
1

Influence Diffusion in Online Social Networks with
Propagation Rate Changes

Tianyi Pan∗, Xiang Li† Member, IEEE, Alan Kuhnle‡ Member, IEEE and My T. Thai§ Member, IEEE
∗Google Inc, Mountain View, CA, USA

†Department of Computer Engineering, Santa Clara University, Santa Clara, CA, USA
‡Department of Computer Science, Florida State University, Tallahassee, FL

§ CISE Department, University of Florida, Gainesville, FL, USA
Email: tianyipan@google.com, xli8@scu.edu,akuhnle@fsu.edu, mythai@cise.ufl.edu

Abstract—Information can propagate among Online Social
Network (OSN) users at a high speed, which makes the OSNs
important platforms for viral marketing. Although the viral
marketing related problems in OSNs have been extensively
studied in the past decade, the existing works all assume known
propagation rates. In this paper, we propose a novel model,
Dynamic Influence Propagation (DIP), which allows propagation
rates to increase after a topic becomes popular and can be
used for describing information propagation in OSNs more
realistically. Based on DIP, we define a new research problem:
Threshold Activation Problem under DIP (TAP-DIP). However, it
adds another layer of complexity over the already #P-hard TAP
problem. Despite it hardness, we are able to approximate TAP-
DIP with $ (log |+ |) ratio, where |+ | is the number of users in the
network. Our solution consists of global optimization techniques
and a novel solution to the general version of TAP. We also
consider the more complicated case when the propagation rates
may change multiple times and the changes are non-immediate,
with corresponding solution and analyses. We test our solution
using various real OSN datasets, and demonstrate that our
solution not only generates high-quality seed sets, but also scales.

Index Terms—Dynamic Influence Propagation, Online Social
Network, Threshold Activation Problem

I. INTRODUCTION

Influence propagation is an essential problem that has been
studied in various contexts [1]–[28]. In OSNs, popular and
unpopular topics may propagate following completely dif-
ferent patterns. Especially, people tend to share the popular
topics with their friends much faster. By analyzing the retweet
delay for tweets before/after a topic becomes trending, we
observed a much shorter retweet delay after trending for the
majority of around 4,000 Twitter trending topics in the US.
This observation indicates that influence propagation speed can
depend on the topic’s popularity.

This characteristic of influence propagation has not been
studied in literature. In previous works, there are two major
types of influence propagation models: 1) the Triggering
Model [3] in which the influence propagates in rounds and
thus the propagation rate is uniform; 2) the Continuous-Time
Diffusion Model [7], in which the propagation rate is decided
by a probability density function (pdf) for each edge. The two
existing models share a common feature that they are static:
whether the propagation rate is constant or follows a pdf, it is
known before the propagation starts.

To better depict influence propagation in reality, it is nec-
essary to develop a propagation model that enables changes
of propagation rates based on the current propagation status.
Therefore, we propose the Dynamic Influence Propagation
(DIP) model, which can explicitly consider the rate changes.
In the DIP model, we extend the idea in literature [18] that a
topic becomes more popular when the number of influenced
nodes increases. Notice that the condition may not always
reflect the complicated conditions in reality (e.g. Twitter has
internal algorithms for selecting trending topics), but it is
a reasonable abstraction. We then formulate the Threshold
Activation Problem with DIP (TAP-DIP) to analytically study
the model. TAP-DIP asks for a seed set with a minimum
size that guarantees the number of nodes being influenced
can reach a threshold within time limit. In the problem, the
propagation rate may change due to the DIP model.

The main challenge of TAP-DIP is resulted from its new
dynamic propagation rates, as it creates an obstacle for using
the sampling techniques [3], [9] that are applied to solve influ-
ence propagation related problems. The sampling techniques
are important for influence propagation since even computing
the exact influence is #P-hard [5]. Each sample provides
information on what nodes can be influenced by a certain node
(forward sampling [3]) or the set of nodes that may influence a
target node (reverse sampling [9]). As the sampling techniques
only work with a fixed propagation model, they have no access
to dynamic information such as propagation rate change and
cannot be easily adapted to solve TAP-DIP.

To tackle the challenges brought by dynamic propagation
rates, for a special case that the propagation rate may change
once, we propose the algorithm FAST (stands for Finding
Anticipated Speedup Time) which can decide the near-optimal
time that the propagation rate may increase, with a carefully
designed global optimization framework utilizing Lipschitz-
alike properties. The optimality is in terms of minimizing
the number of seeds used for two objectives: 1) trigger the
propagation rate increase 2) ensure total number of influ-
enced users reach the threshold. FAST breaks down TAP-
DIP into subproblems in which the rate increases happen
at fixed times, and hence the sampling methods are again
applicable. However, the subproblems are still complicated as
they need to meet the thresholds for both triggering the rate
increase and satisfying the activation requirement. To solve

2

the subproblems, we designed the first efficient algorithms for
both Multi-TAP (MTAP) and Multi-Influence Maximization
(MIM). FAST can solve the TAP-DIP problem with approxi-
mation ratio 2 log |+ | (+ is the set of nodes in the OSN), which
is close to the best ratio log |+ | that one can expect for TAP
without DIP.

We also consider the general setting with multiple changes
of propagation rates. To solve it, we propose an efficient multi-
variate global optimization algorithm and utilize the proposed
algorithms for MTAP and MIM. The approximation ratio of
this solution is (1 + Z) log |E |, where Z is the number of times
that the propagation rate may change.

In summary, our contributions are as follows.
• We propose TAP-DIP, the first influence propagation

related problem in OSNs that explicitly considers propa-
gation rate increases. We support the validity of the model
by data analysis results from crawled retweets in around
4,000 Twitter trending topics.

• We propose the algorithm FAST to solve TAP-DIP in
the special case with one possible rate change. It is the
first solution to TAP-DIP with an approximation ratio of
2 log |+ |. The two subroutines of FAST, MMinSeed and
Multi-IM, are the first algorithms that can efficiently solve
the MTAP problem and the MIM problem, respectively.

• We propose the FASTS algorithm to solve the general
problem that allows Z propagation rate changes in TAP-
DIP, with the approximation ratio (1 + Z) log |+ |.

• We perform extensive experiments on various real OSN
data sets to demonstrate both the efficiency of our
proposed algorithms and the drastic difference in the
solutions when considering rate increase.

Related Work. Kempe et al. [3] are the first to study
influence propagation in OSNs mathematically. Their focus
was on the Influence Maximization problem (IM), which drew
much attention in the research community [4]–[14], [22], [27].
Recently, IM related studies also consider solution robustness
[24], competition with time constraint [25], IM with empirical
models [26], in multiple rounds [23] and at community level
[28]. Another major problem is TAP [15]–[20]. The main
propagation model adopted in the papers is the Triggering
model [3] or its variations, the Independent Cascading (IC)
model or the Linear Threshold (LT) model. Another model that
considers variation in propagation rate is the continuous time
diffusion model [7]. However, both models assume known and
fixed parameters for the diffusion, which may not represent the
real-world scenarios.

As even computing the exact influence is #P hard [5], the
mainstream approach of solving IM or TAP relies extensively
on sampling, which is inefficient (due to many redundant
samples) until Borgs et al. proposed the Reverse Influence
Sampling (RIS) method in [9]. The RIS method was further
refined in [10]–[12], [14] for better time complexity. However,
the RIS method was not yet applied to solve TAP or MIM,
nor can it consider the DIP model. The only exception is [21],
from which this paper is extended.

