
 1 

 2 

 3 

Local interactions underlying collective motion  4 

in human crowds 5 

 6 

 7 

Kevin W. Rio 8 

Gregory C. Dachner 9 

William H. Warren* 10 

 11 

 12 

Department of Cognitive, Linguistic and Psychological Sciences 13 

Brown University 14 

Providence, RI, 02912, USA 15 

 16 

*Corresponding author:  Bill_Warren@brown.edu  17 

+1 401 863 3980 (office) 18 

+1 401 863 2255 (fax) 19 

 20 

 21 

RUNNING HEAD:  Collective crowd motion  22 

Page 1 of 35

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



Rio, Dachner, & Warren   2

Abstract 23 

It is commonly believed that global patterns of motion in flocks, schools, and crowds emerge 24 

from local interactions between individuals, through a process of self-organization.  The key to 25 

explaining such collective behavior thus lies in deciphering these local interactions.  We take an 26 

experiment-driven approach to modelling collective motion in human crowds.  Previously, we 27 

observed that a pedestrian aligns their velocity vector (speed and heading direction) with that of 28 

a neighbor.  Here we investigate the neighborhood of interaction in a crowd:  which neighbors 29 

influence a pedestrian’s behavior, how this depends on neighbor position, and how the influences 30 

of multiple neighbors are combined.  In three experiments, a participant walked in a virtual 31 

crowd whose speed and heading were manipulated.  We find that neighbor influence is linearly 32 

combined and decreases with distance, but not with lateral position (eccentricity). We model the 33 

neighborhood as (a) a circularly symmetric region with (b) a weighted average of neighbors, (c) 34 

a uni-directional influence, and (d) weights that decay exponentially to zero by 5m.  The model 35 

reproduces the experimental data and predicts individual trajectories in observational data on a 36 

human ‘swarm’.  The results yield the first bottom-up model of collective crowd motion. 37 

 38 

Keywords 39 

Collective behavior, crowd dynamics, pedestrian dynamics, flocking, agent-based model, self-40 

organization 41 
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Background 42 

Striking displays of collective motion are observed in a variety of species, from flocks of 43 

starlings and schools of herring to crowds of pedestrians in public spaces (Helbing, Buzna, 44 

Johansson, & Werner, 2005; Vicsek & Zafeiris, 2012).  Under certain conditions, groups of 45 

individuals coordinate their speed and heading (direction of travel) to yield patterns of coherent 46 

motion. A better understanding of the dynamics of human crowds is of particular importance 47 

considering the incidence of casualties in stampedes and emergency evacuations (Hsieh, Ngai, 48 

Burkle, & Hsu, 2009). 49 

It is commonly believed that global patterns of collective behavior emerge from local 50 

interactions between individuals in a process of self-organization (Couzin & Krause, 2003; 51 

Haken, 1983; Sumpter, 2006).  The key to explaining collective motion thus lies in 52 

characterizing these local interactions and how they give rise to global patterns.  Numerous 53 

mathematical and computational models have been proposed within this local-to-global 54 

framework (Sumpter, Mann, & Perna, 2012).  These ‘microscopic’ models describe behavioral 55 

‘rules’ that govern an individual’s interactions with neighbors, as well as other entities such as 56 

goals and obstacles.  In particular, they assume that an individual is influenced by multiple 57 

neighbors in a zone of influence, or neighborhood of interaction.  Once local rules are 58 

formalized, agent-based simulations are used to test whether the model reproduces characteristic 59 

patterns of collective motion and, ideally, to predict behavior in novel situations. 60 

Such microscopic models have proliferated in recent years.  Early models of fish schooling 61 

led to the dominant attraction-repulsion approach (Reynolds, 1987; Schellinck & White, 2011).  62 

This class of models is predicated on three basic rules, (a) attraction: move toward neighbors in 63 

a far zone, (b) repulsion: move away from neighbors in a near zone, and (c) alignment: match 64 
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the velocity (speed and heading) of neighbors in an intermediate zone.
1
  Couzin, Krause, James, 65 

Ruxton, and Franks (2002) showed that, by adjusting parameters for the radii of alignment and 66 

attraction zones, such a model can generate qualitatively distinct patterns, including unaligned 67 

aggregation (shoaling), strongly aligned translational motion (schooling), and coherent rotational 68 

motion (mills).   69 

The self-propelled particle model (Czirók & Vicsek, 2000) assumed only a minimal 70 

alignment rule, in which each individual adopts the mean heading direction of all neighbors 71 

within a zone of fixed radius.  This rule alone can generate coherent translational motion 72 

(Vicsek, Czirók, Ben-Jacob, Cohen, & Shochet, 1995).  Conversely, the influential social force 73 

model (Helbing & Molnár, 1995) eschews an alignment term, such that collective motion 74 

emerges from position-based attraction and repulsion forces.  This, too, generates plausible 75 

global patterns, but local trajectories tend to resemble particle motion more than human 76 

locomotion (Pelechano, Allbeck, & Badler, 2007).  77 

Recently, ‘cognitive heuristic’ or ‘vision-based’ models have been proposed (Moussaïd, 78 

Helbing, & Theraulaz, 2011; Ondrej, Pettré, Olivier, & Donikian, 2010), which employ simple 79 

rules based on the distance or time-to-contact with objects to steer toward the goal while 80 

avoiding collisions.  Although we are sympathetic with this approach, behavioral experiments 81 

are necessary to justify the proposed heuristics. 82 

There is thus a plethora of theoretical models of collective motion.  With recent advances in 83 

motion tracking of bird flocks and human crowds, they are beginning to be compared against 84 

empirical data (Ballerini et al., 2008; Helbing et al., 2005; Hildenbrandt, Carere, & Hemelrijk, 85 

2010; Lukeman, Li, & Edelstein-Keshet, 2010; Moussaïd et al., 2012).  However, successfully 86 

                                                           
1
 ‘Alignment’ is often used to refer to the orientation of the body’s longitudinal axis, which 

typically corresponds with the velocity vector. 

