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Abstract

It is commonly believed that global patterns of motion in flocks, schools, and crowds emerge
from local interactions between individuals, through a process of self-organization. The key to
explaining such collective behavior thus lies in deciphering these local interactions. We take an
experiment-driven approach to modelling collective motion in human crowds. Previously, we
observed that a pedestrian aligns their velocity vector (speed and heading direction) with that of
a neighbor. Here we investigate the neighborhood of interaction in a crowd: which neighbors
influence a pedestrian’s behavior, how this depends on neighbor position, and how the influences
of multiple neighbors are combined. In three experiments, a participant walked in a virtual
crowd whose speed and heading were manipulated. We find that neighbor influence is linearly
combined and decreases with distance, but not with lateral position (eccentricity). We model the
neighborhood as (a) a circularly symmetric region with (b) a weighted average of neighbors, (c)
a uni-directional influence, and (d) weights that decay exponentially to zero by Sm. The model
reproduces the experimental data and predicts individual trajectories in observational data on a

human ‘swarm’. The results yield the first bottom-up model of collective crowd motion.
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Background

Striking displays of collective motion are observed in a variety of species, from flocks of
starlings and schools of herring to crowds of pedestrians in public spaces (Helbing, Buzna,
Johansson, & Werner, 2005; Vicsek & Zafeiris, 2012). Under certain conditions, groups of
individuals coordinate their speed and heading (direction of travel) to yield patterns of coherent
motion. A better understanding of the dynamics of human crowds is of particular importance
considering the incidence of casualties in stampedes and emergency evacuations (Hsieh, Ngai,
Burkle, & Hsu, 2009).

It is commonly believed that global patterns of collective behavior emerge from local
interactions between individuals in a process of self-organization (Couzin & Krause, 2003;
Haken, 1983; Sumpter, 2006). The key to explaining collective motion thus lies in
characterizing these local interactions and how they give rise to global patterns. Numerous
mathematical and computational models have been proposed within this local-to-global
framework (Sumpter, Mann, & Perna, 2012). These ‘microscopic’ models describe behavioral
‘rules’ that govern an individual’s interactions with neighbors, as well as other entities such as
goals and obstacles. In particular, they assume that an individual is influenced by multiple
neighbors in a zone of influence, or neighborhood of interaction. Once local rules are
formalized, agent-based simulations are used to test whether the model reproduces characteristic
patterns of collective motion and, ideally, to predict behavior in novel situations.

Such microscopic models have proliferated in recent years. Early models of fish schooling
led to the dominant attraction-repulsion approach (Reynolds, 1987; Schellinck & White, 2011).
This class of models is predicated on three basic rules, (a) attraction: move toward neighbors in

a far zone, (b) repulsion: move away from neighbors in a near zone, and (c) alignment: match
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the velocity (speed and heading) of neighbors in an intermediate zone." Couzin, Krause, James,
Ruxton, and Franks (2002) showed that, by adjusting parameters for the radii of alignment and
attraction zones, such a model can generate qualitatively distinct patterns, including unaligned
aggregation (shoaling), strongly aligned translational motion (schooling), and coherent rotational
motion (mills).

The self-propelled particle model (Czirék & Vicsek, 2000) assumed only a minimal
alignment rule, in which each individual adopts the mean heading direction of all neighbors
within a zone of fixed radius. This rule alone can generate coherent translational motion
(Vicsek, Czirok, Ben-Jacob, Cohen, & Shochet, 1995). Conversely, the influential social force
model (Helbing & Molnar, 1995) eschews an alignment term, such that collective motion
emerges from position-based attraction and repulsion forces. This, too, generates plausible
global patterns, but local trajectories tend to resemble particle motion more than human
locomotion (Pelechano, Allbeck, & Badler, 2007).

Recently, ‘cognitive heuristic’ or ‘vision-based’ models have been proposed (Moussaid,
Helbing, & Theraulaz, 2011; Ondrej, Pettré, Olivier, & Donikian, 2010), which employ simple
rules based on the distance or time-to-contact with objects to steer toward the goal while
avoiding collisions. Although we are sympathetic with this approach, behavioral experiments
are necessary to justify the proposed heuristics.

There is thus a plethora of theoretical models of collective motion. With recent advances in
motion tracking of bird flocks and human crowds, they are beginning to be compared against
empirical data (Ballerini et al., 2008; Helbing et al., 2005; Hildenbrandt, Carere, & Hemelrijk,

2010; Lukeman, Li, & Edelstein-Keshet, 2010; Moussaid et al., 2012). However, successfully

: ‘Alignment’ is often used to refer to the orientation of the body’s longitudinal axis, which
typically corresponds with the velocity vector.
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simulating observational data is insufficient to confirm a model, for different local rules can give
rise to the same motion patterns (Vicsek & Zafeiris, 2012; Weitz et al., 2012). To decipher the
local rules, experimental manipulation at the level of individual behavior is necessary (Gautrais
et al., 2012; Sumpter et al., 2012).

