhoods are acquired. In
the Elastic Maze, a target is stretched to coordinates that lie in a different neighborhood, so
metric neighborhoods vary; however, the participant does not cross a visible boundary (an
intersection) when walking down a stretched path, so the target remains in the same topological
neighborhood. Thus, the Neighborhood hypothesis predicts that neighborhood shortcuts should
be unimodal, and comparable to those in the Control Maze. In the Swap Maze, targets switch
locations within in the same neighborhood, so the hypothesis also predicts that neighborhood
shortcuts should be unimodal and comparable to the Control Maze.

(3) The Cognitive Graph hypothesis posits that the primary structure of spatial knowledge
corresponds to a labeled place graph, with approximate path length and angle information. In the

Elastic Maze, when metric structure is varied, the hypothesis predicts that the chosen path to a
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target should be correct and unimodal, similar to the Control Maze. However, because the graph
is labeled with rough path lengths, the estimated target position along the path should be close to
the average location, and be more variable than in the Control Maze. In contrast, in the Swap
Maze, when edges in the graph leading to the same ‘place’ alternate, the hypothesis predicts that
path choice to a target should be bimodal.

(4) Finally, the Constancy hypothesis posits that spatial knowledge reflects the specific
geometric properties that remain invariant during learning. If this hypothesis is correct,
performance should always be consistent with whatever environmental properties are held
constant as other properties are varied. Specifically, in the Control Maze, when metric structure
is invariant, shortcut performance should reflect Euclidean knowledge. In the Elastic Maze,
when the place graph is invariant while metric structure is varied, performance should reflect
graph knowledge. In the Swap Maze, when the place graph is varied while neighborhoods
(defined by visible boundaries) are constant, performance should reflect neighborhood
knowledge.

We found that the spatial knowledge acquired in these environments was neither
Euclidean nor purely topological, nor did it reflect the geometric properties that were invariant

during learning. The results support the Cognitive Graph hypothesis.

2. Experiment 1: The Elastic Maze (invariant graph)

Experiment 1 investigated the Euclidean, Neighborhood, and Graph hypotheses by
comparing the Elastic Maze to the Control Maze. The Elastic Maze was designed to vary
Euclidean structure (and hence metric neighborhoods) during learning, while holding the place
graph (and hence topological neighborhoods) constant. In contrast, the Control Maze held

Euclidean structure constant, and so all geometric properties remained invariant during learning.
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The experiment consisted of three phases: fiee exploration, in which the participant
explored the maze to learn object locations; the training phase, in which the participant was
trained to find each object from a central home location until they reached criterion; and the test
phase, in which participants performed a navigation task without feedback. (We refer to first two
jointly as the learning phase.) The three navigation tasks assessed acquired knowledge of the
corresponding properties: metric shortcuts assessed Euclidean knowledge, neighborhood
shortcuts assessed knowledge of metric and topological neighborhoods, and the route task
assessed graph knowledge. This design resulted in six conditions (2 Environments x 3 Tasks),

with a separate group of 12 participants in each condition.

2.1 Predictions
The hypotheses described in Section 1.5 yield specific predictions for each navigation

task, which we state here (refer to Table 1).

2.1.1 Metric shortcut task

Prediction I: 1f primary spatial knowledge is Euclidean, then metric shortcuts in
the Elastic Maze should shift to the average of the short and long target locations, and be
more variable, compared to the Control Maze. This should also be the case for probe
trials compared to control trials in the Elastic Maze. Prediction 2: Alternatively, if
primary spatial knowledge resembles a rough labeled graph, we might expect that metric
shortcuts are directional but similarly unreliable in both mazes, and on both types of
trials; although this could also result from Euclidean spatial knowledge that is highly

imprecise.

2.1.2 Neighborhood shortcut task
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Prediction 3: 1f metric neighborhoods are derived from Euclidean knowledge, then
shifting the target between the short and long neighborhoods in the Elastic Maze should yield
neighborhood shortcuts that are bimodal and more variable than in the Control Maze, and on
probe trials than control trials. Prediction 4: Under the Neighborhood hypothesis, topological
neighborhoods are defined by visible boundaries, yet no visible path intersections were crossed
in the stretched hallways. The hypothesis thus predicts that neighborhood shortcuts in the Elastic
Maze should be unimodal (in the short neighborhood) and similar to those in the Control Maze,
and probe trials should also be similar to control trials. In addition, they should be less variable

than the corresponding metric shortcuts.

2.1.3 Route task

Although the Elastic Maze varied metric structure, the topological graph of the
environment was preserved. The route task was designed to probe graph knowledge, leading to
the following predictions. Prediction 5: If graph knowledge is derived from Euclidean structure
(i.e., from metric relations among places and paths), (5a) path choice should be bimodal in the
Elastic Maze because the coordinates of short and long targets fall on different paths, and (5b)
estimated target positions along the stretched paths should be similar to metric shortcuts to the
same targets. Prediction 6: If primary spatial knowledge resembles a labeled graph, then (6a)
path choice should be unimodal and correct (to the ‘short’ target location) in the Elastic Maze
despite varying metric structure, and (6b) estimated target position along the stretched path in the
Elastic Maze should shift to the average target location compared to the Control Maze, and be

less variable than metric shortcuts.

2.2 Method
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2.2.1 Participants

A total of 91 people participated in the experiment; of these, 72 (36M, 36F) completed
the study and were included in the analysis. Eight participants withdrew due to symptoms of
simulator sickness. Two participants in the Control Maze were excluded for failing to reach
criterion during the training phase. Nine participants were excluded due to technical problems in
the first session. This resulted in six groups, each consisting of 12 participants (6M, 6F).
Participants were recruited through advertisements and were paid for their participation. All
participants provided informed consent in accordance with the requirements of Brown

University’s Institutional Review Board.

2.2.2 Apparatus

Participants walked freely within a 10.5m x 12.5m tracking area during the experiment; if
they walked outside this area, virtual brick walls appeared approximately 1m in front of them to
prevent collisions with the physical walls. Stereo images of the virtual environment were
generated on a graphics workstation (Dell XPS 730X, NVIDIA GTX 280 graphics) and
presented in a head-mounted display (HMD, Rockwell-Collins SR80, 1280x1024 pixels, 63° H x
53°V field of view for each eye). The computed disparity and lens separation were calibrated to
each participant's measured inter-ocular distance. An ultrasonic/inertial tracking system
(InterSense 1S-900, 50ms total latency, 1.5mm/0.10° spatial resolution) recorded the
participant’s head position, and they carried a wireless mouse with response buttons.
Background noise (crickets) was played over wireless headphones, and the view of the lab was

blocked by a dark cloth draped over the HMD.

2.2.3 Displays
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The virtual environments were hedge mazes containing a central home location (home
plate), three primary corridors in a Y’ configuration, with ten distinctive objects (moon,
bookcase, etc.; see Figure 2A) located at the ends of secondary (i.e. terminal) corridors. Four
paintings also appeared on the walls in the main corridors to serve as orientation aids. Objects
were not visible from the main corridors, so participants had to walk between them. The Control
Maze had a constant Euclidean geometry similar to the real environment.

The Elastic Maze was identical except for four hallways that covertly changed length on
each pass during the free exploration and training phases. Four probe objects at the ends of these
elastic hallways alternately appeared in the canonical location (short position), matching the
Control Maze, and stretched by 3m (long position) (see Figure 2B). For two of these probes
(Moon and Gear), the stretched target shifted across a primary path into an adjacent
neighborhood, and for three probes (Moon, Bookcase, Clock), the stretched target shifted into a
different terminal corridor. As the participant walked down the stretched hallway, however, no
intersections were visible. The alternation was triggered by invisible gates near the hallway
entrance, which loaded the appropriate hallway before it came into sight. The initial view
(canonical or stretched) was randomized across participants and probe objects. Alternations
were visually seamless and all textural elements (wall, floor) in the maze were matched and
updated in one frame (roughly 1/60s). Stretched targets were in principle detectable based on (1)
the visually perceived distance to the probe target from the start of the hallway, or (2) the walked

distance to the probe target from the start of the hallway, by path integration.

2.2.4 Design



PROBING THE INVARIANT STRUCTURE OF SPATIAL KNOWLEDGE 17

Experiment 1 had a 2 x 3 x 2 design, with two environments in the learning phase (Elastic
Maze, Control Maze) crossed with three navigation tasks (Metric Shortcut, Neighborhood
Shortcut, Route) and two trial types (Probe, Control) in the test phase. Environment and task
were between-subjects factors, and trial type was the within-subject factor. Each participant
experienced only one virtual environment and one response task, and trial order was randomized

for each participant.

2.2.5 Procedure

Each participant completed two sessions. The first session included the free exploration
phase (12 minutes), training phase (< 25 min), and test phase (18 trials), and lasted
approximately 1hr. The second session included refresher training (< 25 min), further testing (54
trials), and a debriefing, and lasted 1.5 - 1.75 hours. At the beginning of firee exploration,
participants were instructed to try and find all the objects in the maze and learn their locations,
for they would be tested on their knowledge of the objects and their locations later. They then
freely explored the maze for 12 min.

During the training phase, participants were trained to find each of the objects from
home until they reached the criterion of finding each object in less than 30s two times. If a
participant found an object in 30-45s, the object was repeated later. If the participant could not
find an object after 45s, they returned home and the experimenter silently guided them by the
shoulders along the most direct route to the object, and they were asked to find the object again
later. If a participant failed to reach the training criterion within 25 min, testing was terminated
and they were removed were removed from the experiment.

In the test phase, participants were instructed to perform one of the three navigation tasks

to assess the spatial knowledge acquired during learning. Eight object pairs were tested: four
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ENVIRONMENT
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Figure 2. Experiment 1: mazes and displays. Both the Control Maze (A) and Elastic Maze (B)
contained 10 distinctive objects, four paintings (p1-4) that served as local landmarks, and a central
home location (home plate). Objects were designated control (well, sink, cactus, rabbit, flamingo,
earth) objects if they remained in the same location in both environments, and probe (bookcase,
clock, moon, gear) if their paths were alternately stretched in the Elastic Maze. In the Elastic Maze
(B), two probe objects were stretched (D) across a neighborhood boundary (moon, gear), and three
targets (moon, bookcase, clock) were shifted to coordinates in a different terminal corridor.
Overhead views of each maze (shown in the top left corner of panels C and D) were not visible to
participants.

control pairs (sink—-earth, rabbit—well, earth—sink, well-flamingo) and four probe pairs

(sink—bookcase, rabbit—gear, earth—moon, well—clock) (Figure 2). For each pair, the
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participant first walked to a start object in the maze corridors, and then to the remembered
location of a target object (note that the same four objects served as start objects in probe and
control trials, whereas the target objects differed). On probe trials the target was in an elastic
hallway, whereas on control trials the target was in a normal hallway. Each participant made a
total of 72 responses ((4 probe pairs + 4 control pairs) x 9 repetitions) during the test phase.