Page 4 of 35

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



Rio, Dachner, & Warren   5

simulating observational data is insufficient to confirm a model, for different local rules can give 87 

rise to the same motion patterns (Vicsek & Zafeiris, 2012; Weitz et al., 2012).  To decipher the 88 

local rules, experimental manipulation at the level of individual behavior is necessary (Gautrais 89 

et al., 2012; Sumpter et al., 2012).   90 

We have been pursuing such an experiment-driven, bottom-up approach, called behavioral 91 

dynamics (Warren, 2006; Warren & Fajen, 2008), with the aim of building a pedestrian model 92 

that can explain emergent behavior.  Elementary locomotor behaviors are studied individually 93 

and modeled with simple attractor/repeller dynamics; these models are analogous to behavioral 94 

‘rules’ but emphasize their dynamical rather than logical form. Related experiments identify 95 

visual control laws, incorporating the optical information that regulates each behavior. The 96 

resulting pedestrian model has five components:  (a) steering to a goal, (b) obstacle avoidance, 97 

(c) moving target interception, (d) moving obstacle avoidance, and (e) braking to avoid collision, 98 

analogous to a local ‘repulsion’ rule (Fajen & Warren, 2003, 2007; Warren & Fajen, 2008).  99 

Linearly combining these components successfully predicts trajectories in more complex 100 

environments (Bonneaud & Warren, 2014; Warren & Fajen, 2008). 101 

To understand the basis of collective motion, we recently studied binary pedestrian 102 

following.  We found that a pedestrian p aligns with a neighbor n directly ahead (the leader) by 103 

accelerating to match the leader’s speed (��) and heading direction (�) (Dachner & Warren, 104 

2014; Lemercier et al., 2012; Rio, Rhea, & Warren, 2014). These results allowed us to specify a 105 

simple model of the alignment dynamics for binary interactions:   106 

 ��� = 	
��� − ���
 (1) 107 

 ��� = −����
�� − ��
 (2) 108 
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where	�� , ��  are linear and angular acceleration, and c, k are gain parameters that depend on the 109 

leader’s distance.  To explain collective motion, however, requires determining how a pedestrian 110 

is influenced by multiple neighbors.  111 

The present paper thus aims to characterize the neighborhood of interaction underlying 112 

collective motion in human crowds.  In particular, we ask which neighbors visually influence a 113 

pedestrian’s behavior (i.e. are visually coupled), how the degree of influence (coupling strength) 114 

depends on neighbor position, and how the influences of multiple neighbors are combined.  115 

We experimentally test three hypotheses about the neighborhood of interaction.  (1) 116 

Superposition hypothesis. Most models of collective motion assume that binary interactions 117 

between a pedestrian and each neighbor are linearly combined. That is, the response of a 118 

pedestrian in a crowd is the combination of individual responses to each neighbor, a property 119 

known as superposition.  This hypothesis predicts that as more neighbors change direction or 120 

speed, the pedestrian’s response should increase proportionally.  (2) Distance hypothesis.  Many 121 

models assume a constant coupling strength within an alignment zone with ‘hard’ boundaries 122 

(Couzin et al., 2002; Czirók & Vicsek, 2000; Reynolds, 1987; Schellinck & White, 2011).  123 

However, Fajen and Warren (2003) found that attraction or repulsion strength decreases 124 

exponentially with the distance of a goal or obstacle, leading us to expect that the coupling 125 

strength for alignment will also decay with distance.  (3) Eccentricity hypothesis.  There are 126 

numerous reports of an elliptical ‘personal space’ for walking pedestrians (Fajen & Warren, 127 

2003; Gérin-Lajoie, Richards, & McFadyen, 2005; Helbing & Molnár, 1995).  This implies that, 128 

for a given distance, coupling strength should decrease with a neighbor’s lateral position or 129 
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eccentricity, the horizontal angle from the current heading direction.
2
 Neighbors directly ahead 130 

should exert the greatest influence, while the influence of those to the left and right should 131 

decrease symmetrically to the edges of the field of view. 132 

The results reveal that a pedestrian is strongly coupled to neighbors within a local 133 

neighborhood, that their influence is linearly combined, consistent with the superposition 134 

hypothesis, and that coupling strength decreases exponentially with distance out to 4-5m, 135 

consistent with the distance hypothesis.  In contrast, we find little evidence that coupling strength 136 

depends on eccentricity within the field of view. The results enable us to specify a model of the 137 

local neighborhood that reproduces the experimental data and predicts individual trajectories in 138 

motion-capture data on a human ‘swarm’.  We thus formulate the first bottom-up model of 139 

collective motion in human crowds, providing a basis for realistic models of crowd dynamics. 140 

