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Abstract
Using a short proof, we show that every set function f can be decomposed into the
difference of two monotone increasing and strictly submodular functions g and h, i.e.,
f = g − h, and every set function f can also be decomposed into the difference of
twomonotone increasing and strictly supermodular functions g and h, i.e., f = g−h.

Keywords Set function · DS decomposition · Monotone nondecreasing ·
Submodular · Supermodular

1 Introduction

Consider a real function f over subsets of a finite set X . f is said to be submodular
if for any two subsets A and B of X ,

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B).

f is said to be monotone nondecreasing if for any two subsets A and B of X

A ⊂ B ⇒ f (A) ≤ f (B).

In study of wireless sensor networks, social networks, cloud computing, data sci-
ence, and machine learning, a lot of problems can be formulated into set function
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optimizations (Weili et al. 2019). The following theorem plays an important role in
the set function optimization.

Theorem 1 (1st DS Decomposition) Every set function f : 2X → R can be decom-
posed into the difference of two monotone nondecreasing submodular functions g and
h, i.e., f = g − h.

This theorem is proved by Iyer andBilmes (Iyer andBilmes 2012). They first proved
that every set function f : 2X → R can be decomposed into the difference of two
submodular functions g and h, i.e., f = g − h. (This weak version of DS deposition
is first proposed by Narasimhan and Bilmes (Narasimhan and Bilmes 2005) with a
nonrigorous proof.) Then they prove Theorem 1 by using a fact that every submodular
function can be decomposed into the sum of a polymatroid function and a modular
function, where a polymatroid function is a monotone nondecreasing submodular
function with zero function value at empty set, and a set function f : 2X → R is
modular if for any two subsets A and B of X ,

f (A) + f (B) = f (A ∪ B) + f (A ∩ B).

Note that a set function f : 2X → R is supermodular if for any two subsets A and
B of X ,

f (A) + f (B) ≤ f (A ∪ B) + f (A ∩ B).

Li, Du, and Pardalos (Xiang Li 2020) showed a variation of Theorem 1 as follows.

Theorem 2 (2nd DS Decomposition) Every set function f : 2X → R can be decom-
posed into the difference of two monotone nondecreasing supermodular functions g
and h, i.e., f = g − h.

In this paper, we will give a short proof for Theorems 1 and 2. Meanwhile, we
will make them stronger by replacing monotone nondecreasing, submodular, and
supermodular properties by monotone increasing, strictly submodular, and strictly
supermodular properties, respectively, which are defined as follows.

A set function f : 2X → R is monotone increasing if for any two subsets A and B
of X

A ⊂ B ⇒ f (A) < f (B).

A set function f : 2X → R is strictly submodular if for any two subsets A and B of
X ,

f (A) + f (B) > f (A ∪ B) + f (A ∩ B).

A set function f : 2X → R is strictly supermodular if for any two subsets A and B
of X ,

f (A) + f (B) < f (A ∪ B) + f (A ∩ B).

2 Main results

Following is well-known fact about submodularity andmonotone nondecreasing prop-
erty (Ding-Zhu and Ko 2012).
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Lemma 3 For any subset A and element x, denote �x f (A) = f (A ∪ {x}) − f (A).
Then following holds.

(a) A set function f : 2X → R is submodular if and only if for any two subsets A
and B with A ⊆ B, and for any x ∈ X \ B, �x f (A) ≥ �x f (B).

(b) A set function f : 2X → R is monotone nondecreasing if and only if for any
two subsets A and B with A ⊆ B, and for any x ∈ B \ A, �x f (A) ≤ �x f (B).

(c) A set function f : 2X → R is supermodular if and only if for any two subsets
A and B with A ⊆ B, and for any x ∈ X \ B, �x f (A) ≤ �x f (B).

Similarly, it is easy to establish following.

Lemma 4 For any subset A and element x, denote �x f (A) = f (A ∪ {x}) − f (A).
Then following holds.

(a) A set function f : 2X → R is strictly submodular if and only if for any two
subsets A and B with A ⊆ B, and for any x ∈ X \ B, �x f (A) > �x f (B).

(b) A set function f : 2X → R is monotone increasing if and only if for any two
subsets A and B with A ⊆ B, and for any x ∈ B \ A, �x f (A) > �x f (B).

(c) A set function f : 2X → R is strictly supermodular if and only if for any two
subsets A and B with A ⊆ B, and for any x ∈ X \ B, �x f (A) < �x f (B).

Next, we present short proofs for stronger version of Theorems 1 and 2. They are
obtained by modifying the original proof for the weak DS decomposition theorem in
Iyer and Bilmes [2012].

Theorem 5 Every set function f : 2X → R can be decomposed into the difference of
two monotone increasing and strictly submodular functions g and h, i.e., f = g − h.