The metric shortcut task was designed to assess metric Euclidean knowledge. On each
trial, the participant walked from home to the start object; at that point the maze walls, objects,
and paths disappeared, leaving only a randomly textured ground plane (Figure 4A). The
participant then faced the remembered location of the target object and clicked the mouse to
indicate their alignment with the target. Finally, they walked in a straight line to the remembered
location of the target, stopped and clicked the mouse again. Participants did not receive
feedback, and were passively wheeled in a wheelchair back to home along a circuitous route for
the next trial.

The neighborhood shortcut task was designed to assess neighborhood knowledge. The
procedure was the same as the metric shortcut task, except that the outlines of the three primary
paths (neighborhood boundaries) remained visible on the ground during shortcuts in the test
phase (Figure 4B). Recall that no path intersections appeared in the stretched hallways during
learning. Thus, if participants learned which topological neighborhood contains the target based
on visible boundaries, shortcuts to probe targets in the Elastic Maze should be unimodal (within
the short neighborhood), similar to the Control Maze and to control trials, and less variable than
the metric shortcut task. On the other hand, if neighborhoods are derived from metric
information about the locations of objects and hallways, shortcuts should be more variable than

in the Control Maze, and those to the Moon and the Gear more bimodal.
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In the Route Task, participants walked from Home to the start object, whereupon all
objects disappeared, but the maze walls remained visible. Participants then walked within the
maze corridors to the remembered location of the target. If they entered a terminal hallway that
had contained an object, it was displayed as a visually infinite (~300m) corridor with no
intersections (Figure 4C); this was done for all terminal hallways on both control and probe trials
to prevent feedback about the correct path. They then walked down the infinite corridor to the
remembered location of the target, stopped and clicked the mouse. If participants learn a place
graph of the maze, path selection should be highly accurate. If they also acquire local
information about distance or path length (i.e., edge weights), the responses should be biased
toward the average target position in the elastic hallways. Recall, however, that the ‘short’ and
‘long’ coordinates of the Moon, Bookcase, and Clock fell in different terminal corridors. So if
participants derive a graph from Euclidean locations, one would expect a bimodal pattern of path
choice on these probe targets.

In a debriefing, participants were given a list of objects and asked to create a hand-drawn
map of the maze, and answered a series of questions about their experience in the virtual
environment and prior experience playing video games. Then then completed three spatial
abilities tests, to assess any differences in spatial abilities between groups: (1) the Santa Barbara
Sense of Direction Scale (SBSOD; Hegarty, Richardson, Montello, Lovelace & Subbiah, 2002),
(2) a Road Map Test (RMT; Money & Alexander, 1966; Zacks, Mires, Tversky, & Hazeltine,
2000); and (3) the Perspective-Taking and Spatial Orientation Test (PTSOT; Kozhevnikov &
Hegarty, 2001; Hegarty & Waller, 2004). The SBSOD asks for self-ratings of spatial abilities
along a number of dimensions. The RMT assesses perspective-taking ability by having

participants name the sequence of left and right turns they would need to make to follow a route
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plotted on a road map. The PTSOT assesses perspective-taking ability by having participants
estimate directional relationships among iconic representations of objects arranged on a page.

Finally, they were asked to verbally report anything they noticed about the virtual environment.

2.2.6 Data analysis

We analyzed the positional data (x, y, t) from the Intersense 1S-900 head-tracking system.
Data were analyzed using Python, R (version 2.15.2; “Circular” package, Agostinelli & Lund,
2013; “Circstats” package, Lund & Agostinelli, 2007), MATLAB (MathWorks), Oriana (Kovach
Computing Services) and SPSS (IBM).

To quantify the extent and homogeneity of free exploration, invisible “gates” were placed
throughout the maze that recorded when a participant passed that location. Several measures
were extracted from the training phase to assess the learning process, including the total number
of trials needed to reach criterion, and the number of trials in which a participant needed to be
guided to the objects.

For test trials, dependent measures were extracted from walking trajectories between the
button press at the start object and that at the target. Shortcut trajectories that intersected with
the emergency walls during the test phase (Control Maze: metric shortcuts, 35%; neighborhood
shortcuts, 15.3%; route task, 0%; Elastic Maze: metric shortcuts, 43.8%; neighborhood shortcuts,
18.7%; route task, 0%) were excluded from the calculation of 95% confidence ellipses.

The primary dependent measures were based on directional (angular) errors. Although
the (unsigned) absolute error (AE) is a common measure in the navigation literature, it
confounds the (signed) constant error (CE), a measure of accuracy, and the variable error (VE), a
measure of precision. Angular CEs were computed with respect to the “canonical” locations of

targets in the Control Maze. Specifically, constant error was the signed angle (-180°, +180°]
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between two vectors defined by (1) the participant’s starting location and the endpoint of their
response, and (2) the participant’s starting location and the canonical target location. CEs on
probe trials were normalized so that 0° corresponded to walking toward the canonical target
location and positive values corresponded to walking in the direction of the stretched target
location. The von Mises distribution—a circular analogue of the normal distribution—was used
to model directional responses, and the Watson-Williams test—a circular analogue of
ANOVA—was used to compare angular CEs. Because two-way Watson-Williams tests are not
currently available, main effects for CEs were examined using one-way Watson-Williams tests,
and the results of pairwise, post-hoc Watson-Williams tests are shown as Duncan groupings in
graphs.

Variable error was measured by the between-subject angular deviation (AD), the circular
equivalent of the standard deviation (SD). To estimate individual precision, we also computed
the mean within-subject AD (mean within-subject SD for linear variables) for each participant.
Circular means were computed for all angular variables. Absolute error and variable error were
analyzed using ANOVA. Following Howell (2008), follow-up tests on repeated measures
(mixed-model) ANOV As were conducted using Tukey’s HSD procedure, to maintain a family-
wise error rate of o = .05 for multiple comparisons.

To complement these frequentist statistics, we also took a Bayesian approach. First,
Jeffrey-Zellner-Siow (JZS) Bayes Factors were computed from the ANOVA results to compare
the strength of evidence for the Null (Mo) and Alternative (M1) hypotheses (Faulkenberry, 2018).
In addition, when two of our hypotheses could be modeled by the von Mises distribution (model
M;, with parameters 0i=[pi , k]) and predicted unique responses, we compared models by

computing the JZS Bayes factor, BFio= p(Data|M1)/p(Data|M2), where p(Data|M;) is the
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likelihood of the data under Mi. The concentration parameter k was estimated from the AD for
the same task in the Control Maze and held constant (Batschelet, 1981). According to the revised
scheme of Nuijten, Wetzels, Matzke, Dolan, & Wagenmakers (2015; based on Jeffreys, 1998),
BF10 < 1 indicates no evidence for M1; 1 < BF19 < 3, anecdotal evidence for M1; 3 < BF10<10,
substantial evidence for M1; 10 < BF10< 30, strong evidence for Mi; 30 < BF10< 100, very
strong evidence for M1; and BF > 100, decisive evidence for M1 (and the inverse for Mo). To
avoid over-fitting and for purposes of clarity, only effects relevant to the predictions of the four
hypotheses will be described.

Just noticeable differences (JNDs) were estimated to determine whether targets in the
Elastic Maze were stretched far enough to be detectable by the participant during learning, given
the observed variability in the Control Maze. Estimated JNDs were obtained for each task by
multiplying the mean within-subject AD for each probe target in the Control Maze by 0.8099,
corresponding to 75% of the area under the von Mises distribution (with k=1). The stretch angle
of each target in the Elastic Maze was the angle subtended by the short and long target locations,
as measured from the start object (the vertex) (Earth — Moon, 40.3°; Sink — Bookcase, 23°;
Well — Clock, 15.2° Rabbit — Gear, 37.2°); the circular mean was 28.9°. If the JND is smaller
than the stretch angle, then that target was stretched far enough to be detectable during learning.

Two approaches were taken to analyzing the bimodality of metric and neighborhood
shortcuts. First, CEs for shortcuts to each of the probe targets were submitted to two-component
cluster analyses using the k-means algorithm (Forgy, 1965; Hartigan & Wong, 1979; Lloyd,
1982). The k-means method attempts to divide a collection of data points into & groups (k = 2
assesses bimodality) using a least squares criterion. Following Hill & Lewicki (2005) we

compared the magnitude of the resulting F-ratio in the Elastic and Control Maze. Second,
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constant errors were examined by fitting kernel density estimates for mixtures of von Mises
distributions using the maximum likelihood cross-validation (MLCV) method, which is sensitive
to bimodality in directional data (Agnostinelli & Lund, 2011; Sharma & Tarboton, 1997).

Endpoint analysis provided measures of how often shortcut endpoints fell in different
neighborhoods (Figure 3A). For example, in the Elastic Maze, the Moon and the Gear were
stretched from the canonical (short) neighborhood into an adjacent (long) neighborhood during
learning. Classifying the number of endpoints falling in the short or the long neighborhood
allows us to assess the neighborhood knowledge in each maze. Shortcuts that ended on a maze
path or in a neighborhood that did not contain the target were classified as path and wrong
respectively.

To determine whether participants learned the graph of the maze, path choices in the
Route Task were classified as correct if they walked down the hallway that contained the target,
and incorrect if they walked down any other terminal hallway (Figure 3B). M and SD of the
number of correct and incorrect path choices were obtained for each target for each participant.
To analyze the bimodality of path choices, we compared the number of paths (i) corresponding
to short and long target locations in Experiment 1 (see Figure 3) and (ii) corresponding to
canonical (A) and non-canonical (B) target locations in Experiment 2 (see Figure 7).

Finally, sketch maps were analyzed using Gardony’s (2016) Map Drawing Analyzer
Software, which provided measures of both relative and absolute landmark placement, and
bidimensional regression analyses (Friedman & Kohler, 2003; Tobler, 1994) compared drawn

configurations to the actual configuration of objects in the Control Maze.
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Figure 3. Experiment 1: classification scheme for endpoints and path choices. For example, in the
Elastic Maze, the Moon alternately occupied short (yellow circle) or long (yellow diamond)
neighborhood locations during learning. The following endpoint (A) and path choice (B)
classification schemes were applied to shortcuts in both Mazes. (A) Percentages of endpoints
falling in each of the four possible regions (long, short, wrong neighborhood, or path) were
computed for each participant. (B) Paths were classified as correct if they walked down the target
object’s path, and incorrect if they walked down any other path.

