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Abstract 

Path integration—the constant updating of position and orientation in an environment—is an 

important component of spatial navigation, however, its mechanisms are poorly understood. The 

aims of this study are 1) to test the encoding-error model of path integration, which focuses 

solely on encoding as a potential source of error, and 2) to develop a model of path integration 

that best predicts path integration errors. We tested the encoding-error model by independently 

measuring participants’ encoding errors in distance and angle reproduction tasks, and then using 

those reproduction errors to predict individual participants’ errors in a triangle completion task. 

We sampled the distribution of encoding errors using Monte Carlo methods to predict the 

homebound path, and then compared the predictions to observed triangle completion behavior. 

The correlation between predicted errors and actual errors in the triangle completion task was 

extremely weak, whereas an alternative model using execution error alone was sufficient to 

describe the observed errors. A model incorporating both encoding and execution errors best 

described the triangle completion errors. These results suggest that errors in executing the 

response may contribute more to overall errors in path integration than do encoding errors, 

challenging the assumption that errors reflect encoding alone. Errors in triangle completion 

might not arise from failing to know where you are, but from an inability to get back home. 

 
Keywords: navigation, self-motion, idiothetic, virtual environments, cognitive map 

 
Public Significance Statement: This study challenges the long-standing assumption that 

homing errors in path integration stem from encoding the outbound path. Instead, this study 

demonstrates that the largest source of error is carrying out the homebound trajectory. These 

findings will help us understand more about the mechanisms underlying navigational systems. 
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Introduction 

Human Path Integration 

To navigate successfully through an environment, an animal needs to sense its own 

position and orientation with respect to places in that environment. Path integration is the 

continuous updating of position and orientation by integrating changes in position, velocity and 

acceleration based on idiothetic and visual motion information (H. Mittelstaedt & Mittelstaedt, 

1982; M.-L. Mittelstaedt & Mittelstaedt, 1980). Some researchers  have proposed that path 

integration is the basis for building up spatial knowledge of the environment, such as a metric 

cognitive map (Gallistel, 1990; McNaughton, Battaglia, Jensen, Moser, & Moser, 2006; Wang, 

2015) or a labeled cognitive graph (Chrastil & Warren, 2014b; Warren, 2019; Warren, Rothman, 

Schnapp, & Ericson, 2017), by registering the distances and angles between places and 

landmarks. Little is known, however, about just how accurate and stable human path integration 

is, and whether it could provide a basis for deriving such spatial knowledge. Few satisfactory 

models have been proposed that account for the systematic errors seen in human path integration. 

The goal of this study is to test the contributions of potential sources of systematic error in 

human path integration in several alternative models. 

 Some animals, such as desert ants and nocturnal hamsters, have shown a remarkable 

ability to return to the nest or home location by means of path integration, known as homing 

(Etienne, Maurer, & Saucy, 1988; M.-L. Mittelstaedt & Mittelstaedt, 1980; Seguinot, Maurer, & 

Etienne, 1993; Wehner & Wehner, 1986; Wittlinger, Wehner, & Wolf, 2006). These animals 

may have developed accurate path integration because they live in environments without stable 

visible landmarks. Humans, on the other hand, are highly visual animals, and appear to rely on 

landmarks and other external cues for guidance, known as landmark-based navigation. Recent 
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evidence suggests that while humans have coarse path integration abilities, visual landmarks 

dominate shortcut and homing behavior (Foo, Duchon, Warren, & Tarr, 2007; Foo, Warren, 

Duchon, & Tarr, 2005; Zhao & Warren, 2015b). When landmarks are noticeably unreliable, 

however, people fall back on a strategy of path integration, although the latter does not appear to 

be an automatic “back up” system running in the background (Cheng, Shettleworth, 

Huttenlocher, & Rieser, 2007; Zhao & Warren, 2015a). Thus, humans must have some capacity 

to perform path integration.  

The most common method for investigating human path integration is a homing task 

known as triangle completion (Fujita, Loomis, Klatzky, & Golledge, 1990; Kearns, Warren, 

Duchon, & Tarr, 2002; Klatzky, Loomis, Beall, Chance, & Golledge, 1998; Klatzky et al., 1990; 

Loomis et al., 1993; Peruch, May, & Wartenberg, 1997; Tcheang, Bülthoff, & Burgess, 2011). In 

this task, an experimenter guides a research participant down one leg of a triangle, then takes 

them through a turn, and finally guides them down a second leg of the triangle. At that point, the 

participant must determine both the distance and direction back to the starting point (‘home’) in 

order to complete the third leg of the triangle. Triangle completion studies have found systematic 

errors in path integration performance, such as treating outbound legs as if they are equal sides of 

an isosceles triangle, compressing responses by overturning small angles and underturning large 

angles, and overshooting short distances and undershooting long distances. 

To help explain these systematic errors, Fujita, et al. (Fujita, Klatzky, Loomis, & 

Golledge, 1993; Loomis et al., 1993) broke down such path-completion tasks into five main 

components. The first three elements—sensing, creating a trace of the route, and forming a 

survey representation of the outbound path segments—make up the broader process of 

“encoding” the outbound path traveled by the animal. The fourth component is integrating the 
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outbound segments to determine the appropriate return trajectory back to the starting location. In 

other words, once the animal has experienced the outbound path, the integration step computes 

the necessary trajectory for a novel path to a particular goal, namely, the start position. In the 

fifth final component, the animal must execute that homebound trajectory. It is possible for 

systematic errors to accumulate during any of these processes.  

The Encoding-Error Model of Path Integration 

Fujita et al. (1993) proposed an encoding-error model that accounts for the systematic 

errors observed in path integration. Specifically, they posited that the major component of 

systematic error stems from encoding the outbound path. This model further theorizes that 

integrating the outbound segments to form the homebound trajectory—and executing that 

trajectory—play no role in overall path integration error. Thus, their model assumes that once the 

path integration system encodes the values of the outbound path it produces no other systematic 

errors.  

The encoding-error model has four underlying assumptions: 1) the internal representation 

of the path satisfies the axioms of Euclidean geometry, 2) distances are encoded by just one 

function, so that equal distances are encoded the same way, 3) angles are also encoded by one 

function, and 4) there is no systematic error in either the integration of path segments or 

execution of the homeward trajectory (Fujita et al., 1993). Fujita et al. estimated the linear 

encoding functions in distance and angle reproduction tasks, then used those general functions to 

predict average path integration errors.  

Although the initial test of the encoding-error model had some success, the assumption 

that there is no integration or execution error has proven problematic. Some studies have found 

little error in execution of a computed trajectory (Jurgens, Nasios, & Becker, 2003; Riecke, Van 
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Veen, & Bülthoff, 2002), but others have demonstrated significant bias in production of simple 

tasks (Bakker, Werkhoven, & Passenier, 1999, 2001; Chrastil & Warren, 2017; Israël, Sievering, 

& Koenig, 1995; Jetzschke, Ernst, Moscatelli, & Boeddeker, 2016; Klatzky et al., 1990), in 

violation of assumption 4. For example, Bakker, Werkhoven, & Passenier (1999, 2001) 

demonstrated that production errors for verbally-specified turns of 90, 180, or 270 ranged 

from approximately 5–45 in conditions with visual, vestibular, and proprioceptive information, 

and from approximately 20–120 in a purely visual task. Participants were verbally instructed 

which angle they should turn, then used a rotating turntable to turn through the specified angle. 

This task likely taps execution errors since these turn angles are orthogonal to each other and 

constitute body axes in an egocentric (viewer-centered) reference frame. However, even tasks 

that on the surface appear to measure pure execution error, such as turning 90, might reflect 

some combination of encoding error and execution error, with accurate performance if the two 

elements are calibrated to compensate each other.  

More complex path integration tasks have also cast doubt on the idea of minimal 

execution error. For example, Wan et al. (Wan, Wang, & Crowell, 2013) found that path 

integration errors were related to the length of the correct homebound trajectory, indicating that 

execution of that trajectory could contribute to total path integration errors. Using similar 

triangles, Harootonian et al. (in press) found that participants tended to undershoot homebound 

distances as the triangles got bigger, but there was no change in the turn angle – which would be 

the same regardless of size. This result suggests that people could encode the triangles correctly, 

since the turn angle did not vary, but they had difficulty executing different homebound path 

lengths. Avraamides et al. (Avraamides, Klatzky, Loomis, & Golledge, 2004) found that verbal 

and pointing responses lead to different patterns of error during imagined spatial updating, 
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suggesting that response mode is an important factor in path integration. Finally, Chen et al. 

(Chen, He, Kelly, Fiete, & McNamara, 2015) showed that homebound paths are affected by 

environmental rescaling, indicating that these trajectories are not simply an executed motor plan, 

but rather depend on online information to create the homebound path. Together, these findings 

all point to a potential contribution of execution error during homing. 

The assumption of a constant linear encoding function that fits all contexts (assumptions 

2 and 3) has also been called into question. Context-free encoding implies that the same 

encoding function should apply when all of the leg lengths are short as when they are all 

relatively long. In violation of this assumption, Klatzky et al. (Klatzky, Beall, Loomis, Golledge, 

& Philbeck, 1999) found that a general linear encoding function was not sufficient for all 

contexts. Distance reproduction tasks generally demonstrate a compressed distance function, 

such that small distances are overestimated and large distances are underestimated (Harris, 

Jenkin, & Zikovitz, 2000; Israël et al., 2004b; Lappe, Jenkin, & Harris, 2007; May & Klatzky, 

2000; M.-L. Mittelstaedt & Mittelstaedt, 2001; Redlick, Jenkin, & Harris, 2001; Schwartz, 1999; 

Sun, Campos, Young, Chan, & Ellard, 2004). This regression to the mean in these tasks is 

dependent on the contextual range of distances used (Petzschner & Glasauer, 2011). Other 

researchers have also found that distance reproduction varies depending on the gait type and 

speed of the outbound and response paths (Abdolvahab, Carello, Pinto, Turvey, & Frank, 2015; 

Chrastil & Warren, 2014a; M.-L. Mittelstaedt & Mittelstaedt, 2001; Turvey et al., 2009). Angle 

reproduction tasks have similarly shown underestimations of large angles and overestimation of 

small angles depending on the range (Becker, Jürgens, & Boss, 2000; Israël, Bronstein, 

Kanayama, Faldon, & Gresty, 1996; Ivanenko, Grasso, Israël, & Berthoz, 1997; Jurgens et al., 

2003; Klatzky, Loomis, & Golledge, 1997; Marlinsky, 1999; Siegler, 2000; Siegler, Viaud-
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Delmon, Israël, & Berthoz, 2000; Vidal & Bülthoff, 2010). In addition, angle reproduction is 

influenced by memory and the reference frame used during the task (Arthur, Philbeck, Kleene, & 

Chichka, 2012), further suggesting that the encoding function is not context-free. 

