
1 

 
 
 
 

Wormholes in virtual space: 

From cognitive maps to cognitive graphs 
 

William H. Warrena 

Daniel B. Rothmana 

Benjamin H. Schnappa 

Jonathan D. Ericsona 

 

aDepartment of Cognitive, Linguistic and Psychological Sciences 

Brown University, Box 1821 

190 Thayer St. 

Providence, RI, 02912, USA 

 

 

Corresponding author: 

Dr. William H. Warren 
Department of Cognitive, Linguistic and Psychological Sciences 
Brown University, Box 1821 
190 Thayer St. 
Providence, RI 02912 
+1 401 863 3980 (office) 
+1 401 524 9294 (mobile) 
 Bill_Warren@brown.edu  

 

RUNNING HEAD:  Wormholes in virtual space

Manuscript
Click here to view linked References

mailto:Bill_Warren@brown.edu
http://ees.elsevier.com/cognit/viewRCResults.aspx?pdf=1&docID=12560&rev=2&fileID=175658&msid={D70F8813-8E03-4FD1-A830-2B111338B8A4}


2 

Abstract 

Humans and other animals build up spatial knowledge of the environment on the basis 

of visual information and path integration. We compare three hypotheses about the 

geometry of this navigational knowledge:  (a) 'cognitive map' with metric Euclidean 

structure and a consistent coordinate system, (b) ‘topological graph’ or network of paths 

between places, and (c) ‘labelled graph’ incorporating local metric information about 

path lengths and junction angles.  In two experiments, participants walked in a non-

Euclidean environment, a virtual hedge maze containing two 'wormholes' that visually 

rotated and teleported them between locations. During training, they learned the metric 

locations of eight target objects from a ‘home’ location, visible individually.  During 

testing, shorter wormhole routes to a target were preferred, and novel shortcuts were 

directional, contrary to the topological hypothesis.  Shortcuts were strongly biased by 

the wormholes, with mean constant errors of 37˚ and 41˚ (45˚ expected), revealing 

violations of the metric postulates in spatial knowledge.  In addition, shortcuts to targets 

near wormholes shifted relative to flanking targets, revealing 'rips' (86% of cases), 

'folds' (91%), and ordinal reversals (66%) in spatial knowledge.  Moreover, participants 

were completely unaware of these geometric inconsistencies, reflecting a surprising 

insensitivity to Euclidean structure.  The probability of the shortcut data under the 

Euclidean map model and labelled graph model indicated decisive support for the latter 

(BFGM > 100). We conclude that knowledge of navigation space is best characterized by 

a labelled graph, in which local metric information is approximate, geometrically 

inconsistent, and not embedded in a common coordinate system.  This class of 

‘cognitive graph’ models supports route finding, novel detours, and rough shortcuts, and 

has the potential to unify a range of data on spatial navigation. 

 

KEY WORDS: Human navigation, cognitive map, cognitive graph, spatial cognition
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1.0 Introduction 

As humans and other animals explore their environments, they build up spatial 

knowledge based on visual, idiothetic, and other sensory information. The underlying 

geometry of the resulting knowledge might take a number of forms (Tobler, 1976; 

Trullier, Wiener, Berthoz, & Meyer, 1997; Tversky, 1993).  At one end of the spectrum 

(Figure 1) lies a Euclidean cognitive map, which preserves metric information about the 

locations of known places in a common coordinate system (Gallistel, 1990; O'Keefe & 

Nadel, 1978; Tolman, 1948). At the other end lies weak topological structure, such as a 

graph that only preserves a network of paths connecting known places (R. W. Byrne, 

1979; Kuipers, Tecuci, & Stankiewicz, 2003;  erner   r ieg- r c kner, & Herrmann, 

2000). Various combinations of metric and topological knowledge have also been 

proposed, capitalizing on the advantages of each (Chown, Kaplan, & Kortenkamp, 

1995; Kuipers, 2000; Mallot & Basten, 2009; Meilinger, 2008; Poucet, 1993).  After 

decades of research on this issue, researchers still hold opposing views and the question 

remains unresolved.  In this article we report two experiments on navigation in a non-

Euclidean environment that challenge both extremes.  We argue that the evidence is best 

accounted for by a labelled graph that incorporates local metric information but has no 

globally consistent coordinate system. 

Figure 1 about here 

1.1 Euclidean maps 

Euclidean knowledge (Figure 1A) would be advantageous because it supports flexible 

navigation, including novel as-the-crow-flies shortcuts and the integration of separately 

learned routes. An influential theory holds that a metric Euclidean map is constructed on 

the basis of path integration (Gallistel & Cramer, 1996; McNaughton, Battaglia, Jensen, 

Moser, & Moser, 2005; O'Keefe & Nadel, 1978). Specifically, as an animal explores the 

environment, the path integrator registers idiothetic (i.e. proprioceptive, motor, 
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vestibular) information about the angles turned and distances travelled from a home 

location, and assigns salient places to coordinates in this inertial coordinate system. 

Grid, place, and head-direction cells in the hippocampal formation have been 

interpreted as a system for encoding metric maps from path integration (Derdikman & 

Moser, 2010; McNaughton et al., 2005). Indeed, mammals and insects have been 

observed to take shortcuts between known locations (Chapuis, Durup, & Thinus-Blanc, 

1987; Cheeseman et al., 2014; Gould, 1986; Menzel et al., 2006), and humans are able 

to estimate the directions and distances between familiar places (Chrastil & Warren, 

2013; Holmes & Sholl, 2005; Ishikawa & Montello, 2006; Schinazi, Nardi, Newcombe, 

Shipley, & Epstein, 2013; Waller & Greenauer, 2007; Weisberg, Schinazi, Newcombe, 

Shipley, & Epstein, 2014), consistent with a Euclidean cognitive map.  

On closer examination, however, the evidence appears inconclusive. Apparently novel 

shortcuts may be more simply explained by knowledge of familiar routes, landmarks, or 

views (Benhamou, 1996; Bennett, 1996; Cheung et al., 2014; Dyer, 1991; Foo, Warren, 

Duchon, & Tarr, 2005). Directional estimates in humans are highly unreliable, with 

absolute angular errors of 20˚-100˚ and angular standard deviations on the order of 30˚ 

(Chrastil & Warren, 2013; Foo et al., 2005; Ishikawa & Montello, 2006; Meilinger, 

Riecke, & Bülthoff, 2014; Schinazi et al., 2013; Waller & Greenauer, 2007; Weisberg et 

al., 2014), while junctions tend to be orthogonalized to 90˚ (R. W. Byrne, 1979). 