2.3 Results

Sample traces of shortcuts (earth—moon) in the Control Maze and the Elastic Maze are
plotted for each of the three tasks in Figure 4. For each object pair, a mean shortcut vector was
computed based on the mean CE, and the mean distance from start points to endpoints.
2.3.1 Free exploration and training phases

Visual inspection of position traces confirmed that participants in the Elastic Maze
physically walked to the stretched locations of probe objects during free exploration. An
ANOVA on the mean number of visits to probe and control objects revealed a significant main

effect of trial type, F(1,66) = 19.42, p <.001, ng?> = .044, and a Bayesian equivalent indicated
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anecdotal evidence for the alternative hypothesis (BF10 = 2.858). A post-hoc Tukey test revealed
that participants visited probe objects (M =4, SD = 0.89) more frequently than control objects
(M =3.66,SD =0.08), p <.05. No other significant effects, interactions, or between-subject
differences were found, and the Bayes Factor for the main effect of environment indicated
substantial evidence for the null hypothesis (BFo1 = 5.5). During the training phase, there were
no significant effects of environment, task, or trial type on number of trials to criterion or number
of guided trials. Thus, although probe objects attracted slightly more interest during exploration,
the non-Euclidean environment was no more difficult to learn than the Euclidean environment.
2.3.2 Metric shortcut task

For the metric shortcut task, if primary spatial knowledge is Euclidean, shortcuts should
be close to the average location of the stretched target (higher CE) and be more variable (higher
mean within-subject AD) in the Elastic Maze compared to the Control Maze, and on probe trials
compared to control trials (Prediction 1). Mean CE and AD appear in Figure 5SA,B. Watson-
Williams tests did not reveal any significant effects of environment or trial type on either
constant (CE) or variable (VE) error (p > .05). Moreover, the equivalent Bayesian analysis
revealed substantial evidence in favor of the null hypothesis for CE when comparing
environments (BFo1 = 4.15) and trial types (BFo1 = 3.61). There was also substantial evidence in
favor of the null hypothesis for AD in the two environments (BFo1 = 6.02) and the two trial types
(BFo1 = 6.32). Thus, metric shortcuts were substantively the same in the Elastic and Control
Mazes, and on stretched and control trials, contrary to Prediction 1 but consistent with
Prediction 2.

Given the high variability in metric shortcuts observed in the Control Maze (mean

within-subject 4D = 37.92°), the estimated JNDs (M = 30.7°) indicated that only one of the four



PROBING THE INVARIANT STRUCTURE OF SPATIAL KNOWLEDGE

ENVIRONMENT
TASK Control Maze Elastic Maze

Metric Shortcut

Neighborhood Shortcut

Figure 4. Experiment 1: example shortcuts (black paths) for earth (blue circle) — moon trials.
(A) Metric shortcut task, (B) Neighborhood shortcut task, (C) Route task. Aggregated shortcuts
for all participants are plotted in each panel. Individual shortcuts are shown as black paths
radiating from the mean starting point (object A’s approximate location), and small yellow dots
indicate shortcut endpoints. Canonical and stretched locations of the targets represented by large
yellow circles and diamonds respectively. Yellow ellipses represent 95% confidence ellipses for
shortcut endpoints.

stretched targets in the Elastic Maze was detectable during learning. This implies two
possibilities: (1) Euclidean knowledge is so imprecise that participants cannot discriminate
locations 3m (or 30°) apart, or (2) spatial knowledge is not Euclidean (Prediction 2).

2.3.4 Neighborhood shortcut task

27
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For the Neighborhood Shortcut Task (Figure 5C), a Watson-Williams test on CE found
no effect of environment (p > .05; BFo1 = 4.22, substantial evidence for Ho). We did observe a
significant main effect of trial type on CE, F(1,46) = 8.2, p <.01 (BF10= 1.46, anecdotal
evidence for Hi). However, the bias on probe trials (M = -7.05°, AD = 8.66°) was in the opposite
direction of the stretched target, compared to control trials (M = -.88°, AD = 5.63°). In effect,
neighborhood shortcuts shifted toward the center of the neighborhood in both mazes (e.g. Figure
4B), consistent with the hypothesis that objects are qualitatively localized in neighborhoods. We
believe this bias was not observed on control trials because more of these objects were
positioned closer to the center of their neighborhood (see Fig. 2A). Moreover, there was no
effect of environment or trial type on within-subject AD (Figure 5D), and the corresponding
Bayesian analysis showed substantial evidence for the null hypothesis (BFo1 = 3.48 for
environment; BFo1 = 3.03 for trial type). Neighborhood shortcuts were thus comparable in the
Elastic and Control Mazes, contrary to Euclidean hypothesis (Prediction 3) but consistent with
the Neighborhood hypothesis (Prediction 4).

We also compared specific predictions of the Euclidean and Neighborhood hypotheses.
Because participants did not cross a visible boundary on stretched paths during learning, the
topological Neighborhood model (Mn) predicts shortcuts toward the middle of the neighborhood
(to the short target location, to be conservative), with an expected CE of un=0°. In contrast,
because participants walked to short and long target positions during learning, the Euclidean
model (M) predicts shortcuts, on average, to the mean target position, with an expected CE of
ne=14.45°. The concentration parameter was k=15, corresponding to AD=15.30° on
neighborhood shortcuts in the Control Maze. The resulting BFne >> 100 indicated decisive

evidence in favor of the Neighborhood hypothesis, and the same result is obtained for each of the
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four probe targets individually. These results are contrary to Prediction 3 and support Prediction
4.

Because JNDs for neighborhood shortcuts in the Control Maze (M = 11.0°) were smaller
than the stretch angles for all four probe targets in the Elastic Maze, the stretched target was
detectable during learning. Yet neighborhood shortcuts did not shift towards the stretched
location in the Elastic Maze, and thus did not demonstrate sensitivity to metric neighborhoods.

The Neighborhood hypothesis also predicts that if neighborhoods are defined by visible
topological boundaries (paths), neighborhood shortcuts should be less variable than metric
shortcuts in the Elastic Maze (Prediction 4). Indeed, the mean within-subject AD for
neighborhood shortcuts (M = 15.9°, SD = 9.8°) was half that for metric shortcuts (M = 32°, SD =
18.8°). The ANOVA on AD confirmed a main effect of task, F(1,22) =7.27, p < .05, ng*> = .23
(BF10 = 6.28, substantial evidence for H1). Thus, consistent with Prediction 4, variable error was
lower for neighborhood shortcuts, indicating that neighborhoods depend upon visible topological
boundaries. Watson-Williams tests on CE did not reveal any significant effects of task.

Results for the metric shortcut and neighborhood shortcut tasks are consistent with (but
do not distinguish between) two possibilities: (1) Euclidean knowledge is too imprecise to
support shortcuts to discriminable locations (Prediction 2), or (2) neighborhoods are not derived

from Euclidean relations, but topological boundaries (Prediction 4).

2.3.5 Route task

For the Route Task, CE on probe trials shifted toward the stretched target in the Elastic
Maze (M = 5.73°, AD = 4.5°) compared to the Control Maze (M = -4.01°, AD = 3.5°) (Figure 5E).
The Watson-Williams test on CE confirmed a main effect of environment, /(1,190) =37.4, p <

.001 (BF10 >> 100, decisive evidence for Hi). Results of post-hoc Watson-Williams tests
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Figure 5. Experiment 1: Mean constant and variable errors. Constant errors (CE) were
normalized so that 0° corresponded to perfect accuracy to the control target on control trials, or the
unstretched location of the probe trial target on probe trials. Thus, for probe trials (gray bars), a
positive shift in constant error indicates a shift towards the stretched location of the target.
Variable errors (VE) are mean within-subject angular deviations (AD). Dotted lines indicate the
average of the short and long target positions (14.45°). Error bars for CE indicate circular 95%
confidence limits; error bars for VE indicate the standard error of the mean within-subject ADs.
Duncan flags indicate significant (p < .05) post-hoc Tukey tests, and bars with the same flag were
not significantly different; n.s. indicates that no significant differences were found between the
four bars.



PROBING THE INVARIANT STRUCTURE OF SPATIAL KNOWLEDGE 31

(indicated by Duncan flags in Figure 5C) also revealed a significant shift on stretched trials
compared to control trials in the Elastic Maze (p < 0.05). Using the CE for probe targets in the
Control Maze (-4.01°) to correct for path integration error to the same targets in the Elastic maze
(CE 5.737%), we estimate the angular shift in the Elastic Maze (9.74°) as being 67.4% of the way
to the average target position (14.45°), and the corresponding Bayes factor was large (BF10 >>
100, decisive support for Hi).

JND analysis (M = 3.0°) revealed that the all elastic targets were detectable during
learning; moreover, the significant shift in CE in the Elastic Maze confirms that they were
actually detected. Given the absence of any shift in the metric shortcut task, this finding is
strikingly consistent with the acquisition of local information about traversed distance (edge
weights in a labeled graph), but not with object coordinates in a Euclidean map. This pattern of
results supports the Cognitive Graph hypothesis (Prediction 6b).

Variable error was higher overall in the Elastic Maze (M = 9.74°, AD = 1.15°) than in the
Control Maze (M =4.01°, AD = 1.15°). The ANOVA on within-subject AD confirmed a
significant main effect of environment, F(1,22) =4.47, p < .05, nc> = .16, and a significant
environment x trial type interaction, F(1,22) = 7.32, p < .05, nG> = .017 (Figure 5F). The
Bayesian equivalent comparing environments found substantial evidence for the alternative
hypothesis (BF10 = 8.45). Thus, the route task was sensitive to the varying target position.
However, an ANOVA revealed that within-subject AD for the route task (M = 6.93°, SD = 6.77)
was significantly smaller than that for metric shortcuts (M = 33.31°, SD = 18.67), F(1,44)=41.5,
p <.001, n* = .47 (BF10 >> 100, decisive evidence for H1), contrary to Prediction 5b and
supporting Prediction 6b.

2.3.6 JND Analysis
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Computed JNDs for the metric shortcut task were too large to conclude that the elastic
target was detectable during learning. However, JNDs for both Neighborhood and Route tasks
indicate that the elastic target was detectable. Given that the three groups all learned the same
Elastic Maze, this strongly implies that the target was stretched far enough to be detectable in all
conditions. Nevertheless, no shifts were observed in metric or neighborhood shortcuts, whereas
a significant shift was found in route responses. Taken together, this implies that (a) Euclidean
knowledge is too imprecise to support shortcuts to discriminable locations, (b) consequently,
neither neighborhoods nor the place graph are derived from Euclidean knowledge, but (c) local
path lengths (edge weights) are acquired during learning. This pattern of results is consistent
with the Cognitive Graph hypothesis.