Beyond possible violations of the model’s assumptions, direct tests of the encoding-error 

model have been conducted, with mixed results. Péruch et al. (Peruch et al., 1997) found that the 

encoding-error model accounted for 89% of the variance in distance encoding and 93% of the 

variance in angle encoding, supporting the encoding-error account of path integration. May & 

Klatzky (May & Klatzky, 2000) also fit their data to the encoding-error model with a high 

correlation between expected and observed errors. Corollary assumptions that emerge from the 

model—that variability in each trajectory does not affect the others, no alignment of the paths 

into a common reference frame—have also been supported (Klatzky et al., 1999). On the other 

hand, Riecke et al. (Riecke et al., 2002) point out that participants in the Péruch et al. experiment 

undershot simple 180 turns by 16%, in violation of assumption 4. Riecke et al.’s application of 

the encoding-error model yielded results that violated axioms of trigonometry (assumption 1), 

such as negative values for encoded distances and angles. Furthermore, although participants in 

that study indicated they knew that both outbound legs of the triangle were equal, five of the 

twenty participants had mean final turns that could never complete any isosceles triangle, in 

violation of either assumption 1 or assumption 4. In addition, when applied to outbound paths of 

more than two legs, the authors of the encoding-error model themselves (Fujita et al., 1993) 

found that this model was not sufficient to explain the systematic errors.  

Finally, the use of reproduction tasks to generate the encoding functions in path 

integration is also problematic. Reproduction tasks might confound encoding and execution 

errors: it is not possible to determine whether an undershoot in distance reproduction stems from 



 9 

under-encoding the distance with accurate execution, accurate encoding with errors in distance 

execution, or some combination of the two. We previously found that magnitude of the response 

angle, not the magnitude of the encoded angle, predicted errors (Chrastil & Warren, 2017). This 

finding indicates that execution error—not encoding error—could make the largest contribution 

to systematic path integration errors. We also demonstrated that both encoding and execution 

errors contribute to total error in a distance reproduction task, and we provided a quantitative 

estimate of both types of errors (Chrastil & Warren, 2014a). Participants tended to be more 

accurate and less variable when the outbound and response modes matched (e.g. walking on both 

the outbound and response paths vs. walking out and then throwing a beanbag the same 

distance). These results suggest that the most accurate reproduction tasks are based on matching 

idiothetic information, rather than some extrinsic distance metric. Hence, reproduction tasks may 

be highly calibrated for accurate reproduction, so they might not reveal the true encoding 

function. Indeed, it is possible that encoding during triangle completion is fundamentally 

different from encoding during distance reproduction; in a reproduction task, the encoded 

information is matched during the response, whereas in triangle completion the encoded 

information is integrated together to generate a completely novel path.  

In sum, the encoding-error model has received support for some of its assumptions and 

direct tests have found that the model accounts for a large portion of the variance. On the other 

hand, several of its assumptions do not hold up to scrutiny. Both the assumption of no execution 

error and the assumption of a consistent encoding function have been called into question. Even 

the assumption of Euclidean geometry may not hold in general (e.g. Warren, Rothman, Schnapp, 

& Ericson, 2017). We will now consider other models of path integration. 

Other Path Integration Models 
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Klatzky et al. (1999) point out that the encoding-error model is a configural model, in 

which the entire outbound journey is stored in memory, and the entire configuration is used when 

the animal wishes to return home. In contrast, other models of path integration (Fujita et al., 

1990; Merkle, Rost, & Alt, 2006b; Muller & Wehner, 1988) are moment-by-moment homing 

vector models, in which the animal continuously updates a vector back to its home location. 

Homing vector models are history-free, such that the animal could not return to any other 

location on the outbound path. Philbeck et al. (Philbeck, Klatzky, Behrmann, Loomis, & 

Goodridge, 2001) provide support for a homing vector model of path integration by 

demonstrating the importance of the origin for path integration. Participants received a brief view 

of the path layout at the start of each trial, and then walked without vision for the rest of the path. 

They were much more accurate at returning to the origin than to a rotationally equivalent 

position they had not previously visited. In a human neuroimaging study, several brain regions 

demonstrated increasing activation corresponding to Euclidean distance from the start location 

during movement in a circular trajectory, consistent with a homing vector model of path 

integration (Chrastil, Sherrill, Hasselmo, & Stern, 2015). Other recent evidence indicates that a 

homing vector could have separate position and heading estimates, with the implication that this 

homing vector could have an allocentric reference frame (Mou & Zhang, 2014; Zhang & Mou, 

2017). 

Evidence against a homing vector model of human path integration comes from findings 

that error and time to initiate the homeward trajectory both increase with the increasing 

complexity of the outbound path (Klatzky et al., 1990; Loomis et al., 1993; Wan et al., 2013) and 

with changes in the configuration (May & Klatzky, 2000). A homing vector model should not be 

affected by increased complexity of the outbound path because only the vector back to the start 
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location is stored in memory, whereas a configural model would be so affected. In contrast, 

Wiener & Mallot (Wiener & Mallot, 2006) found no effect of path complexity on errors when 

the length of the outbound path was controlled. Similarly, Yamamoto et al. (Yamamoto, 

Meléndez, & Menzies, 2014) found that errors during blindfolded walking path integration were 

related to the outbound path length and turns, not to additional complexity in the paths. To 

potentially explain these conflicting results, recent research has demonstrated that humans are 

capable of both homing vector and configural strategies (He & McNamara, 2018; Wiener, 

Berthoz, & Wolbers, 2011).  

Other models of path integration have focused on the integration component using 

different reference frames and coordinate systems (Benhamou, Sauve, & Bovet, 1990; Gallistel, 

1990; Merkle et al., 2006b; H. Mittelstaedt & Mittelstaedt, 1982; Muller & Wehner, 1988; 

Wehner & Wehner, 1986) (see Benhamou & Séguinot, 1995; Maurer & Séguinot, 1995; Merkle 

et al., 2006 for reviews of path integration models). Many of these models have developed 

accurate and normative accounts of integration (e.g. Gallistel, 1990; Jander, 1957 referenced in 

Benhamou & Séguinot, 1995; Mittelstaedt & Mittelstaedt, 1982) as a tool for determining what 

information an animal must have in principle and how it must use that information, rather than 

explaining systematic errors (Maurer & Séguinot, 1995). These models are primarily concerned 

with describing the mathematical relationship between the encoded outbound path and the 

required response path back to the home location. A recent model of path integration in humans 

(Harootonian et al., in press) tested a configural model that used vector addition for the 

integration process. This model operates under the assumption that people over- or under-weight 

legs of the triangle due to uneven integration over time. The model fit triangle completion data 

better than the encoding-error model, but still focuses primarily on the encoding component. 
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More descriptive models have incorporated errors by introducing random noise 

(Benhamou et al., 1990) or a correction factor based on empirical data (Muller & Wehner, 1988). 

Other models have attempted to find ways to incorporate some of the systematic errors seen in 

distance reproduction (Merkle, Rost, & Alt, 2006a; Sommer & Wehner, 2004). In many ways, 

these models of systematic underestimations resemble the encoding-error model. For example, 

the systematic errors produced in the Benhamou model (Benhamou et al., 1990) stem not from 

the integration or execution of the homebound trajectory, but from errors in the estimations of 

the outbound distances and angles. Although Benhamou et al. (1990) introduced stochastic error 

and Fujita et al. (1993) used empirically derived error, they both assumed that once the initial 

error is introduced during encoding, no further error accrues during integration or execution of 

the homeward trajectory. However, a “leaky integrator” model, whereby the animal gradually 

“forgets” sections of the distance or angle traveled (Lappe & Frenz, 2009; Lappe et al., 2007), 

incorporates leakage during the execution phase of a distance task as well as encoding. In this 

model, the leaky integrator counts up during encoding and counts down during execution, which 

could provide a route to understanding how encoding and execution work together. We similarly 

aimed to incorporate error in multiple aspects of path integration in the present study. 

Experimental Aims and Overview 

The aims of the present study are to 1) directly test the encoding-error model of path 

integration and 2) to compare this model with alternatives that incorporate other types of error. 

While particular aspects of the encoding-error model have been tested previously, no study has 

directly tested the basic approach. The present study first uses distance and angle reproduction 

tasks to predict encoding errors in path integration, as in Fujita et al. (1993). Linearly combining 

these errors yields a response region in which errors are expected to lie if encoding is the only 
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source of systematic error. Errors that lie outside of this region can then be attributed to 

integration or execution errors.  

For example, a person might encode Legs X and Y and the interior turn angle  (Figure 

1a) as X’, Y’, and ’, respectively (Figure 1b). The accurate return path for the encoded triangle 

is depicted in Figure 1b by the turn  and Leg Z. The encoding-error model predicts that the 

navigator turns through the angle  and walks the distance of Leg Z on the actual triangle (Figure 

1a), without any integration or execution error. Note that  and Leg z are the same magnitudes in 

both figures, indicating the same execution. Thus, error-prone encoding of the outbound path 

followed by accurate integration and execution of the return path yields systematic and 

predictable errors (ellipse in Figure 1a). If the navigator makes systematic errors other than those 

predicted by the encoding-error model, then those errors must be attributed to the integration or 

execution components of path integration.  

All experiments in the current study took place in an immersive virtual environment. In 

five sessions, participants performed the triangle completion task, followed by distance and angle 

reproduction tasks to generate empirical data for simulations. In the simulations, we sampled 

from the distance and angle reproduction errors using Monte Carlo methods, and linearly 

combined them using the law of cosines1 to predict final homing positions. The final errors were 

then compared to the actual triangle completion data. We simulated both average data, as Fujita 

et al. (1993) did, but also used each individual person’s encoding functions from reproduction 

tasks to model their own triangle completion data. Finally, we derived alternative models of path 

 
1 The law of cosines can be used to find missing elements of any triangle. Namely, if the first leg has 
length x, the second has length y, and the angle between those legs is , then the length of the third leg, z, 
is given by z = (x2 + y2 – 2xy*cos)1/2. The turn angle  (between legs y and z) is then specified by  = 
cos-1((y2 + z2 – x2)/(2yz). In these simulations, z and  are the path length and turn angle, respectively, for 
the homebound trajectory. 
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integration that included execution errors.   