 141 

Experiments:  Walking with a virtual crowd 142 

To probe the visual coupling between a pedestrian and their neighbors experimentally, we 143 

created a novel paradigm in which a human participant actively walks with a virtual crowd.  This 144 

allowed us to manipulate the behavior of virtual neighbors and measure their influence on the 145 

participant’s trajectory.  To determine the alignment response, we suddenly changed (perturbed) 146 

the heading direction or walking speed of a subset (S) of the virtual neighbors (N), and recorded 147 

the participant’s adjustment in lateral position or walking speed.   148 

Experiment 1 tested the superposition hypothesis by varying the number of neighbors in the 149 

perturbed subset;  Experiment 2 tested the distance hypothesis by selectively perturbing 150 

                                                           
2
 We assume the body midline and field of view are typically aligned with the heading direction 

(see Figure 4b). 
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neighbors in a near zone and/or a far zone; and Experiment 3 tested the eccentricity hypothesis 151 

by varying the lateral position of the perturbed neighbors. 152 

 153 

Experimental Methods 154 

 155 

Participants  156 

Separate groups of ten volunteers participated in Experiment 1 (5F, 5M), Experiment 2 (6F, 157 

4M), and Experiment 3 (6F, 4M). Participants were recruited through announcements posted on 158 

the Brown University campus. None reported any visual or motor impairment. 159 

Apparatus 160 

The experiments were conducted in the Virtual Environment Navigation Laboratory 161 

(VENLab) at Brown University. Participants walked in a 12x14m tracking area while wearing a 162 

stereoscopic head-mounted display (HMD, Oculus Rift DK1, 640x800 pixels per eye, 90˚H x 163 

65˚V field of view, 60 Hz frame rate). Head position and orientation were recorded with an 164 

ultrasonic/inertial tracking system (Intersense IS-900, 60 Hz sampling rate) and used to update 165 

the display (50-67ms latency).  166 

Displays 167 

The virtual environment consisted of a granite-textured ground plane with a green start pole 168 

and a red orienting pole (3m high, 0.2m radius, 12.7m apart) and blue sky.  The virtual crowd 169 

was generated using 3D human models (WorldViz Complete Characters) (Figure 1a), animated 170 

with a walking gait at a randomly varied phase.  Thirty virtual humans were positioned on two 171 

circles (radius 1.5m, 3.5m) with the participant at the center (Figure 1b) to enhance the sense of 172 

immersion.  Twelve of them (N=12) were experimentally manipulated, and appeared on two 90˚ 173 
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arcs centered on the initial walking direction, within the typical field of view.  Five of these 174 

neighbors were placed at equal intervals on the 1.5m radius arc (near zone), and seven on the 175 

3.5m radius arc (far zone); their positions were then subjected to Gaussian jitter in polar 176 

coordinates (distance ∆r: SD=0.15m; eccentricity ∆θ: SD=8°).  The remaining 18 were also 177 

placed at equal intervals and similarly jittered. A different configuration was generated for each 178 

trial; all participants received the same set of configurations, but virtual humans were randomly 179 

assigned to the positions. 180 

During a trial, all virtual humans accelerated from a standstill (0 m/s) to a speed of 1.3 m/s 181 

over a period of 3s in the participant’s walking direction, following an ogive function (µ=0, 182 

σ=0.5 s) fit to previous data.  On perturbation trials, after 2s a subset (S) of the 12 neighbors then 183 

changed their heading direction (±10˚ left or right) or speed (±0.3 m/s) over a period of 0.5s, 184 

following another ogive function (µ=0, σ=0.083 s).  185 

Procedure 186 

Participants were instructed to walk as naturally as possible, to treat the virtual pedestrians as 187 

if they were real people, and to stay together with the crowd. On each trial, the participant 188 

walked to the start pole and faced the orienting pole. After 2s, the poles disappeared and the 189 

virtual crowd appeared; 1s later, a verbal command ("Begin") was played and the virtual crowd 190 

began walking. The display continued until the participant had walked about 12m; a verbal 191 

command (“End”) signaled the end of the trial.  In each experiment, there were 8 heading trials 192 

and 8 speed trials per condition, presented in a randomized order, with 80 trials in each 1-hour 193 

session. 194 

Data Processing 195 
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For each trial, the time series of head position in the horizontal X-Y plane were filtered using 196 

a forward and backward 4th-order low-pass Butterworth filter to reduce occasional tracker error 197 

and oscillations due to the step cycle.  Time series of walking speed, heading direction, and their 198 

rates of change, were then computed from the filtered position data.  A 1.0 Hz cutoff was used 199 

for computing speed to reduce anterior-posterior oscillations on each step (Rio et al., 2014), 200 

while a 0.6 Hz cutoff was used for computing heading to reduce lateral oscillations on each 201 

stride (Fajen & Warren, 2003). To eliminate ‘endpoint error’, the time series were extended by 202 

2s using linear extrapolation based on the last 0.5s of data for filtering only (Vint & Hinrichs, 203 

1996).  204 

Dependent measures were the participant’s change in heading or walking speed in response 205 

to a perturbation. Change in heading was measured by computing the lateral deviation, 206 

subtracting the participant’s final lateral position on a perturbation trial (1s before the end of the 207 

trial) from their mean final lateral position on all control trials.  Right and left turn trials were 208 

then collapsed by multiplying the lateral deviation on left turns by -1.  Change in speed was 209 

computed by subtracting the participant’s mean final speed on a perturbation trial (1.5 to 0.5s 210 

before the end of the trial) from their mean final speed on all control trials in the corresponding 211 

distance condition.  Slow and fast trials were collapsed by multiplying the final speed on slow 212 

trials by -1.  However, we noted a small asymmetry, with a greater speed change in response to 213 

neighbors decelerating (for Exp. 2, S=12, M=0.31 m/s, SD=0.09) than accelerating (M=0.20 m/s, 214 