Distance estimates are biased by the number of intervening junctions, turns, and 

boundaries, and are asymmetric between more and less salient places (Burroughs & 

Sadalla, 1979; R. W. Byrne, 1979; Cadwallader, 1979; Kosslyn, Pick, & Fariello, 1974; 

McNamara & Diwadkar, 1997; Sadalla & Magel, 1980; Sadalla & Staplin, 1980; 

Tversky, 1992). People often fail to integrate learned routes, and cross-route estimates 

are generally poor (Golledge, Ruggles, Pellegrino, & Gale, 1993; Ishikawa & Montello, 

2006; Moeser, 1988; Schinazi et al., 2013; Weisberg et al., 2014). 
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The sine qua non of a Euclidean map is a distance metric that satisfies the metric 

postulates.  A metric space is defined by a distance metric that must satisfy the 

postulates of positivity (AA=0, AB>0), symmetry (AB=BA), segmental additivity 

(AB+BC=AC), and the triangle inequality (A + C≥AC), where pairs of letters denote 

distances between pairs of points (Beals, Krantz, & Tversky, 1968).  Yet the human 

distance and direction estimates reviewed above imply violations of the postulates of 

symmetry, additivity, and the triangle inequality.   

Given its supposed ubiquity, there is thus a surprising lack of convincing evidence for a 

metric Euclidean map.  However, it is difficult to reject the hypothesis because the 

expected level of performance is not well-specified.  The view thus remains influential 

and has many prominent advocates (P. Byrne, Becker, & Burgess, 2007; Cheeseman et 

al., 2014; McNaughton et al., 2005; Nadel, 2013). 

1.2 Topological graphs 

At the other extreme lies a topological graph (Figure 1B), a network of connections in 

which nodes correspond to familiar places and edges to known paths between them.1  

Graph knowledge would be advantageous because available routes and detours are 

explicitly specified in one compact structure, and do not need to be derived from a 

coordinate map via additional operations.  Nodes may have associated place information 

such as views, landmarks, or surface layout (local geometry), enabling self-localization 

and orientation (Epstein & Vass, 2014). It has been suggested that place cell activity 

might reflect a hippocampal graph (Dabaghian, Mémoli, Frank, & Carlsson, 2012; 

Muller, Stead, & Pach, 1996).  Place fields are anchored to environmental features and 

                                                 
1 A graph can also describe connections between other entities, such as views (Hübner 

& Mallot, 2007) or neighborhoods (Wiener & Mallot, 2003). 
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their metric locations shift with transformations of the layout (Dabaghian, Brandt, & 

Frank, 2014; Muller & Kubie, 1987; O'Keefe & Burgess, 1996).   

Graph knowledge is richer than route knowledge, but weaker than ‘survey’ or map 

knowledge.  Whereas routes are typically characterized as chains of place-action 

associations (Trullier et al., 1997), a graph can express multiple routes between two 

places and multiple paths intersecting at one place. Thus, graph knowledge provides the 

basis for finding novel routes and detours (Chrastil & Warren, 2014).  On the other 

hand, a purely topological graph is insufficient to explain behavior such as taking 

shorter routes or novel shortcuts, implying that topological knowledge may be 

augmented by metric information.   

These considerations have led to hybrid theories in which topological and map 

knowledge are represented in parallel or hierarchical systems (P. Byrne et al., 2007; 

Chown et al., 1995; Kuipers, 2000; Thrun, 1998; Trullier et al., 1997).  However, such 

models are less parsimonious and are compromised by the lack of evidence for metric 

maps. 

1.3 Labelled graphs 

We suggest that spatial knowledge is more appropriately characterized by a labelled 

graph, a single structure that incorporates local metric information (Figure 1C).  

Specifically, path lengths are denoted by edge weights and the angles between paths at 

junctions are denoted by node labels.  This local metric information is typically noisy, 

biased, and geometrically inconsistent.  Yet such a cognitive graph is sufficient to find 

generally shorter routes and detours, and to generate approximate shortcuts, although 

their accuracy would depend on the level of error in the graph. 

What distinguishes a labelled graph from a metric map is that the local information is 

not embedded into a common coordinate system, a 'global metric embedding' in which 
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places are assigned coordinates in a globally consistent map. Apparently Euclidean 

behavior does not necessarily imply a metric map, for it could be underwritten by a 

labelled graph together with adaptive navigation strategies.  For example, approximate 

shortcuts could be generated by vector addition along a path through the graph, which 

may be sufficient to bring the navigator within sight of local beacons, yielding 

successful shortcuts between familiar places (Foo et al., 2005). 

A labelled graph is reminiscent of previous theories that combine metric and topological 

information in a single graph structure (Mallot & Basten, 2009; Meilinger, 2008; 

Poucet, 1993).  These models are based on the concept of local reference frames (or 

coordinate systems) that are linked by vectors specifying the metric distance and 

direction between them, and are designed to solve the problem of novel shortcuts by 

representing separate places in a common coordinate frame.  In contrast, a labelled 

graph shows that a common coordinate system is not required to account for shortcuts.  

We will compare these theories in more detail in the General Discussion (Section 4).   

1.4 The present study 

The geometry of spatial knowledge thus remains controversial.  Although humans are 

able to estimate distances and directions in a Euclidean environment, they make large 

errors, and it is not clear whether they rely on a consistent metric map or some weaker 

form of knowledge.  We focus on the prevailing view of learning in navigation space, 

where places are viewed individually and a cognitive map is constructed by path 

integrating from one place to another. 

We decided to approach the issue from a different direction: rather than asking how 

accurately navigators learn a Euclidean environment, we asked what they learn from 

walking in a non-Euclidean environment. Participants explored a virtual hedge maze 

containing two 'wormholes', which instantly teleported and rotated them from one visual 
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place to another.2  During training, the metric locations of target objects with respect to 

a 'home' location were preserved, providing information about their relative physical 

positions.  We reasoned that if the navigation system attempts to construct a Euclidean 

map based on path integration, people would have more difficulty learning the 

inconsistent non-Euclidean world than a matched Euclidean world, but shortcuts 

between target objects should be similar because their metric locations were specified 

during training. In contrast, if spatial knowledge resembles a labelled graph, then 

learning would be comparable in the two environments, but shortcuts should be 

systematically biased by the wormholes.  Finally, if knowledge resembles a topological 

graph, then participants should not prefer shorter routes and their shortcuts should be 

unsystematic due to the absence of metric information about distances and directions.   

Figure 2 about here 

 

2.0 Experiment 1: Route-finding and shortcuts 

In the first experiment, we investigated graph knowledge and survey knowledge in 

Euclidean and non-Euclidean environments.  We created matched versions of a virtual 

hedge maze with the same graph, one of which contained two ‘wormholes’ (Figure 2).  

Each environment had a 'home' location linked by radial corridors to eight 'places' 

marked by distinctive objects. The objects were only visible one at a time, so 

participants had to learn their locations by path integrating between them. We probed 

graph knowledge by asking participants to find routes between objects within the maze, 

and probed survey knowledge by asking them to take novel shortcuts between the same 

objects.  

                                                 
2 Note that analogous ‘wormholes’ can occur in everyday life  as when riding the 

subway. 
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The non-Euclidean maze was identical to the Euclidean control maze, except for the 

insertion of two bi-directional wormholes that visually translated the participant by 6m 

or 10m and rotated them by 90˚ when they walked through an invisible portal in a 

corridor (Figure 2B). This was achieved by rotating the virtual environment 90˚ in the 

opposite direction. The wormholes thus dissociated the visual reference frame, which 

rotated with the maze, from the inertial reference frame, which was fixed in physical 

space.  In the Euclidean maze, these two reference frames were always congruent.  In 

the non-Euclidean maze, walking through a wormhole instantly teleported the 

participant to a different location in the visual reference frame, while they remained in 

place in the inertial (physical) reference frame.  Distances and angles traversed in the 

inertial frame were specified by idiothetic path integration, and in the visual frame by 

distance perception and visual odometry based on optic flow (Kearns, Warren, Duchon, 

& Tarr, 2002).  Thus, referring to Figure 1, if one started at the cactus and walked a loop 

to Home, to the bookcase, through Wormhole 1, and back to the cactus, there would be 

consistent visual and idiothetic information available to reveal that the cactus had 

changed its location in the inertial reference frame.    