 
Figure 1. Predictions of the encoding-error model of path integration. (A) Actual walked triangle with 
outbound legs X and Y and turn angle α. (B) The encoded triangle, indicated by X’, Y’, and α’. If a 
navigator walks the homeward trajectory for the encoded triangle (B) on the actual triangle (A) without 
any integration or execution error, as predicted by the encoding-error model, systematic and predictable 
errors should be produced, as indicated by the ellipse in (A). Note that the magnitude of  and the lengths 
of Leg Z are the same in both (A) and (B), indicating the same execution. 
 

Note that the triangle completion task was performed in both a hedge corridor and in an 

open field scene (Figure 2a). Many previous triangle completion studies have been conducted in 

an open environment or blindfolded, so we also sought to test whether performance in a hallway 

setting would generalize to an open environment. 

 

Methods 

Participants  

Seven females and eight males participated in this study. Most were undergraduate or 

graduate students at Brown University, and all were paid for their time at the rate of $8/hour. 

One female and one male withdrew due to symptoms of simulator sickness. Ages of the 

remaining 13 participants ranged between 19-30, with a mean age of 25.73. All participants 

signed forms indicating their informed consent to be a part of the study in fulfillment of the 

requirements of the Brown University IRB.  
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Because we conducted several different types of tasks, sample size was determined based 

on previous experiments in our lab and other path integration studies (e.g. Klatzky et al., 1998; 

Loomis et al., 1993) that have had large  effect sizes with similar sample sizes. Looking across 

all the analyses using a post-hoc power determination (Faul, Erdfelder, Lang, & Buchner, 2007) 

shows that our experiments had sufficient power to detect effects. For example, for a repeated-

measures ANOVA with 13 participants and 5 measurements (as in the distance reproduction 

task),  = 0.05, a conservative correlation between with-subject measures of 0.5, the maximum 

nonsphericity correction of 0.25, and the actual effect size ηp2 = 0.781, the power to detect an 

effect is 1.000. All significant and marginal main effects and interactions from the ANOVAs, as 

well as all the correlation analyses, were found to have post-hoc power ranging from 0.548 to 

1.000, with most of the effects on the higher end of the range. Any increase in correlation 

between measures increases the power substantially, which is a reasonable assumption given our 

within-subjects measures of the same types of tasks. For example, our lowest power of 0.548 

becomes 0.906 if the correlation assumption is increased to 0.8 (while maintaining maximum 

nonsphericity). The power for angular measures is more difficult to determine with the circular 

statistical analysis, however, they had similar patterns as the distance measures and so would 

likely fall into the same range of power. We note that post-hoc power analyses are largely 

redundant with the outcomes of the data, therefore, we caution readers about the relatively small 

sample size of the study. There is a possibility that the study is underpowered, however, we note 

that most of the within-subjects effects are quite large. The subsequent modeling work uses 

participants’ data to model their own outcomes, which mitigates some of the issues with smaller 

samples. 

Equipment  



 16 

The experiment took place in the VENLab, a 12 meter x 12 meter room using virtual 

displays. Images were presented to the participants using a Cybermind Visette 2 head-mounted 

display (HMD) with a 60o horizontal x 46.8o vertical field of view and resolution of 640 x 480 

pixels. Participant movement was tracked using an InterSense IS900 tracking system with a 

70ms latency. Participants made responses with a USB radio mouse. Images were generated on a 

graphics PC (Alienware, NVIDIA Quadro FX 3000 graphics card) using Vizard (WorldViz) to 

render the images. Cricket sounds were presented to the participants over headphones to create 

naturalistic noise to prevent participants from receiving information about their location or 

orientation in the room from auditory cues.  

Environment 

The environment consisted of hallways made of 3-meter high walls with a hedge texture, 

an opening for the blue sky above, and a gravel path below (Figure 2a, top). The corridor was 

100-meters long, so as to give no noticeable change in visual angle at end of the hall when 

participants walked. The hallway was used for the straight-line translation segments of triangle 

completion, distance reproduction, and angle reproduction. During the segments of each task that 

required rotations in place, the hallway was replaced by a cylindrical hedge with a 1-meter radius 

surrounding the participant. This cylinder provided texture cues from optic flow while rotating 

without any additional landmark information about how far they had rotated. For triangle 

completion, we also conducted a condition in an open field environment. In the open field, the 

environment consisted of the textured ground plane and a green pole 100 meters away (Figure 

2a, bottom). The ground surface was a gravel texture, and there were no other visual landmarks. 

The pole was designed to give participants some orientation so they could walk in a straight line 

but not provide any additional information from the change of size of the pole as they moved. 
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For all tasks, the location and orientation of the next trial was marked by an orange pole with 

arrows on (‘start pole’). 

Experimental Tasks 

Triangle completion. Triangle completion consisted of walking one outbound leg, 

turning, and then walking along a second outbound leg. At the end of the outbound path, 

participants were instructed to turn to face their starting location and click the mouse once they 

were facing the start location. They were then instructed to walk forward toward the starting 

location and to stop and click the mouse again when they reached that location. Two conditions 

of triangle completion were presented to participants: i) hallway and ii) open field. In the hallway 

condition, participants walked forward along the hallway and stopped when they heard a chime; 

the hallway then disappeared and was replaced by the cylindrical hedge. The participant then 

turned to the right or the left as directed by an auditory cue and stopped when they heard the 

chime again. Then the cylinder hedge disappeared and a new hallway opened up. The participant 

walked along this hallway until the chime sounded again and the cylindrical hedge appeared. The 

participant was instructed to turn to face the starting location and then click the mouse, 

whereupon a third hallway appeared, in the same orientation as the participant was facing when 

they clicked the mouse. The participant was then instructed to walk forward until they thought 

they reached the start location, then click the mouse again. All hedges then disappeared and the 

participant walked to the start pole for the next trial.  
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Figure 2. Virtual environments. (A) Views of the Hallway and Open Field conditions of triangle 
completion. The hallway was also used for distance and angle reproduction. (B) Triangle types used in the 
triangle completion experiments. In parentheses are the names of the triangle types, with the first term 
specifying the length of the first leg in meters, the second term indicating the length of the second leg in 
meters, and the third term designating the interior turn angle between the first and second legs in degrees. 
 

The open field condition was included in order to compare the results of the hallway 

experiments to those of other studies. Instead of hallways, the participant walked forward 

towards a green pole 100 meters away (Figure 2a, bottom). When the chime sounded, the pole 

disappeared and the participant turned until they heard the chime again. Then, a second green 

pole appeared at the new orientation, and the participant walked forward towards this pole until 

the chime sounded again. Finally, the pole disappeared and the participants turned to face the 

start location, clicked the mouse, and walked forward in the open field until they reached the 

start location and then clicked the mouse again. The open field condition differed from the 

hallway primarily in amount of visual texture.  

For both the open field and hallway conditions, as well as the two reproduction tasks, the 

chime sounded at a threshold 0.5 meters before the length of each leg and within  3 of the turn 

angle. The position of the chime threshold gave participants the chance to take a step after it 

sounded, while preventing them from overshooting the distance or angle and having to 

backtrack.  
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Triangle completion consisted of 48 trials, with an additional six practice trials at the 

beginning of the session. None of the triangles in the practice were part of the experimental 

block, although they were of similar scale. The lengths of the legs of the experimental triangles 

were 2, 4, or 6 meters, and the interior angle between legs 1 and 2 was 60, 90, or 120; a subset 

of six triangles were tested out of the potential 27 combinations (Figure 2b). These triangle sizes 

were determined a priori both by the constraints of the research space and by the desire to have a 

variety of leg lengths and interior angles. Interior angles included right, obtuse, and acute angles, 

and sometimes the first leg was shorter than the second leg and vice versa. Both right-handed 

and left-handed versions of these six triangles were included; trials alternated between right and 

left triangles. The order of presentation was otherwise randomized for each participant. Each 

triangle was presented to a participant 8 times, four trials with left turns and four trials with right 

turns. There were 24 starting locations and four starting orientations in the room to prevent 

participants from receiving feedback on their performance and from using a constant frame of 

reference. These measures increased the likelihood that participants would treat each triangle as 

separate from the others.  

Distance reproduction. Participants walked down the virtual hallway until they heard a 

chime, at which point the hallway disappeared and the cylindrical hedge surrounded the 

participant. Participants then turned 90o to the right or left as directed by an auditory cue until 

they heard the chime again. When the chime sounded again, the cylindrical hedge disappeared 

and a new hallway appeared. Participants were then instructed to walk forward in this new 

hallway for the same distance they had walked on the original path, and then click the mouse.  

In order to prevent participants from counting their steps, they performed an additional 

interference task. At the start of each trial, participants were given a seed number between 100-
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500 over the headphones, chosen randomly from a random subset of 80 numbers. Participants 

then had to count aloud backward by threes from this number until they clicked the mouse. Two 

participants who were not native English speakers were allowed to count in their native 

language.  

Distance reproduction consisted of 60 trials, with four additional practice trials at the 

beginning of the session. None of the distances in the practice trials were part of the 

experimental block. The magnitudes of the distances were the same as those of the hallways used 

in triangle completion plus two additional distances of 8 and 10 meters (2, 4, 6, 8, and 10 m). 

These magnitudes also match those we have used in previous work (Chrastil & Warren, 2014). 

Both right turns and left turns between the outbound and reproduced leg were included; trials 

alternated between right and left turns. The order of presentation was otherwise randomized for 

each participant. Each distance was presented to participants 12 times, with six left and six turns. 

There were 4 starting locations in the room, each with a different starting orientation, to prevent 

participants from receiving feedback on their performance. 

 
Figure 3. Left: The Same condition for angle reproduction. Participants walked in the direction of the 
arrows turning right, with the initial turn angle . The required response is a left turn in the same 
magnitude of . Right: The Opposite condition for angle reproduction. Participants walked in the 
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direction of arrows turning right, with the initial turn angle . The required response is a right turn with a 
magnitude of 180- (see Chrastil & Warren, 2017, for details).   
 

Angle reproduction. The angle reproduction task has previously been described and the 

results have been previously reported in (Chrastil & Warren, 2017). Here, we only present the 

methods and results of the basic reproduction task and its relationship to the modeling work. 

Participants walked in the hallway until they heard the chime, which sounded after 5.86 meters. 