SD=0.13; t(19)=3.11, p<.01) from the same initial distance;  Rio et al. (2014) attributed this to 215 

Euclid’s law of perspective, which produces a higher rate of optical expansion than contraction.  216 

The collapsed data were analyzed using 1-Way Repeated Measures ANOVA in Exp. 1 (main 217 

effect of number of perturbed neighbors) and 2-Way RM ANOVA in Exp. 2 (main effects of 218 
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number and distance of perturbed neighbors) and Exp. 3 (main effects of eccentricity and 219 

distance of perturbed neighbors), with generalized eta squared (ηG
2
) as a measure of effect size, 220 

in R statistical software. 221 

 222 

Experiment 1:  Number of Perturbed Neighbors 223 

 224 

Experiment 1 tested the superposition hypothesis by manipulating the number of neighbors in 225 

the perturbed subset (S=0,3,6,9,12), randomly varying their positions on each trial.  226 

Superposition predicts that, as the number (or proportion) of perturbed neighbors increases, the 227 

participant’s response should increase linearly.  There were thus 5 subset conditions and a total 228 

of 80 trials. 229 

 230 

Results 231 

There was a significant effect of the number of perturbed neighbors on the participants’ 232 

lateral deviation, (F(4,36) = 95.33, p < .001, ηG
2
=0.86), consistent with a linear combination of 233 

neighbor influences (Figure 2a).  Similarly, there was a significant effect of number of perturbed 234 

neighbors on the participants’ change in speed (F(4,36) = 22.17, p < .001, ηG
2
=0.66) (see Figure 235 

S1 in Supplementary Material).  Indeed, in both cases the mean response increased linearly with 236 

the size of the perturbed subset (r=0.99 for both heading and speed). 237 

The results of Experiment 1 demonstrate that velocity alignment is consistent with the 238 

superposition hypothesis.  That is, the participant’s heading and speed response is a linear 239 

combination of responses to each neighbor.  Given that the total number of neighbors was 240 

constant (N=12), the response could depend on either the absolute number or the proportion of 241 

neighbors perturbed;  subsequent research (in preparation) suggests the latter. 242 
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 243 

Experiment 2:  Distance of Perturbed Neighbors 244 

 245 

Experiment 2 tested the distance hypothesis by perturbing neighbors in the near zone and/or 246 

the far zone (Figure 1c).  The distance hypothesis predicts that perturbing neighbors in the near 247 

zone should elicit a greater response from the participant than perturbing those in the far zone. 248 

The design of Experiment 2 was thus 2 distances (~1.5m, ~3.5m) x 5 subsets (S=0,3,6,9,12), 249 

yielding 10 conditions and a total of 160 trials.  250 

 251 

Results 252 

We found a significant effect of the distance of perturbed neighbors on the participants’ 253 

lateral deviation (F(1,9) = 71.57, p < .001, ηG
2
=0.49), consistent with the hypothesis that 254 

neighbor influence decreases with distance (Figure 2b).  Once again, there was a significant 255 

effect of subset size on lateral deviation (F(4,36) = 244.66, p < .001, ηG
2
=0.89), consistent with 256 

superposition.   257 

Because there were only 5 neighbors in the near zone and 7 in the far zone, larger subsets 258 

actually perturbed neighbors in both zones.  Thus, for a stronger test of the distance hypothesis, 259 

we performed a sub-analysis of the smaller subsets alone (S=0,3,6, left side of Figure 2b).  The 260 

results confirmed a significantly greater response to perturbed neighbors in the near zone than 261 

the far zone (F(1,9)=69.99, p<.001, ηG
2
=0.68), as well as a significant effect of subset size 262 

(F(2,18)=90.93, p<.001, ηG
2
=0.70), and a significant interaction (F(2,18)=45.58, p<.001, 263 

ηG
2
=0.58).  264 

Similarly, we found a significant effect of neighbor distance on the participants’ change in 265 

speed (F(1,9) = 22.93, p < .001, ηG
2
=0.25), as well as a significant effect of subset size (F(4,36) 266 
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= 34.28, p < .001, ηG
2
=0.72) (Figure 2c). A sub-analysis of the smaller subsets (S=0,3,6) 267 

confirmed a significantly greater response to neighbors in the near zone than the far zone 268 

(F(1,9)=60.15, p<.001, ηG
2
=0.54), a significant effect of subset size (F(2,18)=50.67, p<.001, 269 

ηG
2
=0.64), and a significant interaction (F(2,18)=2.70, p<.001, ηG

2
=0.33).  270 

The results of Experiment 2 demonstrate that coupling strength decreases with neighbor 271 

distance for both heading and speed, consistent with the distance hypothesis.  Visually, this 272 

decrease might be attributed to lower angular velocities due to the laws of perspective, to greater 273 

occlusion of far neighbors, or both – a question we are currently pursuing. In sum, the local 274 

neighborhood can be characterized by the superposition of binary interactions, with a coupling 275 

strength that decreases with distance. 276 

 277 

Experiment 3:  Eccentricity of Perturbed Neighbors 278 

 279 

In Experiment 3, we tested the eccentricity hypothesis by selectively perturbing neighbors in 280 