We have been pursuing such an experiment-driven, bottom-up approach, called behavioral
dynamics (Warren, 2006, Warren & Fajen, 2008), with the aim of building a pedestrian model
that can explain emergent behavior. Elementary locomotor behaviors are studied individually
and modeled with simple attractor/repeller dynamics; these models are analogous to behavioral
‘rules’ but emphasize their dynamical rather than logical form. Related experiments identify
visual control laws, incorporating the optical information that regulates each behavior. The
resulting pedestrian model has five components: (a) steering to a goal, (b) obstacle avoidance,
(c) moving target interception, (d) moving obstacle avoidance, and (e) braking to avoid collision,
analogous to a local ‘repulsion’ rule (Fajen & Warren, 2003, 2007; Warren & Fajen, 2008).
Linearly combining these components successfully predicts trajectories in more complex
environments (Bonneaud & Warren, 2014; Warren & Fajen, 2008).

To understand the basis of collective motion, we recently studied binary pedestrian
following. We found that a pedestrian p aligns with a neighbor # directly ahead (the leader) by
accelerating to match the leader’s speed (1) and heading direction (¢) (Dachner & Warren,
2014; Lemercier et al., 2012; Rio, Rhea, & Warren, 2014). These results allowed us to specify a

simple model of the alignment dynamics for binary interactions:

i, =c(fy —7p) (1)

¢p = _kSin(¢n - ¢p) ()
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where #, ¢ are linear and angular acceleration, and ¢, k are gain parameters that depend on the
leader’s distance. To explain collective motion, however, requires determining how a pedestrian
is influenced by multiple neighbors.

The present paper thus aims to characterize the neighborhood of interaction underlying
collective motion in human crowds. In particular, we ask which neighbors visually influence a
pedestrian’s behavior (i.e. are visually coupled), how the degree of influence (coupling strength)
depends on neighbor position, and how the influences of multiple neighbors are combined.

We experimentally test three hypotheses about the neighborhood of interaction. (1)
Superposition hypothesis. Most models of collective motion assume that binary interactions
between a pedestrian and each neighbor are linearly combined. That is, the response of a
pedestrian in a crowd is the combination of individual responses to each neighbor, a property
known as superposition. This hypothesis predicts that as more neighbors change direction or
speed, the pedestrian’s response should increase proportionally. (2) Distance hypothesis. Many
models assume a constant coupling strength within an alignment zone with ‘hard” boundaries
(Couzin et al., 2002; Czirok & Vicsek, 2000; Reynolds, 1987; Schellinck & White, 2011).
However, Fajen and Warren (2003) found that attraction or repulsion strength decreases
exponentially with the distance of a goal or obstacle, leading us to expect that the coupling
strength for alignment will also decay with distance. (3) Eccentricity hypothesis. There are
numerous reports of an elliptical ‘personal space’ for walking pedestrians (Fajen & Warren,
2003; Gérin-Lajoie, Richards, & McFadyen, 2005; Helbing & Molnar, 1995). This implies that,

for a given distance, coupling strength should decrease with a neighbor’s lateral position or

http://mc.manuscriptcentral.com/prsb
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eccentricity, the horizontal angle from the current heading direction.” Neighbors directly ahead
should exert the greatest influence, while the influence of those to the left and right should
decrease symmetrically to the edges of the field of view.

The results reveal that a pedestrian is strongly coupled to neighbors within a local
neighborhood, that their influence is linearly combined, consistent with the superposition
hypothesis, and that coupling strength decreases exponentially with distance out to 4-5m,
consistent with the distance hypothesis. In contrast, we find little evidence that coupling strength
depends on eccentricity within the field of view. The results enable us to specify a model of the
local neighborhood that reproduces the experimental data and predicts individual trajectories in
motion-capture data on a human ‘swarm’. We thus formulate the first bottom-up model of

collective motion in human crowds, providing a basis for realistic models of crowd dynamics.

Experiments: Walking with a virtual crowd

To probe the visual coupling between a pedestrian and their neighbors experimentally, we
created a novel paradigm in which a human participant actively walks with a virtual crowd. This
allowed us to manipulate the behavior of virtual neighbors and measure their influence on the
participant’s trajectory. To determine the alignment response, we suddenly changed (perturbed)
the heading direction or walking speed of a subset (S) of the virtual neighbors (N), and recorded
the participant’s adjustment in lateral position or walking speed.