Organization. The rest of the paper is organized as follows.
In Section II, we present our analysis on propagation rates
and define the TAP-DIP problem. Section III and IV discuss

our solution, FAST to TAP-DIP. Section V discusses the
solution FASTS to the generalized problem. The performance
of FAST/FASTS and the behavior of the DIP model are
analyzed in Section VI. Section VII concludes the paper.

II. MODEL AND PROBLEM DEFINITION

A. Analysis of Twitter Data

We crawled the tweet stream data for 5,049 different Twitter
trending topics in the US using the REST APIs1, during the
period of Nov. 2016 to Apr. 2017. Specifically, we collected
the retweets whose times are within three days of the time
that the topic first became trending. In order to decide the
trending times for the topics, we first maintain the collection
of all trending topics in three days and then crawl the current
trending topics every 5 minutes. The trending time is consid-
ered as the first time that a new trending topic is recorded. We
also update the collection when necessary. When the trending
time of a topic is decided, we can use the Search API in
REST2 to fetch the historical retweets within the desired times.
The retweets are separated by the trending time and into two
groups, before trending and after trending, as our major goal
is to demonstrate that the propagation rate increases after the
topic being trending. The propagation rate is characterized
by the reciprocal of the time difference between the retweet
and the original tweet (retweet delay) in this case. We omit
the topics having less than 100 retweets before/after trending
to avoid outliers (such as promoted trending topics with few
retweets) and we are left with 3,988 topics after this step.
For each remaining topic, we calculated the time difference
between each of its retweets and the corresponding original
tweet. Based on the arrays of time differences before/after
trending, we can decide whether the time difference decreased
(or equivalently, propagation rate increased) after trending,
using KS-test [29] and t-test.

Fig. 1: Statistical Test Results. L/S means the average prop-
agation rate after trending is larger/smaller than before. Then
SL/NSL or SS/NSS denotes if it is significantly large/small
by t-test. NKS/KS means reject or cannot reject the null
hypothesis of KS test.

In Fig. 1, we present the test results of all the topics. It
is clear that the increase of propagation rate after trending
is a common phenomenon, as 86.1% of the topics have

1https://dev.twitter.com/rest/public
2https://dev.twitter.com/rest/public/search

3

Fig. 2: Distribution of Rate Increase

shorter average retweeting time delay. Among those topics
(label “L”), 72.8% have significant increase in propagation
rate (“L,NKS,SL”), verified by both KS-test and t-test.

We further study the distribution of propagation rate
increase of those who increased significantly (2,502 top-
ics in total). Define the propagation rate increase as
avg. retweet delay before trending
avg. retweet delay after trending , we obtain the histogram of rate

increase in Fig. 2, where the y-axis denote the fraction of
topics having rate increase in the range. The rate increase
distribution is heavy tailed with some concentration on small
numbers (1-10).

Last but not the least, we have a closer inspection of the
average retweet delay, grouped by the difference between
the retweet times and the corresponding trending times. For
example, a −10 means the retweet is 10 hours before the topic
get trending. Aggregating more than 60 million retweets from
the 3, 988 non-trivial trending topics, we obtain the following
figure.

Fig. 3: Retweet delays

The volume of retweets is as expected: most of the retweets
are concentrated around the trending time and there are more
retweets after trending than before trending. The average
retweet delay, however, shows some interesting behavior. First,
there are two periods of time that a decrease of the retweet
delay is observed: one from 20 hours before trending to the
trending time, one around 40−70 hours after trending. The two
periods of decrements are possibly due to different reasons.
The earlier one follows our intuition that when a topic starts to
be trending, it spreads faster. The latter one may be explained
by the hypothesis that the users who are enthusiastic about
a topic are likely to keep retweeting it with short delay. The
longer after the trending time, the higher the fraction of the

enthusiastic users among all users that are still retweeting
about the topic. This fact is then reflected in the decrement
of retweet delay. Second, the decrease of retweet delay is a
gradual process: no single point shows an abrupt drop in delay.
This behavior is natural, however, it causes extra complicacy
in propagation modeling.

B. The DIP Model

We abstract the OSN as a directed, connected graph � =

(+, �), where + denotes all the users in the OSN, and �

corresponds to the relationships among the users (follow,
friend, etc.) Each edge (D, E) ∈ � is associated with a weight
?DE ∈ [0, 1] and a probability density function ;DE (V), which
are used to characterize the influence propagation model that
is detailed in the following. Also, we consider the propagation
rate at time C as d(C), which is defaulted at 1 and d(C) > 1
means a faster propagation.

To model the change in influence propagation rate while
considering the impact of social relationship strength, we
combine the IC model and the Continuous-Time Diffusion
Model into the Continuous Time IC Model (CTIC), whose
definition is as follows. We denote the initial set of activated
(influenced) nodes as (.

Definition 1 (Continuous Time IC Model). Consider a graph
� = (+, �) with ;DE (V) and ?DE defined on each edge (D, E) ∈
� . The influence diffusion process starts when all nodes in
(are activated at time C = 0 and all other nodes remain
unactivated. When node D is activated at time C, each neighbor
E of D will be activated at time C+ V/d(C) with probability ?DE
where V follows the probability density function ;DE (V). Once
a node is activated, it will never be deactivated. The process
stops when no more nodes can be activated.

Under the CTIC model, we can characterize the rate change
using the function d(C). The function in general can depict
a wide range of propagation scenarios. In this paper, we
consider one class of d(C) based on the idea in [18] and the
findings from Sect. II-A. Specifically, we consider a topic to be
more popular (and thus propagates faster) when the ”speedup”
event happens: the number of influenced nodes reaches certain
thresholds. In the remaining, we will use speedup to denote
the event and speedup time to denote the time that the event
happens. Based on the findings, the speedups may not be
immediate: the propagation rate may gradually increase until
reaching the upper bound. We denote �C (() as the total number
of nodes influenced at time C, given the initial seed set (. Let
0 < q1 < q2 < · · · < qZ < qZ+1 = 1 be the thresholds and
1 = A0 < A1 < A2 < · · · < AZ , ^1, ^2, . . . , ^Z ≥ 0 as the param-
eters of speedups. A8s denote the intensity of the propagation
rate change and ^8s are used to model the gradual increment in
propagation rate between speedup times. Note that the gradual
increment can be modeled in many ways as there exists no
known results. We select a simple linear model that suffices
for the analysis in this paper. It is not the focus of the paper
to derive more accurate propagation rate change models. We
call the speedup event 8 happens at time C8 when the following
three conditions hold: 1) �C8 (() >= q8 |+ |. 2) �C8 (() < q8+1 |+ |

4

and 3)�C8−n (() < q8 |+ |, where 0 < n < C8 . For notational
convenience, we add a dummy speedup that happens at time
CZ+1 = +∞. Given the speedup times C1 ≤ C2 ≤ · · · ≤ CZ+1, we
can then define d(C) as follows:

d(C) =
{

1, C < C1
A8−1 + (A8 − A8−1)min{ C−C8

^8
, 1}, C8 ≤ C < C8+1, 8 ∈ [1, Z]

C. The TAP-DIP Problem.

In a viral marketing campaign, the goal can often be
influencing at least a certain number of users within a period
of time. For example, a company showcasing its new product
will want it to be exposed to a certain percentage of the
market within a few days after the release. The company
needs to choose some users as seeds to propagate the product
information, and seeding each user incurs a cost. For cost-
effectiveness, companies always want to minimize the number
of seed users, when the costs of seeding the users are the
same. Thus, the problem can be rephrased as finding a seed
set with minimum size such that the number of activated
nodes can be at least a certain threshold [|+ |. Such a problem
is termed as the Threshold Activation Problem (TAP). In a
typical TAP problem, the underlying influence propagation
model is often static, that the parameters of the model will
not change overtime. TAP-DIP, however, is the version of TAP
that considers dynamic influence propagation models. In this
paper, we focus on the TAP problem with the propagation
model CTIC.