Participants first freely explored the environment and experienced the wormholes.  They 

were then trained from home to each object with congruent visual and idiothetic 

information, so the Euclidean locations of objects with respect to home were specified 

in both environments.  Thus, if the navigation system builds a metric map, shortcuts 

should be taken in the ‘Euclidean direction’ of the target object.  In contrast, if 

participants only learn a topological graph of the environmen, one would expect the 

direction of shortcuts to be uniformly distributed (see Chrastil & Warren, 2013).  

However, if participants learn local metric information about the path to a given object, 

shortcuts would be systematically biased toward the ‘wormhole direction’ of the target, 

that is, toward the target location reached via the nearest wormhole. 
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In sum, the metric map hypothesis predicts that the non-Euclidean maze should be 

harder to learn because it is globally inconsistent, shorter routes should be preferred 

within the maze, and shortcuts in the two mazes should be similar, based on metric 

knowledge. Conversely, the topological graph hypothesis predicts comparable learning 

in the two environments, no preference for shorter routes, and unsystematic shortcuts.  

A preference for shorter routes, and shortcuts that are biased by wormholes, would be 

indicative of a labelled graph that includes local knowledge of path lengths and junction 

angles. 

 

2.1  Material and Methods 

Experiments were conducted in the Virtual Environment Navigation Laboratory 

(VENLab) at Brown University. Experiment 1 had a 2 (maze) x 2 (task) between-

subject design.   

2.1.1  Participants 

A total of 39 participants completed the first experiment. One group of 20 learned the 

wormhole maze, half of which was tested on the route task (5M, 5F) and half on the 

shortcut task (5M 5F).  A control group of 19 learned the Euclidean maze, with nine 

tested on the route task (5M, 4F) and ten on the shortcut task (7M 3F). Seven additional 

participants failed to achieve the learning criterion in the wormhole maze, and six failed 

to do so in the Euclidean maze; the data thus represent competent navigators from the 

top three quartiles of participants.  Informed consent was obtained from all participants, 

who were paid for their participation. The protocol was approved by Brown 

University’s Institutional Review  oard. 

2.1.2  Apparatus 
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Participants walked freely in a 12m x 12m area while wearing a head-mounted display 

(HMD, Kaiser Pro-View 80, 63° H x 53° V field of view, 640 x 512 pixels per eye, 

100% binocular overlap). Stereoscopic displays were generated on a graphics 

workstation, calibrated to the participant's measured inter-ocular distance, and presented 

at 60 frames/s. Head position and orientation were recorded with an ultrasonic/inertial 

tracking system (Intersense IS-900, 1mm linear and 1˚ angular RMS error  60 Hz 

sampling rate), and used to update the display with a total latency of 50-70 ms.  The 

HMD was connected to a control box by a 15m cable, which was handled by ‘wrangler’ 

who followed the participant. Participants wore earphones playing masking noise 

(evening sounds), and the peripheral view of the real environment was occluded by a 

cloth hood.  

2.1.3  Displays 

The virtual environment consisted of an 11m x 11m hedge maze (Figure 2A), which 

contained a home location (home plate), eight objects (well, cactus, etc.), and three 

landmarks to aid orientation (familiar paintings on the walls). The eight objects were 

connected to home by direct radial paths that did not pass through a wormhole. 

Wormhole 1 instantly translated the participant by 6m and rotated them by 90˚ in the 

visual reference frame, and Wormhole 2 by 10m and 90˚ respectively (Figure 2B).  The 

maze walls (2.13m high) were mapped with a foliage texture and the paths (1m wide) 

with a gravel texture. The views at the entrance and exit of each wormhole were 

matched so the transition was visually seamless, unaccompanied by rotational or 

translational optic flow.  

2.1.4  Procedure 

Participants first walked in a practice environment for 3-5 min to adapt to virtual reality 

(Mohler, Creem-Regehr, & Thompson, 2006). The experiment proper consisted of three 
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phases.  In the exploration phase, a participant freely explored the maze for 8 min, 

visiting each object at least once and passing through each wormhole at least twice; a 

recorded voice named each object as it was approached (e.g. "This is the bookcase").  If 

the participant did not visit all eight objects within the first 6 min, they were verbally 

guided from home to each remaining object on the direct path.   

In the training phase, participants were trained to walk from home to each object until 

they reached the criterion of finding the object in less than 30s. If the participant could 

not find an object within 1 min, they returned home and were verbally guided to it on 

the direct path; if they failed to reach criterion within 20 min, they were removed from 

the experiment.  

During the test phase, participants began at the home location facing 'north', were 

instructed to walk to a start object within the maze corridors, and were then told to walk 

to a target object.  In the route task, participants walked to the target within the maze 

corridors. A trial ended when they arrived within 0.5m of the target, and they then 

walked home in the corridors for the next trial.  In the shortcut task, when participants 

reached the start object the maze disappeared, leaving only a textured ground plane 

visible; they then turned to face the remembered location of the target object and walked 

straight to it.  A trial ended when the participant verbally reported arriving at the target 

location or reached the maze boundary; no feedback was given. They then rode home in 

a wheelchair on a circuitous path in the dark for the next trial. 

Four pairs of objects were tested in both directions: two probe pairs near the wormhole 

portals (yellow and cyan dots in Figure 2) and two standard pairs some distance away 

(purple and navy dots). There were four trials to each of the four probe targets and two 

trials to each of the four standard targets, for a total of 24 test trials.  They were 

presented in a randomized order in a one-hour session.   
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In a post-test questionnaire, participants were asked to report their impressions of the 

maze and anything they noticed about it. Shortcut participants were then given a list of 

the eight objects and asked to draw a map of the maze on paper. 

2.1.5  Data Analysis 

Approximately 7% of the test trials were lost due to tracker malfunction during data 

collection. In the route task, errors consisted of walking within sight of an incorrect 

object before reaching the target. In the shortcut task, the dependent variable was the 

initial walking direction, defined as the unit vector from the start position to the point at 

which they crossed a circle with 1m radius. (Walking distance was not analysed because 

it was limited by the laboratory walls.) The constant error on each trial was the angle 

between the initial walking direction and the target's 'Euclidean direction', defined by 

the target’s location with respect to home in the inertial coordinate frame.  Responses on 

probe trials were normalized so increasing errors were toward the target's 'wormhole 

direction', defined by the target’s location in the inertial coordinate frame after the maze 

was visually rotated.  Standard trial responses were normalized so increasing errors 

were to the right of the target's Euclidean location (because standard objects were not 

near wormhole portals).  

