Running Head: PATH INTEGRATION MODELS

Executing the Homebound Path

is a Major Source of Error in Homing by Path Integration

Elizabeth R. Chrastil

William H. Warren

Brown University

Cognitive, Linguistic, & Psychological Sciences

University of California, Irvine

Neurobiology & Behavior

Author Note: Preparation of this manuscript was supported by National Science
Foundation awards BCS-0214383 and BCS-0843940. The authors would also like the thank
Mike Tarr and Scott Bell for reading early drafts of the manuscript, and members of the VENLab

for assistance with conducting this experiment.

Correspondence concerning this article should be addressed to Elizabeth Chrastil

Current Address: chrastil@uci.edu



Abstract

Path integration—the constant updating of position and orientation in an environment—is an
important component of spatial navigation, however, its mechanisms are poorly understood. The
aims of this study are 1) to test the encoding-error model of path integration, which focuses
solely on encoding as a potential source of error, and 2) to develop a model of path integration
that best predicts path integration errors. We tested the encoding-error model by independently
measuring participants’ encoding errors in distance and angle reproduction tasks, and then using
those reproduction errors to predict individual participants’ errors in a triangle completion task.
We sampled the distribution of encoding errors using Monte Carlo methods to predict the
homebound path, and then compared the predictions to observed triangle completion behavior.
The correlation between predicted errors and actual errors in the triangle completion task was
extremely weak, whereas an alternative model using execution error alone was sufficient to
describe the observed errors. A model incorporating both encoding and execution errors best
described the triangle completion errors. These results suggest that errors in executing the
response may contribute more to overall errors in path integration than do encoding errors,
challenging the assumption that errors reflect encoding alone. Errors in triangle completion

might not arise from failing to know where you are, but from an inability to get back home.

Keywords: navigation, self-motion, idiothetic, virtual environments, cognitive map

Public Significance Statement: This study challenges the long-standing assumption that
homing errors in path integration stem from encoding the outbound path. Instead, this study
demonstrates that the largest source of error is carrying out the homebound trajectory. These

findings will help us understand more about the mechanisms underlying navigational systems.



Introduction
Human Path Integration

To navigate successfully through an environment, an animal needs to sense its own
position and orientation with respect to places in that environment. Path integration is the
continuous updating of position and orientation by integrating changes in position, velocity and
acceleration based on idiothetic and visual motion information (H. Mittelstaedt & Mittelstaedt,
1982; M.-L. Mittelstaedt & Mittelstaedt, 1980). Some researchers have proposed that path
integration is the basis for building up spatial knowledge of the environment, such as a metric
cognitive map (Gallistel, 1990; McNaughton, Battaglia, Jensen, Moser, & Moser, 2006; Wang,
2015) or a labeled cognitive graph (Chrastil & Warren, 2014b; Warren, 2019; Warren, Rothman,
Schnapp, & Ericson, 2017), by registering the distances and angles between places and
landmarks. Little is known, however, about just how accurate and stable human path integration
is, and whether it could provide a basis for deriving such spatial knowledge. Few satisfactory
models have been proposed that account for the systematic errors seen in human path integration.
The goal of this study is to test the contributions of potential sources of systematic error in
human path integration in several alternative models.

Some animals, such as desert ants and nocturnal hamsters, have shown a remarkable
ability to return to the nest or home location by means of path integration, known as homing
(Etienne, Maurer, & Saucy, 1988; M.-L. Mittelstaedt & Mittelstaedt, 1980; Seguinot, Maurer, &
Etienne, 1993; Wehner & Wehner, 1986; Wittlinger, Wehner, & Wolf, 2006). These animals
may have developed accurate path integration because they live in environments without stable
visible landmarks. Humans, on the other hand, are highly visual animals, and appear to rely on

landmarks and other external cues for guidance, known as landmark-based navigation. Recent



evidence suggests that while humans have coarse path integration abilities, visual landmarks
dominate shortcut and homing behavior (Foo, Duchon, Warren, & Tarr, 2007; Foo, Warren,
Duchon, & Tarr, 2005; Zhao & Warren, 2015b). When landmarks are noticeably unreliable,
however, people fall back on a strategy of path integration, although the latter does not appear to
be an automatic “back up” system running in the background (Cheng, Shettleworth,
Huttenlocher, & Rieser, 2007; Zhao & Warren, 2015a). Thus, humans must have some capacity
to perform path integration.

The most common method for investigating human path integration is a homing task
known as triangle completion (Fujita, Loomis, Klatzky, & Golledge, 1990; Kearns, Warren,
Duchon, & Tarr, 2002; Klatzky, Loomis, Beall, Chance, & Golledge, 1998; Klatzky et al., 1990;
Loomis et al., 1993; Peruch, May, & Wartenberg, 1997; Tcheang, Biilthoff, & Burgess, 2011). In
this task, an experimenter guides a research participant down one leg of a triangle, then takes
them through a turn, and finally guides them down a second leg of the triangle. At that point, the
participant must determine both the distance and direction back to the starting point (‘home’) in
order to complete the third leg of the triangle. Triangle completion studies have found systematic
errors in path integration performance, such as treating outbound legs as if they are equal sides of
an isosceles triangle, compressing responses by overturning small angles and underturning large
angles, and overshooting short distances and undershooting long distances.

To help explain these systematic errors, Fujita, et al. (Fujita, Klatzky, Loomis, &
Golledge, 1993; Loomis et al., 1993) broke down such path-completion tasks into five main
components. The first three elements—sensing, creating a trace of the route, and forming a
survey representation of the outbound path segments—make up the broader process of

“encoding” the outbound path traveled by the animal. The fourth component is integrating the



outbound segments to determine the appropriate return trajectory back to the starting location. In
other words, once the animal has experienced the outbound path, the integration step computes
the necessary trajectory for a novel path to a particular goal, namely, the start position. In the
fifth final component, the animal must execute that homebound trajectory. It is possible for
systematic errors to accumulate during any of these processes.

The Encoding-Error Model of Path Integration

Fujita et al. (1993) proposed an encoding-error model that accounts for the systematic
errors observed in path integration. Specifically, they posited that the major component of
systematic error stems from encoding the outbound path. This model further theorizes that
integrating the outbound segments to form the homebound trajectory—and executing that
trajectory—play no role in overall path integration error. Thus, their model assumes that once the
path integration system encodes the values of the outbound path it produces no other systematic
errors.

The encoding-error model has four underlying assumptions: 1) the internal representation
of the path satisfies the axioms of Euclidean geometry, 2) distances are encoded by just one
function, so that equal distances are encoded the same way, 3) angles are also encoded by one
function, and 4) there is no systematic error in either the integration of path segments or
execution of the homeward trajectory (Fujita et al., 1993). Fujita et al. estimated the linear
encoding functions in distance and angle reproduction tasks, then used those general functions to
predict average path integration errors.

Although the initial test of the encoding-error model had some success, the assumption
that there is no integration or execution error has proven problematic. Some studies have found

little error in execution of a computed trajectory (Jurgens, Nasios, & Becker, 2003; Riecke, Van



Veen, & Biilthoff, 2002), but others have demonstrated significant bias in production of simple
tasks (Bakker, Werkhoven, & Passenier, 1999, 2001; Chrastil & Warren, 2017; Israél, Sievering,
& Koenig, 1995; Jetzschke, Ernst, Moscatelli, & Boeddeker, 2016; Klatzky et al., 1990), in
violation of assumption 4. For example, Bakker, Werkhoven, & Passenier (1999, 2001)
demonstrated that production errors for verbally-specified turns of 90°, 180°, or 270° ranged
from approximately 5°—45° in conditions with visual, vestibular, and proprioceptive information,
and from approximately 20°-120° in a purely visual task. Participants were verbally instructed
which angle they should turn, then used a rotating turntable to turn through the specified angle.
This task likely taps execution errors since these turn angles are orthogonal to each other and
constitute body axes in an egocentric (viewer-centered) reference frame. However, even tasks
that on the surface appear to measure pure execution error, such as turning 90°, might reflect
some combination of encoding error and execution error, with accurate performance if the two
elements are calibrated to compensate each other.

More complex path integration tasks have also cast doubt on the idea of minimal
execution error. For example, Wan et al. (Wan, Wang, & Crowell, 2013) found that path
integration errors were related to the length of the correct homebound trajectory, indicating that
execution of that trajectory could contribute to total path integration errors. Using similar
triangles, Harootonian et al. (in press) found that participants tended to undershoot homebound
distances as the triangles got bigger, but there was no change in the turn angle — which would be
the same regardless of size. This result suggests that people could encode the triangles correctly,
since the turn angle did not vary, but they had difficulty executing different homebound path
lengths. Avraamides et al. (Avraamides, Klatzky, Loomis, & Golledge, 2004) found that verbal

and pointing responses lead to different patterns of error during imagined spatial updating,



suggesting that response mode is an important factor in path integration. Finally, Chen et al.
(Chen, He, Kelly, Fiete, & McNamara, 2015) showed that homebound paths are affected by
environmental rescaling, indicating that these trajectories are not simply an executed motor plan,
but rather depend on online information to create the homebound path. Together, these findings
all point to a potential contribution of execution error during homing.

The assumption of a constant linear encoding function that fits all contexts (assumptions
2 and 3) has also been called into question. Context-free encoding implies that the same
encoding function should apply when all of the leg lengths are short as when they are all
relatively long. In violation of this assumption, Klatzky et al. (Klatzky, Beall, Loomis, Golledge,
& Philbeck, 1999) found that a general linear encoding function was not sufficient for all
contexts. Distance reproduction tasks generally demonstrate a compressed distance function,
such that small distances are overestimated and large distances are underestimated (Harris,
Jenkin, & Zikovitz, 2000; Israél et al., 2004b; Lappe, Jenkin, & Harris, 2007; May & Klatzky,
2000; M.-L. Mittelstaedt & Mittelstaedt, 2001; Redlick, Jenkin, & Harris, 2001; Schwartz, 1999;
Sun, Campos, Young, Chan, & Ellard, 2004). This regression to the mean in these tasks is
dependent on the contextual range of distances used (Petzschner & Glasauer, 2011). Other
researchers have also found that distance reproduction varies depending on the gait type and
speed of the outbound and response paths (Abdolvahab, Carello, Pinto, Turvey, & Frank, 2015;
Chrastil & Warren, 2014a; M.-L. Mittelstaedt & Mittelstaedt, 2001; Turvey et al., 2009). Angle
reproduction tasks have similarly shown underestimations of large angles and overestimation of
small angles depending on the range (Becker, Jiirgens, & Boss, 2000; Israél, Bronstein,
Kanayama, Faldon, & Gresty, 1996; Ivanenko, Grasso, Israél, & Berthoz, 1997; Jurgens et al.,

2003; Klatzky, Loomis, & Golledge, 1997; Marlinsky, 1999; Siegler, 2000; Siegler, Viaud-



Delmon, Israél, & Berthoz, 2000; Vidal & Biilthoff, 2010). In addition, angle reproduction is
influenced by memory and the reference frame used during the task (Arthur, Philbeck, Kleene, &
Chichka, 2012), further suggesting that the encoding function is not context-free.