Definition 2 (TAP-DIP). Given an OSN � = (+, �) with
;DE (V) and ?DE defined on each edge (D, E) ∈ � , the activation
threshold [, the trending triggering threshold q1, . . . , qZ , the
speedup parameters A1, . . . , AZ and ^1, . . . , ^Z , the time limit
) , TAP-DIP asks to find a seed set (with minimum size such
that the influence spread I) (() = � [�C (()] is at least [|+ |
within time) .

For the majority of the paper, we focus on the case when
the propagation rate can change only once and the change is
immediate. This case can be obtained from the model dis-
cussed above by setting Z = 1 and ^1 = 0. For simplification,
we remove the subscripts for q, A and ignore ^ in this case.
We will discuss the generalized model in Sect. V.

In the following two sections, we propose FAST, our
solution to TAP-DIP with only one possible rate change. For
conciseness, most of the proofs are placed in the appendix.

III. FAST: SOLUTION TO TAP-DIP

A. Overview

For all existing solutions to influence propagation related
problems, a known propagation model is required, which is
not possible in TAP-DIP as the propagation rate may change
based on number of influenced nodes. To fill the gap, we
can provide a key value: the time C that the propagation rate
changes. In TAP-DIP, this value is a variable based on number
of influenced nodes. When added as an input, it defines fixed
propagation models, yet it also brings in the constraint that the
number of influenced nodes must meet the triggering threshold

q at time C. Thus, with a fixed C, TAP-DIP can be reduced
to a problem of finding the minimum seed set to reach q|+ |
and [|+ | thresholds at time C and) , respectively. We assume
that a threshold is met when the expected influence, but not
the actual influence, is larger than the threshold as it is not
possible to obtain the actual influence when calculating the
seed set. Although it may not be exactly the same as in DIP,
this assumption is still acceptable: the influence is usually
concentrated at the expectation [18]. We also demonstrate
in our experiments that the performance of the algorithms
are satisfactory, in which we run extensive simulations to
demonstrate the performance when we trigger speedups by
actual influence. Notice that the propagation models in times
[0, C] and (C,)] are different due to the change in propagation
rate. We term the problem as Multi-TAP (MTAP), which
is a generalization of the TAP problem that only considers
satisfying a single threshold [|+ | at time) , but is still much
more accessible than TAP-DIP itself.

As the actual solution to MTAP is complicated, we delay
its details in Sect. IV and assume for now that it is available
in a blackbox. We can feed a C value to it and obtain a seed set
(C . Clearly, the solution to TAP-DIP is the (C with minimum
cardinality. However, the function � (C) = |(C | has no closed
form and we have to use global optimization techniques to find
its minimum. Since the range of � (C) is discrete, we cannot
use tools like Lipschitz optimization [30] directly. Nonetheless,
we can define a Lipchitz-alike property for discrete functions
and utilize the property to develop our solution, FAST, which
can find globally near-optimal values of a function given the
property, with limited calls to function value calculation.

Definition 3 (Lipschitz-alike condition for discrete functions).
A function 5 (G) defined on a discrete region - satisfies the
Lipschitz-alike condition if there exists a real constant L ≥ 0,
such that for all G1, G2 ∈ - ,

| 5 (G1) − 5 (G2) | ≤ L||G1 − G2 | |2 (1)

In the following, we first prove an approximation � ′(C) of
the function � (C) satisfies (1), and then propose the algorithm
FAST that finds near-optimal values of � (C) over C.

B. The FAST algorithm

If we denote Δ as the minimum distance3 between any two
possible values of C, � (C) is a discrete function and we can
prove that � (C) satisfies (1) with L = |+ |/Δ . Unfortunately,
the estimation of L is too crude and it provides little infor-
mation to minimizing the function. Therefore, we introduce a
relaxed version of � (C) that a much smaller L is achievable.

We write the relaxed version of � (C) as � ′(C) = (∗B (C) +
(∗0 (C), where (∗B (C) denotes the minimum number of nodes to
guarantee q fraction of influenced nodes in � on expectation
and therefore a speed-up at C; (∗0 (C) denotes the minimum
number of nodes to guarantee [fraction of activation in �

on expectation given a speed-up at C. Notice that (∗0 (C) is
calculated based on the assumption that the nodes triggered

3In practice, we can let C take values :Δ , : ∈ N. This is acceptable as we
usually use minutes/hours as the smallest time unit for marketing campaigns.

5

the speed-up did not influence any nodes in �. Therefore,
� ′(C) is an upper bound on the number of required nodes, as
stated in the following lemma.

Lemma 1. � ′(C∗′) ≤ 2� (C∗) where C∗ = arg minC ∈[0,)] � (C)
and C∗

′
= arg minC ∈[0,)] � ′(C).

It is clear that (∗B (C), (∗0 (C) are monotonically decreas-
ing/increasing with C, respectively. Such properties lead to a
more accurate estimation of L values for � ′(C).

Lemma 2. Given an interval [C1, C2] and function values
� ′(C1) = (∗B (C1) + (∗0 (C1), � ′(C2) = (∗B (C2) + (∗0 (C2), � ′(C)
satisfies (1) over [C1, C2] with constant

;C1 ,C2 =
1
Δ

max{(∗B (C1) − (∗B (C2), (∗0 (C2) − (∗0 (C1)} (2)

The following lemma adapted from [31] ensures a lower
bound on function values within any interval of � ′(C). 4

Lemma 3. When � ′(C) satisfies (1) over [C1, C2] with constant
;C1 ,C2 ,

min
C ∈[C1 ,C2]

� ′(C) ≥ �
′(C1) + � ′(C2)

2
−
;C1 ,C2 (C2 − C1)

2
(3)

With Lemmas 2 and 3, we propose FAST for finding the
global minimum of � ′(C) over [0,)], assuming that we have
access to the values of � (C) and � ′(C), which will be detailed
in Sect. IV. IV.

Algorithm 1 Finding Anticipated Speedup Time (FAST)

Input: � ′(C), � (C), C ∈ [0,)]
Output: The global minimizer C̄ of � ′(C), � (C̄)

Calculate � ′(0), � ′()) by Alg. 3.
Let C1 = 0, C2 =) , 8, : = 2, Calculate ;C8−1 ,C8 based on (2)
while |C8 − C8−1 | ≥ 1

;C8−1 ,C8
do

C:+1 = C8+C8−1
2 + �

′ (C8−1)−� ′ (C8)
2;C8−1 ,C8

, :++
Calculate � ′(C:+1) by Alg. 3
Renumber all points such that 0 ≤ C1 ≤ · · · ≤ C: ≤)
for Each interval [C 9−1, C 9] do

Calculate ;C 9−1 ,C 9 based on (2) and ' 9 based on rhs of
(3)

Let 8 = arg min 9=1, · · · ,: {' 9 }
� ′(C̄) = min{� ′(C8) |8 = 1, · · · , :}
C̄ = arg min{� ′(C8) |8 = 1, · · · , :}
Calculate � (C̄) by Alg. 3.

FAST utilizes the Lipschitz-alike property of � ′(C). Intu-
itively, it iteratively finds the interval with minimum lower
bound by Lemma 3 and calculate a new value in the interval,
until the interval is small enough. By (1), the minimum of
� ′(C) is close to one of the calculated values. We further refine
the result by calculating � (C̄) instead of � ′(C̄) at the end. The
following theorem guarantees the solution quality.