Directional data were analyzed using circular statistics (Batschelet, 1981).  The circular 

mean of constant error was computed for each participant, and the Mean Error and 

between-subject Angular Deviation (AD, the circular equivalent of the standard 

deviation) were computed for the group. To estimate the within-subject variable error, 

the angular deviation was computed separately for each participant over all their trials; 

the circular mean of these subject values is reported as the ‘Mean AD'.  Angular errors 

were compared using two-sample Watson-Williams F-tests for circular data, and 

Cohen’s d was used as a measure of effect size.  All statistical tests were two-tailed with 

=.05.  
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To directly compare the Euclidean map and labelled graph hypotheses, we took a 

Bayesian model comparison approach. We specified both the metric map (MM) and 

labelled graph (MG) models by the von Mises probability density function (the circular 

normal distribution), with parameters = [].  The mean response direction  could 

differ between the two models, but the circular concentration parameter  was held 

constant (1/ is related to AD, see Batchelet, 1981).  The models were compared with 

the Bayes Factor, which under these assumptions reduces to the likelihood ratio, 

. 

BF=1 implies that the models are equally likely, BF>3 is considered substantial support, 

BF>10 strong support, BF>30 very strong support, and BF>100 decisive support for the 

model in the numerator (Jeffreys, 1998).  

 

2.2  Results and Discussion 

2.2.1  Exploration and training 

Participants experienced the wormholes frequently during exploration, passing through 

each a mean of 5.6 times.  Yet the wormhole maze was learned as readily as the 

Euclidean control maze.  The mean number of trials to criterion during training was 

1.77 per object (SD=0.48) for the wormhole group and 1.61 per object (SD=0.43) for 

the control group, t(37)=1.12, p=.27, d=0.36. To investigate the null hypothesis for this 

measure, we computed the scaled JZS Bayes factor, BF01=3.11;  this indicates 

substantive support for the null hypothesis, which is favored 3 to 1 over the alternative 

(Rouder, Speckman, Sun, Morey, & Iverson, 2009).  The non-Euclidean maze thus 

posed no particular difficulty for learning, despite its global inconsistency.  

2.2.2  Route task 
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In the route task, participants also found routes in the wormhole maze as easily as the 

Euclidean maze. First, there were no errors in walking from home to the start object. 

Second, when walking from the start object to the target object, the wormhole group 

made no errors and the control group only three (visible in Figure 2A). Third, on probe 

trials, participants took advantage of the shorter wormhole routes in 84% of the trials, 

compared to only 28% for the corresponding routes in the Euclidean maze (Figure 2), 

2(1)=277.67, p<.001, Cohen’s 2=188.58. This significantly reduced the wormhole 

group’s mean path length (6.36m, SD=2.58m) to half that of the control group’s 

(12.27m, SD=1.72m), t(17)=5.92, p<.001, d=2.69, as well as reducing their mean travel 

time (9.47s, SD=3.01s) compared to the control (17.31s, SD=3.51), t(17)=5.19, p<.001, 

d=2.40.  

Participants thus apparently acquired knowledge about path length that enabled them to 

select reliably shorter routes.  We note that the present experiment was not designed to 

dissociate metric distance (path length in meters) and topological distance (number of 

nodes or edges traversed).  In a similar experiment, however, Chrastil and Warren 

(2014) found that participants took the metrically shortest route or detour to a target 

significantly more often than topologically equivalent but longer alternatives.  This 

supports the conclusion that participants acquired knowledge about metric path lengths. 

2.2.3  Shortcut task 

In the shortcut task, there were again no errors in walking to the start object. Rayleigh 

tests on shortcut direction found that mean constant errors were not uniformly 

distributed on the circle in the control environment, z(10)=9.70 for probe trials and 

z(10)=9.72 for standard trials (both p<.001), or in the wormhole environment, 

z(10)=9.82 for probe trials and z(10)=8.11 for standard trials (both p<.001).  This result 

implies that shortcuts were directional and hence relied on metric information, 

inconsistent with the purely topological hypothesis. 
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On probe trials, the control group took shortcuts toward the Euclidean location of the 

target (Figure 3A), with a mean constant error of only 4.38˚ (AD=10.02˚). In contrast, 

the non-Euclidean group was biased toward the wormhole location of the target (Figure 

3B), with a mean constant error of 37.36˚ (AD=7.74˚)  close to the expected error of 

45˚.  The group difference was highly significant, with a large effect size, 

F(1,18)=556.86, p<.001, d=3.68. The wormholes thus biased the remembered direction 

of the target by 83%. Within-subject variability was large in both groups, with a mean 

within-subject AD of 27.51˚ in the control group and 30.41˚ in the wormhole group, a 

difference of only 2.9˚ with a small effect size, F(1,18)=4.46, p=.049, d=0.33.  This 

indicates that uncertainty in the remembered target direction was high in both 

environments, consistent with previous literature.  

Figure 3 about here 

We compared the Euclidean map and labelled graph hypotheses by computing the 

probability of the observed data under each model, p(x|), assuming concentration 

parameter =35.1 (corresponding to AD=10˚ from the control group).  For the control 

group, both models predict shortcuts with a mean expected error of G0˚  so the 

Bayes Factor, BFGM=p(x|G)/p(x|M), is necessarily 1.  For the wormhole group, in 

contrast, the Euclidean model predicts shortcuts toward the Euclidean target location 

with an expected error of 0˚, while the labelled graph model predicts shortcuts 

toward the wormhole target location with an expected error of G=45˚.  The  ayes 

Factor was large, BFGM > 100, indicating decisive support for the labelled graph model. 

On standard trials, the mean constant error was also significantly larger for the 

wormhole group (CE= -16.89˚ to the left  AD=25.53˚) than the control group (CE= -

5.06˚ to the left, AD=9.60˚), F(1,18)=14.81, p=0.0012, d=0.61.  This result implies that 

the wormholes biased the remembered locations of objects that were not adjacent to 

wormhole exits, but in the surrounding area.  Similarly, the corresponding within-
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subject variable errors were significantly larger for the wormhole group (mean 

AD=45.22˚) than the control group (mean AD=31.11˚), F(1,18)=59.42, p<.001, d=1.21, 

implying that the wormholes also increased uncertainty in the remembered locations of 

surrounding target objects.  

2.2.4  Metric postulates 

Most importantly, shortcuts revealed that spatial knowledge acquired in the wormhole 

environment violates the metric postulates. First, shortcuts to probe objects exhibited a 

large violation of the positivity postulate (Figure 4A), which states that the distance 

between any point and itself must be zero. When asked to walk from home H to start 

object A, participants succeeded on every trial.  But when asked to take a shortcut from 

B to A – in the same inertial coordinate frame – they did not walk toward A, but were 

biased by a mean of 37˚ in the direction of A'.  This response violates positivity, 

because the distance between A and A’ in the inertial frame (6m) is much greater than 

zero.  

Figure 4 about here 

Positivity implies that shortcuts from B to A should be in the opposite direction of those 

from A to B, in inertial coordinates.  This is because the start point for one shortcut 

(AB) should be the endpoint for the opposite shortcut (BA), and vice versa.  Thus, if 

180˚ is subtracted from the direction of vector AB, the mean difference should be zero 

under the Euclidean model.  In contrast, the labelled graph model predicts a mean 

difference of 90˚  because both shortcuts should have 45˚ errors toward the wormhole.  