Beyond possible violations of the model’s assumptions, direct tests of the encoding-error
model have been conducted, with mixed results. Péruch et al. (Peruch et al., 1997) found that the
encoding-error model accounted for 89% of the variance in distance encoding and 93% of the
variance in angle encoding, supporting the encoding-error account of path integration. May &
Klatzky (May & Klatzky, 2000) also fit their data to the encoding-error model with a high
correlation between expected and observed errors. Corollary assumptions that emerge from the
model—that variability in each trajectory does not affect the others, no alignment of the paths
into a common reference frame—have also been supported (Klatzky et al., 1999). On the other
hand, Riecke et al. (Riecke et al., 2002) point out that participants in the Péruch et al. experiment
undershot simple 180° turns by 16%, in violation of assumption 4. Riecke et al.’s application of
the encoding-error model yielded results that violated axioms of trigonometry (assumption 1),
such as negative values for encoded distances and angles. Furthermore, although participants in
that study indicated they knew that both outbound legs of the triangle were equal, five of the
twenty participants had mean final turns that could never complete any isosceles triangle, in
violation of either assumption 1 or assumption 4. In addition, when applied to outbound paths of
more than two legs, the authors of the encoding-error model themselves (Fujita et al., 1993)
found that this model was not sufficient to explain the systematic errors.

Finally, the use of reproduction tasks to generate the encoding functions in path
integration is also problematic. Reproduction tasks might confound encoding and execution

errors: it is not possible to determine whether an undershoot in distance reproduction stems from



under-encoding the distance with accurate execution, accurate encoding with errors in distance
execution, or some combination of the two. We previously found that magnitude of the response
angle, not the magnitude of the encoded angle, predicted errors (Chrastil & Warren, 2017). This
finding indicates that execution error—not encoding error—could make the largest contribution
to systematic path integration errors. We also demonstrated that both encoding and execution
errors contribute to total error in a distance reproduction task, and we provided a quantitative
estimate of both types of errors (Chrastil & Warren, 2014a). Participants tended to be more
accurate and less variable when the outbound and response modes matched (e.g. walking on both
the outbound and response paths vs. walking out and then throwing a beanbag the same
distance). These results suggest that the most accurate reproduction tasks are based on matching
idiothetic information, rather than some extrinsic distance metric. Hence, reproduction tasks may
be highly calibrated for accurate reproduction, so they might not reveal the true encoding
function. Indeed, it is possible that encoding during triangle completion is fundamentally
different from encoding during distance reproduction; in a reproduction task, the encoded
information is matched during the response, whereas in triangle completion the encoded
information is integrated together to generate a completely novel path.

In sum, the encoding-error model has received support for some of its assumptions and
direct tests have found that the model accounts for a large portion of the variance. On the other
hand, several of its assumptions do not hold up to scrutiny. Both the assumption of no execution
error and the assumption of a consistent encoding function have been called into question. Even
the assumption of Euclidean geometry may not hold in general (e.g. Warren, Rothman, Schnapp,
& Ericson, 2017). We will now consider other models of path integration.

Other Path Integration Models
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Klatzky et al. (1999) point out that the encoding-error model is a configural model, in
which the entire outbound journey is stored in memory, and the entire configuration is used when
the animal wishes to return home. In contrast, other models of path integration (Fujita et al.,
1990; Merkle, Rost, & Alt, 2006b; Muller & Wehner, 1988) are moment-by-moment homing
vector models, in which the animal continuously updates a vector back to its home location.
Homing vector models are history-free, such that the animal could not return to any other
location on the outbound path. Philbeck et al. (Philbeck, Klatzky, Behrmann, Loomis, &
Goodridge, 2001) provide support for a homing vector model of path integration by
demonstrating the importance of the origin for path integration. Participants received a brief view
of the path layout at the start of each trial, and then walked without vision for the rest of the path.
They were much more accurate at returning to the origin than to a rotationally equivalent
position they had not previously visited. In a human neuroimaging study, several brain regions
demonstrated increasing activation corresponding to Euclidean distance from the start location
during movement in a circular trajectory, consistent with a homing vector model of path
integration (Chrastil, Sherrill, Hasselmo, & Stern, 2015). Other recent evidence indicates that a
homing vector could have separate position and heading estimates, with the implication that this
homing vector could have an allocentric reference frame (Mou & Zhang, 2014; Zhang & Mou,
2017).

Evidence against a homing vector model of human path integration comes from findings
that error and time to initiate the homeward trajectory both increase with the increasing
complexity of the outbound path (Klatzky et al., 1990; Loomis et al., 1993; Wan et al., 2013) and
with changes in the configuration (May & Klatzky, 2000). A homing vector model should not be

affected by increased complexity of the outbound path because only the vector back to the start
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location is stored in memory, whereas a configural model would be so affected. In contrast,
Wiener & Mallot (Wiener & Mallot, 2006) found no effect of path complexity on errors when
the length of the outbound path was controlled. Similarly, Yamamoto et al. (Yamamoto,
Meléndez, & Menzies, 2014) found that errors during blindfolded walking path integration were
related to the outbound path length and turns, not to additional complexity in the paths. To
potentially explain these conflicting results, recent research has demonstrated that humans are
capable of both homing vector and configural strategies (He & McNamara, 2018; Wiener,
Berthoz, & Wolbers, 2011).

Other models of path integration have focused on the integration component using
different reference frames and coordinate systems (Benhamou, Sauve, & Bovet, 1990; Gallistel,
1990; Merkle et al., 2006b; H. Mittelstaedt & Mittelstaedt, 1982; Muller & Wehner, 1988;
Wehner & Wehner, 1986) (see Benhamou & Séguinot, 1995; Maurer & Séguinot, 1995; Merkle
et al., 2006 for reviews of path integration models). Many of these models have developed
accurate and normative accounts of integration (e.g. Gallistel, 1990; Jander, 1957 referenced in
Benhamou & Séguinot, 1995; Mittelstaedt & Mittelstaedt, 1982) as a tool for determining what
information an animal must have in principle and how it must use that information, rather than
explaining systematic errors (Maurer & Séguinot, 1995). These models are primarily concerned
with describing the mathematical relationship between the encoded outbound path and the
required response path back to the home location. A recent model of path integration in humans
(Harootonian et al., in press) tested a configural model that used vector addition for the
integration process. This model operates under the assumption that people over- or under-weight
legs of the triangle due to uneven integration over time. The model fit triangle completion data

better than the encoding-error model, but still focuses primarily on the encoding component.
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More descriptive models have incorporated errors by introducing random noise
(Benhamou et al., 1990) or a correction factor based on empirical data (Muller & Wehner, 1988).
Other models have attempted to find ways to incorporate some of the systematic errors seen in
distance reproduction (Merkle, Rost, & Alt, 2006a; Sommer & Wehner, 2004). In many ways,
these models of systematic underestimations resemble the encoding-error model. For example,
the systematic errors produced in the Benhamou model (Benhamou et al., 1990) stem not from
the integration or execution of the homebound trajectory, but from errors in the estimations of
the outbound distances and angles. Although Benhamou et al. (1990) introduced stochastic error
and Fujita et al. (1993) used empirically derived error, they both assumed that once the initial
error is introduced during encoding, no further error accrues during integration or execution of
the homeward trajectory. However, a “leaky integrator” model, whereby the animal gradually
“forgets” sections of the distance or angle traveled (Lappe & Frenz, 2009; Lappe et al., 2007),
incorporates leakage during the execution phase of a distance task as well as encoding. In this
model, the leaky integrator counts up during encoding and counts down during execution, which
could provide a route to understanding how encoding and execution work together. We similarly
aimed to incorporate error in multiple aspects of path integration in the present study.
Experimental Aims and Overview

The aims of the present study are to 1) directly test the encoding-error model of path
integration and 2) to compare this model with alternatives that incorporate other types of error.
While particular aspects of the encoding-error model have been tested previously, no study has
directly tested the basic approach. The present study first uses distance and angle reproduction
tasks to predict encoding errors in path integration, as in Fujita et al. (1993). Linearly combining

these errors yields a response region in which errors are expected to lie if encoding is the only
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source of systematic error. Errors that lie outside of this region can then be attributed to
integration or execution errors.

For example, a person might encode Legs X and Y and the interior turn angle o (Figure
la) as X’, Y’, and o’, respectively (Figure 1b). The accurate return path for the encoded triangle
is depicted in Figure 1b by the turn B and Leg Z. The encoding-error model predicts that the
navigator turns through the angle  and walks the distance of Leg Z on the actual triangle (Figure
la), without any integration or execution error. Note that § and Leg z are the same magnitudes in
both figures, indicating the same execution. Thus, error-prone encoding of the outbound path
followed by accurate integration and execution of the return path yields systematic and
predictable errors (ellipse in Figure 1a). If the navigator makes systematic errors other than those
predicted by the encoding-error model, then those errors must be attributed to the integration or
execution components of path integration.