Theorem 1. � (C̄) ≤ 2� (C∗) + 1, where C∗ =

arg minC ∈[0,)] � (C).
4The original lemma was for continuous functions, however, the same

methodology can be adapted to prove the same result for discrete functions.

IV. MMINSEED: SOLUTION TO MULTI-TAP

In this section, we describe the missing piece in Section
III: how to calculate � ′(C), � (C), which completes FAST. As
discussed in Sect. III-A, calculating � (C) is actually solving
MTAP with two thresholds. For � ′(C), its two components
(∗B (C), (∗0 (C) can be seen as TAP instances with threshold \ |+ |
and time limit C, threshold [|+ | and time limit) , respectively.
Therefore, a solution to MTAP suffices for completing FAST.
In the following, we propose the first efficient solution to a
generalized version of MTAP (defined below) that considers
multiple thresholds and time limits. Thus, our proposed solu-
tion MMinSeed is not only capable for solving � (C), � ′(C),
but also applicable to the general scenarios.

Definition 4 (MTAP). Given � (+, �), + ; ⊆ +, ; = 1, ..., !,
thresholds [1, · · · , [! , time points C1, ..., C! and the propaga-
tion model, MTAP asks for a seed set (that can influence, by
expectation, [; |+ ; | nodes in each subset at C; .

A. The RIS Framework

Due to the complexity from the probabilistic network,
sampling is the most popular method to estimate the influence
spread of a seed set in each ground set. Here we adopt the
state-of-art Reverse Influence Sampling (RIS) technique [9]
for generating samples. Specifically, we combine the sampling
methods in two recent papers [11], [12] to generate samples
for each ground set under Continuous IC propagation model.

The RIS approach has two phases. In the sample generation
phase, a number of samples are generated, where each sample
consists of all nodes that can influence a random node in a
realization of the probabilistic graph. In the seed set selection
phase, a maximum coverage problem (with nodes as sets and
samples as elements) is greedily solved to obtain the seed set
for influence maximization.

The sampling method for TAP-DIP. When the propagation
rate increases in TAP-DIP, more nodes may influence the
randomly picked node through RIS within the time limit.
Hence, it is necessary to extend the RIS sampling method
to handle the case. The method we will discuss is not only
good for TAP-DIP, but also capable for handling the general
case with multiple thresholds and non-immediate change in
propagation rates.

Observe that varying the propagation rate is equivalent
to varying the time limit: a shorter delay can easily be
transformed to the normal delay with the extended time limit.
With this observation, we propose an approach to obtain RIS
samples with changes in propagation rates. The key idea is,
given a set of speedup times, we first convert the time limit
under speedups to the time limit with the original propagation
rate. Then we proceed with the typical RIS sampling method
under the converted time limit. The detail of the time limit
conversion algorithm (TLCA) is as follows.

Theorem 2. Obtaining samples with RIS and changes in
propagation rates with the original time limits is equivalent
to obtaining samples with RIS using the original propagation
rate and the time limits outputted by Alg. 2.

6

Algorithm 2 TLCA

Input: Time limit) , speedup times C1, C2, . . . , CZ , speedup
parameters A1, A2, . . . , AZ and ^1, ^2, . . . , ^Z .

Output: New time limit) ′

) ′ = C1
Let CZ+1 =) , A0 = 1
for 8 from 1 to Z do

if C8+1 − C8 > ^8 then
) ′ =) ′ + ^8 (A8+A8−1)

2 + (C8+1 − C8 − ^8)A8
else
) ′ =) ′ + (C8+1−C8) ((C8+1−C8) (A8−1+A8)+2^8A8−1)

2^8
Return) ′

B. The MMinSeed algorithm

To adapt the RIS framework to solve MTAP, there are
two obstacles. The first one is how to guide the solution to
consider all the thresholds at the same time. A second and
more challenging one is that, the RIS framework is designed
for maximizing influence with a fixed number of seeds. Also,
the number of samples required to guarantee a certain level of
accuracy will increase with more seed nodes. However, MTAP
asks for minimizing the seed set size, which is unknown and
cannot be used to determine the number of required samples.

In order to overcome the first obstacle, we need to design an
objective function that satisfies the following conditions: (1)
Maximizing the function will fulfill all thresholds. (2) When a
threshold is fulfilled, additional influence to the corresponding
ground set should not bring any benefit to the function (3)
The function must be submodular. The first two conditions
insure the correctness of the function, while the last one helps
deriving the approximation ratio.

We design the function 5 (() as follows:

5 (() =
∑
;∈!

min{[; |+ ; |, |+ ; (() |}, (⊆ S (4)

where |+ ; (() | denotes the expected number of nodes influ-
enced by (in the ground set + ; . Clearly, 5 (() is submodular
and monotone increasing as it is the sum of submodular
functions. Also, each ground set can contribute up to its
threshold to the function value. Additionally, the maximum
of this function can only be achieved when all thresholds are
fulfilled.

We describe MMinSeed in Alg. 3. In MMinSeed, the pro-
cess of finding the number of seeds utilizes the submodularity
of 5 (.). In each round, MMinSeed calculates the average gain
in 5 (.) of adding a seed node in the previous round, which is
defined as Δ 5 = (5 − 5?A4E)/(9 − 9?A4E) where 5 , 5?A4E ,
9 , 9?A4E are the function value 5̂ (() and number of seeds
in the previous two rounds, respectively. Then, the algorithm
estimates how many new seed nodes are required, denoted by
Δ 9 , assuming all the new nodes can bring the gain equal to Δ 5 .
The approach will reduce the number of calls to its subroutine,
Alg. 4. Comparing with binary search, the greatest advantage
of this approach is that it will never choose a seed set size that
is larger than necessary, which is guaranteed by submodularity.
A larger seed set is not preferable since it leads to generating
more samples, which is redundant and costs extra time.

Algorithm 3 MMinSeed

Input: Graph � = (+, �), Ground sets +1, · · · , +! with
thresholds [1, · · · , [! , n > 0

Output: Seed set (⊆ +
5 ((∗) = ∑

;∈! [; |+ ; |.
9 = 1, 9?A4E = 0, 5 = 0, 5?A4E = 0, (= ∅
Find (using Alg. 4 with |(| ≤ 9
5 = 5̂ (()
while 5̂ (() < (1 − n) 5 ((∗) do
Δ 5 = (5 − 5?A4E)/(9 − 9?A4E)
Δ 9 = d (1−n) 5 ((

∗)− 5̂ (()
¯Δ (5) e

5?A4E = 5 , 9?A4E = 9

9 = 9 + Δ 9
Find (using Alg. 4 with |(| ≤ 9
5 = 5̂ (()

The subroutine Multi-IM (Alg. 4), is the first efficient
solution to the MIM problem. It maintains ! collections of
samples R1, · · · ,R; (one for each threshold) and it keeps
generating new samples for each collection up to a given
amount #R; . Then, Alg. 4 greedily solves a submodular
maximization problem with the submodular function 5 (()
defined in (4), using at most : nodes. The resulting set (:
is used to verify if the number of samples intersect with (: ,
�R; ((:), is at least W; . If the verification is successful, R;
is enough to guarantee the accuracy of estimating the ground
set. It then stops generating new samples for R; . Otherwise,
it doubles #R; , generating samples up to #R; and rerun the
verification. When all R; passed the verification, the solution
(: is returned as output.