To compare the models, we assumed a von Mises probability density function with 

=8.49 (corresponding to AD=20˚ from the control group).  For the control group  both 

models have a mean expected difference of zero, G0˚  yielding  FGM=1.  But for 

the wormhole group, the mean expected difference under the Euclidean model is 0˚  
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whereas that under the labelled graph model is G=90˚.  The observed difference for the 

control group was 8.56˚ (AD=20.09˚) (refer to Figure 3A)  whereas for the wormhole 

group it was 75.27˚ (AD=15.25˚) (refer to Figure 3 ).  The  ayes factor was large  

BFGM > 100, providing decisive evidence against positivity and the Euclidean model, 

and in favor of the labelled graph model. 

Note that this behaviour also implies violation of the triangle inequality, which states 

that the third side of a triangle must be less than the sum of the other two sides (AB < 

HA+HB). In the present case  the third side is so large that triangle ∆HA  is not closed 

(Figure 4A).  

2.2.5  Self-reports and sketch maps 

Participants completely failed to detect these geometric inconsistencies. When asked to 

describe their impressions of the maze, no participant reported noticing the wormholes 

or any spatial anomalies.  

Both Euclidean and non-Euclidean groups willingly drew sketch maps of their 

environments, even though the wormhole environment cannot be represented in the 

plane without crossed paths. Representative sketch maps appear in Figure 5.  The sketch 

maps of both groups captured the radial structure of the maze, without any crossed 

paths. We analyzed the sketch maps from the shortcut subgroups in some detail.   

To evaluate the graph structure of the maps, we first analysed the number of paths 

(edges) between adjacent objects (nodes) that were correctly remembered and falsely 

inserted.  The control group had a mean hit rate of 81% of the edges, with only 5% false 

insertions (sensitivity: d’=2.53). The wormhole group had a mean hit rate of 72% of the 

edges, with only 2.5% false insertions (d’=2.54). Both groups thus preserved the 

topological graph of their respective mazes with comparable sensitivity.  However, the 

wormhole group drew significantly shorter wormhole paths than the control group 
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(mean ratio = 0.61), t(18)=2.78, p=.012, d=1.24, reflecting metric knowledge of relative 

path lengths. 

We then correlated the cyclic order of objects around the circumference of each sketch 

map with the cyclic order of objects in the two environments.  The mean cyclic 

correlation with the wormhole order was significantly greater for the wormhole group, 

r(8)=.97, than for the control group, r(8)=.77, t(18)=2.1195, p<.05.  Within the control 

group, the mean cyclic correlation was higher with the Euclidean order, r(8)=.83, than 

with the wormhole order, r(8)=.77, although the difference did not reach significance.  

Within the wormhole group, the cyclic correlation was higher with the wormhole order, 

r(8)=.97, than the Euclidean order, r(8)=.91, but not significantly so.  Both groups thus 

remembered the cyclic order of objects in their respective environments with similar 

accuracy.   

Figure 5 about here 

2.2.6  Conclusions 

The results of Experiment 1 appear to be most consistent with a labelled graph. 

Contrary to a purely topological graph, shorter routes were preferred and shortcuts were 

directional, implying that some knowledge of path lengths and angles was acquired. 

Contrary to a Euclidean map, learning was comparable in the two environments but 

shortcuts were strongly biased by experience with wormholes, leading to violations of 

the metric postulates. Strikingly, participants were completely unaware of these glaring 

inconsistencies, demonstrating a marked insensitivity to Euclidean structure.  

This pattern of results can be accounted for by the labelled graph hypothesis. Local 

knowledge about path lengths and angles is unreliable because it derives from a noisy 

path integrator, is biased by experience with short wormhole paths, and is not embedded 

in a globally consistent coordinate system. The resulting spatial knowledge supports the 
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selection of shorter routes and rough shortcuts, but they are highly variable, influenced 

by wormholes, and geometrically inconsistent. 

Consider some alternative explanations. Perhaps participants acquired a noisy Euclidean 

map, rather than a labelled graph. Spatial knowledge might be low-resolution, yet 

nonetheless Euclidean. While this hypothesis would account for the high variability of 

shortcuts in both environments, it does not explain their systematic bias in the 

wormhole environment.  

Or perhaps an hour in the virtual maze was insufficient to learn a Euclidean map, but 

with more experience participants would eventually do so. This explanation is belied by 

the findings that shortcuts in the Euclidean maze were accurate on average (overall 

mean CE=2.66˚)  and that their variable error (mean AD=28.63˚) was comparable to 

previous studies with extended experience in real environments (Ishikawa & Montello, 

2006; Moeser, 1988; Schinazi et al., 2013). There is little evidence in the literature that 

further experience will yield up a Euclidean map. Other alternative explanations will be 

considered in the General Discussion (Section 4.2). 

 

3.0 Experiment 2: Rips and folds 

The results of Experiment 1 imply that spatial knowledge may include local 

discontinuities. For example, in Figure 4A, the remembered location of probe object A 

(star at A') appears to be 'ripped' away from neighboring object C and 'folded' onto 

object D, in the inertial reference frame.  The first experiment demonstrated shifts in the 

remembered location of single probe objects, between groups.  In the second 

experiment, we tested whether rips and folds occur within the spatial knowledge of one 

individual.  Specifically, we tested the remembered configuration of a triad of objects 

by having participants take shortcuts from one start object to three target objects. 



21 

Figure 6 about here 

 

Only the wormhole environment was tested in Experiment 2.  Participants learned the 

maze as before.  During the test phase, however, they took shortcuts from the start 

object to three types of target objects (Figure 6A): a probe (green dot) near a wormhole 

exit as before, a neutral flankern (blue dot) on one side of the probe, and a wormhole 

flankerw (red-orange dot) on the other side, between the probe and its wormhole 

location. On half the trials, the start object was near the wormhole’s entrance  enabling 

a specific prediction for wormhole shortcuts; on the other half the start object was far 

from the entrance. If learning the wormhole maze creates rips and folds in spatial 

knowledge, then shortcuts to the probe (green vector) should shift away from those to 

flankern (blue vector) and toward those to flankerw (red vector). Specifically, rips 

predict that constant errors to probe targets should be larger than those to flankern, and 

folds predict that constant errors to probes should be larger than those to flankerw.  

Moreover, because flankerw was in between the probe’s Euclidean and wormhole 

directions, we expected that shortcuts to the probe would ‘fold over’ those to flankerw – 

an ordinal reversal that could not be accommodated by a continuous metric map. 

 

3.1 Material and Methods 

Experiment 2 had a 3 (target type) x 2 (start object) x 4 (wormhole entrance) within-

subject design.   The methods were the same as for the wormhole group in Experiment 

1, with the following exceptions. 

3.1.1  Participants 
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A total of 11 participants (9 M, 2 F) completed the experiment. Two additional 

participants failed to achieve the learning criterion, and two others withdrew due to 

symptoms of motion sickness. 