All experiments in the current study took place in an immersive virtual environment. In
five sessions, participants performed the triangle completion task, followed by distance and angle
reproduction tasks to generate empirical data for simulations. In the simulations, we sampled
from the distance and angle reproduction errors using Monte Carlo methods, and linearly
combined them using the law of cosines! to predict final homing positions. The final errors were
then compared to the actual triangle completion data. We simulated both average data, as Fujita
et al. (1993) did, but also used each individual person’s encoding functions from reproduction

tasks to model their own triangle completion data. Finally, we derived alternative models of path

! The law of cosines can be used to find missing elements of any triangle. Namely, if the first leg has
length x, the second has length y, and the angle between those legs is a, then the length of the third leg, z,
is given by z = (x> + y? — 2xy*cosa.)"2. The turn angle B (between legs y and z) is then specified by =
cos'((y? + 22 — x?)/(2yz). In these simulations, z and B are the path length and turn angle, respectively, for
the homebound trajectory.
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integration that included execution errors.
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Final Position
Home Home

a) b)
QOutbound Path

..... Accurate Return Trajectory
= = = Trajectory Predicted by EEM

Figure 1. Predictions of the encoding-error model of path integration. (A) Actual walked triangle with
outbound legs X and Y and turn angle a. (B) The encoded triangle, indicated by X’, Y’, and o’. If a
navigator walks the homeward trajectory for the encoded triangle (B) on the actual triangle (A) without
any integration or execution error, as predicted by the encoding-error model, systematic and predictable

errors should be produced, as indicated by the ellipse in (A). Note that the magnitude of B and the lengths
of Leg Z are the same in both (A) and (B), indicating the same execution.

Note that the triangle completion task was performed in both a hedge corridor and in an
open field scene (Figure 2a). Many previous triangle completion studies have been conducted in
an open environment or blindfolded, so we also sought to test whether performance in a hallway

setting would generalize to an open environment.

Methods
Participants
Seven females and eight males participated in this study. Most were undergraduate or
graduate students at Brown University, and all were paid for their time at the rate of $8/hour.
One female and one male withdrew due to symptoms of simulator sickness. Ages of the
remaining 13 participants ranged between 19-30, with a mean age of 25.73. All participants
signed forms indicating their informed consent to be a part of the study in fulfillment of the

requirements of the Brown University IRB.
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Because we conducted several different types of tasks, sample size was determined based
on previous experiments in our lab and other path integration studies (e.g. Klatzky et al., 1998;
Loomis et al., 1993) that have had large effect sizes with similar sample sizes. Looking across
all the analyses using a post-hoc power determination (Faul, Erdfelder, Lang, & Buchner, 2007)
shows that our experiments had sufficient power to detect effects. For example, for a repeated-
measures ANOVA with 13 participants and 5 measurements (as in the distance reproduction
task), a = 0.05, a conservative correlation between with-subject measures of 0.5, the maximum
nonsphericity correction of 0.25, and the actual effect size ny*> = 0.781, the power to detect an
effect is 1.000. All significant and marginal main effects and interactions from the ANOVAs, as
well as all the correlation analyses, were found to have post-hoc power ranging from 0.548 to
1.000, with most of the effects on the higher end of the range. Any increase in correlation
between measures increases the power substantially, which is a reasonable assumption given our
within-subjects measures of the same types of tasks. For example, our lowest power of 0.548
becomes 0.906 if the correlation assumption is increased to 0.8 (while maintaining maximum
nonsphericity). The power for angular measures is more difficult to determine with the circular
statistical analysis, however, they had similar patterns as the distance measures and so would
likely fall into the same range of power. We note that post-hoc power analyses are largely
redundant with the outcomes of the data, therefore, we caution readers about the relatively small
sample size of the study. There is a possibility that the study is underpowered, however, we note
that most of the within-subjects effects are quite large. The subsequent modeling work uses
participants’ data to model their own outcomes, which mitigates some of the issues with smaller
samples.

Equipment
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The experiment took place in the VENLab, a 12 meter x 12 meter room using virtual
displays. Images were presented to the participants using a Cybermind Visette 2 head-mounted
display (HMD) with a 60° horizontal x 46.8° vertical field of view and resolution of 640 x 480
pixels. Participant movement was tracked using an InterSense IS900 tracking system with a
70ms latency. Participants made responses with a USB radio mouse. Images were generated on a
graphics PC (Alienware, NVIDIA Quadro FX 3000 graphics card) using Vizard (WorldViz) to
render the images. Cricket sounds were presented to the participants over headphones to create
naturalistic noise to prevent participants from receiving information about their location or
orientation in the room from auditory cues.

Environment

The environment consisted of hallways made of 3-meter high walls with a hedge texture,
an opening for the blue sky above, and a gravel path below (Figure 2a, top). The corridor was
100-meters long, so as to give no noticeable change in visual angle at end of the hall when
participants walked. The hallway was used for the straight-line translation segments of triangle
completion, distance reproduction, and angle reproduction. During the segments of each task that
required rotations in place, the hallway was replaced by a cylindrical hedge with a 1-meter radius
surrounding the participant. This cylinder provided texture cues from optic flow while rotating
without any additional landmark information about how far they had rotated. For triangle
completion, we also conducted a condition in an open field environment. In the open field, the
environment consisted of the textured ground plane and a green pole 100 meters away (Figure
2a, bottom). The ground surface was a gravel texture, and there were no other visual landmarks.
The pole was designed to give participants some orientation so they could walk in a straight line

but not provide any additional information from the change of size of the pole as they moved.
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For all tasks, the location and orientation of the next trial was marked by an orange pole with
arrows on (‘start pole’).
Experimental Tasks

Triangle completion. Triangle completion consisted of walking one outbound leg,
turning, and then walking along a second outbound leg. At the end of the outbound path,
participants were instructed to turn to face their starting location and click the mouse once they
were facing the start location. They were then instructed to walk forward toward the starting
location and to stop and click the mouse again when they reached that location. Two conditions
of triangle completion were presented to participants: i) hallway and ii) open field. In the hallway
condition, participants walked forward along the hallway and stopped when they heard a chime;
the hallway then disappeared and was replaced by the cylindrical hedge. The participant then
turned to the right or the left as directed by an auditory cue and stopped when they heard the
chime again. Then the cylinder hedge disappeared and a new hallway opened up. The participant
walked along this hallway until the chime sounded again and the cylindrical hedge appeared. The
participant was instructed to turn to face the starting location and then click the mouse,
whereupon a third hallway appeared, in the same orientation as the participant was facing when
they clicked the mouse. The participant was then instructed to walk forward until they thought
they reached the start location, then click the mouse again. All hedges then disappeared and the

participant walked to the start pole for the next trial.
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Outbound Path

(4,2,60) Ideal Homebound Path
®

Start Location

(6,2,120) (6,4,90) (4,6,60)
, === b)
Figure 2. Virtual environments. (A) Views of the Hallway and Open Field conditions of triangle
completion. The hallway was also used for distance and angle reproduction. (B) Triangle types used in the
triangle completion experiments. In parentheses are the names of the triangle types, with the first term
specifying the length of the first leg in meters, the second term indicating the length of the second leg in
meters, and the third term designating the interior turn angle between the first and second legs in degrees.

The open field condition was included in order to compare the results of the hallway
experiments to those of other studies. Instead of hallways, the participant walked forward
towards a green pole 100 meters away (Figure 2a, bottom). When the chime sounded, the pole
disappeared and the participant turned until they heard the chime again. Then, a second green
pole appeared at the new orientation, and the participant walked forward towards this pole until
the chime sounded again. Finally, the pole disappeared and the participants turned to face the
start location, clicked the mouse, and walked forward in the open field until they reached the
start location and then clicked the mouse again. The open field condition differed from the
hallway primarily in amount of visual texture.

For both the open field and hallway conditions, as well as the two reproduction tasks, the
chime sounded at a threshold 0.5 meters before the length of each leg and within + 3° of the turn
angle. The position of the chime threshold gave participants the chance to take a step after it
sounded, while preventing them from overshooting the distance or angle and having to

backtrack.
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Triangle completion consisted of 48 trials, with an additional six practice trials at the
beginning of the session. None of the triangles in the practice were part of the experimental
block, although they were of similar scale. The lengths of the legs of the experimental triangles
were 2, 4, or 6 meters, and the interior angle between legs 1 and 2 was 60°, 90°, or 120°; a subset
of six triangles were tested out of the potential 27 combinations (Figure 2b). These triangle sizes
were determined a priori both by the constraints of the research space and by the desire to have a
variety of leg lengths and interior angles. Interior angles included right, obtuse, and acute angles,
and sometimes the first leg was shorter than the second leg and vice versa. Both right-handed
and left-handed versions of these six triangles were included; trials alternated between right and
left triangles. The order of presentation was otherwise randomized for each participant. Each
triangle was presented to a participant 8 times, four trials with left turns and four trials with right
turns. There were 24 starting locations and four starting orientations in the room to prevent
participants from receiving feedback on their performance and from using a constant frame of
reference. These measures increased the likelihood that participants would treat each triangle as
separate from the others.

Distance reproduction. Participants walked down the virtual hallway until they heard a
chime, at which point the hallway disappeared and the cylindrical hedge surrounded the
participant. Participants then turned 90° to the right or left as directed by an auditory cue until
they heard the chime again. When the chime sounded again, the cylindrical hedge disappeared
and a new hallway appeared. Participants were then instructed to walk forward in this new
hallway for the same distance they had walked on the original path, and then click the mouse.

In order to prevent participants from counting their steps, they performed an additional

interference task. At the start of each trial, participants were given a seed number between 100-
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500 over the headphones, chosen randomly from a random subset of 80 numbers. Participants
then had to count aloud backward by threes from this number until they clicked the mouse. Two
participants who were not native English speakers were allowed to count in their native
language.

Distance reproduction consisted of 60 trials, with four additional practice trials at the
beginning of the session. None of the distances in the practice trials were part of the
experimental block. The magnitudes of the distances were the same as those of the hallways used
in triangle completion plus two additional distances of 8 and 10 meters (2, 4, 6, 8, and 10 m).
These magnitudes also match those we have used in previous work (Chrastil & Warren, 2014).
Both right turns and left turns between the outbound and reproduced leg were included; trials
alternated between right and left turns. The order of presentation was otherwise randomized for
each participant. Each distance was presented to participants 12 times, with six left and six turns.
There were 4 starting locations in the room, each with a different starting orientation, to prevent

participants from receiving feedback on their performance.