The participant was then surrounded by the cylindrical hedge, and turned right or left as directed 

by an auditory cue until they heard the chime again. A new hallway at the specified angle then 

replaced the cylindrical hedge. Participants walked down this hallway until they heard the chime 

again, after another 3.5 meters, and the cylindrical hedge appeared. In the Same condition, 

participants were then instructed to turn back to face in the same direction they had originally 

walked, but parallel to the original path (functionally equivalent to reproducing the first angle), 

then click the mouse, whereupon the cylindrical hedge disappeared and a new hallway opened up 

in the same orientation as the participant. Participants walked forward on this new path for 1.5 

meters, as which point the trial ended and they were instructed to walk to the start location for 

the next trial.  

In the Opposite condition, the procedure was similar except that participants were 

instructed to turn to face in the opposite direction, parallel to the original path (see Chrastil & 

Warren, 2017). This required them to turn through the supplement of the first angle: a parallel 

path in the opposite direction for a 30 right turn can be found by turning 150 to the right. These 

two versions of angle reproduction were crafted to probe the potential execution error in turning. 

If execution error increases as the turn angle increases, participants would show a greater error 

for large angles than for small angles, even if they encoded the turn angle accurately. These 

factors are confounded in the Same condition because smaller response turns are required by 
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smaller outbound turns and larger response turns are required by larger outbound turns. By 

including the Opposite condition—where participants make a smaller response for larger 

outbound turn angles—execution error can be compared between the two conditions.  

Angle reproduction consisted of 60 trials, with four additional practice trials at the 

beginning of the session. None of the angles in the practice trials were part of the experimental 

block. Magnitudes of the turn angle were the same as those used in triangle completion plus two 

additional angles of 30 and 150 (30, 60, 90, 120, 150; see Chrastil & Warren, 2017). Both 

right turns and left turns were included; trials alternated between right and left turns. The order 

of presentation was otherwise randomized for each participant. Each turn angle was presented to 

participants 12 times: six left and six right turns. There were 3 starting locations in the room, 

each with a different starting orientation, to prevent participants from receiving feedback on their 

performance and from using a constant frame of reference in the room. 

Procedure  

After informed consent was obtained, the inter-ocular distance for each participant was 

measured and entered into the graphics card, then the HMD was placed and adjusted on the 

participant’s head. The participant also wore a backpack containing some cables, which weighed 

approximately three pounds and did not impede movement. To prevent participants from tripping 

over the cable connecting the HMD to the control box, an experimenter (the ‘wrangler’) 

continuously followed the participant keeping the cable out of the way at all times. A test 

environment and several practice trials for each task served as immersion time (5-10 minutes) for 

the virtual environments. Instructions for each task were presented over headphones in the HMD, 

which guided the participants through practice trials. The instructions for each task were then 

repeated before the start of the experiment. Experimental trials were presented in one block, with 
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frequent opportunity for breaks. The tasks took between 40-60 minutes to complete. Three 

individual sessions were stopped after 60 minutes and completed in a separate session due to 

time constraints. At the end of the second through fifth session, participants filled out a brief 

questionnaire asking for strategies used in the task and (if applicable) if one version of the task 

seemed easier than the other. 

 Participants completed five sessions for the experimental tasks, which were run in a semi-

counterbalanced order. The first two sessions consisted of triangle completion, with one session 

of the open field condition and one session of the hallway condition counterbalanced across 

subjects. Sessions three, four, and five consisted of the two versions of angle reproduction (Same 

and Opposite) and one distance reproduction task. The order of these three tasks was 

counterbalanced across participants. The triangle completion sessions were performed first to 

prevent contamination from the angle and distance reproduction tasks influencing performance 

on triangle completion. Sessions were completed over the course of two to six weeks for each 

participant, with a break of at least 4 hours between sessions. Each participant generally came in 

for a session every four days.  

Analysis  

Analysis was conducted using JMP software (SAS) and SPSS for linear measures and 

custom Matlab (Mathworks) scripts for angular measures. For triangle completion, each 

participant’s path on the homebound leg was evaluated in relation to an ideal path between the 

position where they clicked the mouse to begin the homeward path (‘click location’) and the 

actual start location. Three response measures were quantified from this path (Figure 4): a) 

Position error was calculated as the absolute distance between the final position of the 

participant and the start location. Path length is the distance traveled by the participant on the 
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homebound leg, with b) Path length error being the difference between the observed and ideal 

path length. A positive error indicates that the participant traveled too far, while a negative error 

indicates that the participant undershot the distance. c) Initial turn angle error is the difference 

between the participant’s heading direction at the click location and the ideal heading direction 

from that point to the home location. These errors are positive if the participant overturned 

compared to the correct path and negative if the participant undershot the correct turn.  

 
Figure 4. Response measures for triangle completion. See text for details. 

Analyses of variance (ANOVAs) were performed on the means of all the response 

measures, as well as on their standard deviations (for linear measures) or angular deviations (for 

angular measures). For all comparisons, right and left turns were collapsed across trials. The 

linear measures of position error and path length error were analyzed with repeated-measures 

ANOVAs using a 6 (triangle type) X 2 (hallway or open field condition) design. For these 

measures, we report F and p values and indications of effect size (ηp2, partial eta squared). The 

angular measure of initial turn angle error was analyzed using a multiple-sample Watson-

Williams one-way test for circular data (Batschelet, 1981). Currently there are no higher-order 

ANOVAs or computations of effects sizes available for circular data. Thus, we report F and p 
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values for each comparison, and all two-way interactions were tested as Bonferroni-corrected 

separate one-way effects. Standard and angular deviations for all these measures were also 

analyzed. Linear regressions and correlation coefficients were also found for these measures to 

determine if there is a relationship between the initial distance/angle and the reproduced 

distance/angle or their errors.   

 For distance and angle reproduction, the only response measures were path length error 

and turn angle error, respectively. Distance error was calculated as the difference between the 

observed distance walked and the ideal response. A positive error indicated an overshoot of the 

distance while a negative error indicated an undershoot. Angle reproduction error was calculated 

as the difference between the direction the participant was facing after they made their response 

and the ideal heading direction. As distance error is a linear measure, a repeated-measures 

ANOVA using the five distances reproduced in this task was performed. Angular error was 

analyzed using a multi-sample Watson-Williams one-way ANOVA, collapsing across left and 

right turns. In addition to testing the factor of angle, the factor of condition (walk parallel in the 

same or opposite direction) was tested. Standard and angular deviations for all these measures 

were also analyzed. Linear regressions and correlation coefficients were also computed for path 

length and turn angle to determine whether there is a relationship between the ideal and actual 

responses.  

 Trials were excluded from analysis in cases of a software crash, a loss of tracking in the 

virtual environment, or the participant indicated that they had terminated the trial too early. In 

addition, trials from the distance and angle reproduction tasks were excluded if the participant 

walked too close to the physical wall of the room during their response. Portions of triangle 

completion data were also excluded for this reason, however, initial information such as initial 
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angle error was included in the analyses because this measure could be collected before the 

participant went out of bounds. In addition, if during triangle completion the participant drifted 

from the lines and was more than 1.5m from the actual location of the second vertex of the 

triangle (click location) when they clicked to return to home, only initial angle error were 

collected. This drift was more common in the Open Field condition due to the lack of hallways to 

keep people on course. In all, between 0.38% and 2.05% of the reproduction trials were 

excluded. 1.36% of the triangle completion trials were completely excluded, while 9.38% of 

triangle completion trials contained only initial angle information.  

Results 

Triangle Completion  

Overall triangle completion performance is shown in Figure 5. 

Linear measures. A 6 (triangle type) X 2 (hallway or open field condition) repeated-

measures ANOVA was first conducted on the mean position errors. Mean absolute position 

errors showed a significant main effect of triangle type (F5,60 = 2.607, p = 0.034, ηp2 = 0.178), 

suggesting that some triangles were more difficult for participants to return to the start location 

(Figure 6). There was no effect of open field/hall (F1,12 = 0.005, p = 0.946, ηp2 = 0.000) and no 

interaction (F5,60 = 1.465, p = 0.215, ηp2 = 0.109) for position error. A 6 x 2 ANOVA on the 

standard deviation of position error only showed a marginal effect of triangle type (F5,60 = 2.048, 

p = 0.085, ηp2 = 0.146), and there was no main effect of open field/hall (F1,12 = 0.974, p = 0.343, 

ηp2 = 0.075) and no interaction (F5,60 = 0.941, p = 0.461, ηp2 = 0.073).  

For path length, overall participants showed a compression of distance responses, as seen 

in previous work. For homeward trajectories that called for a shorter path length, participants 

generally walked too far, while they did not walk far enough for longer ideal paths (Figure 7a). 
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Path length did increase with the ideal path length (Hallway: y = 0.391x + 2.761, r = 0.915; Open 

Field: y = 0.431x + 2.399, r = 0.868). Path length errors differed between triangle types (Figure 

7b). A 6 (triangle type) X 2 (hallway or open field condition) repeated-measures ANOVA found 

a significant effect of triangle type on path length errors (F5,60 = 38.576, p < 0.001, ηp2 = 0.763). 

There was no main effect of open field/hall condition (F1,12 = 2.683, p = 0.127, ηp2 = 0.183), and 

there was only a marginal interaction (F5,60 = 2.103, p = 0.077, ηp2 = 0.149). Analysis of the path 

length errors standard deviations yielded no significant main effect for open field/hall (F1,12 = 

0.004, p = 0.954, ηp2 = 0.000), although the triangle type X open field/hall interaction was 

marginal (F5,60 = 2.164, p = 0.070, ηp2 = 0.153), as was the main effect of triangle type (F5,60 = 

1.978, p = 0.095, ηp2 = 0.141). 
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Figure 5. Overall pattern of results from triangle completion. (A) Open field condition. (B) Hallway 
condition. Individual dots represent individual trials by the 13 participants. The filled circle at the origin 
(0,0) is the start location. The filled diamond is the mean final location averaged over all the participants. 
Ellipses indicate 95% confidence intervals for the simulation. Left turns have been reversed and 
combined with right turns. 
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Figure 6. Position Error in the triangle completion tasks, measured as absolute distance between the final 
position and the starting location. Error bars indicate between-subjects standard error. 
 

 

 
Figure 7. (A) Path length, compared to the ideal values for path length. Filled circles/solid line: Hallway 
condition. Open circles/dashed line: Open field condition. Diagonal line indicates correct performance. 
There were six triangle types; however, for two triangles the ideal path length turned out to be the same 
distance as two other triangles, resulting in only four ideal path length values on the x axis. (B) Path 
Length Errors in the triangle completion tasks. Negative errors indicate undershoots while positive errors 
indicate overshoots. Error bars indicate between-subjects standard error. 
 