3.1.2 Procedure 

Participants wore a Rockwell Collins SR80-A HMD (63° H x 53° V field of view, 1280 

x 1024 pixels per eye, 100% binocular overlap).  A ninth object (gear) was added o the 

‘east’ side of the maze, in the corridor parallel to Wormhole 2.  All participants learned 

the wormhole maze and performed the shortcut task in two one-hour sessions. The first 

session included the exploration phase, training phase, and a partial test phase (24 

trials).  The second session began with a refresher exploration phase (4 minutes), 

completed the test phase (48 trials), and ended with the questionnaire. 

For each of the four wormhole entrances, there was a start object near and far from the 

entrance, crossed with a triad of target objects: a probe object near the wormhole exit, a 

neutral flankern on one side of the probe, and a wormhole flankerw on the other side, 

between the probe’s Euclidean location and its wormhole location.  There were three 

replications of these 24 conditions, yielding a total of 72 test trials, presented in a 

randomized order.  Constant error was computed as before, with all responses 

normalized so that increasing errors were in the direction of the probe's wormhole 

location. 

 

3.2 Results and Discussion 

As expected, the remembered direction of probe objects shifted away from flankern and 

toward flankerw (Figure 6B), reflecting rips and folds in spatial knowledge. Yet only 

one participant reported noticing anything unusual about the wormhole environment.  
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3.2.1  Shortcuts 

We focus on the near condition, which allowed a specific prediction about the expected 

direction of wormhole shortcuts.  Shortcuts to the probe had a large mean constant error 

of 42.1˚ (AD=21.5˚) in the wormhole direction (positive error), close to the expected 

angle of 45˚. This value was significantly greater than the mean constant error of 

shortcuts to flankern, which was 15.8˚ (AD=12.0˚), F(1,20)=11.58, p=.003, d=1.51.  

Thus, the remembered direction of the probe significantly shifted away from that of 

flankern by a mean of 26˚  evidence of a ‘rip’ in spatial knowledge. On the other side, 

constant error to probes was also significantly greater than the mean constant error to 

flankerw, which was -21.5˚ (AD=17.6˚) in the opposite direction (negative error), 

F(1,20)=51.98, p<.001, d=3.00.  This result indicates that the remembered direction of 

the probe significantly shifted toward that of flankerw by 63.6˚  evidence of a ‘fold’.  Of 

the total of 44 estimates (four triads x 11 participants), 86.4% exhibited rips and 90.9% 

exhibited folds (sign test, both p<.001). 

Most importantly, shortcuts to the probe actually ‘folded over’ shortcuts to flankerw by 

an average of 24.58˚ (AD=25.74˚), evidence of an ordinal reversal in remembered target 

locations.  For example, in Figure 6 the mean probe vector (green) shifted away from 

the flankern mean vector (blue) and crossed over the flankerw mean vector (red). Of the 

44 estimates (4 triads x 11 participants), 65.9% of them exhibited ordinal reversals 

(binomial test, p<.001).  

We directly compared the Euclidean map and labelled graph hypotheses by computing 

the probability of the observed triad data under each model, p(x|), assuming =11.66 

(corresponding to AD=17˚, the triad mean).  For each triad, the map model predicts 

shortcuts toward the three Euclidean target locations, yielding a mean expected error of 

M0˚  whereas the graph model predicts shortcuts toward the Euclidean locations of 

the two flankers (0˚) but the wormhole location of the probe (45˚), yielding a mean 
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expected error of G=15˚.  The Bayes Factor was large, BFGM > 100, offering decisive 

support for the labelled graph model. 

In the far condition  the mean constant error to probe objects was 29.1˚ (AD=21.5˚)  to 

flanker0 was 25.1˚ (AD=20.0˚)  and to flankerw was -12.3˚ (AD=16.0˚).  These values 

did not differ significantly from those in the near condition, indicating that the 

wormholes also distorted the remembered location of targets relative to start objects 

remote from a wormhole entrance.  

The within-subject variability was similar for all three target types (mean AD=43.1˚ for 

flankern  46.2˚ for flankerw  and 42.6˚ for probes  ns), implying comparable uncertainty 

in their remembered directions. 

3.2.2  Partial replication of Experiment 1 

The 'near' condition included a replication of the wormhole probe trials in Experiment 1. 

As noted above, shortcuts to the probe objects again exhibited a mean constant error of 

42.1˚ (AD=21.5˚), significantly greater than zero, CI99% ±19.3˚  p<.01, d=1.96, and 

close to the expected value of 45˚, corresponding to a wormhole bias of 94%.  We 

compared the Euclidean map and labelled graph hypotheses for the probe data alone, 

assuming =11.66 (corresponding to AD=21˚, from the probe data).  The mean 

expected error under the map model is M0˚  whereas that under the graph model is 

G=45˚.  The  ayes Factor was large, BFGM > 100, decisive confirmation of the labelled 

graph model. 

This pattern of responses also violated the positivity postulate.  There were no errors in 

walking from home to the start objects, but shortcuts to these same objects were biased 

by an average of 42.1˚.  Under the Euclidean model  the expected difference between 

opposite shortcuts is 0˚, while under the labelled graph model it is G=90˚;  the 

observed difference was 85.75˚ (AD=41.57˚).  We compared the two models, assuming 



25 

=2.224 (corresponding to AD=42˚ from the present difference data, to be 

conservative).  The Bayes factor was large, BFGM > 100, decisive evidence against 

positivity and in favor of the labelled graph model. 

3.2.3  Self-reports 

Only one participant reported being aware of "wrinkles" in the virtual environment. The 

remaining ten participants failed to notice any discontinuities or other spatial anomalies.  

3.2.4  Conclusions 

Experiment 2 offers evidence of rips, folds, and ordinal reversals in spatial knowledge. 

The remembered locations of probe objects were 'ripped away' from flankern and 'folded 

over' flankerw. Such local discontinuities are contrary to a Euclidean mental map, but 

are easily accommodated by a labelled graph.  In addition, the results replicate the 

finding from Experiment 1 that shortcuts are strongly biased by wormhole experience, 

implying that spatial knowledge violates the metric postulates.  

The possibility of "tears, folds, and holes" in knowledge of large-scale urban 

environments has been considered previously (Golledge & Hubert, 1982).  However, 

these anomalies were attributed to inadequate sampling of the environment or missing 

information in what was assumed to be a continuous mental map. The present 

experiment finds evidence of rips, folds, and reversals in a densely sampled medium-

scale environment, induced by exposure to wormholes. They appear to reflect local 

discontinuities rather than missing information, and imply that the fabric of spatial 

knowledge is not essentially continuous. 

 

4.0 General Discussion 
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Based on the present findings, we question the view that humans construct a Euclidean 

cognitive map of navigation space. People do learn a network of paths between familiar 

places, which can be described as a topological graph. In addition, they learn 

approximate path lengths and angles, enabling them to select shorter routes and take 

rough shortcuts. But this local metric information does not appear to be integrated into a 

globally consistent metric map. Novel shortcuts are highly variable, biased by 

wormholes, manifest violations of the metric postulates, and reveal rips, folds, and 

ordinal reversals in spatial knowledge. Perhaps most surprising, people completely fail 

to detect radical violations of metric geometry in their environment, revealing a marked 

insensitivity to Euclidean structure. 