Algorithm 4 Multi-IM

Input: Graph � = (+, �), Ground sets +1, · · · , +! with
thresholds [1, · · · , [! , Precision parameters n > 0, X ∈
(0, 1)

Output: Seed set (⊆ +
Collection of samples R; = ∅, ; = 1, · · · , !
q; =

(1−1/4)f+g;
n

, W; = 74 (q;)2
3(4−1)

#R; = W
; , 2C=; = CAD4, ; = 1, · · · , !

while ∃; s.t. 2C=; == 5 0;B4 do
(: = Greedy size : solution to maximize 5̂ (()
for Each ; = 1, · · · , ! do

if 2C=; then
if �R; ((:) ≥ W; then
2C=; = 5 0;B4

else
Generate #R; samples for R; , #R; = 2#R;

C. Theoretical Analysis.

Since 5 (.) is submodular, the following result [32] holds
using the greedy algorithm, if all 5 (.) values can be obtained
in polynomial time:

5 ((6
9
) ≥ (1 − (1 − 1/:) 9) 5 ((∗:)

7

where (6
9

is the collection of the first 9 sets selected by the
greedy algorithm to maximize 5 (.) and (∗

:
is the optimal

collection of size : . However, in Multi-IM, the values of 5 (.)
are not accurate but estimated by RIS. Hence, we can only
have a weaker result as in Theorem 3.

Theorem 3. Alg. 4 guarantees

5 ((6
9
) ≥ (1 − (1 − 1/:) 9 − n) 5 ((∗:) (5)

with probability at least 1 − X.

To prove Theorem 3, we prove the following two Lemmas.
In lemma 4, we derive the number of samples required to
guarantee (5). Next, we ensure that Alg. 4 generates at least
that many samples in Lemma 5. The validity of Theorem 3
is then derived by combining Lemma 4 and Lemma 5, and
applying the union bound. Notice that ! ∈ N+ and X ∈ (0, 1),
so the probabilities in Lemma 4 and Lemma 5 are well defined.

Lemma 4. The number of samples required to guarantee (5)
with probability at least 1 − !+1

2!+1X is

& =

!∑
;=1

&; (6)

&; =
74 |+ ; | (q;)2

3(4 − 1)I;
)
((∗
:
)
, q; =

(1 − 1/4)f + g;
n

f =

√
ln(2! + 1

X
), g; =

√
(1 − 1

4
) (ln
(2! + 1)

(|+ ; |
9

)
X

)

X ∈ (0, 1) and n ∈ (0, 1
2) are constants.

Lemma 5. Alg. 4 guarantees the number of samples for each
threshold is at least &; when it stops, with probability at least
1 − !

2!+1X.

It is possible that I;
)
((∗
:
) is close to 0. This will only happen

if the probability ?DE for all edges (D, E) ∈ � are close to 0.
We ignore such cases since no strategy can grant any benefit.

With Theorem 3, we are able to derive the approximation
ratio of MMinSeed in Theorem 4 and eventually, the approx-
imation ratio of FAST in Theorem 5.

Theorem 4. MMinSeed has approximation ratio log |+ | and
achieves at least (1− n) of the required 5 (.) value, given (5).

Theorem 5. FAST has approximation ratio of 2 log |+ |.

Theorem 6. The time complexity of FAST is
$ (<=)

Δ

∑
;∈! (q;)2)), where =, < are number of nodes

and edges in the graph, respectively.

V. SOLUTION TO THE GENERAL PROBLEM

In this section, we lift the constraints on Z and ^. In other
words, there may be multiple speedup events and they may not
be immediate. In this general problem, the main challenge of
TAP-DIP remains and is more complicated: we need to have
the knowledge of multiple, instead of one, speedup times to
enable sampling. It requires a non-trivial extension to Alg. 1.

Following the idea in Alg. 1, we would like to find the best
set of speedup times that results in the minimum number of

seeds. Doing so requires optimizing a multi-variate function
� (C1, C2, . . . , CZ) (or � (t) in short) and Alg. 1, designed for
univariate function minimization, cannot work. However, we
can generalize the approach. Recall that Alg. 1 iteratively
finds a new evaluation point within an interval that is having
the least lower bound on function value and then separate
the interval to two, update the ; values and continue. With
Z dimensions, we need a more complicated data structure to
organize the regions: we encode the regions in a hyperoctree
[33], in which each region is a node in tree and a non-leaf
node (corresponds to a separated region) will have exactly 2Z
children. A region is defined by two Z dimensional vectors
t; = (C;1, . . . , C

;
Z
) and tℎ = (Cℎ1 , . . . , C

ℎ
Z
), with C;

8
< Cℎ

8
,∀8 =

1, . . . , Z . We term them as the defining vectors of the region.
The vertices of the region will be all Z dimensional binary
vectors, where a 0 in position 8 indicates the vertex has value C;

8

for dimension 8, and 1 otherwise. With a new evaluation point
t′, the separation will take place in the region that satisfies
C;
8
< C ′

8
< Cℎ

8
,∀8 = 1, . . . , Z . 5 Each one of the 2Z new regions

will involve a vertex t> of the old region and the point t′.
The two defining vectors for the new region are the pairwise
minimum/maximum of the vectors t> and t′, respectively.

When the regions are available, we may generalize Lemma 1
and Lemma 2 to calculate the ; values for each region. Let
(∗B8 (C) be the number of seeds required to trigger the 8th
speedup event without considering the impact of any other
speedups and (∗0 (t) be the number of seeds required to
guarantee [fraction of activation in � given speeds happening
at times t = (C1, C2, . . . , CZ). Let � ′(t) = ∑Z

8=1 (
∗
B8
(C8) + (∗0 (t),

we have the following results6:

Lemma 6. � ′(t∗′) ≤ (Z + 1)� (t∗) where t∗′ , t∗ are minimizers
for � ′(.) and � (.), respectively.

Lemma 7. Given the two defining vectors t; = (C;1, . . . , C
;
Z
)

and tℎ = (Cℎ1 , . . . , C
ℎ
Z
) of a region and function values

� ′(t;), � ′(tℎ), let Δ be the minimum distance between any
two possible values of t, then � ′(t) satisfies (1) in the region
with constant

;t; ,tℎ =
1
Δ

max{(∗0 (t;) − (∗0 (tℎ),
Z∑
8=1

(∗B8 (C
;
8) −

Z∑
8=1

(∗B8 (C
ℎ
8)} (7)

With ;t; ,tℎ values and function values � ′(t;), � ′(t;), we can
obtain a lower bound for all function values when the variables
are in the region.

Lemma 8. The lower bound 't; ,tℎ of function values for the
region defined by t; , tℎ satisfies:

't; ,tℎ ≥
� ′(t;) + � ′(tℎ)

2
−
;t; ,tℎ | |tℎ − t; | |2

2
(8)

In a region, the points t′ that are likely to hit the lower
bound satisfy

� ′(tℎ) − � ′(t;)
;t; ,tℎ

= | |tℎ − t′ | |2 − ||t’ − t; | |2 (9)

5We omit the possible equality here, as it will just result in a degenerated
problem with less regions per separation.

6The proofs are similar to those for Lemma 1, 2 and thus omitted.

8

As there can be infinitely many such points when Z ≥ 2 (e.g.
the points form a hyperbola with Z = 2), we consider the only
point that is on the segment connecting t; , tℎ . Combining (9)
and the fact that the point is on the segment, we solve the
point as follows:

t′ = (UCℎ1 + (1 − U)C
;
1, . . . , UC

ℎ
Z + (1 − U)C;Z) (10)

where U = 1 −
(|� ′(tℎ) − � ′(t;) |

2;t; ,tℎ | |t; − tℎ | |2
+ 1

2
)2

With all the above analysis, we have Alg. 5 that solves
our general problem. Notice that with a fixed set of C1, . . . , CZ ,
Alg. 3 and Alg. 4 are capable of finding the minimum number
of seeds, even in this general case.