   Angular measures. Large angular errors were observed relative to the magnitude of the 

correct angle. For both conditions, initial turn angle increased with the ideal turn angle, 

indicating that participants were able to able to discriminate between triangle types (Hallway: y = 

0.502x + 22.635, r = 0.964; Open Field: y = 0.609x + 19.931, r = 0.999; Figure 8a). Turn angles 

were somewhat compressed, such that small turn angles were overestimated and larger turn 
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angles were underestimated. Turn angle errors revealed some slight differences between the open 

field and hallway conditions. In the hallway condition, a Watson-Williams test for circular data 

on the mean initial turn angle error (F5,12 = 3.8426, p <0.05, ηp2 = 0.199) showed significant 

effects of triangle type (Figure 8b). In the open field condition, on the other hand, there was no 

main effect of triangle type on mean initial turn angle error. However, an examination of 

individual pairwise comparisons between the open field and its matched hallway triangle type 

produced no significant differences.  

 
 
Figure 8. (A) Initial turn angle as a function of the ideal turn angle. Filled squares/solid line: Hallway 
condition. Open squares/dashed line: Open field condition. Diagonal line indicates correct performance. 
(B) Initial Turn Angle Errors. Negative values indicate an underturn, while positive values indicate an 
overturn. Error bars indicate between-subjects standard error. 
 

Overall, the hallway condition had a slightly more divergent pattern of errors, leading to 

an overall main effect of triangle type, while the somewhat smaller range of errors in the open 

field condition was not strong enough to create a main effect. For any given triangle type, there 

was no difference between the open field and hallway condition, but when examining the overall 

range of errors, the hallway condition had reliably more pronounced errors. This result likely 

stems from the fact that participants were less able to distinguish between angles in the hallway 

condition, leading to more similar turn angles. The angle errors were consequently larger in the 

hallway condition because the participants were not making the full range of turns. However, this 
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effect of open field/hallway is fairly small, considering that none of the individual contrasts 

showed an effect. The angular deviations for initial turn error showed no main effects of triangle 

type for either the open field or the hallway condition.  

Distance Reproduction  

Mean reproduced distance as a function of initial distance appears in Figure 9a. Linear 

regression of reproduced distance on initial distance revealed that the slope was less than 1 with 

a positive intercept (y = 0.75x + 1.28, r = 0.975), meaning that participants overestimated shorter 

distances and underestimated longer distances. The distance reproduction regression equation is 

similar to the distance encoding function used by Fujita et al. (1993: y = 0.60x + 1.20), although 

with a somewhat steeper slope. There was a significant main effect of distance on reproduction 

errors (F4,48 = 42.763, p < 0.0001, ηp2 = 0.781). Post-hoc pairwise comparisons revealed 

significantly different errors between the following pairs (all p < 0.05, Bonferroni corrected): 

2m-10m, 4m-8m, 4m-10m, 6m-8m, 6m-10m, and 8m-10m. These results confirm that long 

distances tend to be undershot and short distances tend to be overshot. The standard deviations of 

distance errors also showed a main effect of distance (F4,48 = 19.693, p < 0.0001, ηp2 = 0.621). 

Post-hoc tests showed that the 2m distance had significantly less variability than all other 

distances (all p < 0.001, Bonferroni corrected). 

 
 Figure 9.  Responses in the Distance Reproduction Task compared to the actual distance walked. Dashed 
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line indicates veridical performance. Error bars indicate between-subjects standard error.  
 

Angle reproduction. Results for angle reproduction have been reported elsewhere 

(Chrastil & Warren, 2017) and those previously-reported data are summarized here. Mean 

reproduced angle is plotted as a function of initial angle in Figure 10a. In the Same condition, the 

reproduced angle increased linearly with the initial angle (y = 0.63x + 50.7, r = 0.999), whereas 

in the Opposite condition the reproduced angle corresponded to the supplement of the initial 

angle, and so decreased (y = -0.52x + 152.9, r = 0.993). The regression equation is similar to the 

encoding function for angle used by Fujita et al. (1993: y = 0.48x + 50), although with a 

somewhat steeper slope, suggesting that this method of angle reproduction is comparable to 

theirs. Participants tended to underturn when a large response was required, and overturn when a 

small response was required. Responses of approximately 120–135 were made relatively 

accurately.  

 
Figure 10. Results from the Angle Reproduction Task. Filled squares and solid lines indicate data from 
the Same condition. Open circles and dotted lines indicate data from the Opposite condition. The dashed 
lines show veridical performance. Error bars indicate between-subjects standard error. (A) Actual turns 
from the Angle Reproduction Task. (B) Reproduction as a function of the required response in angle 
reproduction tasks.   
 

For mean angular errors, in both the Same and Opposite the Watson-Williams test found 

a main effect of turn angle (Same: F4,12 = 7.3003, p < 0.01, ηp2 = 0.319; Opposite: F4,12 = 5.8438, 

p < 0.01, ηp2 = 0.266). When reorganized by the required response angle (e.g. required response 
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of 30 for an initial angle Same 30 or for Opposite 150), rather than the initial angle, the 

reproduction errors are quite similar (Figure 10b). Paired Watson-Williams tests showed no 

significant differences between these pairs, even before Bonferroni correction (see Chrastil & 

Warren, 2017, for more details). In other words, when responding to an initial turn of 30, the 

participants made different errors in the Same condition (requiring a 30 turn) and in the 

Opposite condition (requiring a 150 turn). On the other hand, errors were equivalent when 

responding to a 30 turn angle in the Same condition and a 150 turn angle in the Opposite (both 

requiring a response turn of 30). These results suggest substantial execution errors, such that 

people overshoot small turns and undershoot large turns. In our previous analysis of angular 

errors (Chrastil & Warren, 2017), we also found main effect of encoding angle and an angle x 

condition interaction, consistent with a contribution of encoding error. Overall, these findings 

suggest a large contribution of execution error, but that encoding error plays a role in angle 

reproduction as well. 

Questionnaires  

In triangle completion, participants reported attempting strategies such as counting steps 

and trying to envision the angle they turned through. Some attempted to measure the angle with 

their feet or arms. Participants were fairly evenly split as to which version of the task (Open field 

or Hallway) they felt was easier, but generally reported that the task was quite difficult. If 

anything, participants felt whichever version they completed second was easier, likely due to 

increased comfort with the task. Despite the counting distracter task in the distance reproduction 

task, participants reported attempting to count their steps. For the angle reproduction task, 

participants generally tried to “unturn” the angle they originally turned or gauged the angle 

relative to a reference angle of 90o, and some participants attempted to use their feet to measure 
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the angle. In all tasks, several participants said that they relied on intuition or visualization of the 

layout.  

Simulations 

Procedure  

Triangle completion was simulated using Monte Carlo methods to sample from the 

distribution of errors from the distance and angle reproduction tasks. Simulations were designed 

to replicate the encoding-error model (Fujita et al., 1993). Triangle completion was simulated for 

each participant individually; each participant had an individual distribution for each distance 

and angle tested in the reproduction tasks, with their mean and standard/angular deviation taken 

from their individual data. Note that for angle encoding, we only used the Same condition, since 

this follows the encoding-error model’s assumption that reproduction errors reflect only errors in 

encoding. However, as we will discuss below, the reproduction tasks also likely reflect a degree 

of execution error. This sampling method assumes a normal distribution. Each distance and angle 

were successfully fit to models of a normal or lognormal distributions when combining all of the 

trials for all participants, and so the assumption of a normal distribution was deemed justified.  

 For each iteration of the simulation, a value for the encoding distance of both legs and the 

turn angle was sampled randomly from a normal distribution, with the mean taken from the 

participant’s mean reproduction data at that distance or angle, and the standard deviation taken 

from the participant’s standard deviation at that distance or angle. For example, a triangle with 

an actual outbound path of a 4m leg, followed by a 60 interior turn, and a second leg of 6m 

might be sampled as 4.58m, 73.85, and 5.92m, respectively. These values were then combined 

linearly using the law of cosines to compute the location where the simulated participant encoded 

the second vertex. Assuming no integration error and no execution error on the homeward 
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trajectory, as proposed by the encoding-error model, the model then used trigonometry to predict 

the location where the participant should walk when returning to the start location. The 

simulation was iterated 10,000 times for each of the six triangle types for each participant. The 

mean simulated final position was calculated, as well as the path length and turn angle for the 

homeward trajectory.  

 As Fujita et al. (1993) point out, the observed and model-predicted path length and turn 

angle will always be correlated to a certain extent, as a longer observed path will generally also 

have a longer model-predicted path. Path length error and turn angle error, however, will not 

necessarily be correlated and are thus more sensitive tests of the model’s predictive power. Thus, 

the observed path length and turn angle errors were plotted against the models’ path length and 

turn angle errors by combining the data across all triangle types for all participants (hallway 

condition only), yielding 78 points of comparison (6 triangle types x 13 participants). The slope 

and intercept of this relationship was computed and the effect size of the relationship was 

indicated by the r value; we report whether this relationship was significantly different from 0. 

Error ellipses were computed for a 95% confidence interval of the final simulated locations. In 

addition to simulating the encoding-error model, we simulated triangle completion using four 

other possible models (described below). We conducted a test on the r value of each alternative 

model’s correlation, transformed to Fisher’s z, compared with the baseline encoding-error 

model’s r (transformed to z) value. Table 1 shows equations, r values, and significance levels for 

the encoding-error model and each of the four alternative models. 

Results  

The results for all five simulations are summarized in Table 1. 

1. Encoding-error model. The simulations of triangle completion using the encoding-error 
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model yielded 10,000 estimated final positions for each participant for each triangle type. The 

mean estimated final position was then found for each set; the mean path length and turn angle 

errors were computed for that location. Figures 11 and 12 provide examples of two 

representative participants in the study. Part a) of these figures show the results for the encoding-

error model simulations. Participant 11 (Figure 11) was not very accurate at triangle completion 

and was highly variable in both triangle completion and the reproduction tasks, with large error 

ellipses representing the final position. It should be noted, however, that even with the large 

ellipses for the simulated final positions for Participant 11 in panel a), the actual data collected 

from that participant generally still laid far outside of that ellipse. Participant 10 (Figure 12) was 

much more accurate and precise for all tasks, with a very small cluster of simulated final 

positions generally quite close to the participant’s final position. However, several of the 

empirically collected data points for Participant 10 also laid outside of the simulation position 

(Figure 12a).   