2.3.7 Bimodality

The Euclidean hypothesis predicts (Prediction 3) that if metric neighborhoods are derived
from Euclidean structure, neighborhood shortcuts to the Moon and Gear should be more bimodal
in the Elastic Maze than in the Control Maze. However, contrary to Prediction 3, the cluster
analysis did not show stronger evidence for bimodality in the Elastic Maze than the Control
Maze, and the other bimodality analyses did not indicate more than one mode for any individual
target. The same was true for the metric shortcut task and the route task. These results were

contrary to the Euclidean hypothesis.

2.3.8 Endpoints

The percentage of endpoints falling in each of the four possible neighborhood categories
(wrong, path, short, long) was computed for the probe trials in each task. For the metric shortcut
and neighborhood shortcut tasks, there were no significant differences between the Elastic and

Control Mazes for any of the elastic targets in any endpoint category (p>.05). Bayes Factors
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indicated anecdotal support for the null hypothesis. Thus, we found no evidence that
neighborhood boundaries influenced shortcuts. The Neighborhood hypothesis predicts
(Prediction 4) that if neighborhoods are defined by visible topological boundaries, then more
neighborhood shortcuts than metric shortcuts should end in the short neighborhood in the Elastic
Maze. The mean number of endpoints falling in short neighborhoods was significantly higher
for the neighborhood shortcut task (M = 83.8%, SD = 17.1%) than the metric shortcut task (M =
47%, SD = 27.9%), F(1,22) = 15.2, p <.001, nc* = .38 (BF10 = 111.5, decisive evidence for Hi).
This result is consistent with Prediction 4 that neighborhoods are defined by visible boundaries.
In the route task, the mean percentage of endpoints falling in the short or long
neighborhood shifted significantly for the two probe targets that were stretched across paths.
Specifically, for the Moon, fewer endpoints fell in short neighborhood in the Elastic Maze
(47.45%) than in the Control Maze (96.3%), F(1,22) = 22.17, p <.001, nc*= .502 (BF10 >> 100,
decisive evidence for Hi), while more fell on nearby paths, F(1,22) = 16.70, p < .001, ng>= .432
(BF10>> 100, decisive Evidence for Hi). For the Gear, fewer endpoints fell in the Short
neighborhood in the Elastic Maze (27.8%) than the Control Maze (84.3%), F(1,22) =16.95,p <
.05, nG*>= .435 (BF10 >> 100, decisive evidence for H1), while more fell in the Long
neighborhood (30% vs 0%), F(1,22) =9.69, p < 0.01, n*>=.306 (BF10 = 16.2, strong evidence
for H1). There were no significant shifts for the Clock and the Bookcase, as overshooting the
Short position would not cross into an adjacent neighborhood. These results are consistent with

Prediction 6b, that participants learn local path lengths to the average target position.

2.3.9 Path choices
The Cognitive Graph hypothesis predicts that path selection will be correct (to the ‘short’

target location) in all conditions, whereas if a graph is derived from Euclidean coordinates, path
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choices in the Elastic Maze should be bimodal to the Moon, Bookcase, and Clock. In the route
task, the percentage of correct path choices was near ceiling in both the Control (M = 99.8%, SD
= 1%) and Elastic (M = 97.3%, SD = 4.4%) Mazes. ANOVAs on the number of correct and
incorrect path choices found no significant differences between the Elastic and Control Mazes
for any target; Bayes Factors yielded anecdotal evidence for the null hypothesis for each target.
Thus, participants learned the place graph of both mazes despite the shifting positions of probe
targets. These results are inconsistent with Euclidean Prediction 5a, but consistent with Graph
Prediction 6a.
2.3.10 Debriefing

Detailed comparisons of debriefing results for Experiments 1 and 2 are presented in the
Supplementary Material (Section 6, Comparison of Experiments). No significant differences on
tests of spatial ability were found between groups, implying that the experimental results are not
attributable to group differences. Three participants in the Control Maze reported thinking that
some of the objects might be “overlapping” or in the same physical location despite being
located down different paths. However, none of the participants in the Elastic Maze reported
noticing that paths stretched.
2.4 Discussion

Table 1 summarizes the predictions for each task and the corresponding results of
Experiment 1 (check-marks indicate consistent and Xs inconsistent results). We review them
here.

Predictions 1 and 2: The Euclidean hypothesis predicts that if primary spatial knowledge
is Euclidean, metric shortcuts in the Elastic Maze should shift to the average target location and

be more variable compared to the Control Maze; the same should be true on probe trials
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compared to control trials in the Elastic Maze (Prediction 1). Contrary to this prediction, the
analyses of angular errors found that CE and VE were comparable in the two mazes, and on
probe and control trials, with substantial support for the null hypothesis. These results supported
Graph Prediction 2, that metric shortcuts are similarly unreliable in both mazes, although this
could also result from Euclidean knowledge that is too imprecise to enable metric shortcuts to
locations that were discriminable during learning (3m or 29° apart).

Prediction 3: The Euclidean hypothesis predicts that if neighborhoods are derived from
Euclidean structure, neighborhood shortcuts in the Elastic Maze should be more bimodal, and
more variable, than in the Control Maze, and on probe trials than on control trials. The results
failed to support any of these predictions, but provided substantial evidence for the null
hypothesis. Notably, we found no evidence of bimodality in any condition. The results thus
contradicted Prediction 3.

Prediction 4: The Neighborhood hypothesis states that topological neighborhoods are
defined by visible boundaries; this predicts that neighborhood shortcuts in the Elastic Maze
should be unimodal and similar to those in the Control Maze, and more unimodal and less
variable than metric shortcuts. The data supported these predictions. Neighborhood shortcuts
were comparable in the two mazes, with substantial support for the null hypothesis. Compared
to metric shortcuts, they also had smaller within-subject ADs, CEs closer to the short location,
and more endpoints in the short neighborhood, with decisive support for the alternative
hypothesis, providing clear evidence for Prediction 4. The neighborhood shortcut data thus
support the topological Neighborhood hypothesis.

Predictions 5 and 6: 1f the graph of the environment is derived from Euclidean

knowledge, path choices to the elastic target should be bimodal, because the coordinates of short
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and long targets fall in different corridors in the Elastic Maze, compared to the Control Maze
(Prediction 5a). In contrast, if the graph is primary, then chosen paths should be correct and
unimodal (Prediction 6a). Path choices in the route task were over 97% correct, and hence
unimodal, in both environments, contrary to Prediction 5a but consistent with Prediction 6a.

Further, the Euclidean hypothesis predicts that CE and VE in the route task should be
comparable to metric shortcuts, given that participants walk to the same target coordinates in
both tasks (Prediction 5b). In contrast, the Cognitive Graph hypothesis predicts that CEs on the
route task should shift to the average location, with smaller VE than metric shortcuts, because
approximate local path lengths are learned via path integration (Prediction 6b). In the route task,
CEs (corrected for path integration error) shifted two-thirds of the way to the average target
location in the Elastic Maze, whereas the metric shortcuts showed no such effect. This was
reasonably close to the expected shift, given that path integration errors are incorporated into a
labeled graph. Moreover, the VE was significantly smaller than for metric shortcuts. These
results are inconsistent with Prediction 5b but consistent with Prediction 6b. Participants thus
acquired approximate local path lengths, but this information was not embedded in a consistent
Euclidean structure.

We acknowledge that participants only spent a total of 2.5 hours in the virtual maze. It is
possible that additional time learning the maze would have enabled them to acquire a Euclidean
map. Nevertheless, shortcuts on control trials in the Euclidean maze were accurate on average
(mean CE = 5.3°) with a large variability (mean within-subject AD = 24.4°). This level of
performance is comparable to other experiments in VR (Warren et al., 2017) and to previous

studies of extended learning in real environments (Ishikawa & Montello, 2006; Moeser, 1988;
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Schinazi et al., 2013), suggesting that further experience is unlikely to improve shortcut

performance significantly.

2.5 Conclusions

Experiment 1 reveals a pattern of results consistent with the Cognitive Graph hypothesis,
which states that primary spatial knowledge can be characterized as a rough labeled graph.
Metric shortcuts were reasonably accurate on average, but highly imprecise, and did not shift
toward the average location of short and long targets. In contrast, endpoints in the route task
were accurate, precise, and shifted towards the average target location. These results imply that
spatial knowledge resembles a graph that is labeled with approximate information about local
path lengths. The metric shortcut data could be explained by vector addition through a noisy
graph, yielding variable shortcuts that are insensitive to moderate changes in metric structure
(Warren, et al., 2017).

Highly variable metric shortcuts do not by themselves rule out Euclidean spatial
knowledge, for they could also result from an imprecise metric map. However, the Euclidean
hypothesis that a noisy map is the primary form of spatial knowledge cannot explain the pattern
of findings in Experiment 1. Neighborhood shortcuts were more precise than metric shortcuts,
and depended on visible boundaries rather than metric relations; this strongly implies that
neighborhoods were not derived from imprecise Euclidean knowledge. Similarly, the route task
was more accurate, more precise, and reflected local path lengths; this also implies that a labeled
graph was not derived from Euclidean knowledge. The results of Experiment 1 are thus contrary

to the Euclidean hypothesis, but consistent with both the Neighborhood and Graph hypotheses.
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3. Experiment 2: The Swap Maze (invariant neighborhoods)

Experiment 1 varied Euclidean structure and metric neighborhoods while holding the
place graph constant; the results were consistent with both the topological Neighborhood and
Cognitive Graph hypotheses. The purpose of the second experiment was to dissociate these two
hypotheses, and to test the Constancy hypothesis. Experiment 2 thus, conversely, varied the
place graph while holding neighborhoods constant, thereby pitting them against each other.
Specifically, the Swap Maze was designed to vary the nodes and edges in the graph that
correspond to the same place, while preserving neighborhoods, by having pairs of objects
alternate between two locations (A and B) within the same neighborhood during learning. The
neighborhood shortcut and route tasks were performed in the Swap Maze, and the results were
compared with the corresponding conditions in the Control Maze from Experiment 1.

According to the Neighborhood hypothesis, topological neighborhoods are defined by
visible boundaries, such as the Y-shaped skeleton of the virtual maze (Figure 6). For example,
the Clock place and the Flamingo place both lie between the left and right paths, and hence fall
in the same constant neighborhood. Neighborhood shortcuts to these targets should thus be
equally successful in the Swap and Control Mazes. In the route task, if neighborhoods are
primary, participants should take any path that leads to the neighborhood containing the swapped
targets, so the chosen path would be expected to vary.