Experiment 1 tested the superposition hypothesis by varying the number of neighbors in the

perturbed subset; Experiment 2 tested the distance hypothesis by selectively perturbing

? We assume the body midline and field of view are typically aligned with the heading direction
(see Figure 4b).
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151  neighbors in a near zone and/or a far zone; and Experiment 3 tested the eccentricity hypothesis
152 by varying the lateral position of the perturbed neighbors.

153

154 Experimental Methods

155

156  Participants

157 Separate groups of ten volunteers participated in Experiment 1 (5F, 5SM), Experiment 2 (6F,
158  4M), and Experiment 3 (6F, 4M). Participants were recruited through announcements posted on
159  the Brown University campus. None reported any visual or motor impairment.

160  Apparatus

161 The experiments were conducted in the Virtual Environment Navigation Laboratory
162  (VENLab) at Brown University. Participants walked in a 12x14m tracking area while wearing a
163  stereoscopic head-mounted display (HMD, Oculus Rift DK1, 640x800 pixels per eye, 90°H x
164  65°V field of view, 60 Hz frame rate). Head position and orientation were recorded with an
165  ultrasonic/inertial tracking system (Intersense IS-900, 60 Hz sampling rate) and used to update
166  the display (50-67ms latency).

167  Displays

168 The virtual environment consisted of a granite-textured ground plane with a green start pole
169  and a red orienting pole (3m high, 0.2m radius, 12.7m apart) and blue sky. The virtual crowd
170  was generated using 3D human models (WorldViz Complete Characters) (Figure 1a), animated
171 with a walking gait at a randomly varied phase. Thirty virtual humans were positioned on two
172 circles (radius 1.5m, 3.5m) with the participant at the center (Figure 1b) to enhance the sense of

173 immersion. Twelve of them (N=12) were experimentally manipulated, and appeared on two 90°

http://mc.manuscriptcentral.com/prsb
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arcs centered on the initial walking direction, within the typical field of view. Five of these
neighbors were placed at equal intervals on the 1.5m radius arc (near zone), and seven on the
3.5m radius arc (far zone); their positions were then subjected to Gaussian jitter in polar
coordinates (distance Ar: SD=0.15m; eccentricity A@: SD=8°). The remaining 18 were also
placed at equal intervals and similarly jittered. A different configuration was generated for each
trial; all participants received the same set of configurations, but virtual humans were randomly
assigned to the positions.

During a trial, all virtual humans accelerated from a standstill (0 m/s) to a speed of 1.3 m/s
over a period of 3s in the participant’s walking direction, following an ogive function (=0,
0=0.5 s) fit to previous data. On perturbation trials, after 2s a subset (S) of the 12 neighbors then
changed their heading direction (£10° left or right) or speed (0.3 m/s) over a period of 0.5s,
following another ogive function (u=0, 6=0.083 s).

Procedure

Participants were instructed to walk as naturally as possible, to treat the virtual pedestrians as
if they were real people, and to stay together with the crowd. On each trial, the participant
walked to the start pole and faced the orienting pole. After 2s, the poles disappeared and the
virtual crowd appeared; 1s later, a verbal command ("Begin") was played and the virtual crowd
began walking. The display continued until the participant had walked about 12m; a verbal
command (“End”) signaled the end of the trial. In each experiment, there were 8 heading trials
and 8 speed trials per condition, presented in a randomized order, with 80 trials in each 1-hour
session.

Data Processing

http://mc.manuscriptcentral.com/prsb
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196 For each trial, the time series of head position in the horizontal X-Y plane were filtered using
197  aforward and backward 4th-order low-pass Butterworth filter to reduce occasional tracker error
198  and oscillations due to the step cycle. Time series of walking speed, heading direction, and their
199 rates of change, were then computed from the filtered position data. A 1.0 Hz cutoff was used
200 for computing speed to reduce anterior-posterior oscillations on each step (Rio et al., 2014),

201  while a 0.6 Hz cutoff was used for computing heading to reduce lateral oscillations on each

202  stride (Fajen & Warren, 2003). To eliminate ‘endpoint error’, the time series were extended by
203  2s using linear extrapolation based on the last 0.5s of data for filtering only (Vint & Hinrichs,
204 1996).