Proof Define ζ( f ) = minA⊂B⊆X ,x∈X\A{�x f (A)−�x f (B)}. By Lemma 4, ζ( f ) >

0 if and only if f ismonotone increasing and strictly submodular. Consider set function
p(A) = √|A|. Then ζ(p) > 0 since

min
A⊂B⊆X ,x∈B\A{�x p(A) − �x p(B)} = min

A⊂B⊆X ,x∈B\A{�x p(A)}

= min
A⊂X

{√|A| + 1 − √|A|}
≥ √|X | + 1 − √|X |
> 0,

and

min
A⊂B⊂X ,x∈X\B{�x p(A) − �x p(B)} = min

A⊂B⊂X
{
(√|A| + 1

−√|A|
)

−
(√|B| + 1 − √|B|

)
}

= min
A⊂X

{
(√|A| + 1 − √|A|

)

−
(√|A| + 2 − √|A| + 1

)
}
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≥ 2
√|X | + 1 − √|X | − √|X | + 2

> 0. (note:
√
nis a strictly concave function.)

Now, we consider two cases.
Case 1 ζ( f ) ≥ 0. Define set functions g = f + p and h = p. Then f = g − h.

Moreover, ζ(g) = ζ( f ) + ζ(p) > 0 and ζ(h) = ζ(p) > 0.
Case 2 ζ( f ) < 0. Define set functions h = 2 · −ζ( f )

ζ(p) · p and g = f + h. Then

ζ(h) = 2 · −ζ( f )
ζ(p) · ζ(p) = −2ζ( f ) > 0 and ζ(g) = ζ( f ) + ζ(h) = −ζ( f ) > 0. �


Corollary 6 For any set function f : 2X → R, there exist two monotone increasing
and strictly submodular set functions u and l such that l ≤ f ≤ u.

Proof By Theorem 5, there exist two monotone increasing and strictly submodular
functions g and h such that f = g − h. Define u(A) = g(A) − h(∅) and l(A) =
g(A)−h(X). Then u and l are monotone increasing and strictly submodular such that
l ≤ f ≤ u. �

Theorem 7 Every set function f : 2X → R can be decomposed into the difference of
two monotone increasing strictly supermodular functions g and h, i.e., f = g − h.

Proof Define η( f ) = minA⊂B⊂X ,x∈X\B{�x f (B)−�x f (A)}. By Lemma 4, η( f ) >

0 if and only if f is strictly submodular. Define τ( f ) = minA⊂B⊆X { f (B) − f (A)}.
Then τ( f ) > 0 if and only if f is monotone increasing.

Consider set function q(A) = |A|2. Then

η(q) = min
A⊂B⊂X ,x∈X\B{�xq(B) − �xq(A)}

= min
A⊂B⊂X

{((|B| + 1)2 − |B|2) − ((|A| + 1)2 − |A|2)}
= min

A⊂B⊂X
{2(|B| − |A|)}

≥ 2 > 0

and

τ(q) = min
A⊂B⊆X

{q(B) − q(A)}
= min

A⊂B⊆X
(|B|2 − |A|2)

≥ min
A⊂X

{(|A| + 1)2 − |A|2}
≥ 1 > 0.

Now, we consider two cases.
Case 1. min{η( f ), τ ( f )} ≥ 0. Define set functions g = f + q and h = q. Then

f = g − h. Moreover, η(g) = η( f ) + η(q) > 0, τ(g) = τ( f ) + τ(q) > 0,
η(h) = η(q) > 0, and τ(h) = τ(q) > 0.
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Case 2. min{η( f ), τ ( f )} < 0. Define set functions h = 2 · −min{η( f ),τ ( f )}
min{η(q),τ (q)} · q and

g = f + h. Then

η(h) = 2 · −min{η( f ), τ ( f )}
min{η(q), τ (q)} · η(q) ≥ −2 · min{η( f ), τ ( f )} > 0

and

τ(h) = 2 · −min{η( f ), τ ( f )}
min{η(q), τ (q)} · τ(q) ≥ −2 · min{η( f ), τ ( f )} > 0.

Therefore,

η(g) = η( f ) + η(h) ≥ η( f ) − 2 · min{η( f ), τ ( f )} ≥ −min{η( f ), τ ( f )} > 0

and

τ(g) = τ( f ) + τ(h) ≥ τ( f ) − 2 · min{η( f ), τ ( f )} ≥ −min{η( f ), τ ( f )} > 0.

�


3 Discussion

Although the proof of DS decomposition is constructive, it does not give an efficient
method to find a DS decomposition. In fact, it is still open whether such an efficient
method exists or not. It is very likely to be NP-hard for finding a DS decomposition
for a given set function.

The first DS decomposition has applications in design of algorithms for a lot of
problem (Iyer and Bilmes 2012; Narasimhan and Bilmes 2005) while the second
DS decomposition is found to have application for active friending (Yang and Hung
2013; Shuyang et al. 2020; Yuan and Weili 2017). For a given set function, the DS
decomposition is not unique. Different DS decompositions may induce algorithms
with different performances. This gives researchers a lot of opportunity to make their
contributions. In this paper, we provide a stronger version of DS decomposition. How-
ever, it is unknown if this stronger version could improve certain type of algorithms.
Hopefully, Corollary 6 can be found to improve some switch methods (Wei et al 2015;
Zhang and Dinh 2013; Guo and Weili 2019).

It is worth mentioning that this work may be extended to functions on lattice points
(Shuyang et al 2020; Lei et al 2019), which is our potential work in the future.
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