According to the Cognitive Graph hypothesis, neighborhood relations are derived from
the place graph, where places are defined by salient objects. In Figure 6A, for example, one
neighborhood lies to the right of the edge leading to the Clock place and to the left of the edge
leading to the Flamingo place; this neighborhood contains the Flamingo. In the Swap Maze,

however, the Clock and the Flamingo switch locations, so two different edges lead to the Clock
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place. Hence, “right of the edge leading to the Clock™ defines two different neighborhoods, only
one of them containing the Flamingo (Figure 6B). This renders neighborhood boundaries
inconsistent, so neighborhood shortcuts should be more unreliable in the Swap Maze than the
Control Maze. For the route task, path choices to the Clock should be unimodal in the Control
Maze (to node A) but bimodal in the Swap Maze (to nodes A and B). Consequently, estimates of
target position should be more variable in the Swap Maze, and may fall outside the correct
neighborhood, because they are based on local path lengths in two different corridors.

Finally, according to the Constancy hypothesis, spatial knowledge preserves whatever
geometric properties remain invariant during learning. Because neighborhoods defined by the Y-
shaped skeleton are constant in the Swap Maze, predictions are the same as for the
Neighborhood hypothesis: neighborhood shortcuts should be successful, and participants should

choose varying paths that all lead to the neighborhood containing the swapped targets.

3.1 Predictions

These hypotheses lead to specific predictions for the two tasks (refer to Table 1).

3.1.2 Neighborhood shortcut task

Prediction 7: If Neighborhood knowledge is primary, or spatial knowledge preserves
constant geometric properties, neighborhood shortcuts should be (7a) similar in the Swap and
Control Mazes, and (7b) their endpoints should fall within the neighborhood containing the two
swapped targets, in both mazes. Prediction 8: If neighborhood relations are derived from the
place graph, neighborhood shortcuts in the Swap Maze should (8a) be less accurate or more
variable than in the Control Maze, and (86) more shortcut endpoints may fall outside of the

correct neighborhood than in the Control Maze.
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3.1.3 Route task

Prediction 9: 1f neighborhood knowledge is primary, or spatial knowledge preserves
constant properties, participants should choose any path that leads to the neighborhood that
contained the two swapped targets during learning, so the chosen path would be expected to
vary. Prediction 10: If graph knowledge is primary, (10a) path choices should be bimodal (to
the swapped nodes) in the Swap Maze, but unimodal in the Control Maze, and consequently
(100) estimates of target position based on local path lengths should be more variable in the
Swap Maze, and may fall outside the correct neighborhood.
3.2 Method
3.2.1 Participants

A total of 24 (12M, 12F) new participants were run the in the two Swap Maze conditions.

Each group consisted of 12 participants (6M, 6F), and the mean age of participants who
completed the study was 20.8 (SD = 3.2). One participant was dropped from the Swap / Route

condition due to symptoms of simulator sickness.

3.2.2 Design

Including the two groups in the Swap Maze (Experiment 2) and the two corresponding
groups in the Control Maze (from Experiment 1), this yielded a 2 x 2 x 2 design, with two
environments (Control Maze, Swap Maze) in the learning phase crossed with two navigation
tasks (Neighborhood Shortcut, Route) and two trial types (Probe, Control) in the test phase.
Environment and task were between-subjects factors, and trial type was a within-subject factor.
Each participant experienced only one virtual environment and one response task, and trial order

was randomized for each participant.
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3.2.3 Displays

The Swap Maze was identical to the Control Maze except that pairs of probe objects
(bookcase/gear; clock/flamingo) switched locations repeatedly during the free exploration and
training phases (Figure 6). The initial position of each object was randomized between

participants. For example, the first time a participant walked down the canonical path for the

ENVIRONMENT
A Control Maze B Swap Maze
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Figure 6. Experiment 2: mazes. (A) The layout of the Control Maze was the same as before. (B)
The Swap Maze was identical to the Control Maze except that pairs of probe objects
(bookcase/gear; clock/flamingo) exchanged locations repeatedly during free exploration and
training phases.

flamingo, they would see the flamingo; the next time they walked down the same path, they
would see the clock; next, they would see the flamingo; and so on. If participants walked to the
incorrect path when trying to find an object during the training phase, they were guided to the
alternative location for that object. This was done to ensure that participants would learn that a

given object could appear in multiple locations, rather than learning that multiple objects appear
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in a particular location. Thus, in the Swap Maze a particular path could lead to two different

“places” as defined by the objects.

3.2.4 Procedure

The procedure in Experiment 2 was the same as before, except for the training phase,
which was modified based on pilot testing that showed some participants were not able to reach
the training criterion in the Swap Maze. To reduce attrition and ensure sufficient data in the test
phase, participants in the Swap Mazes continued to the test phase after 25 min of training, even if
they had not met the criterion of finding each object within 30 s. The number of training trials
required to reach the criterion (or before 25 min had elapsed) were counted to assess how

difficult it was for participants to learn the Swap Maze.

3.2.5 Data analysis

The analysis was the same as before, except that probe objects in the Swap Maze were
the clock, flamingo, gear, and bookcase, and control objects were the moon, well, earth, cactus,
rabbit, sink. Therefore, objects in the Control Maze from Experiment 1 were re-coded to match
their control/probe designations in the Swap Maze, for statistical comparisons. For
Neighborhood shortcut and Route tasks, CEs on probe trials were normalized so that 0°
corresponded to walking toward the canonical location (A) and positive values corresponded to
walking in the direction of the swapped target location (B), in this case toward the middle of the
neighborhood; and endpoints were classified as falling within the correct neighborhood
(containing the A/B locations of the swapped targets), the wrong neighborhood, or on paths

(Figure 7A). For the Route task, path choices were classified as correct if paths terminated in the
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correct neighborhood, and at either the canonical (A) or swapped (B) target location; path

choices were classified as wrong if they terminated in any other hallway (Figure 7B).

A Endpoints B Path Choices

VA

clock/flamingo Neighborhood Path
@ flamingo/clock
— correct correct
Neighborhoods —_— correct wrong
— wrong wrong

Figure 7. Experiment 2: classification scheme for endpoints and path choices. (A) Percentages of
endpoints falling in each of the three possible neighborhoods (A/B, paths, wrong) were computed
for each participant. (B) Wrong path choices were further subdivided into paths to objects located
in the wrong neighborhood (thick red line), and non-A/B paths in the same neighborhood as the
A/B target (thin red line).

3.3 Results
3.3.1 Free exploration phase
No statistically significant differences between groups were found, suggesting that
participants explored Control and Swap Mazes to similar extents.
3.3.2 Training phase
Participants required more training trials per object in the Swap Maze (M = 5.2, SD =1.1)

than in the Control Maze (M = 4.2, SD = 0.4) to reach criterion (or before 25 min had elapsed),
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F(1,44)=27.1, p <.001, nG*> = .12 (BF10 >> 100, decisive evidence for H1). This implies that the
Swap Maze was harder to learn than the Control Maze.
3.3.3 Neighborhood shortcut task

Sample neighborhood shortcuts appear in Figure 8 A, and mean constant and variable
errors in Figure 9A and 9B respectively. Watson-Williams tests on CE did not find any main
effects of environment or trial type. Pairwise post-hoc Watson-Williams tests revealed that, in
the Swap Maze, CE was significantly more negative on control trials (M = -17.3, AD = 25°) than

ENVIRONMENT
TASK Control Maze Swap Maze

Neighborhood Shortcut

Figure 8. Experiment 2: example shortcuts (black paths) for well (blue circle) — clock/flamingo
(green/pink circles) large trials. (A) Neighborhood shortcut task, (B) Route task. Aggregated
shortcuts for all participants are plotted in each panel. Individual shortcuts are shown as black
paths originating at the mean starting point (object A’s approximate location), and small green
dots indicate shortcut endpoints. Swapped locations of the targets represented by large (green and
pink) circles linked by checkered lines. Green ellipses represent 95% confidence ellipses for
shortcut endpoints.
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Figure 9. Experiment 2: Mean constant errors (CE) and variable errors (within-subject angular
deviations, AD). Constant errors were normalized so that 0° corresponded to perfect accuracy to
the control target on control trials, or the A location of the swapped target on probe trials. Thus,
for probe trials, a positive shift in angular error indicates a shift towards the B location of swapped
targets. Error bars and Duncan flags (p < .05) are the same as in Figure 5.

on probe trials (M =2.11°, 4D = 13.8°), indicating a bias toward the edge of the neighborhood
(see Duncan flags in Figure 9A); there is no apparent reason why this was the case.
Variable Errors, on the other hand, were larger in the Swap Maze than in the Control Maze

Figure 9B. The ANOVA on mean within-subject AD revealed a main effect of environment,
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F(1,22)=7.81, p < .05, 16> = .25 (BF10 = 7.8, substantial evidence for H1), a main effect of trial
type, F(1,22) = 8.22, p < .01, nG*> = .03, and an environment x trial type interaction, F(1,22) =
4.45, p < .05, nG* = .016 (BF10 = 9.2, substantial evidence for Hi). Post- hoc Tukey tests revealed
that mean AD was approximately twice as large in the Swap Maze (M = 30.9°, SD = 5.7°) as in
the Control Maze (M = 16°, SD = 1.15°), but did not confirm the interaction (see Duncan flags in
Figure 9B). These results are contrary to Prediction 7a, but consistent with Prediction 8a:
neighborhood shortcuts were more variable in the Swap Maze than the Control Maze, suggesting
that neighborhoods are derived from the varying place graph. The significant interaction

indicates that VE may be greater for swapped targets than control targets.

3.3.4 Route task

Sample route task shortcuts appear in Figure 8B, and mean constant and variable errors in
Figure 9C and 9D respectively. For the Route Task, the Watson-Williams tests on CE (Figure
9C) revealed a small but significant main effect of environment, such that target position was
slightly underestimated in the Control Maze (M = -3.12°, AD = 2.73°) compared to the Swap
Maze (M = .31°, AD = 5.9°), F(1,46) = 6.37, p <.05 (BF10 = 3.2, substantial evidence for Hi).
No other significant effects were found. Results of post-hoc Watson-Williams tests appear as
Duncan flags in Figure 9C.