205 Dependent measures were the participant’s change in heading or walking speed in response
206  to a perturbation. Change in heading was measured by computing the lateral deviation,

207  subtracting the participant’s final lateral position on a perturbation trial (1s before the end of the
208 trial) from their mean final lateral position on all control trials. Right and left turn trials were
209  then collapsed by multiplying the lateral deviation on left turns by -1. Change in speed was

210  computed by subtracting the participant’s mean final speed on a perturbation trial (1.5 to 0.5s
211 before the end of the trial) from their mean final speed on all control trials in the corresponding
212 distance condition. Slow and fast trials were collapsed by multiplying the final speed on slow
213 trials by -1. However, we noted a small asymmetry, with a greater speed change in response to
214 neighbors decelerating (for Exp. 2, S=12, M=0.31 m/s, SD=0.09) than accelerating (M=0.20 m/s,
215 SD=0.13; t(19)=3.11, p<.01) from the same initial distance; Rio et al. (2014) attributed this to
216  Euclid’s law of perspective, which produces a higher rate of optical expansion than contraction.
217  The collapsed data were analyzed using 1-Way Repeated Measures ANOVA in Exp. 1 (main

218  effect of number of perturbed neighbors) and 2-Way RM ANOVA in Exp. 2 (main effects of

http://mc.manuscriptcentral.com/prsb
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number and distance of perturbed neighbors) and Exp. 3 (main effects of eccentricity and
distance of perturbed neighbors), with generalized eta squared (1) as a measure of effect size,

in R statistical software.

Experiment 1: Number of Perturbed Neighbors

Experiment 1 tested the superposition hypothesis by manipulating the number of neighbors in
the perturbed subset (S=0,3,6,9,12), randomly varying their positions on each trial.
Superposition predicts that, as the number (or proportion) of perturbed neighbors increases, the
participant’s response should increase linearly. There were thus 5 subset conditions and a total

of 80 trials.

Results

There was a significant effect of the number of perturbed neighbors on the participants’
lateral deviation, (F(4,36) = 95.33, p < .001, n*=0.86), consistent with a linear combination of
neighbor influences (Figure 2a). Similarly, there was a significant effect of number of perturbed
neighbors on the participants’ change in speed (F(4,36) = 22.17, p < .001, n6°=0.66) (see Figure
S1 in Supplementary Material). Indeed, in both cases the mean response increased linearly with
the size of the perturbed subset (=0.99 for both heading and speed).

The results of Experiment 1 demonstrate that velocity alignment is consistent with the
superposition hypothesis. That is, the participant’s heading and speed response is a linear
combination of responses to each neighbor. Given that the total number of neighbors was
constant (N=12), the response could depend on either the absolute number or the proportion of

neighbors perturbed; subsequent research (in preparation) suggests the latter.

http://mc.manuscriptcentral.com/prsb
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Experiment 2: Distance of Perturbed Neighbors

Experiment 2 tested the distance hypothesis by perturbing neighbors in the near zone and/or
the far zone (Figure 1¢). The distance hypothesis predicts that perturbing neighbors in the near
zone should elicit a greater response from the participant than perturbing those in the far zone.
The design of Experiment 2 was thus 2 distances (~1.5m, ~3.5m) x 5 subsets (S=0,3,6,9,12),

yielding 10 conditions and a total of 160 trials.

Results

We found a significant effect of the distance of perturbed neighbors on the participants’
lateral deviation (F(1,9) = 71.57, p < .001, n¢*=0.49), consistent with the hypothesis that
neighbor influence decreases with distance (Figure 2b). Once again, there was a significant
effect of subset size on lateral deviation (F(4,36) = 244.66, p < .001, n6*=0.89), consistent with
superposition.

Because there were only 5 neighbors in the near zone and 7 in the far zone, larger subsets
actually perturbed neighbors in both zones. Thus, for a stronger test of the distance hypothesis,
we performed a sub-analysis of the smaller subsets alone (S=0,3,6, left side of Figure 2b). The
results confirmed a significantly greater response to perturbed neighbors in the near zone than
the far zone (F(1,9)=69.99, p<.001, nG2=O.68), as well as a significant effect of subset size
(F(2,18)=90.93, p<.001, nG2=0.70), and a significant interaction (F(2,18)=45.58, p<.001,
n6>=0.58).

Similarly, we found a significant effect of neighbor distance on the participants’ change in

speed (£(1,9) =22.93, p <.001, nG2=O.25), as well as a significant effect of subset size (F(4,36)

http://mc.manuscriptcentral.com/prsb
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=34.28, p <.001, n*=0.72) (Figure 2¢). A sub-analysis of the smaller subsets (S=0,3,6)
confirmed a significantly greater response to neighbors in the near zone than the far zone
(F(1,9)=60.15, p<.001, nG2=0.54), a significant effect of subset size (F(2,18)=50.67, p<.001,
nG2=O.64), and a significant interaction (F(2,18)=2.70, p<.001, nG2=O.33).

