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Abstract—Due to increasing volume of measurements in smart
grids, surrogate based learning approaches for modeling the
power grids are becoming popular. This paper uses regression
based models to find the unknown state variables on power
systems. Generally, to determine these states, nonlinear sys-
tems of power flow equations are solved iteratively. This study
considers that the power flow problem can be modeled as an
data driven type of a model. Then, the state variables, i.e.,
voltage magnitudes and phase angles are obtained using machine
learning based approaches, namely, Extreme Learning Machine
(ELM), Gaussian Process Regression (GPR), and Support Vector
Regression (SVR). Several simulations are performed on the
IEEE 14 and 30-Bus test systems to validate surrogate based
learning based models. Moreover, input data was modified with
noise to simulate measurement errors. Numerical results showed
that all three models can find state variables reasonably well even
with measurement noise.

Index Terms—power systems, machine learning, support vector
regression, Gaussian process regression

I. INTRODUCTION

With the increasing penetration of distributed generation
sources and integration of renewables, the philosophy of the
operation of the power systems is evolving. Development
of the new communication technologies results in more and
more measurements that brings big data in power systems.
Motivated by these developments, machine learning methods,
especially data driven models, have gained a lot of interest
to replace complex nonlinear problems with simpler models,
namely surrogate model or meta-model, derived from relation-
ship of input and output samples of a physical system [1].

Various surrogate modeling methods have been introduced
to effectively model the relations between the input and the
output samples. Among them, Support Vector Regression
(SVR) [2], Gaussian Process Regression (GPR) [3], and
Extreme Learning Machines (ELM) [4] are the nonlinear
multivariate methods providing promising and effective results
in regression problems. The ELM [4] was introduced in
2006 to speed up conventional feed-forward neural networks
by eliminating the time consuming iterative learning steps
required for optimization of the input weights and output
weights. Instead, the weights between the input and the hidden
layer are randomly assigned in the Extreme Learning Machine,
and the output weights are then directly calculated with a least
squares based on the inverse matrix of the hidden layer output
matrix of the neural network. The SVR [2] was developed
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based on statistical learning theory, which maps the input
samples into higher dimensional nonlinear feature space using
a kernel function, where the nonlinear problem is converted to
a linear problem, resulting in higher discriminative features.
The GPR [3] was formulated in terms of a Bayesian estimation
problem, where the parameters are assumed to be random
variables which are jointly drawn from a Gaussian distribution.
Both GPR and SVR particularly work well when limited
number of training samples are available.

Machine learning applications for power system problems
are becoming increasingly popular. In [5], a general overview
of the available techniques applicable in power systems do-
main are discussed. One of the initial attempts was aiming to
use decision tree method in solving voltage security problems
[6]. Later, machine learning methods were also applied to
voltage stability prediction [7]. In [8] the authors have applied
data-mining to detect the substations that are most sensitive
to the disturbances. A neural network based methodology
aiming to detect and classify power quality disturbances was
developed in [9]. The authors of [10] predicted potential
outage of power system components during hurricanes by
using logistic regression method. Duration of power outages
during hurricanes were predicted and compared in [11] by
using several methods of regression models, and data mining
techniques. Extreme learning machines was used for forecast-
ing the outputs of photovoltaics in [12] and forecasting the
outputs of wind turbines in [13]. In [14], the authors have
used artificial neural networks and support vector machines
to find the locations of faults in distribution systems. Simi-
larly, machine learning approaches is used in in [15] solving
dynamic security assessment problem.

This study approaches power flow problem as a black box
model where the inputs are the active and reactive power
injections/absorptions to/from the buses and the outputs are the
voltage magnitudes and the phase angles of the buses. Based
on available measurement data, surrogate based models are
then generated by using three advanced regression methods,
namely, Support Vector Regression (SVR), Gaussian Process
Regression (GPR), and Extreme Learning Machines (ELM).
The performances of the these methods for the IEEE 14- and
30-bus test Systems are evaluated based using R square and
relative error.