B
Response: 8 Response: 180-
] ]
Start Start
Parallel Parallel
Same Opposite

Figure 3. Left: The Same condition for angle reproduction. Participants walked in the direction of the
arrows turning right, with the initial turn angle . The required response is a left turn in the same
magnitude of . Right: The Opposite condition for angle reproduction. Participants walked in the
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direction of arrows turning right, with the initial turn angle 3. The required response is a right turn with a
magnitude of 180-f (see Chrastil & Warren, 2017, for details).

Angle reproduction. The angle reproduction task has previously been described and the
results have been previously reported in (Chrastil & Warren, 2017). Here, we only present the
methods and results of the basic reproduction task and its relationship to the modeling work.
Participants walked in the hallway until they heard the chime, which sounded after 5.86 meters.
The participant was then surrounded by the cylindrical hedge, and turned right or left as directed
by an auditory cue until they heard the chime again. A new hallway at the specified angle then
replaced the cylindrical hedge. Participants walked down this hallway until they heard the chime
again, after another 3.5 meters, and the cylindrical hedge appeared. In the Same condition,
participants were then instructed to turn back to face in the same direction they had originally
walked, but parallel to the original path (functionally equivalent to reproducing the first angle),
then click the mouse, whereupon the cylindrical hedge disappeared and a new hallway opened up
in the same orientation as the participant. Participants walked forward on this new path for 1.5
meters, as which point the trial ended and they were instructed to walk to the start location for
the next trial.

In the Opposite condition, the procedure was similar except that participants were
instructed to turn to face in the opposite direction, parallel to the original path (see Chrastil &
Warren, 2017). This required them to turn through the supplement of the first angle: a parallel
path in the opposite direction for a 30° right turn can be found by turning 150° to the right. These
two versions of angle reproduction were crafted to probe the potential execution error in turning.
If execution error increases as the turn angle increases, participants would show a greater error
for large angles than for small angles, even if they encoded the turn angle accurately. These

factors are confounded in the Same condition because smaller response turns are required by
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smaller outbound turns and larger response turns are required by larger outbound turns. By
including the Opposite condition—where participants make a smaller response for larger
outbound turn angles—execution error can be compared between the two conditions.

Angle reproduction consisted of 60 trials, with four additional practice trials at the
beginning of the session. None of the angles in the practice trials were part of the experimental
block. Magnitudes of the turn angle were the same as those used in triangle completion plus two
additional angles of 30° and 150° (30°, 60°, 90°, 120°, 150°; see Chrastil & Warren, 2017). Both
right turns and left turns were included; trials alternated between right and left turns. The order
of presentation was otherwise randomized for each participant. Each turn angle was presented to
participants 12 times: six left and six right turns. There were 3 starting locations in the room,
each with a different starting orientation, to prevent participants from receiving feedback on their
performance and from using a constant frame of reference in the room.

Procedure

After informed consent was obtained, the inter-ocular distance for each participant was
measured and entered into the graphics card, then the HMD was placed and adjusted on the
participant’s head. The participant also wore a backpack containing some cables, which weighed
approximately three pounds and did not impede movement. To prevent participants from tripping
over the cable connecting the HMD to the control box, an experimenter (the ‘wrangler’)
continuously followed the participant keeping the cable out of the way at all times. A test
environment and several practice trials for each task served as immersion time (5-10 minutes) for
the virtual environments. Instructions for each task were presented over headphones in the HMD,
which guided the participants through practice trials. The instructions for each task were then

repeated before the start of the experiment. Experimental trials were presented in one block, with
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frequent opportunity for breaks. The tasks took between 40-60 minutes to complete. Three
individual sessions were stopped after 60 minutes and completed in a separate session due to
time constraints. At the end of the second through fifth session, participants filled out a brief
questionnaire asking for strategies used in the task and (if applicable) if one version of the task
seemed easier than the other.

Participants completed five sessions for the experimental tasks, which were run in a semi-
counterbalanced order. The first two sessions consisted of triangle completion, with one session
of the open field condition and one session of the hallway condition counterbalanced across
subjects. Sessions three, four, and five consisted of the two versions of angle reproduction (Same
and Opposite) and one distance reproduction task. The order of these three tasks was
counterbalanced across participants. The triangle completion sessions were performed first to
prevent contamination from the angle and distance reproduction tasks influencing performance
on triangle completion. Sessions were completed over the course of two to six weeks for each
participant, with a break of at least 4 hours between sessions. Each participant generally came in
for a session every four days.

Analysis

Analysis was conducted using JMP software (SAS) and SPSS for linear measures and
custom Matlab (Mathworks) scripts for angular measures. For triangle completion, each
participant’s path on the homebound leg was evaluated in relation to an ideal path between the
position where they clicked the mouse to begin the homeward path (“click location”) and the
actual start location. Three response measures were quantified from this path (Figure 4): a)
Position error was calculated as the absolute distance between the final position of the

participant and the start location. Path length is the distance traveled by the participant on the
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homebound leg, with b) Path length error being the difference between the observed and ideal
path length. A positive error indicates that the participant traveled too far, while a negative error
indicates that the participant undershot the distance. c) Initial turn angle error is the difference
between the participant’s heading direction at the click location and the ideal heading direction
from that point to the home location. These errors are positive if the participant overturned

compared to the correct path and negative if the participant undershot the correct turn.

Click Location

Initial Angular Error

i e \
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Start Location
Figure 4. Response measures for triangle completion. See text for details.

Analyses of variance (ANOV As) were performed on the means of all the response
measures, as well as on their standard deviations (for linear measures) or angular deviations (for
angular measures). For all comparisons, right and left turns were collapsed across trials. The
linear measures of position error and path length error were analyzed with repeated-measures
ANOVAs using a 6 (triangle type) X 2 (hallway or open field condition) design. For these
measures, we report F and p values and indications of effect size (0%, partial eta squared). The
angular measure of initial turn angle error was analyzed using a multiple-sample Watson-
Williams one-way test for circular data (Batschelet, 1981). Currently there are no higher-order

ANOVAs or computations of effects sizes available for circular data. Thus, we report F and p
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values for each comparison, and all two-way interactions were tested as Bonferroni-corrected
separate one-way effects. Standard and angular deviations for all these measures were also
analyzed. Linear regressions and correlation coefficients were also found for these measures to
determine if there is a relationship between the initial distance/angle and the reproduced
distance/angle or their errors.

For distance and angle reproduction, the only response measures were path length error
and turn angle error, respectively. Distance error was calculated as the difference between the
observed distance walked and the ideal response. A positive error indicated an overshoot of the
distance while a negative error indicated an undershoot. Angle reproduction error was calculated
as the difference between the direction the participant was facing after they made their response
and the ideal heading direction. As distance error is a linear measure, a repeated-measures
ANOVA using the five distances reproduced in this task was performed. Angular error was
analyzed using a multi-sample Watson-Williams one-way ANOVA, collapsing across left and
right turns. In addition to testing the factor of angle, the factor of condition (walk parallel in the
same or opposite direction) was tested. Standard and angular deviations for all these measures
were also analyzed. Linear regressions and correlation coefficients were also computed for path
length and turn angle to determine whether there is a relationship between the ideal and actual
responses.

Trials were excluded from analysis in cases of a software crash, a loss of tracking in the
virtual environment, or the participant indicated that they had terminated the trial too early. In
addition, trials from the distance and angle reproduction tasks were excluded if the participant
walked too close to the physical wall of the room during their response. Portions of triangle

completion data were also excluded for this reason, however, initial information such as initial
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angle error was included in the analyses because this measure could be collected before the
participant went out of bounds. In addition, if during triangle completion the participant drifted
from the lines and was more than 1.5m from the actual location of the second vertex of the
triangle (click location) when they clicked to return to home, only initial angle error were
collected. This drift was more common in the Open Field condition due to the lack of hallways to
keep people on course. In all, between 0.38% and 2.05% of the reproduction trials were
excluded. 1.36% of the triangle completion trials were completely excluded, while 9.38% of
triangle completion trials contained only initial angle information.

Results
Triangle Completion

Overall triangle completion performance is shown in Figure 5.

Linear measures. A 6 (triangle type) X 2 (hallway or open field condition) repeated-
measures ANOVA was first conducted on the mean position errors. Mean absolute position
errors showed a significant main effect of triangle type (Fs,60=2.607, p = 0.034, np> = 0.178),
suggesting that some triangles were more difficult for participants to return to the start location
(Figure 6). There was no effect of open field/hall (F1,12= 0.005, p = 0.946, ny*> = 0.000) and no
interaction (Fs,60=1.465, p=0.215, np> = 0.109) for position error. A 6 x 2 ANOVA on the
standard deviation of position error only showed a marginal effect of triangle type (Fs.60=2.048,
p = 0.085, np? = 0.146), and there was no main effect of open field/hall (F1,12=0.974, p = 0.343,
np> = 0.075) and no interaction (Fse0= 0.941, p = 0.461, np> = 0.073).

For path length, overall participants showed a compression of distance responses, as seen
in previous work. For homeward trajectories that called for a shorter path length, participants

generally walked too far, while they did not walk far enough for longer ideal paths (Figure 7a).
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Path length did increase with the ideal path length (Hallway: y = 0.391x + 2.761, r = 0.915; Open
Field: y =0.431x + 2.399, r = 0.868). Path length errors differed between triangle types (Figure
7b). A 6 (triangle type) X 2 (hallway or open field condition) repeated-measures ANOVA found
a significant effect of triangle type on path length errors (Fs60=38.576, p < 0.001, ny?> = 0.763).
There was no main effect of open field/hall condition (F1,12=2.683, p = 0.127, np> = 0.183), and
there was only a marginal interaction (Fs,60=2.103, p = 0.077, np*> = 0.149). Analysis of the path
length errors standard deviations yielded no significant main effect for open field/hall (F1,12=
0.004, p = 0.954, np> = 0.000), although the triangle type X open field/hall interaction was
marginal (Fse0=2.164, p = 0.070, np> = 0.153), as was the main effect of triangle type (Fs,60=

1.978, p = 0.095, n,2 = 0.141).
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Figure 5. Overall pattern of results from triangle completion. (A) Open field condition. (B) Hallway
condition. Individual dots represent individual trials by the 13 participants. The filled circle at the origin
(0,0) is the start location. The filled diamond is the mean final location averaged over all the participants.
Ellipses indicate 95% confidence intervals for the simulation. Left turns have been reversed and

combined with right turns.
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Figure 6. Position Error in the triangle completion tasks, measured as absolute distance between the final
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Figure 7. (A) Path length, compared to the ideal values for path length. Filled circles/solid line: Hallway
condition. Open circles/dashed line: Open field condition. Diagonal line indicates correct performance.
There were six triangle types; however, for two triangles the ideal path length turned out to be the same
distance as two other triangles, resulting in only four ideal path length values on the x axis. (B) Path
Length Errors in the triangle completion tasks. Negative errors indicate undershoots while positive errors
indicate overshoots. Error bars indicate between-subjects standard error.