30˚ horizontal sectors of the display.  There were five overlapping sectors (centered on -30˚, -281 

15˚, 0˚, +15˚, and +30˚, left to right).  The eccentricity hypothesis predicts that neighbors in the 282 

central sector (0˚) should elicit the greatest response, while responses to neighbors in more 283 

peripheral sectors (±15K, ±30˚) should progressively decrease.  We also repeated the distance 284 

manipulation by perturbing neighbors in the near zone (M = 1.23 neighbors, SD = 0.73) or the 285 

far zone (M = 2.18 neighbors, SD = 0.81) of a given sector. The design was thus 5 eccentricity x 286 

2 distance conditions, plus a no-perturbation control, yielding 11 conditions and a total of 176 287 

trials. 288 

 289 
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Results 290 

There was no overall effect of eccentricity on the participants’ mean lateral deviation 291 

(F(4,36) = 1.94, p > .05, ηG
2
=0.04; Figure 3a).  We again observed a significant effect of 292 

neighbor distance (F(1,9) = 20.19, p < .01, ηG
2
=0.14), but there was also a significant interaction 293 

(F(4,36) = 3.65, p < .05, ηG
2
=0.14). A simple effects analysis revealed a significant eccentricity 294 

effect in the Far condition (F(4,36)=3.63, p<.05, ηG
2
=0.25), but not in the Near condition 295 

(F(4,36)=1.22, p>.05, ηG
2
=0.08).  Moreover, the distance effect was only significant at 296 

eccentricities of -30˚ and +30˚ (p < .01).   297 

Similarly, we found no overall effect of eccentricity on the participants’ change in speed 298 

(F(4,36) = 0.86, p > .05, ηG
2
=0.04; Figure 3b).  There was again a significant effect of distance 299 

(F(1,9) = 14.15, p < .01, ηG
2
=0.10), but no interaction (F(4,36) = 0.95, p > .05, ηG

2
=0.00); 300 

responses were greater to near neighbors than far neighbors at all eccentricities.  Simple effects 301 

tests did not reveal an eccentricity effect in either the near or the far zone (both p>.05, ηG
2
=0.04). 302 

The results do not provide convincing evidence for the eccentricity hypothesis.  The only 303 

consistent effect occurs with heading perturbations of far neighbors at larger eccentricities (red 304 

curve in Figure 3a).  We suggest this effect may be due to the laws of perspective, similar to one 305 

we observed in binary following (Dachner & Warren, 2017).  If a neighbor straight ahead (0˚ 306 

eccentricity) turns 10˚ left or right, they drift laterally in the field of view with a given angular 307 

velocity;  a neighbor at a 30˚ eccentricity would have a smaller mean angular velocity, which 308 

would decrease even further with distance. The reduced response in the Far condition may thus 309 

be atributable to reduced optical motion.  In contrast, speed perturbations produce optical 310 

expansion/contraction that appears to be similar over this range of eccentricities, although it too 311 
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decreases with distance (Figure 3b). These visual effects might explain the pattern of results in 312 

Experiment 3.        313 

Taken together, the experimental findings are consistent with the superposition of multiple 314 

neighbors, with a coupling strength that decreases with distance but not eccentricity. 315 

 316 

Observational Data on a Human ‘Swarm’ 317 

 318 

To compare these experimental results with observations of crowd behavior, we collected 319 

motion capture data on collective motion in a human ‘swarm’ scenario.  We recorded three 320 

groups of participants walking together for periods of 2 min.  To investigate the distance and 321 

eccentricity hypotheses, we computed pairwise statistics between a central participant and each 322 

neighbor as a function of their relative spatial positions.   323 

 324 

Methods 325 

 326 

Participants  327 

One group of 16 participants (6F, 10M) and two groups of 20 participants (10F, 10M) were 328 

tested in separate sessions as part of a larger study.   329 

Apparatus 330 

The groups were tested in a large hall with a 14 x 20 m tracking area marked on the floor 331 

with red tape. Each participant wore a bicycle helmet with a unique constellation of 5 reflective 332 

markers on 30-40 cm stalks.  Head position was recorded at 60 Hz with a 16-camera infrared 333 

motion capture system (Qualisys Oqus).  334 
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Procedure 335 

Participants were instructed to walk about the tracking area at a normal speed, veering 336 

randomly left and right, while staying together as a group.  They began each trial in random 337 

positions in a 7x7m start box marked on the floor (~2m interpersonal distance (IPD)) or a 4x4m 338 

start box (~1m IPD).  At a verbal “go” signal, they started walking for 2 min, until a “stop” 339 

signal.   340 

Data processing 341 

We analyzed three 2m IPD trials in detail, a total of 6 min of data.  3D head positions were 342 

successfully recovered on 88% of frames, and the time series for each participant were processed 343 

as before. Walking speed did not vary appreciably, and was not analyzed further. To measure 344 

local coordination, we computed the absolute value of the difference in heading direction 345 

between the ‘central participant’ nearest the center of the swarm and each neighbor on each 346 

frame, thereby minimizing edge effects (Cavagna et al., 2010).  To estimate response times, 347 

windowed cross-correlations (1s traveling window) and optimal delays between the central 348 

participant and each neighbor were also computed.  These measurements were averaged across 349 

all frames and plotted in heat maps with the central participant at the origin (0,0) heading 350 

upward; each cell thus represents the mean statistic for all participants occupying that relative 351 

spatial location in 6 min of data. 352 

 353 

Results 354 

 355 

A heat map of mean absolute heading difference appears in Figure 4a.  It is immediately 356 

apparent that the neighborhood is circularly symmetric, not elliptical.  The mean heading 357 