II. POWER FLOW PROBLEM

In power systems operation, power flow computations are
vital to find the voltage magnitudes, bus angles, power flows,
and power losses on the lines. The power systems operators
need to perform power flow computations regularly to detect
any possible problems in case of outages and take remedial
actions on time. Power flow calculations are generally per-
formed by using Newton Raphson method, where the system
is modeled using nonlinear equations: y = f(z). Note that, =
represents the unknowns of the system state: phase angles (9)
and voltage magnitudes (V'), and y represents the active and
reactive power mismatch equations of the buses. Assuming a
system with N buses, the active and reactive power equations
for the k" can be written following.

N
Pr(x) = Vi Y YinVicos (8, — on — Ogn) (1)
n=1
N
Qk(l’) =V Z Yannsin(ék + on — an) 2)
n=1

In equations (1), and (2), Vi, Yin, Okn, and Jy represents
voltage magnitude of bus k, bus admittance between buses &
and n, angle of the admittance between buses £ and n, phase
angle of voltage on bus k, respectively. For more details on
the formulation and solution of the problem one may refer to
[16].

This paper considers the power flow problem as a data-
driven machine learning problem; hence, the system param-
eters are not required. It is assumed that the system state is
determined by the changes of the active and reactive power
injection/absorption from the buses. For a specific active and
reactive power set, the outputs: voltage magnitudes of the
buses and the angles are determined. One may think this model
simply as following.

[vi,0:] = f(Pi, Qi) 3)

where v; and §; represent the voltage magnitudes and the phase
angles of the buses. P; and @); represent the active and reactive
power injections/absorptions.

III. SURROGATE MODELLING METHODS

Given a set of data X = {(x1,91),.-.,(Xn,Yn)} where
X; € R" is an input vector while y; refers to associated contin-
uous output derived from a physical system or a mathematical
model. A surrogate model provides a function f : x — y to
represent the relationship between the input and the output
data as following.

yi=f(X)+e& “)

where ¢€; is residue term and f is an unknown function
determined by satisfying some optimization criteria. Support
vector regression (SVR), Gaussian Process Regression (GPR),
and Extreme Learning Machines (ELM) are some of the
advanced regression methods using different loss functions
to minimize, which we consider to model the power flow
problem.

A. Support Vector Regression

Support Vector Regression is based on empirical risk mini-
mization under Vapnik’s e—insensitive loss function, which is
defined as,

L (yi, f(zi,w)) = {

where € is a parameter of loss function. The predictive model
is chosen as,

0 if [y — f(xi, w)| < e

lyi — f(xi,w)| — € otherwise.

flz,w) = wl®(z) +b 3)

In order to estimate the model parameters, w and b, the em-
pirical risk minimization under the e— sensitive loss function
needs to be solved as,

n
Zmaxﬂyi —wl®(x;) — b —¢,0) (6)
i=1
This unconstrained optimization problem can be converted to a
constrained optimization problem by including a regularization
term in the objective function, yielding (7), so that it can be
solved by its dual form to provide kernel calculations.

1 g - /
mlg}rfllze Fw'w +C 2(&7 &)
subject to  y; — wl B(z;) —b< e+ & (7

wh®(z;) +b -y < e+ &
& >0,6>0,i=1.

By following the Lagrangian, dual optimization problem is
obtained and solved with Karush-Kuhn-Tucker conditions. The
dual representation of the predictive model becomes,

n
Fl@) = (o, 0]) K (z,2;) + b (8)
i=1
where «;,af € [0,C] coefficients refer to support vectors
having non-zero coefficients. K (z,x;) is the kernel matrix
constructed by radial basis function in this paper. It should be
noted that this regression becomes radial basis network when
using RBF kernel function, and the number of the support
vectors equals to the number of hidden layers.