Figure 13a summarizes all the simulations, plotting model-predicted errors against actual 

errors for each participant. The relationship between actual and predicted path length errors is 

described by the equation y = .45 x + 0.024, (r(76) = 0.4818, p < 0.001), while for turn angle 

errors the relationship is described by y = -.14x – 8.1 (r(76) = -0.2282, p = 0.044). Note that the 

correlation coefficient for turn angle errors is negative, indicating that the model negatively 

predicted actual errors. In general, the model predicted path lengths that were longer than those 

taken by the participants, and compressed the range of turn angles compared to the range taken 

by participants. Although the model was close for participants who were more accurate or who 

had less variability in their responses, it proved less successful at predicting the responses of 

participants with high variability or low accuracy. 
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Figure 11. Results of simulations for Participant 11using three different path integration models. Filled 
circles are the start location, which is also the correct end location. Stars are the individual data points 
from the eight triangle completion hallway trials. Filled diamonds are the mean final location from the 
data. Open diamonds are the mean final location from the simulation. Ellipses indicate 95% confidence 
intervals for the simulation. The stars and filled diamonds are in the same locations across the five 
simulations because they represent empirical data, but the open diamonds and confidence ellipses differ 
based on the model. (A) Encoding-Error Model; (B) Encoding-Error Model with Execution Error; (C) 
Execution Error Only; (D) Encoding-Error Model using our new encoding function; (E) Encoding-Error 
Model using the new encoding function and including Execution Error. 
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Figure 12. Results of simulations for Participant 10 using three different path integration models. Filled 
circles are the start location, which is also the correct end location. Stars are the individual data points 
from the eight triangle completion hallway trials. Filled diamonds are the mean final location from the 
data. Open diamonds are the mean final location from the simulation. Ellipses indicate 95% confidence 
intervals for the simulation. The stars and filled diamonds are in the same locations across the five 
simulations because they represent empirical data, but the open diamonds and confidence ellipses differ 
based on the model. (A) Encoding-Error Model; (B) Encoding-Error Model with Execution Error; (C) 
Execution Error Only; (D) Encoding-Error Model using our new encoding function; (E) Encoding-Error 
Model using the new encoding function and including Execution Error. 
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Model Name Path Length Error 
Equation 

Path Length Error 
r value 

Turn Angle Error 
Equation 

Turn Angle Error 
r value 

1. Encoding-Error 
Model 

y = .45 x + 0.024 0.4818*** y = -.14x – 8.1 -0.2282* 

2. Encoding-Error 
Model with 
Execution Error 

y = 0.73x + 0.078  0.6378*** y = 0.35x – 6.7 0.4837*** ††† 

3. Execution Error 
Only Model 

y = 0.43x + 0.051  0.7351*** † y = 0.33x - 3.1  0.4514*** ††† 

4. Encoding-Error 
Model (new fcns) 

y = 0.049x + 0.78 0.3910*** y = 0.082x + 3.2 0.4355*** ††† 

5. Encoding-Error 
Model (new fncs) 
with Execution 
Error 

y = 0.49x + 0.6  0.7509*** †† y = 0.36x – 1.3 0.4626*** ††† 

Table 1. Summary of the simulation results. * indicates a significant correlation between the actual errors 
and the simulated errors, p < 0.05. *** indicates a significant correlation between the actual errors and the 
simulated errors, p < 0.001. † indicates significant difference in correlation between the alternative model 
and the encoding-error model (model 1). † p < 0.05, †† p < 0.01, ††† p < 0.001. 
 
 

 
Figure 13. Path length errors (left column) and turn angle errors (right column) on the return path, 
comparing actual errors made by participants with the errors predicted by each model. Data for individual 
participants are plotted in different colors; there are six data points for each participant, representing the 
six triangle types. (A) Encoding-Error Model (model 1); (B) Encoding-Error Model with Execution Error 
(model 2); (C) Execution Error Only (model 3); (D) Encoding-Error Model using our new encoding 
function (model 4); (E) Encoding-Error Model using the new encoding function and including Execution 
Error (model 5). 
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The original encoding-error model used aggregate data to derive the encoding functions: 

average encoding functions predicted average participant performance (Fujita et al., 1993). In 

contrast, we used each participant’s individual distance and angle reproduction data as their 

individual encoding function. To replicate the approach from the original encoding-error model,  

we used the average distance and angle errors derived from the reproduction tasks, combined 

with the average within-subject standard/angular deviations, to simulate the 6 triangles. Fujita et 

al. (1993) found very high correlations between their predicted and observed values: r2 of .93 and 

.92 for distance and angle errors, respectively, with slopes of 1.17 for distance error and .98 for 

angle error. In contrast, we found a much reduced correlation between predicted and observed 

values. For distance error, we found r(4) = 0.9702, p < 0.001, with the equation y = 0.35x + 

.0045 describing the relationship. Although the r value is very high, the slope is much lower than 

those found by Fujita et al. (1993). For angle error, we found r(4) = -0.4013, p > .4, with the 

equation y = -0.22x – 8.3 describing the relationship. Thus, there was no relationship between 

the predicted angular errors and the actual angular errors when considering an “average” 

participant. These results are in discord with those of Fujita et al., suggesting that their findings 

either do not replicate or their assumptions are not sufficient to explain systematic errors in 

triangle completion. 

2. Encoding-error model including execution error. Although the path length errors 

and turn angle errors in the encoding-error model alone were significantly correlated with actual 

errors, the correlation was negative for turn angle error, indicating the insufficiency of the 

encoding-error model. We attempted to improve upon this model by adding a component of 

execution error. 

 In the new model, the encoding of the outbound path was simulated the same way as in 
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the encoding-error model (model 1). Instead of assuming that the response path is perfectly 

integrated and executed, like the encoding-error model does, we added an error term in the 

execution of the homebound path. Each participant had an execution error term derived from 

their own reproduction data, as follows. A regression line2 was fit to the distance reproduction 

tasks for each participant to describe the relationship between the desired distance and the actual 

distance walked. For distance, this regression line is essentially the same computation as for the 

distance reproduction task shown in Figure 9, but for each person individually. Likewise, a 

regression equation was derived from the combined Same and Opposite angle reproduction. The 

actual responses for these two conditions were plotted against the required response for each 

person, similar to Figure 10b, and a line was fit to those 10 data points. Thus, execution 

functions were fit for both distance and angle that depended on the required response, rather than 

the outbound distance or angle. Although this method is not perfect—it still includes some aspect 

of encoding—at present it provides a fairly close estimate for execution error. In addition, the 

findings from the angle reproduction segment of the experiment (Chrastil & Warren, 2017) 

suggest that errors in reproduction are primarily driven by the required execution, not the 

encoding angle. We therefore feel reasonably confident in these estimates for execution error.  

The outbound path of this model (model 2) was computed in the same way as the 

encoding-error model (model 1). To add execution error in the homebound path, the desired path 

length and turn angle were entered into the execution functions described in the previous 

paragraph for the participant. The resulting path length and turn angle were used for the 

 
2 We used linear fits for both distance and angle. Given our relatively small distances and angles 
used, and to match the original encoding-error model, this assumption seemed reasonable. 
However, for larger distances and angles a logarithmic “leaky integrator” fit might be more 
appropriate. 
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simulation. For example, the encoding-error model might yield a desired homebound path of 7 m 

with a turn angle of 45. These values were entered into the participant’s individual execution 

functions, and now the homebound path might be something like 6.4 m with a turn angle of 61. 

These values were used as the means for our sampling procedure, which added a measure of 

variability to these execution functions. First, we generated individual regression lines for  

standard and angular deviation from the empirical reproduction data, much like we did for the 

execution error functions. Next, we sampled using the means from the execution function and the 

standard deviations derived from the regression lines. Note that adding variance to the execution 

error does not change the mean values of the final position, but it does create a larger spread in 

the simulated results, as evidenced by the 95% confidence ellipses. 

 The results of the simulations of the encoding-error model including execution error 

show an improvement over the encoding-error model alone. For path length errors, the function y 

= 0.73x + 0.078 (r(76) = 0.6378, p < 0.001) related the model-predicted path length errors to the 

actual path length errors. For turn angle errors, the equation y = 0.35x – 6.7 (r(76) = 0.4837, p< 

0.001) related the actual and model-predicted errors. The correlation coefficients were tested 

against those of the encoding-error model (model 1) using a Fisher’s Z score (Table 1). The 

correlation coefficient for path length errors was not significantly different from model 1 (Z = -

1.4, p = .162), but those for the turn angle errors were significantly different from model 1 (Z = -

4.65, p < 0.001). 

Figure 13b summarizes the data for all participants. Examination of Figures 11b and 12b 

reveals that the addition of execution error to the representative participants has improved the 

explanatory power of the simulations. Although the original encoding-error model did a 

reasonable job predicting errors for participant 10, it did not predict participant 11 very well. The 
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addition of execution error did not make the predictions worse for participant 10, but it 

dramatically improved those for participant 11. Note that the predicted values for this model are 

closer to the actual data than for the encoding-error model alone, but they do not overlap 

perfectly. The addition of execution error makes the model much more predictive of actual 

errors, but still does not explain all of the variance.  

 3. Execution error only. Our findings from angle reproduction suggest that execution 

error may be the primary source of error in path integration. The poor results from the encoding-

error model (model 1), coupled with the large improvement from the addition of execution error 

(model 2) suggest that a model that only incorporates execution error may be sufficient to 

describe the errors in path integration.  

 For this model, we assumed that encoding error was negligible. This assumption implies 

that participants were completely accurate at encoding the outbound path, and that their encoded 

location at the end of the second leg was their actual location. Under this assumption, we used 

the execution functions from model 2 based on the reproduction tasks (distance and the 

combined Same and Opposite for angle) as an estimate of pure execution error. We then added 

execution error in the same manner as in model 2. Note that because there is no distribution of 

outbound locations in this simulation (since encoding was perfectly accurate), there was only one 

predicted outcome of the homebound path. Sampling from the distribution of the execution error 

using the means and standard deviations added some variance, but it was much reduced from that 

of model 2. 

 The results of this simulation for all participants are shown in Figure 13c, with details of 

two representative participants shown in Figures 11c and 12c. For path length errors the equation 

y = 0.43x + 0.051 (, r(76) = 0.7351, p < 0.001) described the relationship between actual and 
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model-predicted errors. For turn angle errors the equation y = 0.33x - 3.1 (r(76) = 0.4514, p < 

0.001) described that relationship. The correlation coefficients were tested against those of model 

1 using a Fisher’s Z score (Table 1). The correlation coefficient for both path length errors and 

turn angle errors were significantly different from model 1 (path length: Z = -2.54, p = .011; turn 

angle: Z = -4.4, p < 0.001). Based on the significant improvement in the correlation value 

compared to the baseline encoding-error model, this model appears to be better than the 

combined model (model 2) at predicting the path length errors, and the turn angle errors are 

virtually unchanged from model 2. However, we also note that the slope for model 2 is greater 

than for model 3. This simpler model 3 describes the errors as well as the more complicated 

model that includes encoding error, therefore these results suggest that most of the error can be 

attributed to execution error.  