The results of Experiment 2 demonstrate that coupling strength decreases with neighbor
distance for both heading and speed, consistent with the distance hypothesis. Visually, this
decrease might be attributed to lower angular velocities due to the laws of perspective, to greater
occlusion of far neighbors, or both — a question we are currently pursuing. In sum, the local
neighborhood can be characterized by the superposition of binary interactions, with a coupling

strength that decreases with distance.

Experiment 3: Eccentricity of Perturbed Neighbors

In Experiment 3, we tested the eccentricity hypothesis by selectively perturbing neighbors in
30° horizontal sectors of the display. There were five overlapping sectors (centered on -30°, -
15°,0°, +15°, and +30°, left to right). The eccentricity hypothesis predicts that neighbors in the
central sector (0°) should elicit the greatest response, while responses to neighbors in more
peripheral sectors (15K, +£30°) should progressively decrease. We also repeated the distance
manipulation by perturbing neighbors in the near zone (M = 1.23 neighbors, SD = 0.73) or the
far zone (M = 2.18 neighbors, SD = 0.81) of a given sector. The design was thus 5 eccentricity x
2 distance conditions, plus a no-perturbation control, yielding 11 conditions and a total of 176

trials.

http://mc.manuscriptcentral.com/prsb
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Results

There was no overall effect of eccentricity on the participants’ mean lateral deviation
(F(4,36) = 1.94, p > .05, 16*=0.04; Figure 3a). We again observed a significant effect of
neighbor distance (F(1,9) = 20.19, p < .01, nG>=0.14), but there was also a significant interaction
(F(4,36) = 3.65, p < .05, n6>=0.14). A simple effects analysis revealed a significant eccentricity
effect in the Far condition (F(4,36)=3.63, p<.05, 15°=0.25), but not in the Near condition
(F(4,36)=1.22, p>.05, nG2=0.08). Moreover, the distance effect was only significant at
eccentricities of -30° and +30° (p <.01).

Similarly, we found no overall effect of eccentricity on the participants’ change in speed
(F(4,36) = 0.86, p > .05, ng°=0.04; Figure 3b). There was again a significant effect of distance
(F(1,9) = 14.15, p < .01, nG2=0.10), but no interaction (F(4,36) = 0.95, p > .05, n62=0.00);
responses were greater to near neighbors than far neighbors at all eccentricities. Simple effects
tests did not reveal an eccentricity effect in either the near or the far zone (both p>.05, n5°=0.04).

The results do not provide convincing evidence for the eccentricity hypothesis. The only
consistent effect occurs with heading perturbations of far neighbors at larger eccentricities (red
curve in Figure 3a). We suggest this effect may be due to the laws of perspective, similar to one
we observed in binary following (Dachner & Warren, 2017). If a neighbor straight ahead (0°
eccentricity) turns 10° left or right, they drift laterally in the field of view with a given angular
velocity; a neighbor at a 30° eccentricity would have a smaller mean angular velocity, which
would decrease even further with distance. The reduced response in the Far condition may thus
be atributable to reduced optical motion. In contrast, speed perturbations produce optical

expansion/contraction that appears to be similar over this range of eccentricities, although it too
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Page 14 of 35



Page 15 of 35 Submitted to Proceedings of the Royal Society B: For Review Only

Rio, Dachner, & Warren 15

312 decreases with distance (Figure 3b). These visual effects might explain the pattern of results in
313  Experiment 3.

314 Taken together, the experimental findings are consistent with the superposition of multiple
315  neighbors, with a coupling strength that decreases with distance but not eccentricity.

316
317 Observational Data on a Human ‘Swarm’

318

319 To compare these experimental results with observations of crowd behavior, we collected
320 motion capture data on collective motion in a human ‘swarm’ scenario. We recorded three

321  groups of participants walking together for periods of 2 min. To investigate the distance and
322 eccentricity hypotheses, we computed pairwise statistics between a central participant and each
323 neighbor as a function of their relative spatial positions.

324

325 Methods

326

327  Participants

328 One group of 16 participants (6F, 10M) and two groups of 20 participants (10F, 10M) were
329  tested in separate sessions as part of a larger study.