B. Gaussian Process Regression

Gaussian Process Regression, also known as Kriging
method in statistics, is a probabilistic multivariate regression
method, defined as a collection of random variables with a
joint Gaussian distribution. For a given training set D =
{(zi, fi),i =1,...,n}, where f; = f(x;) refers to the value
of the function at the location x;, the GP is as follows,

f(x) ~ GP(m(xq), k(xi, %;)) ©)

where x and k(x;,x;) correspond to mean and covariance
function, respectively. The covariance matrix shows similari-
ties between the pair of random variables, which can be built
by means of squared exponential (SE) function,

k(xi,%;) = exp(|lx; — x;*/(207)) (10)
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Fig. 1. Surrogate modelling schema for power flow problem.

where o is the kernel width that needs to be tuned. The SE is
the standard widely used covariance (kernel) function. Given
an out-of-sample set X, the desired predictive function f,
can be obtained as following,

p(£e]| X, X, £) = N (£, | s, 04) 11
where
po = kL[K(X,X) 4000y (12)
0? = KX X))~ K K(X,X) + 02 k. (13)
k, is a vector of covariance values of training samples X

and the out-of-sample X ,, and o2 is the noise variance. o2

expresses the confidence measure associated by the model to
output.

C. Extreme Learning Machines (ELM)

The predictive function in ELM for an input x is defined
as following,

%9

L

fr(x) =) wihi(x) (14)
i=1

where L is the number of nodes at the hidden layer, and w;

is the output weight connecting the i-th hidden node to the

output nodes. h; represents a nonlinear feature mapping, which

is defined as following,

hi(x) = G(aj, bi, x) (15)
where G is generally selected as a sigmoid function as.
G(aj, by, x) = 1/(1 + exp(a;x + b;)) (16)

The parameters a; and b; in (16) are the parameters of the
nodes at the hidden layer, that are randomly generated in ELM
to learn the weights w;. Equation (14) can be rearranged in
the matrix notation as following,

fr(x) =h(x)"w a7

where w = [wy, -+ ,wz] and h(x)" = [hy(x),- -+, hr(x)].
Equation (17)
can be written in compact form as,

Hw=Y (18)

where Y7 = [y;,---,yn] is output vector of training set,
and H is the hidden layer output matrix of the neural network
expressed as

hl(Xl) hL(Xl)

H= (19)

hl(.Xn) hL(.Xn)

The optimal output weight, w, is obtained by mini-
mizing |[Hw — Y||? in the least squares sense, yielding
w* = (HTH)"1HTY.

IV. NUMERICAL RESULTS

The surrogate modeling schema, consists of two parts, is
shown in Fig. 1. As can be seen, in data creation module,
initial step randomly creates different active and reactive loads
to represent different operating states. In practical scenarios,
these would actually come from measurement devices. Then,
all those different states are solved by using Newton Raphson
based load flow method in Matpower [17], and the solutions of
the unknowns for each case which are the voltage magnitudes
and the angles are retained. In the regression module, the input
samples with their corresponding outputs are then fed to the
regression algorithms, including GPR, SVR, and ELM, result-
ing in three surrogate models associated with each regression
algorithm which represent power flow problem.

We used Matpower [17] to create data to simulate power
flows. We used IEEE 14, and 30-bus test systems for the
simulations. Two different type of tests for each test system
were performed:

o First type of tests assume perfect information. For each
test system 1,000 power flow cases with randomly created
active and reactive powers are run and numerical results
comprised of voltage magnitudes and angles are saved.

o Second type of tests included simulated noise in the input
data.

Note that, for both IEEE 14 and IEEE 30-Bus systems,
the input variables consisting of active and reactive power
quantities are equal to two times the number of buses except
the slack bus in the system. The number of outputs are
determined by summing up the number of phase angles and
number of load buses. Then, we implemented the regression
methods. During the data creation process, maximum and
minimum active and reactive load values were multiplied by
constant factors, and those values were set as the ranges for
the loads in all buses of the system. Also with inclusion
of Gaussian White noise possible measurement errors were
simulated in the input data.

In order to evaluate the performance of the surrogate mod-
els, the data created in data creation module were randomly
divided into two parts by using two different training data:

e 20% of the training and 80% of the test data

e 50% percent of training and 50% of the test data.

All the unknowns of system, including voltage magnitudes and
angles, are then estimated by associated surrogate models, and
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Fig. 2. Sample correlation plots of IEEE 14-Bus System variables for each surrogate model for voltage magnitudes with no noise training data=20%.

the goodness of fit for each model is analyzed with R? and
relative errors in percentage on the test data.