Algorithm 5 Finding Anticipated Speedup Times (FASTS)

Input: � ′(t), � (t), ∈ [0,)]Z
Output: The global minimizer t∗ of � ′(t), � (t∗)

Calculate � ′(0), � ′(T) by Alg. 3.
Construct a tree with the region � ′(0), � ′(T) as the root.
Let the min region R<8= = (� ′(0), � ′(T)), % = {0,T}.
Calculate ;0,T based on (7)
while R<8= (t; , tℎ) satisfies | |t; − tℎ | |2 ≥ 1

;t; ,tℎ
do

Find the new evaluation point t′ in R<8= based on (10).
Calculate � ′(t′) by Alg. 3
Add t′ to %.
Construct 2Z new regions as children of R<8= in the tree.
for Each region as a leaf in the tree do

Calculate ;t; ,tℎ based on (7) and 't; ,tℎ based on (8).

Let R<8= = arg minregion (t; , tℎ) as leaves in the tree{'(t; ,tℎ) }
� ′(t∗) = min{� ′(t′) |t′ ∈ %}, t∗ = arg min{� ′(t′) |t′ ∈ %}
Calculate � (t∗) by Alg. 3.

Theorem 7. � (t∗) ≤ (Z + 1)� (t$%) + 1)

The proof for the above performance guarantee is an exten-
sion to that of Theorem 5 and hence omitted.

Theorem 8. The time complexity of FASTS is
$ (<=

()
Δ

Z

) ∑
;∈! (q;)2)).

VI. EXPERIMENTS

A. Experimental Settings.

The experiments are conducted on a Linux machine with
2.3GHz Xeon 18 core processor and 256GB of RAM. We
carry experiments under Continuous IC models on the follow-
ing datasets from [34].
Datasets. We select 8 OSN datasets of various sizes to test
the impact of the dynamic influence propagation model. The
description summary of those datasets is shown in Table I.
Parameter Settings. We follow the papers [6], [10] for setting
propagation probability ?DE , which is calculated as ?DE =

1
38=E

where 38=E denotes the indegree of node E. We model the
propagation rate using Weibull distribution as [7], [11] and fix
the shape parameter at 4, scale parameter at 1 throughout the
experiments.

TABLE I: Datasets’ Statistics

Dataset #Nodes #Edges T-Node A-Node

Facebook 4K 88K 100 - 500 1K - 2K
wiki-Vote 7K 206K 100 - 500 1K - 2K
Epinions 76K 1M 500 - 2.5K 10K - 20K
Slashdot 77K 1.8M 500 - 2.5K 10K - 20K
Twitter 81K 3.54M 500 - 2.5K 10K - 20K
Gplus 108K 26M 500 - 2.5K 10K - 20K
Pokec 1.63M 61.2M 5K-25K 100K-200K
LiveJournal 4.85M 138M 5K-25K 100K-200K

Fig. 4: Efficiency of MMinSeed with Multi-IM/IMM

In all the experiments, we keep n = 0.1 and X = 1/= if the
values are not stated otherwise. The time limit is set at 10.
The values of A , the propagation rate change, varies from 1.5
to 4.0. The q, [values are not set explicitly, instead, we set
the number of nodes required for being trending (T-Node) and
for overall activation requirement(A-Node), based on the size
of the networks. The parameters are summarized in Table I.

B. Performance of FAST.

Since the TAP-DIP problem is new, there are no suitable
algorithms that can be compared directly with FAST. Instead,
we demonstrate the performance of FAST via its subroutine.
We compare the MMinSeed algorithm with its variation that
uses the IMM algorithm [11] instead of the Multi-IM algo-
rithm (Alg. 4) as a subroutine. In the comparison, we only
allow one threshold and modify IMM’s sampling method to
allow the Continuous-IC model. The comparison is based on
the scenario with no rate change and the lowest activation
threshold for each network.

Figure 4 proves a clear difference of the running time.The
Multi-IM supported MMinSeed is much faster (the running
time is in log scale) than the one supported by IMM. The
main reason for the superior performance of Multi-IM is that
it decides the sample requirement dynamically, while IMM
has a parameter estimation stage to estimate the number of
required samples, which can be inaccurate and results in a
sample collection that is much larger than necessary when the
seed set size is small. In the running time comparison, we set
n = 0.5 to allow IMM finish in reasonable time. Each number
is the average of 10 runs, as the variation of running time is
small and the difference is apparent.

Scalability of FAST. During our experiments, we observe
that all the scenarios had less than 20 iterations inside FAST,
which means the time complexity of FAST is larger than

9

Fig. 5: Running Time of FAST

that of MMinSeed only by a multiplicative constant (< 40).
Figure 5 demonstrates the scalability of FAST. The trend line
(corresponds to the right y-axis) denotes the size of different
networks (number of edges) and the box plots (corresponds to
the left y-axis) displays the running time in different networks
with various settings. Notice that we use the first letter of each
dataset due to space issues. We can observe a nice feature of
FAST that its running time grows linearly in terms of network
size. For large networks such as Pokec (61.2M edges) and
LiveJournal (138M edges), FAST can finish within three hours.

C. Quality of the Seed Sets.

One key factor we would like to consider is how the seed
set will differ with/without DIP. Figure 6 compares the seed
sets obtained by FAST and those obtained by solving the base
case of TAP without considering the rate increase. In the pie
charts, the shared seeds means the proportion of seed nodes
that exists in both FAST seeds and base seeds. The data in each
chart is averaged among the result from 180 runs of various
settings. Clearly, considering the rate increase explicitly result
in a large reduction in number of seeds required.

As the FAST seed set is mostly a subset of the base seed
set, we would expect that the FAST seed set has a smaller
influence spread. However, we will demonstrate that the FAST
seeds can still meet the threshold with extensive simulations.
For each setting in each dataset, we simulate 10, 000 random
propagation process from both the FAST seeds and the base
seeds. The rate increase is applied when the actual number
of influenced nodes hit the trending thresholds. Figure 7
depicts the percentage of nodes activated comparing with the
corresponding threshold. As we set n at 0.1, the reference line
(in yellow) is drawn at 90%. A point over the reference line
means the average number of activated nodes (over 10,000
simulations) in a certain scenario meets 90% of the threshold.
In all the four datasets, the base seed set activated much more
nodes than required by the threshold, which suggests that their
size can actually be reduced. In most cases, the FAST seed sets
can meet the requirement. One exception is in the LiveJournal
data set, it is possible that the influence spread in LiveJournal
is not concentrated at the expectation.

D. Sensitivity Analysis of Key Parameters

In this section, we test the impact of three parameters: A (the
propagation rate after trending), T-Node (# nodes required to

be trending) and A-Node (overall activation requirement) to
the behavior of FAST. The results are displayed in heat maps,
a warmer color means an earlier time for rate increase (decided
by FAST). The data sets are grouped based on parameter
setting (refer to Table I for details) into small (Facebook,
WikiVote), medium (Gplus, Twitter, Epinions, Slashdot) and
large (LiveJournal, Pokec). In each heat map, we vary two
parameters and take average over the other. A warmer color
in a cell denotes a earlier time for rate increase.