330 Apparatus

331 The groups were tested in a large hall with a 14 x 20 m tracking area marked on the floor
332 with red tape. Each participant wore a bicycle helmet with a unique constellation of 5 reflective
333 markers on 30-40 cm stalks. Head position was recorded at 60 Hz with a 16-camera infrared

334  motion capture system (Qualisys Oqus).

http://mc.manuscriptcentral.com/prsb
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Procedure

Participants were instructed to walk about the tracking area at a normal speed, veering
randomly left and right, while staying together as a group. They began each trial in random
positions in a 7x7m start box marked on the floor (~2m interpersonal distance (IPD)) or a 4x4m
start box (~Im IPD). At a verbal “go” signal, they started walking for 2 min, until a “stop”
signal.
Data processing

We analyzed three 2m IPD trials in detail, a total of 6 min of data. 3D head positions were
successfully recovered on 88% of frames, and the time series for each participant were processed
as before. Walking speed did not vary appreciably, and was not analyzed further. To measure
local coordination, we computed the absolute value of the difference in heading direction
between the ‘central participant’ nearest the center of the swarm and each neighbor on each
frame, thereby minimizing edge effects (Cavagna et al., 2010). To estimate response times,
windowed cross-correlations (1s traveling window) and optimal delays between the central
participant and each neighbor were also computed. These measurements were averaged across
all frames and plotted in heat maps with the central participant at the origin (0,0) heading
upward; each cell thus represents the mean statistic for all participants occupying that relative

spatial location in 6 min of data.

Results

A heat map of mean absolute heading difference appears in Figure 4a. It is immediately

apparent that the neighborhood is circularly symmetric, not elliptical. The mean heading
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difference is quite small, 15-25°, within a 2m radius, but increases to 30-40° at a radius of 3-4m.
There is thus close coordination with near neighbors that decreases with distance.

To estimate the decay in coupling strength with distance, we computed the mean heading
difference at each radius in the heat map, scaled it (range O to 1) and subtracted it from 1, and
plotted the result as a function of radial distance (Figure 4c). The coupling strength w; to each

neighbor decays exponentially with distance, closely fit by the equation

a
Wi = e(udi _l_ a (3)

where d; is the distance of neighbor i, @=1.3 is the decay rate, and ¢=9.2 is a constant (> = 0.98).
Given that the human field of view is about 180°, however, a pedestrian is visually coupled
only to neighbors in front of them. This uni-directional coupling is apparent from the heat map
of mean time delay for the same 6 min of data (Figure 4b). Time delays in the upper half of the
map are positive, indicating that the central participant turned after the neighbors ahead, whereas
those in the lower half are negative, indicating that neighbors behind turned after the central
participant. Mean time delays are about 1s within a 1.5-2m radius, increasing to 1-3s at 3-4m.
For binary following, Dachner & Warren (2014) reported mean delays of 0.98s to a neighbor
who turns 2m ahead, and 1.33s to a neighbor 4m ahead. This suggests that the central
participant’s response to some (possibly occluded) far neighbors may be mediated by an

intervening neighbor, yielding a chain of response times.

Modelling Interactions in a Local Neighborhood

The present findings enable us to formulate a model of the local neighborhood (Figure 5a).

Specifically, given superposition, we propose that a pedestrian’s linear (or angular) acceleration
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is a weighted average of the difference between their current speed (heading) and that of each
neighbor. By substituting the alignment dynamics (Equations 1-2) into this neighborhood model,

we can derive the local interactions that generate collective motion,

iy == > wilfi = %) @
i=1
) ke
By ==~ wisin(¢: - ¢) (5)
i=1

where n denotes the number of neighbors in the pedestrian’s neighborhood (within a S5m radius,
+90° from current heading). The weight w; has a value of 1 at Om and decays exponentially with
the neighbor’s radial distance, in accordance with Equation 3. To estimate the gain parameters c,
k at a theoretical distance of Om, we fit our previous data on binary following separately for
distances of 1, 2, and 4m, and linearly extrapolated to Om, obtaining ¢=3.61 and k=3.15.

To test this ‘soft radius’ model, we first determined how closely it reproduces the data from
Experiments 1 and 2, and then how well it predicts individual trajectories in the more variable

human swarm, with fixed parameters.

Simulation Methods

Each trial from Experiments 1 and 2 was simulated by taking the virtual neighbors’ distance
and speed (heading) as input at each time step, and computing a time series of the model’s speed
(heading) in accordance with Equation 4 (Equation 5). To reduce the effects of gait oscillations
and tracker error on individual trials, a mean time series was computed for each participant in
each condition and compared with the mean model time series in the corresponding condition,

using the correlation coefficient (Pearson’s ) and the root of the mean squared error (RMSE).
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The same model was used to simulate individual trajectories in the human swarm data. First,
we identified 10s segments in which a participant had >7 neighbors in their neighborhood who
were continuously tracked at speeds >0.2 m/s; this yielded 14 segments of 2m IPD data and 17
segments of 1m IPD data. At the start of each segment, the model was initialized with the
participant’s position, speed, and heading. The distance, speed, and heading of every neighbor
was treated as input, and the model computed the participant’s speed, heading, and change in
position on each time step. We computed the correlation and RMSE between the individual
model and human time series, and the mean position error (distance between model and human),

over the 10s segment.