Tables I and II show the relative % error of each surrogate
model for voltage magnitudes and angles in the IEEE 14-Bus
using training data of 20% and 50%, respectively. Similarly,
Table III and Table IV represent the results for the IEEE 30-
Bus system. Two sets of results are provided, the first one
assumes that there is no noise in the input data, the second
one assumes a signal to noise ratio of 5 on the measurement
data. Results show that the measurement errors due to noise
has an impact on the estimation errors; however, the three
regression methods were able to find system parameters fairly
accurately.

TABLE 1

% ERROR OF EACH SURROGATE MODEL FOR VOLTAGE MAGNITUDES AND
ANGLES ON THE IEEE 14-BUS SYSTEM, TRAINING DATA=20%.

No noise in data GPR ELM SVR

Voltage Magnitudes 1.016 1.465 1.701

Angles 3457 4.698  4.602

S/N ratio 5

Voltage Magnitudes 1.103 1.506  1.635

Angles 3826 4.894 5.118
TABLE II

% ERROR OF EACH SURROGATE MODEL FOR VOLTAGE MAGNITUDES AND
ANGLES ON THE IEEE 14-BUS SYSTEM, TRAINING DATA=50%.

No noise in data GPR ELM SVR

Voltage Magnitudes 0.740 1.357 1.454

Angles 2.637 4452 4412

S/N ratio 5

Voltage Magnitudes 0.788 1352  1.478

Angles 27746 4362 4.373
TABLE III

% ERROR OF EACH SURROGATE MODEL FOR VOLTAGE MAGNITUDES AND
ANGLES ON THE IEEE 30-BUS SYSTEM, TRAINING DATA=20%.

No noise in data GPR ELM SVR
Voltage Magnitudes 1.274 2.781  1.352
Angles 5728 7.599 5279
S/N ratio 5

Voltage Magnitudes 1.257 2461  1.332
Angles 6.004 7.200 5.406

TABLE IV
% ERROR OF EACH SURROGATE MODEL FOR VOLTAGE MAGNITUDES AND
ANGLES ON THE IEEE 30-BUS SYSTEM, TRAINING DATA=50%.

No noise in data GPR ELM SVR
Voltage Magnitudes 0.996 1.042  1.093
Angles 4483 4596  4.595
S/N ratio 5

Voltage Magnitudes 1.077 1.141  1.259
Angles 4.897 5.098 5.103

Figures 2 and 3 show the correlation plots of the actual
and predicted values of the voltage magnitudes and angles
for the IEEE 14-bus test system for each surrogate models. A
linear behaviour means that the actual and the predicted values
are close to each other; hence, as the linearity increases on
those graphs and associated method is assumed to successfully
predict actual power flow results. From Fig. 2 it is easily seen
that the graph related to the voltage magnitudes of the GPR
method show the best linear behaviour, and the worst linear
behaviour is obtained by the graph related to SVR. Similar
behaviour is obtained for the angles in IEEE 14 Bus Test
System: GPR provides the most accurate results, while SVR
provides the worst ones.

Figures 4 and 5 show the R? values of IEEE 14 Bus and
30 Bus Test System results considering two different training
data for both with noisy and non-noisy data for three different
regression methods respectively. Note that in Figures 4 and 5,
noisy and non-noisy data are represented with dashed and solid
lines, respectively. GPR provides the best R? value for IEEE
14 Bus System. R? of the noisy data are slightly worse than
those of non-noisy data. The differences in the results decrease
in IEEE 30 Bus Test System case. Overall, SVR provides the
worst results. It is obvious that training data size has a higher
impact for IEEE 30 Bus Test System.

V. CONCLUSION

This paper explores the utility of state-of-art surrogate based
modelling methods, including GPR, ELM and SVR in solving
power flow equations. The effects of the size of training
samples and data noise to surrogate modelling are analyzed.
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Fig. 5. 30 Bus Test System results: R? with different size of training data.

The results show that GPR provides more accurate and more
robust predictions compared to the other regression methods.
In order to make a deep analysis to reveal the effectiveness
of surrogate modelling methods in power flow problem, more
IEEE test systems will be included to the experiments along
with including more evaluation criteria.
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