Page 16 of 35

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



Rio, Dachner, & Warren   17

difference is quite small, 15-25˚, within a 2m radius, but increases to 30-40˚ at a radius of 3-4m.  358 

There is thus close coordination with near neighbors that decreases with distance.   359 

To estimate the decay in coupling strength with distance, we computed the mean heading 360 

difference at each radius in the heat map, scaled it (range 0 to 1) and subtracted it from 1, and 361 

plotted the result as a function of radial distance (Figure 4c).  The coupling strength wi to each 362 

neighbor decays exponentially with distance, closely fit by the equation  363 

�� =
�

���� + �																																																																					(3) 

where di is the distance of neighbor i, ω=1.3 is the decay rate, and a=9.2 is a constant (r
2 

= 0.98). 364 

Given that the human field of view is about 180˚, however, a pedestrian is visually coupled 365 

only to neighbors in front of them.  This uni-directional coupling is apparent from the heat map 366 

of mean time delay for the same 6 min of data (Figure 4b).  Time delays in the upper half of the 367 

map are positive, indicating that the central participant turned after the neighbors ahead, whereas 368 

those in the lower half are negative, indicating that neighbors behind turned after the central 369 

participant. Mean time delays are about 1s within a 1.5-2m radius, increasing to 1-3s at 3-4m. 370 

For binary following, Dachner & Warren (2014) reported mean delays of 0.98s to a neighbor 371 

who turns 2m ahead, and 1.33s to a neighbor 4m ahead. This suggests that the central 372 

participant’s response to some (possibly occluded) far neighbors may be mediated by an 373 

intervening neighbor, yielding a chain of response times. 374 

 375 

Modelling Interactions in a Local Neighborhood 376 

 377 

The present findings enable us to formulate a model of the local neighborhood (Figure 5a). 378 

Specifically, given superposition, we propose that a pedestrian’s linear (or angular) acceleration 379 
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is a weighted average of the difference between their current speed (heading) and that of each 380 

neighbor.  By substituting the alignment dynamics (Equations 1-2) into this neighborhood model, 381 

we can derive the local interactions that generate collective motion,  382 

��� =
	
����
��� − ���


�

���
																																																												(4) 

��� = −��������
�� − ��

�

���
																																													(5) 

where n denotes the number of neighbors in the pedestrian’s neighborhood (within a 5m radius, 383 

±90˚ from current heading).  The weight wi has a value of 1 at 0m and decays exponentially with 384 

the neighbor’s radial distance, in accordance with Equation 3.  To estimate the gain parameters c, 385 

k at a theoretical distance of 0m, we fit our previous data on binary following separately for 386 

distances of 1, 2, and 4m, and linearly extrapolated to 0m, obtaining c=3.61 and k=3.15.  387 

To test this ‘soft radius’ model, we first determined how closely it reproduces the data from 388 

Experiments 1 and 2, and then how well it predicts individual trajectories in the more variable 389 

human swarm, with fixed parameters.   390 

 391 

Simulation Methods 392 

 393 

Each trial from Experiments 1 and 2 was simulated by taking the virtual neighbors’ distance 394 

and speed (heading) as input at each time step, and computing a time series of the model’s speed 395 

(heading) in accordance with Equation 4 (Equation 5).  To reduce the effects of gait oscillations 396 

and tracker error on individual trials, a mean time series was computed for each participant in 397 

each condition and compared with the mean model time series in the corresponding condition, 398 

using the correlation coefficient (Pearson’s r) and the root of the mean squared error (RMSE). 399 
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The same model was used to simulate individual trajectories in the human swarm data.  First, 400 

we identified 10s segments in which a participant had ≥7 neighbors in their neighborhood who 401 

were continuously tracked at speeds ≥0.2 m/s;  this yielded 14 segments of 2m IPD data and 17 402 

segments of 1m IPD data.  At the start of each segment, the model was initialized with the 403 

participant’s position, speed, and heading. The distance, speed, and heading of every neighbor 404 

was treated as input, and the model computed the participant’s speed, heading, and change in 405 

position on each time step. We computed the correlation and RMSE between the individual 406 

model and human time series, and the mean position error (distance between model and human), 407 

over the 10s segment. 408 

 409 

Results 410 

 411 

The correlations between the model and human in Experiment 1 were strong, with means of 412 

r=0.88 (RMSE=0.05 m/s) for speed and r=0.81 (RMSE=1.94˚) for heading in the perturbation 413 

conditions.  In Experiment 2, the mean correlations were even higher, with r=0.90 (RMSE=0.06 414 

m/s) for speed and r=0.88 (RMSE=2.06˚) for heading. The model thus closely reproduces the 415 

temporal evolution of a pedestrian’s response to their neighbors (Figure S2, S3).  Moreover, 416 

model predictions of the final stabilized heading and speed (mean of last 2s in time series) were 417 

virtually identical to the mean human data, as shown in Figures 5b and 5c for Experiment 2.  The 418 

predicted value is contained within the 95% confidence interval for the human data, indicating 419 

that the data do not differ significantly from the model.  420 

The model also predicts individual trajectories in the human swarm.  A sample trajectory 421 

from a 10s segment of swarm data appears in Figure 6 (also Figure S4).  For the 2m IPD, the 422 
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mean correlations between model and human time series were r=0.90 (RMSE=31.16˚) for 423 

heading, and r=0.65 (RMSE=0.19 m/s) for speed
3
.  Position error accumulated from a mean of 424 