Angular measures. Large angular errors were observed relative to the magnitude of the
correct angle. For both conditions, initial turn angle increased with the ideal turn angle,
indicating that participants were able to able to discriminate between triangle types (Hallway: y =

0.502x + 22.635, r = 0.964; Open Field: y = 0.609x + 19.931, r = 0.999; Figure 8a). Turn angles

were somewhat compressed, such that small turn angles were overestimated and larger turn
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angles were underestimated. Turn angle errors revealed some slight differences between the open
field and hallway conditions. In the hallway condition, a Watson-Williams test for circular data
on the mean initial turn angle error (Fs,12=3.8426, p <0.05, np> = 0.199) showed significant
effects of triangle type (Figure 8b). In the open field condition, on the other hand, there was no
main effect of triangle type on mean initial turn angle error. However, an examination of
individual pairwise comparisons between the open field and its matched hallway triangle type

produced no significant differences.
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Figure 8. (A) Initial turn angle as a function of the ideal turn angle. Filled squares/solid line: Hallway
condition. Open squares/dashed line: Open field condition. Diagonal line indicates correct performance.
(B) Initial Turn Angle Errors. Negative values indicate an underturn, while positive values indicate an
overturn. Error bars indicate between-subjects standard error.

Overall, the hallway condition had a slightly more divergent pattern of errors, leading to
an overall main effect of triangle type, while the somewhat smaller range of errors in the open
field condition was not strong enough to create a main effect. For any given triangle type, there
was no difference between the open field and hallway condition, but when examining the overall
range of errors, the hallway condition had reliably more pronounced errors. This result likely
stems from the fact that participants were less able to distinguish between angles in the hallway
condition, leading to more similar turn angles. The angle errors were consequently larger in the

hallway condition because the participants were not making the full range of turns. However, this
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effect of open field/hallway is fairly small, considering that none of the individual contrasts
showed an effect. The angular deviations for initial turn error showed no main effects of triangle
type for either the open field or the hallway condition.
Distance Reproduction

Mean reproduced distance as a function of initial distance appears in Figure 9a. Linear
regression of reproduced distance on initial distance revealed that the slope was less than 1 with
a positive intercept (y = 0.75x + 1.28, r = 0.975), meaning that participants overestimated shorter
distances and underestimated longer distances. The distance reproduction regression equation is
similar to the distance encoding function used by Fujita et al. (1993: y = 0.60x + 1.20), although
with a somewhat steeper slope. There was a significant main effect of distance on reproduction
errors (Fa48=42.763, p < 0.0001, ny?> = 0.781). Post-hoc pairwise comparisons revealed
significantly different errors between the following pairs (all p < 0.05, Bonferroni corrected):
2m-10m, 4m-8m, 4m-10m, 6m-8m, 6m-10m, and 8m-10m. These results confirm that long
distances tend to be undershot and short distances tend to be overshot. The standard deviations of
distance errors also showed a main effect of distance (Fa.48=19.693, p < 0.0001, np> = 0.621).
Post-hoc tests showed that the 2m distance had significantly less variability than all other

distances (all p < 0.001, Bonferroni corrected).
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line indicates veridical performance. Error bars indicate between-subjects standard error.

Angle reproduction. Results for angle reproduction have been reported elsewhere
(Chrastil & Warren, 2017) and those previously-reported data are summarized here. Mean
reproduced angle is plotted as a function of initial angle in Figure 10a. In the Same condition, the
reproduced angle increased linearly with the initial angle (y = 0.63x + 50.7, r = 0.999), whereas
in the Opposite condition the reproduced angle corresponded to the supplement of the initial
angle, and so decreased (y =-0.52x + 152.9, r = 0.993). The regression equation is similar to the
encoding function for angle used by Fujita et al. (1993: y = 0.48x + 50), although with a
somewhat steeper slope, suggesting that this method of angle reproduction is comparable to
theirs. Participants tended to underturn when a large response was required, and overturn when a

small response was required. Responses of approximately 120°-135° were made relatively

accurately.
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Figure 10. Results from the Angle Reproduction Task. Filled squares and solid lines indicate data from
the Same condition. Open circles and dotted lines indicate data from the Opposite condition. The dashed
lines show veridical performance. Error bars indicate between-subjects standard error. (A) Actual turns
from the Angle Reproduction Task. (B) Reproduction as a function of the required response in angle
reproduction tasks.

For mean angular errors, in both the Same and Opposite the Watson-Williams test found
a main effect of turn angle (Same: Fa,12=7.3003, p < 0.01, np> = 0.319; Opposite: F4,12= 5.8438,

p <0.01, np? = 0.266). When reorganized by the required response angle (e.g. required response
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of 30° for an initial angle Same 30° or for Opposite 150°), rather than the initial angle, the
reproduction errors are quite similar (Figure 10b). Paired Watson-Williams tests showed no
significant differences between these pairs, even before Bonferroni correction (see Chrastil &
Warren, 2017, for more details). In other words, when responding to an initial turn of 30°, the
participants made different errors in the Same condition (requiring a 30° turn) and in the
Opposite condition (requiring a 150° turn). On the other hand, errors were equivalent when
responding to a 30° turn angle in the Same condition and a 150° turn angle in the Opposite (both
requiring a response turn of 30°). These results suggest substantial execution errors, such that
people overshoot small turns and undershoot large turns. In our previous analysis of angular
errors (Chrastil & Warren, 2017), we also found main effect of encoding angle and an angle x
condition interaction, consistent with a contribution of encoding error. Overall, these findings
suggest a large contribution of execution error, but that encoding error plays a role in angle
reproduction as well.
Questionnaires

In triangle completion, participants reported attempting strategies such as counting steps
and trying to envision the angle they turned through. Some attempted to measure the angle with
their feet or arms. Participants were fairly evenly split as to which version of the task (Open field
or Hallway) they felt was easier, but generally reported that the task was quite difficult. If
anything, participants felt whichever version they completed second was easier, likely due to
increased comfort with the task. Despite the counting distracter task in the distance reproduction
task, participants reported attempting to count their steps. For the angle reproduction task,
participants generally tried to “unturn” the angle they originally turned or gauged the angle

relative to a reference angle of 90°, and some participants attempted to use their feet to measure
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the angle. In all tasks, several participants said that they relied on intuition or visualization of the
layout.
Simulations

Procedure

Triangle completion was simulated using Monte Carlo methods to sample from the
distribution of errors from the distance and angle reproduction tasks. Simulations were designed
to replicate the encoding-error model (Fujita et al., 1993). Triangle completion was simulated for
each participant individually; each participant had an individual distribution for each distance
and angle tested in the reproduction tasks, with their mean and standard/angular deviation taken
from their individual data. Note that for angle encoding, we only used the Same condition, since
this follows the encoding-error model’s assumption that reproduction errors reflect only errors in
encoding. However, as we will discuss below, the reproduction tasks also likely reflect a degree
of execution error. This sampling method assumes a normal distribution. Each distance and angle
were successfully fit to models of a normal or lognormal distributions when combining all of the
trials for all participants, and so the assumption of a normal distribution was deemed justified.

For each iteration of the simulation, a value for the encoding distance of both legs and the
turn angle was sampled randomly from a normal distribution, with the mean taken from the
participant’s mean reproduction data at that distance or angle, and the standard deviation taken
from the participant’s standard deviation at that distance or angle. For example, a triangle with
an actual outbound path of a 4m leg, followed by a 60° interior turn, and a second leg of 6m
might be sampled as 4.58m, 73.85°, and 5.92m, respectively. These values were then combined
linearly using the law of cosines to compute the location where the simulated participant encoded

the second vertex. Assuming no integration error and no execution error on the homeward
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trajectory, as proposed by the encoding-error model, the model then used trigonometry to predict
the location where the participant should walk when returning to the start location. The
simulation was iterated 10,000 times for each of the six triangle types for each participant. The
mean simulated final position was calculated, as well as the path length and turn angle for the
homeward trajectory.

As Fujita et al. (1993) point out, the observed and model-predicted path length and turn
angle will always be correlated to a certain extent, as a longer observed path will generally also
have a longer model-predicted path. Path length error and turn angle error, however, will not
necessarily be correlated and are thus more sensitive tests of the model’s predictive power. Thus,
the observed path length and turn angle errors were plotted against the models’ path length and
turn angle errors by combining the data across all triangle types for all participants (hallway
condition only), yielding 78 points of comparison (6 triangle types x 13 participants). The slope
and intercept of this relationship was computed and the effect size of the relationship was
indicated by the r value; we report whether this relationship was significantly different from 0.
Error ellipses were computed for a 95% confidence interval of the final simulated locations. In
addition to simulating the encoding-error model, we simulated triangle completion using four
other possible models (described below). We conducted a test on the r value of each alternative
model’s correlation, transformed to Fisher’s z, compared with the baseline encoding-error
model’s r (transformed to z) value. Table 1 shows equations, r values, and significance levels for
the encoding-error model and each of the four alternative models.

Results
The results for all five simulations are summarized in Table 1.

1. Encoding-error model. The simulations of triangle completion using the encoding-error
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model yielded 10,000 estimated final positions for each participant for each triangle type. The
mean estimated final position was then found for each set; the mean path length and turn angle
errors were computed for that location. Figures 11 and 12 provide examples of two
representative participants in the study. Part a) of these figures show the results for the encoding-
error model simulations. Participant 11 (Figure 11) was not very accurate at triangle completion
and was highly variable in both triangle completion and the reproduction tasks, with large error
ellipses representing the final position. It should be noted, however, that even with the large
ellipses for the simulated final positions for Participant 11 in panel a), the actual data collected
from that participant generally still laid far outside of that ellipse. Participant 10 (Figure 12) was
much more accurate and precise for all tasks, with a very small cluster of simulated final
positions generally quite close to the participant’s final position. However, several of the
empirically collected data points for Participant 10 also laid outside of the simulation position
(Figure 12a).