4. Encoding-error model with independently estimated encoding functions. As we 

noted above, it may not be appropriate to use reproduction data to estimate encoding error, for 

reproduction error may include both encoding and execution errors. Elsewhere we have derived 

encoding functions for distance and angle based on independent data, which may provide better 

estimates (Chrastil & Warren, 2014a; unpublished data, see Supplement). Briefly, we began with 

reproduction data and subtracted out errors from tasks that more closely reflected execution 

error, such as blind walking to a target.   

For distance, Chrastil & Warren (2014a) had participants walk an outbound distance, and 

then turn and reproduce that distance. This formed the estimate for reproduction. Participants 

also viewed a target and then turned and walked an equivalent distance. This formed the estimate 

for production; because participants did not encode the target distance by walking, this task 

provides a useful – although not perfect – estimate of execution error. We assume that encoding 
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error from vision is minimal, but not necessarily zero. Encoding distance from vision minimizes 

the primary problem of canceling errors in pure reproduction, but does not eliminate this issue 

altogether. Under the assumption of linear combination, we subtracted the value of execution 

error from reproduction error to estimate the encoding error at each distance. The encoding 

function was estimated by a linear regression of error (m) on distance (m), yielding y = 0.9156x 

+ 0.703 (r4 = 0.916).  

For angle, we used a modified reproduction task (unpublished data, see Supplement for 

details of the task). We removed the second hallway in between the encoding and reproduction 

turns, reducing any memory decay that could occur between the two turns. We also changed the 

instructions to “reverse the total of the turns to face in the original direction” rather than “walk 

parallel to the original path”, which could lead to other errors. Although this task is still 

essentially a reproduction task, it yields an estimate that is closer to production/execution error 

than the reproduction task (“Same” condition) reported above. Encoding error was then 

computed as the difference between the reproduction data (Same condition) in the present study 

and our earlier production data at each turn angle. A linear regression of encoding error on turn 

angle yielded y = 0.8356x + 21.217 (r4 = 0.999). 

Note that these derived encoding functions have slopes much closer to 1 than both the 

functions used by Fujita et al. (1993) and the functions derived from reproduction data above 

(see Results), implying that encoding error is quite low. 

The model simulation procedure was similar to that for the encoding-error model (model 

1). However, instead of using individual encoding functions for each participant, we applied the 

new encoding functions to group averages. Thus, all participants were modeled with the same 

encoding function, using the overall mean standard deviations from the reproduction data. 
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 Because the new encoding functions predict fairly accurate encoding of the outbound 

path, the predicted performance should also be fairly accurate. In addition, since we used the 

same encoding function for each participant, the predicted errors were very similar for all 

participants (Figures 11d and 12d). Actual path length errors were correlated with predicted path 

length errors (r(76) = 0.3910, p < 0.001), with y = 0.049x + 0.78 describing the relationship 

(Figure 13d, Table 1). Actual turn angle errors were also correlated with predicted turn angle 

errors (r(76) = 0.4355, p < 0.001), with y = 0.082x + 3.2 describing the relationship. The 

correlation coefficient for path length errors was not significantly different from model 1 (Z = 

0.69, p = .490), while those for the turn angle errors were significantly different from model 1 (Z 

= -4.28, p < 0.001). Although the correlation coefficient for angle is an improvement compared 

to model 1, the slopes for both turn angle and path length were nearly 0.  

 We also analyzed this encoding function using the overall average participant data by 

correlating the average turn angle and path length errors for the 6 triangles with the predicted 

errors from the model. We found the distance error was described by y = 0.13x + 0.81 (r(4) = 

0.6294, p = 0.181). This result shows somewhat less predictive value than the encoding-error 

model. However, the results for the turn angle errors were much improved over the encoding-

error model: y = 0.39x + 2.1 (r(4) = 0.9565, p = 0.003). Overall, this model appears to predict 

errors better than the original encoding error model, at least for an “average” participant.  

 5. Encoding-error model with independently estimated encoding functions, 

including execution error. The final model added execution error to model 4, using the 

execution error functions from model 2. All participants were again modeled with the same 

encoding function because it was not possible to derive individual encoding functions.  

 The results of this model showed much improvement over model 4 (Figures 11e, 12e, 
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13e). The addition of execution errors yielded y = 0.49x + 0.6 (r(76) = 0.7509, p < 0.001) 

describing the relationship between actual and predicted path length errors. For turn angle errors, 

the equation y = 0.36x – 1.3 (r(76) = 0.4626, p < 0.001) described the relationship between 

actual and predicted errors. The correlation coefficient for path length errors was significantly 

different from model 1 (Z = -2.75, p = .006), as was that for turn angle errors (Z = -4.49, p < 

0.001) (refer to Table 1). This result is also a slight improvement over model 3 (execution error 

only). The path length errors were described better by model 5, but the turn angle errors are 

almost identical. Thus, execution error appears to account for most of the error, but the encoding 

functions we derived also describe the data better than the encoding-error model.   

 

Discussion 

This experiment and accompanying simulations examined sources of error in path 

integration by segregating encoding and execution errors. Participants reproduced distances and 

angles in virtual hallways, and we used that reproduction data to model their performance in a 

triangle completion task. We found minimal differences in path integration performance between 

an open field and a hallway environment for triangle completion. Simulations revealed that the 

encoding-error model of path integration was insufficient to explain errors in path integration, 

but the inclusion of execution error significantly improved the model. Indeed, a model that only 

included execution error—and no encoding error—predicted the empirical data substantially 

better than the encoding-error model. 

Triangle Completion 

Errors from the triangle completion task indicate that participants tended to overturn 

small angles and underturn large angles. They also compressed the range of the length of the 



 48 

homebound path. These results fit the general pattern seen in other triangle completion studies 

(Kearns et al., 2002; Klatzky et al., 1990; Loomis et al., 1993; Peruch et al., 1997). Maurer & 

Séguinot (Maurer & Séguinot, 1995) noted that most animals overturn on the return path, which 

puts them back on the outbound path and provides a safety mechanism. In the present study, two 

triangle types produced underturns, contradicting those observations.  

Other accounts of the systematic turn biases observed in triangle completion have been 

proposed. Maurer & Séguinot (1995) identified the ratio between the first and second legs of the 

triangle as key to turn angle error. After examining several triangle completion tasks in the 

literature, they found that undershoots and small overshoots were predicted when the first leg 

was shorter than or equal to the second leg (ratio 1). Large overshoots were predicted when the 

second leg was longer than the first leg (ratio >1). The results from the present study are not 

incompatible with this proposal, but the linear relationship found by Maurer & Séguinot does not 

hold. Although our triangle types with underturns had ratios less than 1, the triangle type with the 

highest ratio—the 6,2,120 type with a ratio of 3—had an overshoot of less than 10. In contrast, 

the 4,2,60 type—with a ratio of 2—had the greatest magnitude of overshoot. Therefore, the leg 

ratio seems to have some predictive power for turn angle errors, but it does not appear to be as 

good a predictor as the magnitude of the turn response, described in the next section.  

In general, the open field and hallway conditions produced similar results, with some 

notable exceptions. Turn angle errors in the open field condition were generally closer to zero 

than those in the hallway condition because participants tended to undershoot and overshoot 

more in the hallway condition. Participants also generally walked somewhat further on the 

homebound leg in the hallway condition than in the open field. Variability for all measures was 

similar in both open field and hallway conditions, although the open field showed occasional 
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increased variability for angular measures. While the data do not indicate that these conditions 

are completely equivalent, they do suggest that the paradigms are similar enough to be able to 

generalize results from the hallway to those in an open field. The correspondence of errors 

between the open field and hallway conditions in triangle completion implies that the additional 

optic flow information in the hallway environment may not aid path integration greatly. These 

results agree with those of Kearns et al. (2002), who found similar accuracy in triangle 

completion between arenas with full optic flow information and those with reduced optic flow. 

The relatively small FOV (60o horizontal x 46.8o vertical) in the HMD may have also reduced the 

amount of optic flow overall.  

Reproduction Tasks 

Distance reproduction errors show that participants compressed the response space, 

generally overshooting short distances and undershooting long distances. These results agree 

with most previous work on distance reproduction (Israël et al., 2004a; May & Klatzky, 2000; 

M.-L. Mittelstaedt & Mittelstaedt, 2001; Schwartz, 1999; Sun et al., 2004). Moreover, the 

average regression equation for the distance reproduction task in this study is very similar to the 

encoding function used by Fujita et al. (1993). As seen in the tests of the encoding-error model 

by Klatzky et al. (1999), the compression of distance seen in previous work seems to be a 

regression to the mean, depending on the context (Petzschner & Glasauer, 2011; Schwartz, 

1999). 

 Angle reproduction errors indicate that participants tended to overturn small responses—

not necessarily small encoding angles—and underturned large responses (for detailed discussion 

of angle estimation, see Chrastil & Warren, 2017). As a result, it appears that the errors in angle 

reproduction stemmed less from encoding the turn angle than from executing the required 
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response. The compression for the response angles was not centered around the mean, as might 

be expected from previous studies. Instead, participants overturned small responses by a large 

margin and only underturned large responses by a small amount. Thus, instead of having the 

most accurate responses being at 90o as expected for the mean value, the most accurate responses 

came when participants had to turn 120o to 135o, leaving a 60o–45o angle internal angle.  

These angle reproduction errors yield a striking result when examined in light of the turn 

angle errors from the triangle completion task. In triangle completion, the two most accurate 

triangle types (triangle types 4,6,60 and 6,2,120; compare results shown in Fig. 8b with the 

patterns seen in Fig. 10b), called for homebound turns of 139.11o and 133.90o, respectively, 

which fall within or near this accurate range. Likewise, the errors for the 6,4,90 triangle type 

should be fairly small; the data agree with this prediction. The 4,2,60 triangle type calls for a 90o 

turn. According to the angle reproduction task, 90o should be overshot by 15o–20o, which falls 

within the standard error of the actual overshoot of 27o. Finally, the two triangle types for which 

participants tended to turn not far enough (types 2,4,120 and 2,6,90) called for response turns of 

160.89o and 161.56o, respectively. Based on the angle reproduction errors, these responses 

should be underturned by about 10o, which is in line with the actual errors seen in the triangle 

completion task. Thus, the turn required to make an accurate response in triangle completion 

may dictate the pattern of turn angle errors. This observation is supported by the results from the 

simulations indicating that execution error makes the largest contribution to the errors in path 

integration. 