0.27m during the first 3s to a mean of 0.93m for the 10s segments.  The model also generalized 425 

to the 1m IPD, with mean correlations of r=0.93 (RMSE=27.56˚) for heading and r=0.60 426 

(RMSE=0.16 m/s) for speed; mean position error increased from 0.21m during the first 3s to 427 

0.70m over 10s. 428 

In sum, the neighborhood model accounts for the coordination of heading and speed between 429 

individuals in a crowd, and consequently the emergence of collective motion. 430 

 431 

Discussion 432 

 433 

The experimental results demonstrate that a pedestrian’s interactions with multiple neighbors 434 

are linearly combined, in accordance with superposition.  At the same time, neighbor influence 435 

decreases with distance, going to zero by 5m.  On the other hand, influence does not appear to 436 

depend on eccentricity within the field of view.  In contrast to prey species with nearly 437 

panoramic vision, yielding bi-directionally coupled flocks and schools, humans typically have a 438 

180˚ field of view and are uni-directionally coupled to neighbors ahead.  This has implications 439 

for the causal network in human crowds.   440 

These findings led us to model the local neighborhood as a weighted average of neighbors 441 

(Equations 4, 5), in which the weights decrease exponentially with radial distance (Equation 3).  442 

Together with our previous results on alignment dynamics (Equations 1 and 2), this enabled us to 443 

                                                           
3
 These values reflect comparisons between individual time series, rather than mean time series, 

yielding larger RMSEs due to gait oscillations and tracker error.  Speed correlations are lower 

because there was little variation in speed in the swarm. 
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simulate the local interactions underlying collective crowd motion. The model not only 444 

reproduces participant responses in a virtual crowd, but generalizes to individual trajectories in a 445 

human swarm.  Despite the fact that swarm motion was more variable and some neighbor data 446 

were missing, leading to an accumulation of position error, the heading correlation was highly 447 

robust. 448 

The model neighborhood decays exponentially with radial distance, creating a ‘soft’ radius.  449 

This neighborhood structure contrasts with previous theoretical models that presume an 450 

alignment zone with a constant coupling strength and a hard radius.  Our empirical model agrees 451 

with the theoretical equation of Cucker and Smale (2007), who showed that a weighted-average 452 

model with a sufficiently gradual decay converges to collective motion. 453 

A number of further questions remain.  First, the present data do not resolve the issue of 454 

whether the neighborhood is defined by metric distance (e.g. meters), or topological distance 455 

(number of neighbors) as suggested by some analyses of bird flocks (Ballerini et al., 2008; but 456 

see Evangelista, Ray, Raja, & Hedrick, 2017). Second, although an ‘attraction’ rule appears to 457 

play a role in flocking (Hildenbrandt et al., 2010; Lukeman et al., 2010), an analogue for moving 458 

crowds has not yet been investigated. Finally, at present, physical distance is a proxy for visual 459 

information that depends on perspective or occlusion;  we are currently incorporating optical 460 

variables into the model.  We plan to address these questions in future reports. 461 

 462 

Conclusions 463 

 464 

We conclude that the local neighborhood of interaction in human crowds is circularly 465 

symmetric, with a uni-directional coupling to multiple neighbors within ±90˚ of the current 466 
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heading. Their influences are superposed as a weighted average, where the weight decays 467 

exponentially with distance. Combining this ‘soft’ neighborhood with the alignment dynamics 468 

yields the first experiment-driven, bottom-up model of collective motion in human crowds.  This 469 

behavioral dynamics model accounts for individual trajectories in virtual and real crowds, and 470 

generates collective motion, consistent with principles of self-organization.  It is thus possible to 471 

experimentally decipher the local interactions that underlie collective crowd behavior. 472 
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Figure Captions 593 

Figure 1.  (a) Virtual crowd display from participant’s view, and (b) an aerial view. (c) Diagram 594 

of a heading perturbation with S=3. 595 

 596 

Figure 2. (a) Experiment 1: Heading perturbations.  Mean absolute lateral deviation as a function 597 

of the number of neighbors in the perturbed subset S.  (b) Experiment 2: Heading perturbations.  598 

Mean absolute lateral deviation as a function of the number and distance of perturbed neighbors. 599 

(c) Experiment 2: Speed perturbations.  Mean absolute change in speed as a function of same. 600 

Error bars=SE of mean. 601 

 602 

Figure 3. Results of Experiment 3: (a) Heading perturbations.  Mean absolute lateral deviation as 603 

a function of the eccentricity and distance of perturbed neighbors. (b) Speed perturbations.  Mean 604 

absolute change in speed as a function of same. Error bars=SE of mean. 605 

 606 

Figure 4.  Mean results for 6 min of human ‘swarm’ data.  (a) Heat map of absolute heading 607 

difference between each neighbor and central participant (cell=0.5x0.5m). (b) Heat map of time 608 

delay, neighbor-central participant (cell=0.33x0.33m).  (c) Coupling strength (scaled heading 609 

difference) as a function of radial distance, from data in a; curve is exponential fit (r
2 