Figure 13a summarizes all the simulations, plotting model-predicted errors against actual
errors for each participant. The relationship between actual and predicted path length errors is
described by the equation y = .45 x + 0.024, ((76) = 0.4818, p < 0.001), while for turn angle
errors the relationship is described by y =-.14x — 8.1 (#(76) = -0.2282, p = 0.044). Note that the
correlation coefficient for turn angle errors is negative, indicating that the model negatively
predicted actual errors. In general, the model predicted path lengths that were longer than those
taken by the participants, and compressed the range of turn angles compared to the range taken
by participants. Although the model was close for participants who were more accurate or who
had less variability in their responses, it proved less successful at predicting the responses of

participants with high variability or low accuracy.
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Participant 11 - Simulation Results
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Figure 11. Results of simulations for Participant 11using three different path integration models. Filled
circles are the start location, which is also the correct end location. Stars are the individual data points
from the eight triangle completion hallway trials. Filled diamonds are the mean final location from the
data. Open diamonds are the mean final location from the simulation. Ellipses indicate 95% confidence
intervals for the simulation. The stars and filled diamonds are in the same locations across the five
simulations because they represent empirical data, but the open diamonds and confidence ellipses differ
based on the model. (A) Encoding-Error Model; (B) Encoding-Error Model with Execution Error; (C)
Execution Error Only; (D) Encoding-Error Model using our new encoding function; (E) Encoding-Error
Model using the new encoding function and including Execution Error.
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Participant 10 - Simulation Results
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Figure 12. Results of simulations for Participant 10 using three different path integration models. Filled
circles are the start location, which is also the correct end location. Stars are the individual data points
from the eight triangle completion hallway trials. Filled diamonds are the mean final location from the
data. Open diamonds are the mean final location from the simulation. Ellipses indicate 95% confidence
intervals for the simulation. The stars and filled diamonds are in the same locations across the five
simulations because they represent empirical data, but the open diamonds and confidence ellipses differ
based on the model. (A) Encoding-Error Model; (B) Encoding-Error Model with Execution Error; (C)
Execution Error Only; (D) Encoding-Error Model using our new encoding function; (E) Encoding-Error
Model using the new encoding function and including Execution Error.
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Model Name Path Length Error | Path Length Error | Turn Angle Error | Turn Angle Error
Equation r value Equation r value

1. Encoding-Error | y=.45x+0.024 0.4818*** y=-14x-8.1 -0.2282*

Model

2. Encoding-Error | y=0.73x+0.078 0.6378*** y=0.35x-6.7 0.4837%** +1F

Model with

Execution Error

3. Execution Error | y=0.43x+0.051 0.7351%** ¥ y=0.33x-3.1 0.4514%** +9%

Only Model

4. Encoding-Error | y=0.049x +0.78 0.3910%** y=0.082x + 3.2 0.4355%** $4+

Model (new fcns)

5. Encoding-Error | y=0.49x+0.6 0.7509%*** + y=0.36x-1.3 0.4626%** +1F

Model (new fncs)

with Execution

Error

Table 1. Summary of the simulation results. * indicates a significant correlation between the actual errors
and the simulated errors, p < 0.05. *** indicates a significant correlation between the actual errors and the
simulated errors, p < 0.001. § indicates significant difference in correlation between the alternative model
and the encoding-error model (model 1). ¥ p <0.05, 7+ p <0.01, i1 p <0.001.
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Figure 13. Path length errors (left column) and turn angle errors (right column) on the return path,
comparing actual errors made by participants with the errors predicted by each model. Data for individual
participants are plotted in different colors; there are six data points for each participant, representing the
six triangle types. (A) Encoding-Error Model (model 1); (B) Encoding-Error Model with Execution Error
(model 2); (C) Execution Error Only (model 3); (D) Encoding-Error Model using our new encoding
function (model 4); (E) Encoding-Error Model using the new encoding function and including Execution
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The original encoding-error model used aggregate data to derive the encoding functions:
average encoding functions predicted average participant performance (Fujita et al., 1993). In
contrast, we used each participant’s individual distance and angle reproduction data as their
individual encoding function. To replicate the approach from the original encoding-error model,
we used the average distance and angle errors derived from the reproduction tasks, combined
with the average within-subject standard/angular deviations, to simulate the 6 triangles. Fujita et
al. (1993) found very high correlations between their predicted and observed values: r? of .93 and
.92 for distance and angle errors, respectively, with slopes of 1.17 for distance error and .98 for
angle error. In contrast, we found a much reduced correlation between predicted and observed
values. For distance error, we found #(4) = 0.9702, p < 0.001, with the equation y = 0.35x +
.0045 describing the relationship. Although the r value is very high, the slope is much lower than
those found by Fujita et al. (1993). For angle error, we found »(4) = -0.4013, p > .4, with the
equation y = -0.22x — 8.3 describing the relationship. Thus, there was no relationship between
the predicted angular errors and the actual angular errors when considering an “average”
participant. These results are in discord with those of Fujita et al., suggesting that their findings
either do not replicate or their assumptions are not sufficient to explain systematic errors in
triangle completion.

2. Encoding-error model including execution error. Although the path length errors
and turn angle errors in the encoding-error model alone were significantly correlated with actual
errors, the correlation was negative for turn angle error, indicating the insufficiency of the
encoding-error model. We attempted to improve upon this model by adding a component of
execution error.

In the new model, the encoding of the outbound path was simulated the same way as in
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the encoding-error model (model 1). Instead of assuming that the response path is perfectly
integrated and executed, like the encoding-error model does, we added an error term in the
execution of the homebound path. Each participant had an execution error term derived from
their own reproduction data, as follows. A regression line? was fit to the distance reproduction
tasks for each participant to describe the relationship between the desired distance and the actual
distance walked. For distance, this regression line is essentially the same computation as for the
distance reproduction task shown in Figure 9, but for each person individually. Likewise, a
regression equation was derived from the combined Same and Opposite angle reproduction. The
actual responses for these two conditions were plotted against the required response for each
person, similar to Figure 10b, and a line was fit to those 10 data points. Thus, execution
functions were fit for both distance and angle that depended on the required response, rather than
the outbound distance or angle. Although this method is not perfect—it still includes some aspect
of encoding—at present it provides a fairly close estimate for execution error. In addition, the
findings from the angle reproduction segment of the experiment (Chrastil & Warren, 2017)
suggest that errors in reproduction are primarily driven by the required execution, not the
encoding angle. We therefore feel reasonably confident in these estimates for execution error.

The outbound path of this model (model 2) was computed in the same way as the
encoding-error model (model 1). To add execution error in the homebound path, the desired path
length and turn angle were entered into the execution functions described in the previous

paragraph for the participant. The resulting path length and turn angle were used for the

2 We used linear fits for both distance and angle. Given our relatively small distances and angles
used, and to match the original encoding-error model, this assumption seemed reasonable.
However, for larger distances and angles a logarithmic “leaky integrator” fit might be more
appropriate.
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simulation. For example, the encoding-error model might yield a desired homebound path of 7 m
with a turn angle of 45°. These values were entered into the participant’s individual execution
functions, and now the homebound path might be something like 6.4 m with a turn angle of 61°.
These values were used as the means for our sampling procedure, which added a measure of
variability to these execution functions. First, we generated individual regression lines for
standard and angular deviation from the empirical reproduction data, much like we did for the
execution error functions. Next, we sampled using the means from the execution function and the
standard deviations derived from the regression lines. Note that adding variance to the execution
error does not change the mean values of the final position, but it does create a larger spread in
the simulated results, as evidenced by the 95% confidence ellipses.

The results of the simulations of the encoding-error model including execution error
show an improvement over the encoding-error model alone. For path length errors, the function y
=0.73x + 0.078 (#(76) = 0.6378, p < 0.001) related the model-predicted path length errors to the
actual path length errors. For turn angle errors, the equation y = 0.35x — 6.7 ((76) = 0.4837, p<
0.001) related the actual and model-predicted errors. The correlation coefficients were tested
against those of the encoding-error model (model 1) using a Fisher’s Z score (Table 1). The
correlation coefficient for path length errors was not significantly different from model 1 (Z = -
1.4, p =.162), but those for the turn angle errors were significantly different from model 1 (Z = -
4.65,p <0.001).

Figure 13b summarizes the data for all participants. Examination of Figures 11b and 12b
reveals that the addition of execution error to the representative participants has improved the
explanatory power of the simulations. Although the original encoding-error model did a

reasonable job predicting errors for participant 10, it did not predict participant 11 very well. The
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addition of execution error did not make the predictions worse for participant 10, but it
dramatically improved those for participant 11. Note that the predicted values for this model are
closer to the actual data than for the encoding-error model alone, but they do not overlap
perfectly. The addition of execution error makes the model much more predictive of actual
errors, but still does not explain all of the variance.

3. Execution error only. Our findings from angle reproduction suggest that execution
error may be the primary source of error in path integration. The poor results from the encoding-
error model (model 1), coupled with the large improvement from the addition of execution error
(model 2) suggest that a model that only incorporates execution error may be sufficient to
describe the errors in path integration.

For this model, we assumed that encoding error was negligible. This assumption implies
that participants were completely accurate at encoding the outbound path, and that their encoded
location at the end of the second leg was their actual location. Under this assumption, we used
the execution functions from model 2 based on the reproduction tasks (distance and the
combined Same and Opposite for angle) as an estimate of pure execution error. We then added
execution error in the same manner as in model 2. Note that because there is no distribution of
outbound locations in this simulation (since encoding was perfectly accurate), there was only one
predicted outcome of the homebound path. Sampling from the distribution of the execution error
using the means and standard deviations added some variance, but it was much reduced from that
of model 2.