In Fig. 8a-8c, we vary A and T-Nodes. One clear trend is that
when more T-Nodes are required, FAST tends to choose a later
time for starting the trend and the speed up. It is reasonable
as it can be costly to activate T-Nodes early when the number
is high. In some scenarios, FAST may choose not to have
the speed up at all when T-Node is too large and A is small.
What seems counter-intuitive in those Figures is that FAST
may not choose to have the speed up earlier when A increases.
This phenomena can possibly explained from the perspective
of cost. With a larger A, FAST can influence a set of nodes
in less time, even with the same seed set. Thus, FAST is not
that “hurry” of starting the speed up, as it is able to reach the
threshold when triggering the speed up later with less cost.

In Figs. 8d-8i, we vary A-Nodes. In most of the cases,
FAST tend to have the speed up earlier when facing a larger
threshold. The opposite is shown in some rare cases, mostly
because A is too low or T-Node is too high, which makes FAST
think starting the speed-up early is not beneficial.

E. Result for the General Problem

The main interest we have for the general problem is:
how the results differ from the case with only one speedup
event? Hence, we create the general scenarios based on single
speedup scenarios. For a single speedup scenario with speedup
rate A and trending requirement (T-Node) #) , we apply the
following changes to obtain a general scenario: 1) Add a
speedup that happens with threshold #)

2 and rate A+1
2 . 2) For

the two speedups, let ^ = 1. Notice that we keep the overall
activation requirement (A-Node) the same.

We run both the single speedup and the general scenario
in Facebook and Slashdot datasets. For the running time, the
general scenario usually runs around 10 times slower than the
single speedup scenario. This is understandable. Each time
when we evaluate a new node in the single speedup scenario,
we only need to run Alg. 3 for that node. In the general
scenario, however, we need to do so for both defining vectors
of all the 2^ (4 in our experiment as we have ^ = 2) new
regions. Also, each call to Alg. 4 requires an extra set of
samples for the new speedup threshold. On the other hand,
the convergence of Alg. 5 is similar to that of Alg. 1, each
call to Alg. 5 ends within 30 iterations of the main loop.

In Figs. 9a and 9b, we compare the speedup times in both
scenarios. It is interesting that Alg. 5 decided the first speedup
in the general case should be very early and the second should
be very late. Having the first speedup can be very tempting as
the requirement is low (only half of the second). However, as
we calculate the seeds for speedups separately, the cost to have
the second speedup early can be high. With the first speedup

10

(a) Facebook (b) Slashdot (c) Gplus (d) Livejournal

Fig. 6: Seed Set Distribution

(a) Facebook (b) Slashdot (c) Gplus (d) LiveJournal

Fig. 7: Percentage of Nodes Activated

(a) Small, A and T-Node (b) Medium, A and T-Node (c) Large, A and T-Node

(d) Small, T-Node and A-Node (e) Medium, T-Node and A-Node (f) Large, T-Node and A-Node

(g) Small, A and A-Node (h) Medium, A and A-Node (i) Large, A and A-Node

Fig. 8: Sensitivity Analysis Results

11

available, the need for a early second speedup is not strong. It
is costly but without much benefit, especially considering the
fact that the speedup is not immediate.

We then illustrate the impact of the general case in regards
to the size and the quality (represented by the actual coverage
in simulation) of the seeds. The changes are calculated as

Change in # seeds =
seeds in single - # seeds in general

seeds in single

Change in cov. =
act. cov. in general - act. cov. in single

act. cov. in single

In Fig. 9c, we can observe a clear reduction in # seeds
when the activation (coverage) requirement is low. As depicted
in Fig. 9a, the first speedup is usually triggered early. In a
small network like Facebook, doing so does not require a
large number of seeds and it is not necessary to have many
more seeds to meet the coverage requirement. However, the
actual coverage was slightly reduced but still above the 90%
coverage requirement, as desired. When coverage requirement
is 1400 and 1600, the result for the general scenario improves:
less seeds, more coverage. With higher activation requirement,
however, the number of seeds increased. The main reason may
be the slightly reduced approximation ratio (from 2 log |+ | to
3 log |+ |) and the selection of two speedup times. The algo-
rithm will need more seeds to ensure the coverage requirement
to remedy the fact that the second speed up happens really
late and not immediate, comparing with the single speed up
scenario. The same analysis extends to Fig. 9d.

VII. CONCLUSION

In this paper, we proposed a novel dynamic influence
propagation model, which can more accurately characterize
the information diffusion in social networks compared with
the existing propagation models. The model is supported by
analysis of the crawled retweet data, that most topics will
propagate faster after being trending. To study the impact of
DIP in OSNs, we propose a new TAP-DIP problem by substi-
tuting the static propagation model in TAP with DIP. Although
TAP-DIP is even harder than TAP, we designed the FAST
algorithm that can solve it with approximation ratio similar to
the best for TAP. We also propose a solution to the general
TAP-DIP problem, which allows multiple rate changes, with
similar guarantee. In experiments, we demonstrated that FAST
can generate high quality seed sets and is scalable. Also, we
confirmed that DIP has a high impact in the result.

ACKNOWLEDGEMENT

This work was supported in part by DTRA HDTRA1-14-
1-0055, NSF CNS-1814614 and NSF CNS-1948550.

REFERENCES

[1] Pedro Domingos and Satt Richardson. Mining the network value of
customers. In Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 57–66.
ACM, 2001.

[2] Matthew Richardson and Pedro Domingos. Mining knowledge-sharing
sites for viral marketing. In Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining,
pages 61–70. ACM, 2002.

[3] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread
of influence through a social network. In Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data
mining, pages 137–146. ACM, 2003.

[4] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos,
Jeanne VanBriesen, and Natalie Glance. Cost-effective outbreak detec-
tion in networks. In Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 420–429.
ACM, 2007.

[5] Wei Chen, Chi Wang, and Yajun Wang. Scalable influence maximization
for prevalent viral marketing in large-scale social networks. In Proceed-
ings of the 16th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1029–1038. ACM, 2010.

[6] Amit Goyal, Wei Lu, and Laks VS Lakshmanan. Simpath: An efficient
algorithm for influence maximization under the linear threshold model.
In Data Mining (ICDM), 2011 IEEE 11th International Conference on,
pages 211–220. IEEE, 2011.

[7] Nan Du, Le Song, Manuel Gomez-Rodriguez, and Hongyuan Zha.
Scalable influence estimation in continuous-time diffusion networks. In
Advances in neural information processing systems, pages 3147–3155,
2013.

[8] Edith Cohen, Daniel Delling, Thomas Pajor, and Renato F Werneck.
Sketch-based influence maximization and computation: Scaling up with
guarantees. In Proceedings of the 23rd ACM International Conference
on Conference on Information and Knowledge Management, pages 629–
638. ACM, 2014.

[9] Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier.
Maximizing social influence in nearly optimal time. In Proceedings of
the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 946–957. SIAM, 2014.

[10] Youze Tang, Xiaokui Xiao, and Yanchen Shi. Influence maximization:
Near-optimal time complexity meets practical efficiency. In Proceedings
of the 2014 ACM SIGMOD international conference on Management of
data, pages 75–86. ACM, 2014.

[11] Youze Tang, Yanchen Shi, and Xiaokui Xiao. Influence maximization
in near-linear time: A martingale approach. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, pages
1539–1554. ACM, 2015.

[12] Hung T Nguyen, Thang N Dinh, and My T Thai. Cost-aware targeted
viral marketing in billion-scale networks. In IEEE INFOCOM 2016-The
35th Annual IEEE International Conference on Computer Communica-
tions, pages 1–9. IEEE, 2016.