The VE in estimated target position (Figure 9D) was significantly higher on probe trials
in the Swap Maze (M = 25.5°, SD = 11.75°) than in any other condition. There was a main effect
of environment F(1,22) = 39.7, p < .001, nc* = .46 (BF10 >> 100, decisive evidence for Hi), a
main effect of trial type, F(1,22) = 13.5, p <.01, nc*> = .25, and a significant interaction, F(1,22)
=18.3, p <.001, n*> = .31 (BF10 = 63.6, very strong evidence for Hi1). The interaction was

confirmed by post-hoc Tukey tests (see Duncan flags in Figure 9D). This finding is consistent
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with Prediction 10b, for position estimates are based on local path lengths that lead to two
different endpoints (Figure 8).
3.3.5 Endpoints

Neighborhood shortcuts. For the neighborhood shortcuts, the mean number of endpoints
falling in correct (A/B) neighborhoods dropped from 85.8% (SD = 14.1%) in the Control Maze
to 67% (SD = 32.9%) in the Swap Maze, and the SD doubled. Specifically, there were fewer
correct endpoints on probe trials in the Swap Maze (M = 64.7%, SD = 33.9%) than the Control
Maze (M = 88.3%, SD = 14.9%), and somewhat fewer on control trials in the Swap Maze (M =
69.3%, SD = 32.8%) than in the Control Maze (M = 83.3%, SD = 14.1%). The corresponding
ANOVA indicated a marginally significant main effect of environment, F(1,22) = 3.32, p = .082,
nG® = .128, but the Bayes factor indicated substantial evidence for the alternative hypothesis
(BF10=5.39). The ANOVA also indicated a significant environment x trial type interaction,
F(1,22) =6.89, p < .05, nG*> = .01 (BF10 = 1.14, anecdotal evidence for the Hi1). Post hoc Tukey
tests only confirmed the main effect of environment (p < .05).

Conversely, more endpoints fell into the wrong neighborhood in the Swap Maze (M =
24.1%, SD = 24%) than the Control Maze (M =9.1%, SD = 10.5%), and again the SD doubled.
Specifically, on probe trials there were more endpoints in the wrong neighborhood in the Swap
Maze (M = 25.9%, SD = 25.5%) than the Control Maze (M = 6.9%, SD = 8.2%), as well as more
on control trials in the Swap Maze (M = 22.3%, SD = 23.1%) than the Control Maze (M =
11.5%, SD = 13.2%). The corresponding ANOVA revealed a marginally significant main effect
of environment, F(1,22) = 3.86, p = .062, nc> = .145, but the Bayes factor indicated substantial

evidence for the alternative hypothesis (BFi0 = 5.78). There was also a significant environment x
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trial type interaction, F(1,22)= 7.4, p < .05, nG* = .012 (BF10 = 1.66, anecdotal evidence for the
Hi). Post hoc Tukey tests only confirmed the main effect of environment (p <.01).

This pattern of results suggests that varying the edges and nodes in the graph destabilized
the neighborhoods of all objects, not only probe objects. Overall, neighborhood shortcuts support
the hypothesis that neighborhoods are derived from the place graph (Prediction 8b), and are
inconsistent with the Constancy hypothesis (Prediction 7).

Route task. In the Route Task, over 90% of the endpoints fell in the correct (A/B)
neighborhood in all conditions. Nevertheless, consistent with Prediction 10b, more endpoints
fell in the wrong neighborhood on probe trials in the Swap Maze (M = 8.7%, SD = 10.1%) than
on control trials in that maze (M = 2.5%, SD = 4.4%), or on probe trials (M = 0%, SD = 0%) or
control trials (M = 0.4%, SD = 1.1%) in the Control Maze. The corresponding ANOVA on
endpoints in the wrong neighborhood revealed a significant main effect of environment, F(1,22)
=8.54, p < .01, nG*= .206 (BF10 = 14.1, strong evidence for H1), a significant main effect of trial
type, F(1,22) = 6.98 (BF10 = 1.22, anecdotal evidence for Hi), p < 0.05, ng>=.095, and a
significant interaction, F(1,22) = 5.12, p < 0.05, nc*>= .071 (BF10 = 23.2, strong evidence for Hi).
Post hoc Tukey tests revealed that probe trials in the Swap Maze had significantly more
neighborhood errors than the other three conditions (p < .05). This finding is consistent with the
Cognitive Graph hypothesis that target position estimates are based on local path lengths
corresponding to edge weights in a place graph (Prediction 10b), and inconsistent with the

Constancy hypothesis that they are based on constant neighborhood boundaries (Prediction 7).

3.3.6 Path choices
In the Control Maze, path choices were unimodal on both probe and control trials, with

participants taking the correct path to the canonical target location (A) on 100% of control trials
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and 99.8% of probe trials (SD = 0.8%). In the Swap Maze, on the other hand, path choices to the
probe target were bimodal, with paths to the canonical location (A) on 36.7% (SD = 21.7%) of
trials and paths to the non-canonical location (B) on 54.1% (SD = 20.8%) of trials; in contrast,
path choices to control targets were unimodal, with 96.3% (SD = 6.6%) to the canonical location
(A) and 0% to location B. ANOVAs confirmed that the path to the canonical location (A) was
chosen less often on probe trials than on control trials in the Swap Maze, F(1,11) =74.8, p <.001,
ne® = .79 (BF10 >> 100, decisive evidence for Hi). Conversely, the path to the non-canonical
location (B) was chosen more often on probe trials than control trials, F(1,11) = 81.4, p <.001,
na’ = .88 (BF10 >> 100, decisive evidence for Hi). Participants thus acquired a place graph despite
varying node and edge assignments; moreover, they learned the two different edges that led to the
same place, consistent with the Cognitive Graph hypothesis (Prediction 10a).

Contrary to the Neighborhood and Constancy hypotheses (Prediction 9), participants in the
Swap Maze never took other (non-A/B) paths leading to the correct neighborhood on probe trials,
yet they chose paths to the wrong neighborhood on 8.25% (SD = 10.7%) of these trials, despite the
fact that the swapped targets remained in the same neighborhood. This percentage was
significantly higher than control trials in the Swap Maze (M = 1.56%, SD = 3.88%), F(1,11) =
6.77, p < .05, 1G> = .16 (BF10 = 5.13, substantial evidence for Hi). In the Control Maze, paths to
the wrong neighborhood were never chosen on probe trials.

In sum, despite constant neighborhoods, participants failed to take alternative paths to the
correct neighborhood, and took paths to the wrong neighborhood on a significant number of trials.
Yet they acquired a place graph of the maze, even with swapping nodes and edges. The pattern of
results is contrary to both the Neighborhood and Constancy hypotheses (Prediction 9), but

consistent with the Cognitive Graph hypothesis (Predictions 8 and 10).
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3.3.7 Response Time
The ANOV As on mean response time found no significant effects of environment (p >
.05; BFo1 = 0.59, no evidence for Ho) or trial type (p > .05; BFo1 = 3.4, substantial evidence for

Ho).

3.3.8 Debriefing responses
Detailed comparisons of debriefing results for Experiments 1 and 2 are presented in the
Supplementary Material (Section 6, Comparison of Experiments). All Swap Maze participants

reported noticing that some of the objects were swapping with one another, variously describing

99 ¢¢ 29 ¢¢ 29 ¢¢

the pattern as the objects “changing,” “alternating,” “switching,” “swapping.” All participants
reported noticing the outlines of the major paths superimposed on the ground plane during

shortcuts.

3.4 Discussion
The four hypotheses and their predictions for each task in Experiment 2 are summarized
in Table 1, together with the experimental outcome (rightmost column). Let us walk through the

predictions and results.

For the neighborhood shortcut task, both the Constancy and Neighborhood hypotheses
predicted that (Prediction 7a) shortcuts should be comparable in the Swap and Control Mazes,
and (Prediction 7b) their endpoints should fall within the neighborhood containing the swapped
targets, because visible neighborhood boundaries (the Y-shaped skeleton) were constant during
learning. Conversely, the Cognitive Graph hypothesis predicted that if neighborhoods are

derived from the place graph, neighborhood shortcuts should be (Prediction 8a) less accurate or
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more variable in the Swap Maze than the Control Maze, and (Prediction 8b) endpoints may fall

outside the constant neighborhoods.

The results indicated that the VE of neighborhood shortcuts was significantly greater in
the Swap Maze, especially for swapped targets, as predicted by the Cognitive Graph hypothesis.
Moreover, there was substantial evidence that fewer shortcut endpoints fell in the correct
neighborhood, and more fell in the wrong neighborhood, in the Swap Maze than the Control
Maze, contrary to the Neighborhood and Constancy hypotheses. Despite a significant
environment by trial type interaction, post-hoc tests only supported the main effect, suggesting
that varying node and edge assignments in the graph destabilized neighborhood boundaries for
all target objects. This pattern of results supports the hypothesis that neighborhoods are derived

from the place graph.

For the Route Task, both the Neighborhood and Constancy hypotheses predicted that
(Prediction 9) participants should take any path leading to the neighborhood that contained the
target, in both the Swap and Control Mazes, because neighborhoods were constant during
learning. In contrast, the Cognitive Graph hypothesis predicted that (Prediction 10a) path choice
should be unimodal (to A) in the Control Maze and on control trials, but bimodal (to A and B) on
probe trials in the Swap Maze, given that graph knowledge is composed of edges (paths) to
nodes (places). Consequently, (Prediction 10b) the final estimated target position should be
more variable on probe trials in the Swap Maze, because local path lengths yield two different
endpoints (Figure 8); they may also fall outside the neighborhood containing the target.

We found that path choices were overwhelmingly unimodal (99.8% to correct path A) in
the Control Maze and bimodal (36.7% to A and 54.1% to B) on probe trials in the Swap Maze,

consistent with the Cognitive Graph hypothesis. Despite constant neighborhoods, participants
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never took alternative paths to the correct neighborhood, but occasionally took paths to the
wrong neighborhood on probe trials in the Swap Maze. Similarly, more route endpoints fell into
the wrong neighborhood on those trials than in any other condition. Finally, estimated target
positions were also more variable on those trials, consistent with local information about path
length. This pattern of results contradicts the Neighborhood and Constancy hypotheses, but

supports the Cognitive Graph hypothesis.

Overall, when the graph was varied, the environment was more difficult to learn: more
training trials were required to reach criterion, and more guidance to targets was needed, in the
Swap Maze than the Control Maze. Nevertheless, participants still acquired reliable graph
knowledge, choosing a correct path on 93.6% of trials in the Swap Maze. In contrast, VEs and
endpoint errors indicate that participants did not learn constant neighborhoods defined by the Y-
shaped skeleton. Rather, the results strongly imply that neighborhoods are derived from nodes

and edges in the place graph.