The results of this simulation for all participants are shown in Figure 13c, with details of
two representative participants shown in Figures 11c and 12c¢. For path length errors the equation

y =0.43x + 0.051 (, n(76) = 0.7351, p < 0.001) described the relationship between actual and
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model-predicted errors. For turn angle errors the equation y = 0.33x - 3.1 ((76) = 0.4514, p <
0.001) described that relationship. The correlation coefficients were tested against those of model
1 using a Fisher’s Z score (Table 1). The correlation coefficient for both path length errors and
turn angle errors were significantly different from model 1 (path length: Z =-2.54, p = .011; turn
angle: Z=-4.4,p <0.001). Based on the significant improvement in the correlation value
compared to the baseline encoding-error model, this model appears to be better than the
combined model (model 2) at predicting the path length errors, and the turn angle errors are
virtually unchanged from model 2. However, we also note that the slope for model 2 is greater
than for model 3. This simpler model 3 describes the errors as well as the more complicated
model that includes encoding error, therefore these results suggest that most of the error can be
attributed to execution error.

4. Encoding-error model with independently estimated encoding functions. As we
noted above, it may not be appropriate to use reproduction data to estimate encoding error, for
reproduction error may include both encoding and execution errors. Elsewhere we have derived
encoding functions for distance and angle based on independent data, which may provide better
estimates (Chrastil & Warren, 2014a; unpublished data, see Supplement). Briefly, we began with
reproduction data and subtracted out errors from tasks that more closely reflected execution
error, such as blind walking to a target.

For distance, Chrastil & Warren (2014a) had participants walk an outbound distance, and
then turn and reproduce that distance. This formed the estimate for reproduction. Participants
also viewed a target and then turned and walked an equivalent distance. This formed the estimate
for production; because participants did not encode the target distance by walking, this task

provides a useful — although not perfect — estimate of execution error. We assume that encoding
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error from vision is minimal, but not necessarily zero. Encoding distance from vision minimizes
the primary problem of canceling errors in pure reproduction, but does not eliminate this issue
altogether. Under the assumption of linear combination, we subtracted the value of execution
error from reproduction error to estimate the encoding error at each distance. The encoding
function was estimated by a linear regression of error (m) on distance (m), yielding y = 0.9156x
+0.703 (r4a=0.916).

For angle, we used a modified reproduction task (unpublished data, see Supplement for
details of the task). We removed the second hallway in between the encoding and reproduction
turns, reducing any memory decay that could occur between the two turns. We also changed the
instructions to “reverse the total of the turns to face in the original direction” rather than “walk
parallel to the original path”, which could lead to other errors. Although this task is still
essentially a reproduction task, it yields an estimate that is closer to production/execution error
than the reproduction task (“Same” condition) reported above. Encoding error was then
computed as the difference between the reproduction data (Same condition) in the present study
and our earlier production data at each turn angle. A linear regression of encoding error on turn
angle yielded y = 0.8356x +21.217 (r4 = 0.999).

Note that these derived encoding functions have slopes much closer to 1 than both the
functions used by Fujita et al. (1993) and the functions derived from reproduction data above
(see Results), implying that encoding error is quite low.

The model simulation procedure was similar to that for the encoding-error model (model
1). However, instead of using individual encoding functions for each participant, we applied the
new encoding functions to group averages. Thus, all participants were modeled with the same

encoding function, using the overall mean standard deviations from the reproduction data.
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Because the new encoding functions predict fairly accurate encoding of the outbound
path, the predicted performance should also be fairly accurate. In addition, since we used the
same encoding function for each participant, the predicted errors were very similar for all
participants (Figures 11d and 12d). Actual path length errors were correlated with predicted path
length errors (#(76) = 0.3910, p <0.001), with y = 0.049x + 0.78 describing the relationship
(Figure 13d, Table 1). Actual turn angle errors were also correlated with predicted turn angle
errors (7(76) = 0.4355, p < 0.001), with y = 0.082x + 3.2 describing the relationship. The
correlation coefficient for path length errors was not significantly different from model 1 (Z =
0.69, p = .490), while those for the turn angle errors were significantly different from model 1 (Z
=-4.28, p <0.001). Although the correlation coefficient for angle is an improvement compared
to model 1, the slopes for both turn angle and path length were nearly 0.

We also analyzed this encoding function using the overall average participant data by
correlating the average turn angle and path length errors for the 6 triangles with the predicted
errors from the model. We found the distance error was described by y = 0.13x + 0.81 (r(4) =
0.6294, p = 0.181). This result shows somewhat less predictive value than the encoding-error
model. However, the results for the turn angle errors were much improved over the encoding-
error model: y = 0.39x + 2.1 (#(4) = 0.9565, p = 0.003). Overall, this model appears to predict
errors better than the original encoding error model, at least for an “average” participant.

5. Encoding-error model with independently estimated encoding functions,
including execution error. The final model added execution error to model 4, using the
execution error functions from model 2. All participants were again modeled with the same
encoding function because it was not possible to derive individual encoding functions.

The results of this model showed much improvement over model 4 (Figures 11e, 12e,
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13e). The addition of execution errors yielded y = 0.49x + 0.6 (#(76) = 0.7509, p < 0.001)
describing the relationship between actual and predicted path length errors. For turn angle errors,
the equation y = 0.36x — 1.3 (#(76) = 0.4626, p < 0.001) described the relationship between
actual and predicted errors. The correlation coefficient for path length errors was significantly
different from model 1 (Z =-2.75, p =.006), as was that for turn angle errors (Z =-4.49, p <
0.001) (refer to Table 1). This result is also a slight improvement over model 3 (execution error
only). The path length errors were described better by model 5, but the turn angle errors are
almost identical. Thus, execution error appears to account for most of the error, but the encoding

functions we derived also describe the data better than the encoding-error model.

Discussion

This experiment and accompanying simulations examined sources of error in path
integration by segregating encoding and execution errors. Participants reproduced distances and
angles in virtual hallways, and we used that reproduction data to model their performance in a
triangle completion task. We found minimal differences in path integration performance between
an open field and a hallway environment for triangle completion. Simulations revealed that the
encoding-error model of path integration was insufficient to explain errors in path integration,
but the inclusion of execution error significantly improved the model. Indeed, a model that only
included execution error—and no encoding error—predicted the empirical data substantially
better than the encoding-error model.

Triangle Completion
Errors from the triangle completion task indicate that participants tended to overturn

small angles and underturn large angles. They also compressed the range of the length of the
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homebound path. These results fit the general pattern seen in other triangle completion studies
(Kearns et al., 2002; Klatzky et al., 1990; Loomis et al., 1993; Peruch et al., 1997). Maurer &
Séguinot (Maurer & Séguinot, 1995) noted that most animals overturn on the return path, which
puts them back on the outbound path and provides a safety mechanism. In the present study, two
triangle types produced underturns, contradicting those observations.

Other accounts of the systematic turn biases observed in triangle completion have been
proposed. Maurer & Séguinot (1995) identified the ratio between the first and second legs of the
triangle as key to turn angle error. After examining several triangle completion tasks in the
literature, they found that undershoots and small overshoots were predicted when the first leg
was shorter than or equal to the second leg (ratio <1). Large overshoots were predicted when the
second leg was longer than the first leg (ratio >1). The results from the present study are not
incompatible with this proposal, but the linear relationship found by Maurer & Séguinot does not
hold. Although our triangle types with underturns had ratios less than 1, the triangle type with the
highest ratio—the 6,2,120 type with a ratio of 3—had an overshoot of less than 10°. In contrast,
the 4,2,60 type—with a ratio of 2—had the greatest magnitude of overshoot. Therefore, the leg
ratio seems to have some predictive power for turn angle errors, but it does not appear to be as
good a predictor as the magnitude of the turn response, described in the next section.

In general, the open field and hallway conditions produced similar results, with some
notable exceptions. Turn angle errors in the open field condition were generally closer to zero
than those in the hallway condition because participants tended to undershoot and overshoot
more in the hallway condition. Participants also generally walked somewhat further on the
homebound leg in the hallway condition than in the open field. Variability for all measures was

similar in both open field and hallway conditions, although the open field showed occasional
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increased variability for angular measures. While the data do not indicate that these conditions
are completely equivalent, they do suggest that the paradigms are similar enough to be able to
generalize results from the hallway to those in an open field. The correspondence of errors
between the open field and hallway conditions in triangle completion implies that the additional
optic flow information in the hallway environment may not aid path integration greatly. These
results agree with those of Kearns et al. (2002), who found similar accuracy in triangle
completion between arenas with full optic flow information and those with reduced optic flow.
The relatively small FOV (60° horizontal x 46.8° vertical) in the HMD may have also reduced the
amount of optic flow overall.
Reproduction Tasks

Distance reproduction errors show that participants compressed the response space,
generally overshooting short distances and undershooting long distances. These results agree
with most previous work on distance reproduction (Israél et al., 2004a; May & Klatzky, 2000;
M.-L. Mittelstaedt & Mittelstaedt, 2001; Schwartz, 1999; Sun et al., 2004). Moreover, the
average regression equation for the distance reproduction task in this study is very similar to the
encoding function used by Fujita et al. (1993). As seen in the tests of the encoding-error model
by Klatzky et al. (1999), the compression of distance seen in previous work seems to be a
regression to the mean, depending on the context (Petzschner & Glasauer, 2011; Schwartz,
1999).

Angle reproduction errors indicate that participants tended to overturn small responses—
not necessarily small encoding angles—and underturned large responses (for detailed discussion
of angle estimation, see Chrastil & Warren, 2017). As a result, it appears that the errors in angle

reproduction stemmed less from encoding the turn angle than from executing the required
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response. The compression for the response angles was not centered around the mean, as might
be expected from previous studies. Instead, participants overturned small responses by a large
margin and only underturned large responses by a small amount. Thus, instead of having the
most accurate responses being at 90° as expected for the mean value, the most accurate responses
came when participants had to turn 120° to 135°, leaving a 60°—45° angle internal angle.

These angle reproduction errors yield a striking result when examined in light of the turn
angle errors from the triangle completion task. In triangle completion, the two most accurate
triangle types (triangle types 4,6,60 and 6,2,120; compare results shown in Fig. 8b with the
patterns seen in Fig. 10b), called for homebound turns of 139.11° and 133.90°, respectively,
which fall within or near this accurate range. Likewise, the errors for the 6,4,90 triangle type
should be fairly small; the data agree with this prediction. The 4,2,60 triangle type calls for a 90°
turn. According to the angle reproduction task, 90° should be overshot by 15°-20°, which falls
within the standard error of the actual overshoot of 27°. Finally, the two triangle types for which
participants tended to turn not far enough (types 2,4,120 and 2,6,90) called for response turns of
160.89° and 161.56°, respectively. Based on the angle reproduction errors, these responses
should be underturned by about 10°, which is in line with the actual errors seen in the triangle
completion task. Thus, the turn required to make an accurate response in triangle completion
may dictate the pattern of turn angle errors. This observation is supported by the results from the
simulations indicating that execution error makes the largest contribution to the errors in path
integration.