Encoding-Error Model 

Our simulations demonstrate that the encoding-error model of path integration did not 

successfully describe empirical errors in triangle completion. The predicted path length and turn 
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angle errors in the homebound path had a weak correlation with actual distance errors, and a 

negative correlation with actual angle errors. Yet, both our average distance and angle 

reproduction functions are similar to those of the encoding-error model. Thus, the source of the 

differing results in these two studies must lie either in the application of these encoding 

functions, or in the performance of triangle completion itself. Fujita and colleagues applied their 

aggregate functions to both aggregate and individual triangle completion data. Their aggregate 

data matched well, but the individual data did not match as well. The current experiment used 

individual encoding functions and applied them to individual triangle completion data, with poor 

results for the encoding-error model. We also used our average encoding functions to predict an 

“average” participant’s performance. The results of those simulations produced high correlations 

for distance errors, but still yielded negative correlations for angle errors. Thus, when simulating 

both individual participant performance and overall average performance, the encoding-error 

model did not capture the errors observed in triangle completion. 

In addition to poor simulation results, the experimental data contradict the encoding-error 

model in other ways. Violations of either the first assumption (satisfaction of Euclidean axioms) 

or the fourth assumption (no integration or execution error) were seen in instances in which 

participants had negative turn angles (i.e. they turned > 180o) for the homebound trajectory (e.g., 

Figure 11, upper right triangle). Even if encoded poorly, no Euclidean triangle would call for 

such a response. In addition, the results from the angle reproduction task violate the encoding-

error model’s assumption of no execution error: a 90o turn should be executed fairly accurately 

because it lies on a reference axis, but participants overshot this turn by 15o–20o.  

 As noted in the introduction, other researchers have attempted to use the encoding-error 

model to explain their data. These previous efforts have been mixed in their assessment. The 
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original encoding-error model (Fujita et al., 1993) and subsequent positive tests (Klatzky et al., 

1999; May & Klatzky, 2000) stemmed from blind walking tasks in Loomis et al. (Loomis et al., 

1993) and used blindfolded participants. Thus, the encoding functions they found may only 

apply to non-visual navigation. Even so, Klatzky et al. (1999) found inconsistencies in one of the 

assumptions of the encoding-error model using a blind-walking paradigm. In purely visual tasks, 

Péruch et al. (Peruch et al., 1997) successfully applied the encoding functions to triangle 

completion in desktop VR, but Riecke et al. (Riecke et al., 2002) did not have the same success. 

However, they used feedback during training on triangle completion, possibly influencing 

performance. We used both visual and idiothetic information in the reproduction and triangle 

completion tasks. Previous research suggests that both visual and idiothetic information make 

similar contributions to path integration (Chrastil, Nicora, & Huang, 2019; Kearns et al., 2002; 

Tcheang et al., 2011). Although our methods differed from those who used blindfolded walking, 

the basic assumptions of the encoding-error model should still hold. However, our findings went 

largely against this model. 

The results of our simulations, although contrary to some of the assumptions of the 

encoding-error model, do not completely discredit the model altogether. Evidence suggests that 

encoding functions may be context-dependent and can be modified by the experience of the 

navigator (Abdolvahab et al., 2015; Arthur et al., 2012; Chrastil & Warren, 2014a; Klatzky et al., 

1999; Petzschner & Glasauer, 2011; Schwartz, 1999; Turvey et al., 2009), in opposition to the 

assumptions of the encoding-error model. However, in the current study, each participant had 

their own encoding functions, using a range of values for leg length and turn angle experienced 

in both the outbound and return paths of triangle completion. Furthermore, the size and structure 

of the environment were similar for both the triangle completion and reproduction tasks. Given 



 53 

these restrictions, the assumption of a single encoding function for each person—at least for the 

scale and structure of this environment—seems reasonable. Although it is not necessarily the 

case that encoding plays no role in path integration, the simulation results indicate that encoding 

alone cannot account for all of the systematic errors seen in path integration. 

Other Models of Path Integration 

Because the encoding-error model of path integration proved inadequate to describe the 

errors observed during a triangle completion task, we extended and modified this model in 

several ways. We then simulated path integration data for these alternative models using the 

same Monte Carlo methods used to test the encoding-error model. The alternative models 

showed significant improvement over the encoding-error model.  

The first alternative (model 2) incorporated execution errors into the basic encoding-error 

model. The addition of execution errors proved to be a significant improvement over the 

encoding-error model for predicting the angular errors. Although the correlation coefficient was 

not significantly better than the encoding-error model for distance errors, model 2 had the best 

slope of any alternative model. This improvement was so striking that we next attempted to 

explain the variance through execution errors alone. This model (model 3) also improved 

predictions for angular error in the simulations compared to the encoding error model. From 

these results, we determined that encoding may make a minor contribution to path integration 

errors, but the majority of error was explained by execution error alone. 

Although the encoding-error model showed only limited success, the approach was not 

abandoned altogether. Instead, we considered the possibility that the reproduction task used to 

estimate the encoding functions for this model were not appropriate. As noted earlier, 

reproduction tasks confound encoding and execution errors. If the primary source of error in 
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reproduction tasks stems from execution rather than encoding, as suggested by the results of the 

angle tasks (Chrastil & Warren, 2017), then those encoding functions were heavily weighted 

toward execution error. This could be a reason that the encoding-error model (model 1) did not 

perform well. Model 4 returned to a model comprised of only encoding errors, but used encoding 

functions derived from independent data (Chrastil & Warren, 2014; unpublished data), yielding 

low, but not negligible, encoding error. The resulting simulations had higher correlations with 

angular errors, but the slopes for both distance and angle errors were nearly 0. Thus, although the 

fits appeared better, this model predicted similar errors for all triangle types. Finally, model 5 

combined the encoding error model using our new encoding functions with the addition of 

execution error. This model was significantly better at predicting both distance and angle errors 

than the encoding-error model. These results suggest that a model which incorporates small 

encoding errors and large execution errors best describes the errors in path integration.  

The slopes and correlation coefficients for angular error between models 2, 3, and 5 were 

very similar, suggesting that the addition of execution error was primarily responsible for the 

angular component of error (Table 1, last two columns). Unlike for angular error, distance error 

was affected by the encoding function used; the slopes for distance errors between models 2 and 

5 differed quite a bit (.73 and .49, respectively, see Table 1). On one hand, model 2 has a slope 

closer to 1, but on the other hand, the correlation effect size is stronger in model 5. In either case, 

the addition of execution error is important for improving the predictive value of the model. 

These results suggest that encoding error may make a much smaller contribution than execution 

error, but that it is not completely negligible.  

Although the encoding-error model showed only limited success, it is possible that the 

encoding functions used in the encoding-error model were not appropriate for this task. As noted 
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earlier, it is difficult to measure pure encoding or execution errors, and so both the encoding 

functions derived from reproduction data (models 1 and 3) and the new encoding functions 

derived from subtracting out production errors (models 4 and 5) could include a degree of 

execution error (and vice versa for the execution functions). Under a purely encoding-error 

model, reproduction tasks reflect encoding, but it is possible that encoding and execution 

compensate for each other in these tasks. In that case, reproduction tasks might underestimate 

both encoding and execution errors. Having two measures of execution in the angle reproduction 

tasks gives us greater confidence in those functions, as does the blind walking measure of 

production our distance encoding function. Our attempts at deriving new encoding functions, 

which minimize the contribution of execution, are a step in the direction toward separating these 

factors. However, we acknowledge that these functions are not perfect and still include both 

encoding and execution errors. Methods for separating encoding and execution are still not 

resolved and thus we cannot conclude with full confidence that execution error is the primary 

source of error. However, our results suggest it is a major source of error. Furthermore, the 

models demonstrate that encoding error alone is not sufficient to explain path integration errors. 

Finally, it is important to consider other limitations of these models. First, we did not 

include an explicit term for integration error—the error involved in computing the trajectory for 

the homebound path—which could be substantial. At present, we have not found an appropriate 

method for isolating and quantifying integration error; thus, integration error cannot be directly 

added to the alternative models of path integration. Accurate encoding coupled with substantial 

errors in integration could pose a problem for the idea of a metric cognitive map. Although a 

metric map assumes that distances and angles can be measured accurately, it also requires 

accurate integration for a global metric embedding. However, integration errors would be 
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consistent with a labeled graph, which only requires roughly accurate encoding (Warren, 2019). 

Second, all of the models assume that errors add linearly based on configural path 

integration. It is possible that a model involving a homing vector is more appropriate to describe 

path integration, although its step-wise error accumulation follows a similar pattern to that seen 

in the encoding-error model. As described in the introduction, the evidence is mixed as to 

whether human path integration follows a configurational or homing vector model (Fujita et al., 

1990; Mou & Zhang, 2014; Muller & Wehner, 1988), although recent behavioral and neural 

evidence points to both systems being present (Chrastil et al., 2015; Chrastil, Sherrill, Hasselmo, 

& Stern, 2016; He & McNamara, 2018; Wiener et al., 2011). However, there are no current 

methods of predicting the individual differences observed in human path integration using a 

homing vector model, whereas configurational models allow for predicting errors on an 

individual basis. The dissociation between position and heading estimations with an allocentric 

homing vector (Mou & Zhang, 2014; Zhang & Mou, 2017) could prove informative as a hybrid 

model in the future. 

  

Summary and Conclusions 

A triangle completion task was used to test the encoding-error model of path integration. 

Errors from the Open Field and Hallway version of triangle completion were similar, indicating 

that findings in a hallway generalize to other environments. Participants generally underturned 

large required turns and overturned small required turns, and underestimated long distances and 

overestimated short distances. Angle reproduction showed that errors were not proportional to 

the outbound turn angle, but instead to the required response turn. When the errors from the 

distance and angle reproduction tasks were applied to simulations of the encoding-error model, it 



 57 

did not adequately describe the systematic errors seen in a triangle completion task. Analysis of 

the alternative models revealed that both encoding and execution error contribute to errors in 

path integration, but with execution errors playing the dominant role. These results challenge the 

assumption that errors in both reproduction tasks and more complex path integration experiments 

stem solely from errors in encoding. Errors in triangle completion might not arise from failing to 

know where you are, but from an inability to get back home.  
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