4.1 A cognitive graph 

We argue that this pattern of results is best accounted for by a labelled graph. As a 

navigator explores a new environment, they learn a network of paths that link salient 

places, which can be modeled by edges and nodes in a graph. At the same time, the path 

integrator registers piecewise measurements of path lengths and junction angles, which 

are expressed by edge weights and node labels. Due to the low resolution and 

discontinuity of human path integration (Loomis et al., 1993; Zhao & Warren, 2015a, 

2015b), this metric information is noisy, biased by experience, and globally 

inconsistent. Edges that are learned in opposite directions may have different weights 

(ie. a directed graph), yielding violations of the symmetry postulate. Violations of the 

triangle inequality result from geometrically inconsistent edge weights. Both Euclidean 

and non-Euclidean environments are learned in the same manner, and spatial knowledge 

thus incorporates discontinuities and violations of the metric postulates, without the 

detection of inconsistencies.   

The resulting cognitive graph supports route finding and novel detours with generally 

shorter paths, and enables approximate shortcuts.  Shortcuts may be generated on the fly 
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by vector addition along a route through the graph, despite the absence of a common 

coordinate system or reference frame.3  However, their reliability and accuracy is 

limited by the level of noise and bias in local metric knowledge, which explains the 

influence of wormholes on participants’ shortcuts. 

In particular, this view can account for the violations of metric postulates observed in 

Experiment 1.  Let’s return to our initial example of the cactus and the bookcase (refer 

to Figure 4A).  Suppose that, during exploration, a participant path-integrates from 

Home (H) to the cactus (A) and registers its path length (HA). Subsequently, they path-

integrate from H to the bookcase (B) and register its path length (HB), as well as the 

approximate angle between the two paths (AHB  90˚). If the participant at B then 

turns 90˚ and walks through  ormhole 1  the maze rotates, and they register a short 

path length (BA') before arriving at the cactus (visual place A') – which now has 

different inertial coordinates from A (Figure 4B). In principle, this provides enough 

information to detect the violation of positivity. But when the participant recognizes A' 

("Aha – the cactus again!") the path integrator is reset (Etienne, Maurer, Boulens, Levy, 

& Rowe, 2004; Zhao & Warren, 2015b), so the inconsistency is not detected and the 

wormhole goes unnoticed. Subsequent shortcuts from B to A would be based on the 

resulting edge weights and node labels, which are biased by experience with the 

wormhole. 

Other recent findings are consistent with this account. Purely visual exposure to a new 

environment enables successful route-finding and detours (Chrastil & Warren, 2015; 

Heft, 1983) but not novel shortcuts, which are barely above the chance level (Chrastil & 

Warren, 2013).  This result demonstrates that humans can acquire graph knowledge, but 

not map knowledge, from a sequence of views. The addition of idiothetic information 
                                                 
3 Formally, vector addition can be performed in a coordinate-free space by iterative 

application of the parallelogram law and cosine and sine rules. 
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during learning enables the selection of shorter routes and detours (Chrastil & Warren, 

2014) and improves shortcut accuracy, although shortcuts remain highly variable 

(Chrastil & Warren, 2013).  These findings imply that people learn path lengths (edge 

weights) and junction angles (node labels) based on idiothetic path integration. After 

walking in an ‘impossible’ virtual world, such as a triangular corridor with two 90˚ 

corners, people can reproduce traversed distances and turn angles and find short routes4 

(Kluss, Marsh, Zetzsche, & Schill, 2015; Zetzsche, Wolter, Galbraith, & Schill, 2009).  

They thus acquire local metric knowledge without detecting global inconsistency. These 

results lend support to a labelled graph with local metric information that is not 

integrated into a globally consistent map. 

4.2 Alternative explanations 

A number of alternative explanations might be offered for the present results. First and 

foremost, some theories propose that the navigation system has mechanisms that acquire 

both Euclidean and topological structure (P. Byrne et al., 2007; Chown et al., 1995; 

Trullier et al., 1997).  Perhaps participants in the Euclidean maze learned a metric map, 

whereas those in the wormhole maze learned a labelled graph. Experiment 1 offers no 

support for two different mechanisms, however, as both the Euclidean and non-

Euclidean groups had similar trials-to-criterion, route-finding performance, and short-

cut variability. Moreover, even though wormhole participants were trained on the metric 

locations of targets, sufficient to build both a graph and a map, their shortcuts only 

reflected non-Euclidean spatial knowledge.  We believe that the data are more 

parsimoniously explained by a single labelled graph structure. 

Second, perhaps participants constructed a distorted cognitive map of the wormhole 

maze, but one with an intrinsic metric geometry nonetheless (Tobler, 1976). For 

                                                 
4 These authors did not test shortcuts. 
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instance, multi-dimensional scaling of distance estimates in urban environments yields 

distorted Euclidean maps5 (Golledge & Spector, 1978). In the wormhole maze, such 

distortions might result from attempting to assign visual places to inertial coordinates, 

as in the prevailing view (Gallistel & Cramer, 1996; McNaughton et al., 2005). 

Specifically, Wormhole 1 shortcuts (Figure 3B) might be explained by a cognitive map 

that pinches and warps the 'northwest' corner of the maze so that A is congruent with A' 

and B is congruent with B'; the resulting map may be inaccurate, but it would be metric.  

A distorted Euclidean map must still satisfy the metric postulates, however, such that 

each visual place occupies a unique location in the inertial coordinate system 

(positivity). To the contrary, shortcuts show that the same visual place is reported in two 

widely separated physical locations (A and A') in inertial coordinates. Similarly, paths 

in opposite directions through a wormhole deviate from the positivity postulate by 75˚ 

(Exp. 1) to 86˚ (Exp. 2) in the inertial coordinate frame. Averaging the two inertial 

locations would yield shortcuts mid-way between A and A', rather than the observed 

wormhole biases of 83% (Exp. 1) to 94% (Exp. 2). The present data thus cannot be 

accounted for by a distorted metric map in inertial coordinates. 

Conversely, perhaps vision dominates spatial learning, and participants constructed a 

Euclidean map by assigning visual places to coordinates defined by visual odometry. 

This purely visual map must also satisfy the metric postulates, such that each place 

occupies a unique location in the visual coordinate system. Yet wormhole shortcuts 

violate positivity on this view as well, for the same object is reported at two inconsistent 

locations in coordinates given by visual odometry, as illustrated in Figure 3B. It is 

theoretically possible to produce a distorted visual map of the wormhole maze in some 

other coordinate system (e.g. by multi-dimensional scaling of visually perceived 
                                                 
5 Classical MDS assumes a Euclidean distance metric and produces a Euclidean 

solution. 
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distances).  However, as Chrastil and Warren (2013) showed, purely visual exposure 

during learning does not yield metric map knowledge, for shortcuts are nearly random.  

Thus, the present data cannot be explained by a purely visual Euclidean map. 

Finally, consider a more exotic hypothesis: wormhole participants may have constructed 

a metric map with a non-zero genus.6  Specifically, each wormhole might correspond to 

a short 'bridge' across a cusp in a two-dimensional surface, linking the entrance and exit 

locations.  Wormhole 1, for example, would bridge over the path from home to the 

clock, while preserving other metric relations on the surface. However, the present 

sketch maps gave no indication of such bridges or path crossings in the plane.  This 

remains a logical, but we believe unlikely, possibility.   