3.5 Conclusions

The results of Experiment 2 provide support for the Cognitive Graph hypothesis but
militate against the Neighborhood and Constancy hypotheses. Graph structure appears to be the
primary form of spatial knowledge: an environment in which the place graph varies is more
difficult to learn and interferes with the acquisition of neighborhoods. Despite this variation,
participants were able to learn that two different edges lead to the same place and acquired a
reliable place graph. Conversely, despite a constant skeleton of visible paths, participants did not
learn stable neighborhoods, but derived them from the place graph. These results converge with
those of Experiment 1 to support the hypothesis that primary spatial knowledge is best described

as a labeled place graph.
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4. General Discussion

The present study examined the geometric structure of spatial knowledge by evaluating
four main hypotheses: the Euclidean hypothesis, which posits that spatial knowledge corresponds
to a metric map; the Neighborhood hypothesis, which proposes that it consists of adjacency
relations among spatial regions; the Cognitive Graph hypothesis, which states that it is
characterized by a labeled place graph; and the Constancy hypothesis, which posits that it
preserves whatever geometric properties are invariant during learning.

To test these hypotheses and identify the primary form of spatial knowledge, we
selectively varied three geometric properties during learning: metric relations, metric
neighborhoods, and the place graph. The Elastic Maze varied metric structure while holding the
place graph constant; the Swap Maze varied graph structure while holding neighborhoods
constant; and the Control Maze preserved all three properties. We asked participants to learn one
of these environments and then perform a navigation task that assessed their metric,

neighborhood, and graph knowledge.

Table 1

Summary: Summary of predictions and results

Task Hypothesis Experiment Prediction Results BF
Metric Euclidean Metric shortcuts in the Elastic Maze 3 BFoi =4.15
Shortcut Primary spatial knowledge is should shift to the average target BFo1 =3.61
Euclidean location, and be more variable, BFo1 = 6.02
compared to the Control Maze; same BFo1 =6.32
on probe compared to control trials.
Cognitive Graph Metric shortcuts should be directional N4 Same
Primary spatial knowledge resembles a but similarly unreliable in the Elastic
rough labeled place graph (or is highly and Control Mazes, and on probe and
imprecise) control trials
Neighborhood  Euclidean Neighborhood shortcuts to stretched 3 BFo =4.22
Shortcut Neighborhoods are derived from targets should be bimodal and more BFo1 = 3.48
metric relations between places and variable in the Elastic Maze than in BFo1 =3.03
boundaries the Control Maze; and on probe trials BFxe >> 100

than control trials
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Neighborhood 4 Neighborhood shortcuts in the Elastic Same
Primary spatial knowledge consists of Maze should be similar to the Control BF10=6.28
topological neighborhood relations Maze; less variable than metric BFio= 111.5
shortcuts, with more endpoints in the
short neighborhood
Cognitive Graph 4 Same Same
Neighborhood relations are derived
from the place graph
Constancy Ta Neighborhood shortcuts should be BFi0=5.39
Spatial knowledge preserves whatever comparable in the Swap and Control BFio=1.14
geometric properties remain constant Mazes BF10=5.78
BFi0=1.66
7b Shortcut endpoints should fall within BF10>> 100
the neighborhood containing the BFi0>> 100
swapped targets, in the Swap and BFi0>>100
Control Mazes BFio=16.2
Neighborhood 7a,b Same Same
Primary spatial knowledge consists of
topological neighborhood relations
Cognitive Graph 8a Neighborhood shortcuts in the Swap BFio= 7.8
Neighborhood relations are derived Maze should be less accurate or more BFio= 9.2
from the place graph variable than in the Control Maze
8b Shortcut endpoints in the Swap Maze BFi0=5.39
may fall outside the correct BFio=1.14
neighborhood more than in the BF10=5.78
Control Maze BFi0=1.66
Route Euclidean 5a Path choice should be bimodal in the >97% correct
Graph knowledge is derived from Elastic Maze because short and long (unimodal)
metric relations among places and targets fall on different paths
paths
5b Estimated target positions should be BF10>>100
similar to metric shortcuts to the same BFi0= 8.45
targets
Cognitive Graph 6a Path choice should be unimodal and >97% correct
Primary spatial knowledge resembles a correct in the Elastic and Control (unimodal)
rough labeled place graph Mazes,
6b Position estimates in the Elastic Maze BFio >> 100
should shift to the average target BFio= 8.45
location compared to the Control
Maze, and be less variable than metric
shortcuts.
Constancy 9 Path choice should vary but lead to the BFi0=5.13
Spatial knowledge preserves whatever neighborhood that contained the
geometric properties remain constant swapped targets the Swap and Control
mazes
Neighborhood 9 Same Same
Primary spatial knowledge consists of
topological neighborhood relations
Cognitive Graph 10a Path choice should be bimodal in the BF10>> 100
Primary spatial knowledge resembles a Swap Maze, but unimodal in the BFio>> 100
labeled place graph Control Maze and on control trials
Neighborhood relations are derived 10b Estimated target position should be BF0>> 100
from the place graph more variable in the Swap Maze and BF10=63.6
may fall outside the correct BFio=14.1

neighborhood

Note: v indicates that results were consistent with the hypothesis. % indicates that results were inconsistent with the
hypothesis. “BF” indicates Bayes Factor(s) (strength of evidence favoring the corresponding result); BFs following

checks and crosses support acceptance or rejection of the corresponding hypothesis respectively.
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The overarching predictions for each of the four hypotheses were as follows: (1) The
Euclidean hypothesis predicts that performance on all three tasks should be higher when metric
structure is constant (Control Maze) than when it is varied (Elastic Maze), because geometrically
weaker forms of knowledge are derived from metric spatial knowledge. (2) The Neighborhood
hypothesis predicts that performance on neighborhood shortcuts should be higher when
neighborhoods are constant (Swap Maze and Control Maze) than when they are varied (Elastic
Maze). (3) The Cognitive Graph hypothesis predicts that performance on the route task should
be higher when the place graph is constant (Elastic Maze and Control Maze) that when it is
varied (Swap Maze). (4) The Constancy hypothesis predicts that participants will acquire
whatever geometric properties are constant during learning, and thus perform best on metric
shortcuts in the Control Maze, the route task in the Elastic Maze, and neighborhood shortcuts in
the Swap Maze.

Experiment 1 compared the Control Maze and Elastic Maze. The results were generally
consistent with the Cognitive Graph hypothesis. Even though we varied metric structure in the
Elastic Maze, metric shortcuts were highly imprecise in both mazes, and did not shift in the
direction of stretched targets even though they were detectable. This suggests two possibilities:
(1) spatial knowledge is Euclidean, but too imprecise to support metric shortcuts to discriminable
locations, or (2) spatial knowledge is non-Euclidean, and best described as a labeled graph.
Unreliable shortcuts alone do not rule out Euclidean spatial knowledge, for they could result
from an imprecise metric map. However, such an imprecise map cannot be the basis for the
neighborhood and graph knowledge required to explain reliable performance in the

neighborhood shortcut and route tasks.
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The route task revealed that participants acquired a labeled place graph. They chose the
correct path to the target on over 97% of test trials in the Elastic Maze, despite varying Euclidean
structure. In addition, they walked down the path to the approximate target position,
demonstrating knowledge of local metric path lengths, corresponding to edge weights in the
graph. Participants also learned neighborhoods based on visible boundaries (e.g. paths and
intersections): neighborhood shortcuts were unimodal and less variable than metric shortcuts in
both the Control and Elastic Maze. Moreover, route endpoints were unimodal and clustered in
the near neighborhood, implying that neighborhoods are based on topological boundaries, not
derived from metric relations. This pattern of results is consistent with the Cognitive Graph
hypothesis, in which a labeled graph (Figure 1B) incorporates local information about path
lengths (edge weights).

Experiment 2 was designed to provide a clear test of the Graph, Neighborhood, and
Constancy hypotheses, by varying the place graph in the Swap Maze while holding
neighborhoods constant. Even though the neighborhoods bounded by the skeleton of primary
paths were constant, participants had difficulty learning them when the node and edge
assignments in the graph were bistable. Neighborhood shortcuts were more variable, and more
shortcut endpoints fell in the wrong neighborhood, in the Swap Maze than the Control Maze.
Nevertheless, participants still chose the correct path to the (A/B) target on over 96% of test
trials in the Swap Maze. They thus learned the graph of the Swap Maze, including bistable
edges and nodes, despite this variation. These results strongly support the Cognitive Graph
hypothesis. In contrast, they are inconsistent with the Neighborhood and Constancy hypotheses,
for participants were less successful at acquiring neighborhoods in the Swap Maze, even though

they were constant during learning.
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Taken together, the results of Experiments 1 and 2 are contrary to the Euclidean,
Neighborhood, and Constancy hypotheses, but support the Cognitive Graph hypothesis. A place
graph was acquired in all environments, even when we attempted to vary it in the Swap Maze.
Neighborhoods were also learned, but their boundaries were derived from the place graph. Thus,
primary spatial knowledge resembles a labeled place graph (Figure 1B) which incorporates local
information about approximate path lengths and junction angles.

One objection to a labeled graph is that the spatial knowledge acquired in these
experiments is also consistent with distorted Euclidean knowledge. However, in other
experiments we have found that spatial knowledge violates the metric postulates, but is
consistent with a labeled graph (Warren et al., 2017; Strickrodt, et al., 2020). Although these
findings imply that ‘navigation space’ is non-Euclidean, it remains possible that spatial
knowledge is locally Euclidean within ‘vista space’ (Meilinger, 2008; but see Warren, 2020).
The present results are also compatible with the proposal that spatial knowledge has a
hierarchical organization (Hirtle & Jonides, 1985; Montello, 1992), or that it is characterized by
different spatial scales (Anooshian, 1996; Montello, 1992). We propose that a labeled graph
structure provides the best description of knowledge at each level or scale.

Finally, we note that the present study was not designed to assess individual differences
in primary spatial knowledge (Weisberg, et al, 2014). We hope that the ‘impossible world’
paradigm offers a useful method for testing specific hypotheses about the geometry of spatial

knowledge in a larger subject population.