[13] Xiang Li, J David Smith, Thang N Dinh, and My T Thai. Why approx-
imate when you can get the exact? optimal targeted viral marketing
at scale. In IEEE INFOCOM 2017-IEEE Conference on Computer
Communications, pages 1–9. IEEE, 2017.

[14] Hung T. Nguyen, My T. Thai, and Thang N. Dinh. Stop-and-stare: Op-
timal sampling algorithms for viral marketing in billion-scale networks.
In Proceedings of the 2016 International Conference on Management
of Data, pages 695–710. ACM, 2016.

[15] Cheng Long and Raymond Chi-Wing Wong. Minimizing seed set for
viral marketing. In 2011 IEEE 11th International Conference on Data
Mining, pages 427–436. IEEE, 2011.

[16] Amit Goyal, Francesco Bonchi, Laks VS Lakshmanan, and Suresh
Venkatasubramanian. On minimizing budget and time in influence
propagation over social networks. Social Network Analysis and Mining,
3(2):179–192, 2013.

[17] Dung T Nguyen, Huiyuan Zhang, Soham Das, My T Thai, and Thang N
Dinh. Least cost influence in multiplex social networks: Model repre-
sentation and analysis. In 2013 IEEE 13th International Conference on
Data Mining, pages 567–576. IEEE, 2013.

[18] Peng Zhang, Wei Chen, Xiaoming Sun, Yajun Wang, and Jialin Zhang.
Minimizing seed set selection with probabilistic coverage guarantee in a
social network. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 1306–1315.
ACM, 2014.

[19] Thang N Dinh, Huiyuan Zhang, Dung T Nguyen, and My T Thai. Cost-
effective viral marketing for time-critical campaigns in large-scale social
networks. IEEE/ACM Transactions on Networking, 22(6):2001–2011,
2014.

[20] Alan Kuhnle, Tianyi Pan, Md Abdul Alim, and My T Thai. Scalable
bicriteria algorithms for the threshold activation problem in online social
networks. In IEEE INFOCOM 2017-IEEE Conference on Computer
Communications, pages 1–9. IEEE, 2017.

[21] Tianyi Pan, Alan Kuhnle, Xiang Li, and My T Thai. Dynamic
propagation rates: new dimension to viral marketing in online social

12

(a) Speedup times in Facebook (b) Speedup times in Slashdot (c) Change in # of seeds and coverage
in Facebook

(d) Change in # of seeds and coverage
in Slashdot

Fig. 9: Comparison between single/multiple speedups

networks. In 2017 IEEE International Conference on Data Mining
(ICDM), pages 1021–1026. IEEE, 2017.

[22] Alan Kuhnle, Md Abdul Alim, Xiang Li, Huiling Zhang, and My T
Thai. Multiplex influence maximization in online social networks with
heterogeneous diffusion models. IEEE Transactions on Computational
Social Systems, 2018.

[23] Lichao Sun, Weiran Huang, Philip S Yu, and Wei Chen. Multi-round
influence maximization. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
pages 2249–2258. ACM, 2018.

[24] Xinran He and David Kempe. Stability and robustness in influence
maximization. ACM Transactions on Knowledge Discovery from Data
(TKDD), 12(6):1–34, 2018.

[25] Canh V Pham, Hieu V Duong, Huan X Hoang, and My T Thai.
Competitive influence maximization within time and budget constraints
in online social networks: an algorithmic approach. Applied Sciences,
9(11):2274–2302, 2019.

[26] Sinan Aral and Paramveer S Dhillon. Social influence maximization
under empirical influence models. Nature human behaviour, 2(6):375–
382, 2018.

[27] Xiang Li, J David Smith, Thang N Dinh, and My T Thai. Tiptop: Almost
exact solutions for influence maximization in billion-scale networks.
IEEE/ACM Transactions on Networking (TON), 27(2):649–661, 2019.

[28] Lan N Nguyen, Kunxiao Zhou, and My T Thai. Influence maximization
at community level: A new challenge with non-submodularity. In 2019
IEEE 39th International Conference on Distributed Computing Systems
(ICDCS), pages 327–337. IEEE, 2019.

[29] MH DeGroot and MJ Schervish. Kolmogorov–smirnov tests. Probability
and statistics. Pearson, pages 657–58, 2011.

[30] Reiner Horst and Panos M Pardalos. Handbook of global optimization,
volume 2. Springer Science & Business Media, 2013.

[31] Daniela Lera and Yaroslav D Sergeyev. Acceleration of univariate global
optimization algorithms working with lipschitz functions and lipschitz
first derivatives. SIAM Journal on Optimization, 23(1):508–529, 2013.

[32] Tapio Elomaa and Jussi Kujala. Covering analysis of the greedy
algorithm for partial cover. In Algorithms and Applications, pages 102–
113. Springer, 2010.

[33] Mann-May Yau and Sargur N Srihari. A hierarchical data structure
for multidimensional digital images. Communications of the ACM,
26(7):504–515, 1983.

[34] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2014.

Tianyi Pan received his Ph.D. degree in com-
puter engineering from the University of Florida.
His research focuses on approximation algorithms
of optimization problems and vulnerability analysis
in interdependent networks, including online social
networks, smart grid and communication networks.

Xiang Li (M’18) is an Assistant Professor at the
Department of Computer Science and Engineering
of Santa Clara University. She received her Ph.D.
degree in Computer and Information Science and
Engineering department of the University of Florida.
Her research interests are centered on the large-scale
optimization and its intersection with cyber-security
of networking systems, big data analysis, and cyber
physical systems. She has published 25 articles in
various prestigious journals and conferences such
as IEEE Transactions on Mobile Computing, IEEE

IEEE Transactions on Smart Grids, IEEE INFOCOM, IEEE ICDM, including
one Best Paper Award in IEEE MSN 2014, Best Paper Nominee in IEEE
ICDCS 2017, and Best Paper Award in IEEE International Symposium on
Security and Privacy in Social Networks and Big Data 2018. She is an
associate editor of the Computational Social Networks journal and the Journal
of Combinatorial Optimization.

Alan Kuhnle (M’18) is an Assistant Professor at
the Department of Computer Science of Florida
State University. He received his Ph.D. degree in
Computer Science and M.Sc. degree in mathematics,
both from University of Florida. His current research
focuses on the design and analysis of algorithms
to solve optimization problems arising from ma-
chine learning, network science, and bioinformatics.
Particular interests currently include scalable opti-
mization of submodular functions, fast evolutionary
algorithms with theoretical guarantees and succinct

data structures for representing genomics data.

My T. Thai (M’06) is a UF Research Foundation
Professor at the Computer and Information Science
and Engineering department, University of Florida.
Her current research interests are on scalable al-
gorithms, big data analysis, cybersecurity, and op-
timization in network science and engineering, in-
cluding communication networks, smart grids, social
networks, and their interdependency. The results of
her work have led to 6 books and 200+ articles,
including IEEE MSN 2014 Best Paper Award, 2017
IEEE ICDM Best Papers Award, 2017 IEEE ICDCS

Best Paper Nominee, and 2018 IEEE/ACM ASONAM Best Paper Runner up.
Prof. Thai has engaged in many professional activities. She has been a TPC-

chair for many IEEE conferences, is a founding EiC of the Computational
Social Networks journal, EiC of the Journal of Combinatorial Optimization,
and a book series editor of Springer Briefs in Optimization and Springer
Optimization and its Application. She has received many research awards
including a UF Provosts Excellence Award for Assistant Professors, UFRF
Professorship Award, a Department of Defense (DoD) Young Investigator
Award, and an NSF (National Science Foundation) CAREER Award.