Results

The correlations between the model and human in Experiment 1 were strong, with means of
=0.88 (RMSE=0.05 m/s) for speed and r=0.81 (RMSE=1.94") for heading in the perturbation
conditions. In Experiment 2, the mean correlations were even higher, with r=0.90 (RMSE=0.06
m/s) for speed and r=0.88 (RMSE=2.06") for heading. The model thus closely reproduces the
temporal evolution of a pedestrian’s response to their neighbors (Figure S2, S3). Moreover,
model predictions of the final stabilized heading and speed (mean of last 2s in time series) were
virtually identical to the mean human data, as shown in Figures 5b and 5c for Experiment 2. The
predicted value is contained within the 95% confidence interval for the human data, indicating
that the data do not differ significantly from the model.

The model also predicts individual trajectories in the human swarm. A sample trajectory

from a 10s segment of swarm data appears in Figure 6 (also Figure S4). For the 2m IPD, the
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mean correlations between model and human time series were 7=0.90 (RMSE=31.16") for
heading, and 7=0.65 (RMSE=0.19 m/s) for speed’. Position error accumulated from a mean of
0.27m during the first 3s to a mean of 0.93m for the 10s segments. The model also generalized
to the Im IPD, with mean correlations of »=0.93 (RMSE=27.56") for heading and »=0.60
(RMSE=0.16 m/s) for speed; mean position error increased from 0.21m during the first 3s to
0.70m over 10s.

In sum, the neighborhood model accounts for the coordination of heading and speed between

individuals in a crowd, and consequently the emergence of collective motion.

Discussion

The experimental results demonstrate that a pedestrian’s interactions with multiple neighbors
are linearly combined, in accordance with superposition. At the same time, neighbor influence
decreases with distance, going to zero by Sm. On the other hand, influence does not appear to
depend on eccentricity within the field of view. In contrast to prey species with nearly
panoramic vision, yielding bi-directionally coupled flocks and schools, humans typically have a
180° field of view and are uni-directionally coupled to neighbors ahead. This has implications
for the causal network in human crowds.

These findings led us to model the local neighborhood as a weighted average of neighbors
(Equations 4, 5), in which the weights decrease exponentially with radial distance (Equation 3).

Together with our previous results on alignment dynamics (Equations 1 and 2), this enabled us to

3 These values reflect comparisons between individual time series, rather than mean time series,
yielding larger RMSEs due to gait oscillations and tracker error. Speed correlations are lower
because there was little variation in speed in the swarm.
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simulate the local interactions underlying collective crowd motion. The model not only
reproduces participant responses in a virtual crowd, but generalizes to individual trajectories in a
human swarm. Despite the fact that swarm motion was more variable and some neighbor data
were missing, leading to an accumulation of position error, the heading correlation was highly
robust.

The model neighborhood decays exponentially with radial distance, creating a ‘soft’ radius.
This neighborhood structure contrasts with previous theoretical models that presume an
alignment zone with a constant coupling strength and a hard radius. Our empirical model agrees
with the theoretical equation of Cucker and Smale (2007), who showed that a weighted-average
model with a sufficiently gradual decay converges to collective motion.

A number of further questions remain. First, the present data do not resolve the issue of
whether the neighborhood is defined by metric distance (e.g. meters), or topological distance
(number of neighbors) as suggested by some analyses of bird flocks (Ballerini et al., 2008; but
see Evangelista, Ray, Raja, & Hedrick, 2017). Second, although an ‘attraction’ rule appears to
play a role in flocking (Hildenbrandt et al., 2010; Lukeman et al., 2010), an analogue for moving
crowds has not yet been investigated. Finally, at present, physical distance is a proxy for visual
information that depends on perspective or occlusion; we are currently incorporating optical

variables into the model. We plan to address these questions in future reports.