= 0.98). 610 

 611 

Figure 5. (a) Diagram of neighborhood model.  Simulation Experiment 2: (b) Heading 612 

perturbations. Mean absolute final heading as a function of number and distance of perturbed 613 

neighbors.  (c) Speed perturbations.  Mean absolute final speed as a function of same.  Shaded 614 

regions = 95% CI for human data. 615 
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 616 

Figure 6. Simulation of sample segment from the human ‘swarm’ (IPD=1m).  (a) Path in space, 617 

mean position error=0.13m (dots at 1s intervals). (b) Time series of speed, r=0.95, RMSE=0.10 618 

m/s. (c) Time series of heading, r=0.99, RMSE=11.84˚. Participant = solid red curve, model = 619 

dashed blue curve, neighbors = black curves; O=starting positions, X=final positions. 620 

 621 
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Figure 1.  (a) Virtual crowd display from participant’s view, and (b) an aerial view. (c) Diagram of a heading 
perturbation with S=3.  
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Figure 2. (a) Experiment 1: Heading perturbations.  Mean absolute lateral deviation as a function of the 
number of neighbors in the perturbed subset S.  (b) Experiment 2: Heading perturbations.  Mean absolute 
lateral deviation as a function of the number and distance of perturbed neighbors. (c) Experiment 2: Speed 

perturbations.  Mean absolute change in speed as a function of same. Error bars=SE of mean.  
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Figure 3. Results of Experiment 3: (a) Heading perturbations.  Mean absolute lateral deviation as a function 
of the eccentricity and distance of perturbed neighbors. (b) Speed perturbations.  Mean absolute change in 

speed as a function of same. Error bars=SE of mean.  
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Figure 4.  Mean results for 6 min of human ‘swarm’ data.  (a) Heat map of absolute heading difference 
between each neighbor and central participant (cell=0.5x0.5m). (b) Heat map of time delay, neighbor-

central participant (cell=0.33x0.33m).  (c) Coupling strength (scaled heading difference) as a function of 

radial distance, from data in a; curve is exponential fit (r2 = 0.98).  
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Figure 5. (a) Diagram of neighborhood model.  Simulation Experiment 2: (b) Heading perturbations. Mean 
absolute final heading as a function of number and distance of perturbed neighbors.  (c) Speed 

perturbations.  Mean absolute final speed as a function of same.  Shaded regions = 95% CI for human data. 
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Figure 6. Simulation of sample segment from the human ‘swarm’ (IPD=1m).  (a) Path in space, mean 
position error=0.13m (dots at 1s intervals). (b) Time series of speed, r=0.95, RMSE=0.10 m/s. (c) Time 

series of heading, r=0.99, RMSE=11.84˚. Participant = solid red curve, model = dashed blue curve, 
neighbors = black curves; O=starting positions, X=final positions.  
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Results from Experiment 1 (Rio, Dachner, & Warren) 
 
 

 
 
 
Figure S1. Speed perturbations in Experiment 1: Mean absolute change in speed as a function of 

the number of neighbors in the perturbed subset S.  This figure is paired with Figure 2a in Rio, 

Dachner, & Warren.  Error bars=SE of mean. 
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Simulations of Experiment 1 (Rio, Dachner, & Warren) 
 
 

 (a) (b) 

 
 
(c) (d) 

  
 
 
Figure S2.  Simulations of heading perturbations and speed perturbations in Experiment 1. Top: 
Mean time series of (a) heading and (b) speed for human data (solid curves) and model (dashed 
curves) at each subset size S (number of perturbed neighbors, colored curves).  Bottom: Mean 
absolute final (c) heading and (d) speed as a function of the number of perturbed neighbors S.  
Shaded regions = 95% CI for human data. 



 

Simulations of Experiment 2 (Rio, Dachner, & Warren) 
 
 

 (a) (b) 

 
 
 (c) (d) 

 
 
 
Figure S3. Mean time series for human data (solid curves) and model (dashed curves) in 
Experiment 2.  Top: Mean time series of heading for each subset size S (number of perturbed 
neighbors, colored curves) in (a) the Near condition (~1.5m) and (b) the Far condition (~3.5m).  
Bottom: Mean time series of walking speed in (c) the Near condition and (b) the Far condition.  
Note that smaller subsets S=0,3,6 (green, cyan, black) illustrate the effect of distance, as nearly 
all were in the near zone (5 neighbors) or the far zone (7 neighbors). 
 



Simulations of Individual Trajectories in a Human ‘Swarm’ (Rio, Dachner, & Warren) 
 

 
 

 
 

 
  

 
 
Figure S4. Simulations of sample 10s segments from the human ‘swarm’ data.  (a) IPD=2m, 
mean position error=0.51m, speed r=.76 (RMSE=0.14 m/s), heading r=0.94, (RMSE=21.12˚). 
(b) IPD=1m, mean position error=0.32m, speed r=0.24 (RMSE=0.07 m/s), heading r=0.99 
(RMSE=9.3˚).  (c) IPD=2m, mean position error=0.60m, speed r=0.80 (RMSE=0.18m/s), 
heading r=0.94 (RMSE=10.01˚).  (d) IPD=2m, mean distance error=0.29m, speed r=0.33 
(RMSE-0.11 m/s), heading r=0.86 (RMSE=7.14˚).  Participant = solid red curve, model = 
dashed blue curve, neighbors = black curves; O=starting positions, X=final positions. 
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