Encoding-Error Model
Our simulations demonstrate that the encoding-error model of path integration did not

successfully describe empirical errors in triangle completion. The predicted path length and turn
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angle errors in the homebound path had a weak correlation with actual distance errors, and a
negative correlation with actual angle errors. Yet, both our average distance and angle
reproduction functions are similar to those of the encoding-error model. Thus, the source of the
differing results in these two studies must lie either in the application of these encoding
functions, or in the performance of triangle completion itself. Fujita and colleagues applied their
aggregate functions to both aggregate and individual triangle completion data. Their aggregate
data matched well, but the individual data did not match as well. The current experiment used
individual encoding functions and applied them to individual triangle completion data, with poor
results for the encoding-error model. We also used our average encoding functions to predict an
“average” participant’s performance. The results of those simulations produced high correlations
for distance errors, but still yielded negative correlations for angle errors. Thus, when simulating
both individual participant performance and overall average performance, the encoding-error
model did not capture the errors observed in triangle completion.

In addition to poor simulation results, the experimental data contradict the encoding-error
model in other ways. Violations of either the first assumption (satisfaction of Euclidean axioms)
or the fourth assumption (no integration or execution error) were seen in instances in which
participants had negative turn angles (i.e. they turned > 180°) for the homebound trajectory (e.g.,
Figure 11, upper right triangle). Even if encoded poorly, no Euclidean triangle would call for
such a response. In addition, the results from the angle reproduction task violate the encoding-
error model’s assumption of no execution error: a 90° turn should be executed fairly accurately
because it lies on a reference axis, but participants overshot this turn by 15°-20°.

As noted in the introduction, other researchers have attempted to use the encoding-error

model to explain their data. These previous efforts have been mixed in their assessment. The
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original encoding-error model (Fujita et al., 1993) and subsequent positive tests (Klatzky et al.,
1999; May & Klatzky, 2000) stemmed from blind walking tasks in Loomis et al. (Loomis et al.,
1993) and used blindfolded participants. Thus, the encoding functions they found may only
apply to non-visual navigation. Even so, Klatzky et al. (1999) found inconsistencies in one of the
assumptions of the encoding-error model using a blind-walking paradigm. In purely visual tasks,
Péruch et al. (Peruch et al., 1997) successfully applied the encoding functions to triangle
completion in desktop VR, but Riecke et al. (Riecke et al., 2002) did not have the same success.
However, they used feedback during training on triangle completion, possibly influencing
performance. We used both visual and idiothetic information in the reproduction and triangle
completion tasks. Previous research suggests that both visual and idiothetic information make
similar contributions to path integration (Chrastil, Nicora, & Huang, 2019; Kearns et al., 2002;
Tcheang et al., 2011). Although our methods differed from those who used blindfolded walking,
the basic assumptions of the encoding-error model should still hold. However, our findings went
largely against this model.

The results of our simulations, although contrary to some of the assumptions of the
encoding-error model, do not completely discredit the model altogether. Evidence suggests that
encoding functions may be context-dependent and can be modified by the experience of the
navigator (Abdolvahab et al., 2015; Arthur et al., 2012; Chrastil & Warren, 2014a; Klatzky et al.,
1999; Petzschner & Glasauer, 2011; Schwartz, 1999; Turvey et al., 2009), in opposition to the
assumptions of the encoding-error model. However, in the current study, each participant had
their own encoding functions, using a range of values for leg length and turn angle experienced
in both the outbound and return paths of triangle completion. Furthermore, the size and structure

of the environment were similar for both the triangle completion and reproduction tasks. Given
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these restrictions, the assumption of a single encoding function for each person—at least for the
scale and structure of this environment—seems reasonable. Although it is not necessarily the
case that encoding plays no role in path integration, the simulation results indicate that encoding
alone cannot account for all of the systematic errors seen in path integration.

Other Models of Path Integration

Because the encoding-error model of path integration proved inadequate to describe the
errors observed during a triangle completion task, we extended and modified this model in
several ways. We then simulated path integration data for these alternative models using the
same Monte Carlo methods used to test the encoding-error model. The alternative models
showed significant improvement over the encoding-error model.

The first alternative (model 2) incorporated execution errors into the basic encoding-error
model. The addition of execution errors proved to be a significant improvement over the
encoding-error model for predicting the angular errors. Although the correlation coefficient was
not significantly better than the encoding-error model for distance errors, model 2 had the best
slope of any alternative model. This improvement was so striking that we next attempted to
explain the variance through execution errors alone. This model (model 3) also improved
predictions for angular error in the simulations compared to the encoding error model. From
these results, we determined that encoding may make a minor contribution to path integration
errors, but the majority of error was explained by execution error alone.

Although the encoding-error model showed only limited success, the approach was not
abandoned altogether. Instead, we considered the possibility that the reproduction task used to
estimate the encoding functions for this model were not appropriate. As noted earlier,

reproduction tasks confound encoding and execution errors. If the primary source of error in
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reproduction tasks stems from execution rather than encoding, as suggested by the results of the
angle tasks (Chrastil & Warren, 2017), then those encoding functions were heavily weighted
toward execution error. This could be a reason that the encoding-error model (model 1) did not
perform well. Model 4 returned to a model comprised of only encoding errors, but used encoding
functions derived from independent data (Chrastil & Warren, 2014; unpublished data), yielding
low, but not negligible, encoding error. The resulting simulations had higher correlations with
angular errors, but the slopes for both distance and angle errors were nearly 0. Thus, although the
fits appeared better, this model predicted similar errors for all triangle types. Finally, model 5
combined the encoding error model using our new encoding functions with the addition of
execution error. This model was significantly better at predicting both distance and angle errors
than the encoding-error model. These results suggest that a model which incorporates small
encoding errors and large execution errors best describes the errors in path integration.

The slopes and correlation coefficients for angular error between models 2, 3, and 5 were
very similar, suggesting that the addition of execution error was primarily responsible for the
angular component of error (Table 1, last two columns). Unlike for angular error, distance error
was affected by the encoding function used; the slopes for distance errors between models 2 and
5 differed quite a bit (.73 and .49, respectively, see Table 1). On one hand, model 2 has a slope
closer to 1, but on the other hand, the correlation effect size is stronger in model 5. In either case,
the addition of execution error is important for improving the predictive value of the model.
These results suggest that encoding error may make a much smaller contribution than execution
error, but that it is not completely negligible.

Although the encoding-error model showed only limited success, it is possible that the

encoding functions used in the encoding-error model were not appropriate for this task. As noted
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earlier, it is difficult to measure pure encoding or execution errors, and so both the encoding
functions derived from reproduction data (models 1 and 3) and the new encoding functions
derived from subtracting out production errors (models 4 and 5) could include a degree of
execution error (and vice versa for the execution functions). Under a purely encoding-error
model, reproduction tasks reflect encoding, but it is possible that encoding and execution
compensate for each other in these tasks. In that case, reproduction tasks might underestimate
both encoding and execution errors. Having two measures of execution in the angle reproduction
tasks gives us greater confidence in those functions, as does the blind walking measure of
production our distance encoding function. Our attempts at deriving new encoding functions,
which minimize the contribution of execution, are a step in the direction toward separating these
factors. However, we acknowledge that these functions are not perfect and still include both
encoding and execution errors. Methods for separating encoding and execution are still not
resolved and thus we cannot conclude with full confidence that execution error is the primary
source of error. However, our results suggest it is a major source of error. Furthermore, the
models demonstrate that encoding error alone is not sufficient to explain path integration errors.
Finally, it is important to consider other limitations of these models. First, we did not
include an explicit term for integration error—the error involved in computing the trajectory for
the homebound path—which could be substantial. At present, we have not found an appropriate
method for isolating and quantifying integration error; thus, integration error cannot be directly
added to the alternative models of path integration. Accurate encoding coupled with substantial
errors in integration could pose a problem for the idea of a metric cognitive map. Although a
metric map assumes that distances and angles can be measured accurately, it also requires

accurate integration for a global metric embedding. However, integration errors would be
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consistent with a labeled graph, which only requires roughly accurate encoding (Warren, 2019).
Second, all of the models assume that errors add linearly based on configural path
integration. It is possible that a model involving a homing vector is more appropriate to describe
path integration, although its step-wise error accumulation follows a similar pattern to that seen

in the encoding-error model. As described in the introduction, the evidence is mixed as to
whether human path integration follows a configurational or homing vector model (Fujita et al.,
1990; Mou & Zhang, 2014; Muller & Wehner, 1988), although recent behavioral and neural
evidence points to both systems being present (Chrastil et al., 2015; Chrastil, Sherrill, Hasselmo,
& Stern, 2016; He & McNamara, 2018; Wiener et al., 2011). However, there are no current
methods of predicting the individual differences observed in human path integration using a
homing vector model, whereas configurational models allow for predicting errors on an
individual basis. The dissociation between position and heading estimations with an allocentric
homing vector (Mou & Zhang, 2014; Zhang & Mou, 2017) could prove informative as a hybrid

model in the future.

Summary and Conclusions
A triangle completion task was used to test the encoding-error model of path integration.
Errors from the Open Field and Hallway version of triangle completion were similar, indicating
that findings in a hallway generalize to other environments. Participants generally underturned
large required turns and overturned small required turns, and underestimated long distances and
overestimated short distances. Angle reproduction showed that errors were not proportional to
the outbound turn angle, but instead to the required response turn. When the errors from the

distance and angle reproduction tasks were applied to simulations of the encoding-error model, it
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did not adequately describe the systematic errors seen in a triangle completion task. Analysis of
the alternative models revealed that both encoding and execution error contribute to errors in
path integration, but with execution errors playing the dominant role. These results challenge the
assumption that errors in both reproduction tasks and more complex path integration experiments
stem solely from errors in encoding. Errors in triangle completion might not arise from failing to

know where you are, but from an inability to get back home.
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