Conclusions

We conclude that the local neighborhood of interaction in human crowds is circularly

symmetric, with a uni-directional coupling to multiple neighbors within +90° of the current
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heading. Their influences are superposed as a weighted average, where the weight decays
exponentially with distance. Combining this ‘soft’ neighborhood with the alignment dynamics
yields the first experiment-driven, bottom-up model of collective motion in human crowds. This
behavioral dynamics model accounts for individual trajectories in virtual and real crowds, and
generates collective motion, consistent with principles of self-organization. It is thus possible to

experimentally decipher the local interactions that underlie collective crowd behavior.
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Figure Captions

Figure 1. (a) Virtual crowd display from participant’s view, and (b) an aerial view. (c) Diagram

of a heading perturbation with S=3.

Figure 2. (a) Experiment 1: Heading perturbations. Mean absolute lateral deviation as a function
of the number of neighbors in the perturbed subset S. (b) Experiment 2: Heading perturbations.
Mean absolute lateral deviation as a function of the number and distance of perturbed neighbors.
(c) Experiment 2: Speed perturbations. Mean absolute change in speed as a function of same.

Error bars=SE of mean.

Figure 3. Results of Experiment 3: (a) Heading perturbations. Mean absolute lateral deviation as
a function of the eccentricity and distance of perturbed neighbors. (b) Speed perturbations. Mean

absolute change in speed as a function of same. Error bars=SE of mean.

Figure 4. Mean results for 6 min of human ‘swarm’ data. (a) Heat map of absolute heading
difference between each neighbor and central participant (cell=0.5x0.5m). (b) Heat map of time
delay, neighbor-central participant (cell=0.33x0.33m). (c) Coupling strength (scaled heading

difference) as a function of radial distance, from data in a; curve is exponential fit (**=0.98).

Figure 5. (a) Diagram of neighborhood model. Simulation Experiment 2: (b) Heading
perturbations. Mean absolute final heading as a function of number and distance of perturbed
neighbors. (c) Speed perturbations. Mean absolute final speed as a function of same. Shaded

regions = 95% CI for human data.
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Figure 6. Simulation of sample segment from the human ‘swarm’ (IPD=1m). (a) Path in space,
mean position error=0.13m (dots at 1s intervals). (b) Time series of speed, »=0.95, RMSE=0.10
m/s. (¢) Time series of heading, »=0.99, RMSE=11.84". Participant = solid red curve, model =

dashed blue curve, neighbors = black curves; O=starting positions, X=final positions.
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Figure 1. (a) Virtual crowd display from participant’s view, and (b) an aerial view. (c) Diagram of a heading
perturbation with S=3.
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Figure 2. (a) Experiment 1: Heading perturbations. Mean absolute lateral deviation as a function of the
number of neighbors in the perturbed subset S. (b) Experiment 2: Heading perturbations. Mean absolute
lateral deviation as a function of the number and distance of perturbed neighbors. (c) Experiment 2: Speed

perturbations. Mean absolute change in speed as a function of same. Error bars=SE of mean.
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Figure S2. Simulations of heading perturbations and speed perturbations in Experiment 1. Top:
Mean time series of (a) heading and (b) speed for human data (solid curves) and model (dashed
curves) at each subset size S (number of perturbed neighbors, colored curves). Bottom: Mean
absolute final (c¢) heading and (d) speed as a function of the number of perturbed neighbors S.
Shaded regions = 95% CI for human data.
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Figure S3. Mean time series for human data (solid curves) and model (dashed curves) in
Experiment 2. Top: Mean time series of heading for each subset size S (number of perturbed
neighbors, colored curves) in (a) the Near condition (~1.5m) and (b) the Far condition (~3.5m).
Bottom: Mean time series of walking speed in (c) the Near condition and (b) the Far condition.
Note that smaller subsets S=0,3,6 (green, cyan, black) illustrate the effect of distance, as nearly
all were in the near zone (5 neighbors) or the far zone (7 neighbors).



Simulations of Individual Trajectories in a Human ‘Swarm’ (Rio, Dachner, & Warren)
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Figure S4. Simulations of sample 10s segments from the human ‘swarm’ data. (a) IPD=2m,
mean position error=0.51m, speed =.76 (RMSE=0.14 m/s), heading =0.94, (RMSE=21.12°).
(b) IPD=1m, mean position error=0.32m, speed »=0.24 (RMSE=0.07 m/s), heading =0.99
(RMSE=9.3%). (c) IPD=2m, mean position error=0.60m, speed »=0.80 (RMSE=0.18m/s),
heading 7=0.94 (RMSE=10.01°). (d) IPD=2m, mean distance error=0.29m, speed =0.33
(RMSE-0.11 m/s), heading r=0.86 (RMSE=7.14"). Participant = solid red curve, model =
dashed blue curve, neighbors = black curves; O=starting positions, X=final positions.
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