5. Conclusion
The present study critically examined the structure of human spatial knowledge by testing

four hypotheses about its geometric properties. The results are contrary to three of these
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hypotheses: that primary spatial knowledge is Euclidean, consists of topological neighborhoods,
or preserves whatever geometric properties are constant during learning. Our findings support
the hypothesis that primary spatial knowledge is best described as a place graph in which edges
are labeled with local information about the approximate path lengths between places and
intersections, and nodes are labeled with local information about objects and the approximate

angles between paths.
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Supplementary Material

The supplementary material for this article includes an additional comparison of experiments.
The data supporting this article may be accessed from the Brown University Digital Repository
https://repository.library.brown.edu/studio/item/bdr: 1095248/
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Supplementary Material

Comparison of experiments

To integrate the findings of Experiments 1 and 2, we compare the results of the three
tasks (metric shortcut, neighborhood shortcut, route) across the three environments (Control,
Elastic, and Swap Mazes). To simplify the comparison, we analyze the absolute angular error in
each condition. The mean absolute error (AE) was computed from the absolute value of the CE
[0°, 180°] on each trial, and thus reflects both CE and VE. For each task, the predictions of the
four main hypotheses (Euclidean, Neighborhood, Cognitive Graph, and Constancy hypotheses)
and the experimental outcomes are summarized in Table 3.
1. Metric shortcut task

The metric shortcut task was primarily designed to investigate the Euclidean hypothesis
by varying metric relations (Elastic Maze) or holding them invariant (Control Maze). If primary
spatial knowledge is Euclidean, shortcuts should be less accurate or more variable in the Elastic
Maze (because target locations were stretched 3m) than in the Control Maze. Contrary to this
expectation, we found no significant differences in CE or VE between the Elastic Maze and the
Control Maze (see Section 2.3.2). However, shortcuts were highly variable in both mazes, with
mean within-subject VEs of 30.9°-36.6°. This is reflected in the large mean AEs (Figure 10A,B).
Separate ANOV As on angular errors in probe and control trials found no effects of environment
(p > .05), and Bayes factors indicated anecdotal evidence for the null hypothesis (BFo1 = 2.58

and 2.64 respectively).
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These results are consistent with two possibilities: (1) spatial knowledge is Euclidean but

highly imprecise, or (2) spatial knowledge is a non-Euclidean labelled graph. However, a noisy

Euclidean map cannot explain the results of the neighborhood shortcut and route tasks.
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Figure 10. Comparison of experiments by task. Left column (4, B): performance on the Metric
Shortcut Task as measured by mean absolute angular error (AE). Center column (C, D):
performance on the Neighborhood Shortcut Task as measured by mean percentage of endpoints
falling in wrong neighborhoods (defined as any non-short/long neighborhood in the Elastic Maze,
and any non-A/B neighborhood in the Swap Maze). Endpoints falling on maze paths were
excluded from percentage calculations. Right column (E, F): performance on the Route Task as
measured by the mean percentage of trials in which participants walked down an incorrect path.
Top row: probe trials. Bottom row: control trials. Error bars indicate £1 SEM. Duncan flags
denote significant Tukey tests (p < .05); n.s. denotes non-significant one-way ANOVA.

2. Neighborhood shortcut task

The neighborhood shortcut task was designed to investigate the Neighborhood hypothesis

by holding only neighborhoods constant (Swap Maze), only the place graph constant (Elastic

Maze), or all geometric properties constant (Control Maze) during learning. The Neighborhood

and Constancy Hypotheses predict that neighborhood shortcuts should be equivalent in the Swap
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and Control Mazes, for neighborhoods (defined by the Y-shaped skeleton) were invariant. On
the other hand, if neighborhoods are derived from metric relations among places and boundaries,
then performance should decline in the Elastic Maze, where those relations varied. Finally, if
neighborhoods are derived from the place graph, then performance should decline in the Swap
Maze, where node and edge assignments in the graph varied while the skeleton remained
constant.

We found that neighborhood shortcuts were equivalent in the Elastic Maze and the
Control Maze, indicating that neighborhoods are not derived from Euclidean structure (see
Section 2.3.4). We also observed that VE was significantly larger in the Swap Maze than the
Control Maze, despite constant neighborhoods (see Section 3.3.3), contrary to both the
Neighborhood and Constancy hypotheses. Across experiments, we also find significantly more
neighborhood shortcut errors on probe trials in the Swap Maze than the other mazes (Figure
10C,D): a one-way ANOVA on endpoints found a significant effect of environment, F(2,33) =
3.30, p < .05, nG* = .16; post-hoc Tukey tests revealed that the wrong neighborhood was chosen
more often in the Swap Maze (M = 25.9%, SD = 25.5%) than in the Control Maze (M = 6.9%,
SD = 0.08%). No significant effects were found.

Thus, results for the neighborhood shortcut task contradict the Neighborhood and
Constancy Hypotheses, but are consistent with the Cognitive Graph hypothesis. When the place
graph was varied in the Swap Maze, shortcuts deteriorated, despite the fact that neighborhoods
were constant. This strongly implies that neighborhoods are derived from the place graph.

3. Route Task
The route task was designed to investigate the Cognitive Graph hypothesis by holding

only the place graph constant (Elastic Maze), only neighborhoods constant (Swap Maze), or all
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geometric properties constant (Control Maze) during learning. If graph knowledge is primary,
then path choices should be unimodal (to A) in the Elastic and Control Mazes, but bimodal (to A
and B) in the Swap Maze. On the other hand, if graph knowledge is derived from Euclidean
structure, path choices should be bimodal in the Elastic Maze, because the stretched target falls
in a different corridor. Finally, the Constancy hypothesis predicts that participants should choose
the correct path (unimodal) in the Elastic Maze because the graph was constant, but take various
paths to the correct neighborhood in the Swap Maze because only neighborhoods were constant.
Performance on the Route Task was overwhelmingly accurate in all three mazes (Figure
10E,F), with unimodal path choices in the Elastic and Control Mazes and bimodal choices in the
Swap Maze. These results were consistent with the Graph hypothesis but not the Euclidean and
Constancy hypotheses. Due to the variation in the graph of the Swap Maze, it was harder to
learn in the training phase, and there were slightly more path errors in the test phase. For probe
trials, an ANOVA on the percentage of wrong paths revealed a significant effect of environment,
F(2,32)=6.88, p < .01, ng*> = .30 (BF10 = 12.9, strong evidence for H1); post-hoc Tukey tests
revealed that wrong paths were chosen more often in the Swap Maze (M = 9.8%, SD = 10.5%)
than in the Elastic (M = 2.7%, SD = 4.4%) or Control (M = 0.24%, SD = 0.82%) Mazes. For
control trials, there was a significant effect of environment, F(2,32) = 3.8, p < .05, n*> = .19
(BF10=2.14, anecdotal evidence for H1), with more wrong paths chosen in the Swap Maze (M =
5.13%, SD = 6.96%) than in the Control Maze (M = 0%, SD = 0%); no other significant
differences were found. Varying the place graph of the Swap Maze thus led to slightly more path
errors. But despite this variation, participants chose correct routes on over 96% of trials,
indicating that they successfully learned the graph of the Swap Maze. These results support the

Cognitive Graph hypothesis that the primary form of spatial knowledge resembles a place graph.
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4. Debriefing

An ANOVA on self-reported average number of hours spent playing video games
revealed a significant effect of participant group, F(7,89) = 2.33, p < .05, n*>=.16. A Tukey’s
HSD test revealed that participants in the Swap Maze / Neighborhood task group reported
spending more time playing games that do not involve learning a spatial layout (M = 4.03
hr/week, SD = 4.63 hr/week) than in the Euclidean Maze / Route task group (M = 0.80, SD =
1.09 hr/week). However, the corresponding Bayes Factor was small (BF10 = 1.6) indicating only
anecdotal evidence for the alternative hypothesis. Thus, differences in performance between
groups are not attributable to video game experience.

An ANOVA on self-reported level of immersion in the virtual environment revealed a
significant main effect of participant group, F(7,89) = 2.69, p < .05, ng> = .17 (BF10 = 3.26,
substantial evidence for Hi) . However, none of the pairwise Tukey tests reached significance
(all ps > .05), while Bayes factors only supported a higher level of immersion in the Swap
Maze/route task group than groups doing other tasks (Swap Maze/neighborhood shortcuts, BFio
= 8.21; Control Maze/neighborhood shortcuts, BFio = 4.86; Control Maze/metric shortcuts, BFio
=7.93). Overall, however, differences in performance between groups are not attributable to
self-reported level of immersion.

Separate ANOV As on individual items of the SBSOD failed to reach significance (all ps
> .05, all BF10 < 1), indicating no evidence for any differences between participant groups.
Across the 15 items, support for the null hypothesis ranged from anecdotal (BFoi1 = 1.07) to very
strong (BFo1 = 33.6). Thus, differences in performance between groups are not attributable to

differences in self-rated spatial ability.
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ANOVAs on the total number of responses and total number of correct responses for the
RMT failed to reveal a significant effect of participant group (all ps > .05). The corresponding
Bayesian analysis revealed strong evidence for the null hypothesis (12.9 < BFo1 < 17.4). Thus,
differences in performance between groups are not attributable to mental rotation ability.

ANOVAs on the CE and VE of responses to the PTSOT failed to reach significance (all
ps > .05). The corresponding Bayesian analysis revealed decisive evidence (CE: BFo1 >> 100)
and substantial evidence (VE: BFo1 = 3.66) for the null hypothesis respectively. Thus, differences
in performance between groups are not attributable to perspective-taking ability.

The bidimensional regression analysis, which correlated the coordinates of objects in the
sketch maps with their actual coordinates in the maze, failed to yield any inter-group differences
in the main indices of translation, rotation, expansion, or general distortion (Tukey HSD > .05;
2.95 <BFo1 < 11.7, anecdotal to strong evidence for the null hypothesis). The one exception was
a minor measure: the maximum value of unexplained variance was significantly greater for the
route task group in the Elastic Maze than for the neighborhood shortcut group in the Elastic
Maze (p <.001; BF10 = 140.9, decisive evidence for Hi) and the metric shortcut group in the
Euclidean Maze (p < .05; BF10 = 22.8, strong evidence for Hi).

5. Conclusions

Taken together, the results of Experiments 1 and 2 are inconsistent with the Euclidean,
Neighborhood and Constancy Hypotheses, but support the Cognitive Graph hypothesis (see
Table 1, “Results” column). We expected that the primary geometry of spatial knowledge would
be revealed by a specific pattern of results: performance on a given task should be high when the
corresponding geometric property was constant during learning, but lower when that property

was varied. (1) Euclidean structure does not fit this pattern, for metric shortcuts were always
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poor, and were unaffected when metric structure was varied (Elastic and Control Mazes). (2)
Neither does Neighborhood structure, for neighborhood shortcuts declined when neighborhoods
were held constant (Swap Maze); this result also contradicts the Constancy hypothesis. (3)
Graph structure explains the data better than expected: performance on the route task is
uniformly high across all mazes, both when the place graph was invariant (Elastic Maze) and
when it was varied (Swap Maze). Learning and path choice decline slightly in the Swap Maze,
as might be expected, but participants managed to learn bistable edge and node assignments and
acquire a reliable place graph.

These findings lead us to conclude that primary spatial knowledge is best described as a
labelled place graph, which incorporates local information about approximate path lengths and
junction angles between known places. Neighborhood relations are derived from the place

graph, based on information for neighborhood boundaries carried by edges and nodes.
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