4.3 Comparison with previous theories 

Several previous theories have also combined topological and metric information in a 

single graph structure.  Although the present experiments were not explicitly designed 

to distinguish these proposals, we can make some comparisons. Poucet (1993) first 

proposed a model in which places are described by local reference frames (metric 

coordinate systems), with vectors indicating the metric distance and direction to 

neighboring places (i.e. between local coordinate systems).  In parallel, a topological 

network represents connections between places.  With learning, the local vectorial and 

topological network information is integrated into a global representation with a 

common reference direction, enabling novel shortcuts.  This process operates at two 

levels  linking places within a vista space into a local ‘chart’  and linking charts into an 

overall representation with a reference direction.  

Meilinger (2008) proposed a related ‘network of reference frames’ theory  in which a 

vista space is described by a local reference frame (i.e. a metric map of visible places, 

                                                 
6 Thanks to Matthew Collett for this suggestion. 
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analogous to a ‘chart’).  Local frames are linked by edges that specify the ‘perspective 

shift’ (metric rotation and translation) required to move between them.  These 

perspective shifts may become more precise with learning, but in contrast to Poucet 

(1993), local reference frames are not integrated into a consistent overall framework.  

Instead, shortcuts are planned by imagining a sequence of perspective shifts (coordinate 

transformations) from the current location to the goal location, so the goal is represented 

in the current reference frame. 

Most recently, Mallot and Basten (2009) described a ‘space graph’ in which place nodes 

are assigned metric coordinates and are linked by action rules (“turn left 120˚  walk 2 

km”)  which implicitly express local metric information. The place nodes are, at least 

partially, embedded in a consistent global framework.  Like Poucet (1993), the authors 

resist calling this global framework a metric ‘map’ because it does not explicitly 

represent all spatial positions. 

While there are meaningful differences between these three theories, they share the 

premise that places are associated with local reference frames or coordinate systems, 

and try to solve the problem of novel shortcuts by representing separate places in a 

common coordinate frame. In contrast, the present cognitive graph theory argues, first, 

that spatial navigation does not require a common reference frame or coordinate system, 

for novel shortcuts can be generated from a labelled graph by vector addition (see 

footnote 3). A cognitive graph is a more parsimonious structure that calls upon less 

cognitive apparatus. 

Second, whereas Poucet (1993) and Mallot and Basten (2009) propose a consistent 

overall representation or a global metric embedding, both the present theory and 

Meilinger’s (2008) network of reference frames maintain that spatial knowledge is not  

in general, geometrically consistent.  Indeed, the observed violations of metric 
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postulates, and rips, folds, and reversals, imply that local metric information is not 

generally integrated into a consistent global coordinate system. 

The present results bear on spatial learning in navigation space, when places are viewed 

individually and their relations are acquired via path integration.  In contrast, there is 

evidence that an array of objects viewed together in vista space are remembered in one 

reference frame (Easton & Sholl, 1995; Rieser, 1989; Shelton & McNamara, 2001), and 

that objects in overlapping arrays or views are related in a common reference frame 

(Greenauer & Waller, 2010; Kelly & McNamara, 2010; Mou, McNamara, & Zhang, 

2013).  It has been proposed that this principle generalizes across environmental scales 

(Greenauer & Waller, 2010).  However, recent research indicates that vista space and 

navigation space differ markedly in this respect.  Whereas an array of objects in vista 

space is remembered in a single reference frame, the same array in navigation space is 

not (Meilinger, Strickrodt, & Bülthoff, 2016).  Moreover, evidence for a common 

reference frame does not entail a metric Euclidean map.  Even within vista space, the 

visual perception of layout does not preserve Euclidean structure (Koenderink, van 

Doorn, & Lappin, 2000; Loomis, da Silva, Philbeck, & Fukusima, 1996; Norman, Todd, 

Perotti, & Tittle, 1996; Wagner, 2006); the geometric structure of memory for vista 

space is unknown. 

In summary, the present findings cast doubt on the view that the navigation system 

builds a Euclidean cognitive map, which guides much research on human and animal 

navigation. They are also inconsistent with alternative explanations that seek to preserve 

the construct of a metric map, as well as with purely topological knowledge.  We 

conclude that knowledge of navigation space is better described by a labelled graph, in 

which local metric information is approximate, geometrically inconsistent, and not 

embedded in a common coordinate system. This class of ‘cognitive graph’ models 
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supports route finding, novel detours, and rough shortcuts, and has the potential to unify 

a range of behavioral and neurophysiological data on spatial navigation. 
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The data supporting this article may be accessed from the Brown University Digital 

Repository (https://repository.library.brown.edu/studio/item/bdr:581513/), 

doi:10.7301/Z0JS9NC5. 
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Figure Captions  

Figure 1. Models of spatial knowledge. (A) Euclidean map: places are assigned 

locations in a common coordinate system. (B) Topological graph: nodes correspond to 

places and edges to paths between them. (C) Labelled graph: edge weights denote 

approximate path lengths and node labels denote approximate junction angles. 

 

Figure 2. The virtual hedge maze. (A) Euclidean environment. (B) Non-Euclidean 

environment with two wormholes (yellow arrows). Object pairs are represented by dots 

of same color.  Red traces represent all probe trials for the route task in Experiment 1, 

plotted in the visual reference frame. 

 

Figure 3. Shortcuts for Wormhole 1. (A) In the Euclidean environment, participants 

took shortcuts from the start object in the approximate direction of the target object 

(yellow dots, A and B), in both directions. (B) In the non-Euclidean environment, 

shortcuts are shifted toward the 'wormhole direction’ of the target (yellow stars  A' and 

B'). Red traces represent all probe trials for the cactus-bookcase pair in Experiment 1, 

plotted in the inertial reference frame. 

 

Figure 4. (A) Violation of metric postulates: Participant walks successfully from H to 

A, and from H to B, yet takes shortcut from B toward A' (axes represent inertial 

coordinates). Positivity is violated (AA' >0) as is the triangle inequality (∆HA  is not 

closed). The remembered location of A (e.g. the star at A') is 'ripped' away from 

neighbor C and 'folded' onto neighbor D. (B) If participant walks from B through 

Wormhole 1, the maze rotates, and they arrive at visual place A' with different inertial 
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coordinates from A. 

Figure 5.  Sample sketch maps from (a) the Euclidean control group, and (b) the 

wormhole group. Note ordinal reversals in the cyclic order of objects: the bookcase and 

clock switch positions, as do the sink and moon. 

 

Figure 6. Rips, folds, and ordinal reversals for a triad of targets in Wormhole 2. (A) 

Predicted Euclidean shortcuts from a near start object (well) to the probe (sink, green), 

flankern (moon, blue), and flankerw (gear, red). (B) Observed shortcuts to probe (green 

traces and mean vector) are 'ripped' away from flankern (blue) and 'folded' over flankerw 

(red). Yellow star represents the wormhole location of the probe. Traces represent all 

test trials from the well in Experiment 2.  
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