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Abstract A traffic signal is a fundamental part of the traffic control system
to reduce congestion and enhance safety. Since the inception of motorized ve-
hicles, traffic signal controllers are put in place to coordinate and maintain
traffic flow. With the number of vehicles on the road increasing exponentially,
it is imperative to innovate new traffic control frameworks to cope with the
high-density traffic demand. In this regard, recent advances in machine/deep
learning have enabled significant progress towards reducing congestion using
reinforcement learning for traffic signal control. However, most of these works
are still not ready for deployment due to assumptions of perfect knowledge
of the traffic environment. In reality, congestion detection or prediction sys-
tems are at best able to approximate the traffic state with significant noise. In
this work, we propose a robust training framework for reinforcement learning
agents that can handle such noisy approximation of the traffic states. Specif-
ically, we show that by carefully adding synthetic perturbations to the state
space such as the queue length during training, the reinforcement learning
agents can be robustified. Conceptually, our approach is similar to adversar-
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ial training schemes and can lead to successful deployment of reinforcement
learning agent-based traffic signal controllers.

Keywords Deep Learning - Deep Reinforcement Learning - Robust -
Adaptive Signal Control Technologies

1 Introduction

Transportation is an integral part of our lives to commute from one place
to another. As vehicles became more affordable to the public, the number
of congestion also increased linearly with the number of cars sold. A study
by Texas A&M Transportation Institute on the effects of congestion since
1982 showed overwhelmingly negative effects on our society [16]. For 35 years,
the total traffic delay increased by 8.8 billion hours, fuel waste increased by
3.35 billion gallons, which equates to a total congestion cost of 179 billion
dollars. Hence, it is imperative to introduce newer Adaptive Signal Control
Technologies (ASCT) methods to reduce the number of congestion drastically.

Traditionally, the traffic control problem is formulated as an optimiza-
tion problem, where certain unrealistic assumptions are necessary to make the
problem tractable [34]. With these assumptions, a traffic engineer crafts a tim-
ing plan based on historical traffic volumes for a specific intersection [27, 40].
This procedure is costly and time-consuming, yet it does not provide the flex-
ibility to adapt to changing traffic demands if there was a special event. To
provide more flexibility, ASCT can reallocate green time from a minor road
to the major road when there is no demand on the side streets [12]. However,
ASCT is still based on some pre-defined rules which will not cover some special
cases in daily traffic such as ending a green phase right before a large platoon
of vehicles are arriving [37].

To overcome the difficulty of pre-defining rules to cover all possible traf-
fic scenarios, recently researchers in the machine learning community tackled
the traffic control problem as a deep reinforcement learning (RL) problem
[19, 31, 37]. By formulating the problem as a deep RL problem, the RL agent
can interact with a simulated traffic environment for many episodes until it
converges to an optimal policy, such that it covers all possible traffic scenarios.
Generally, researchers utilize information from the simulation environment as
either state information or a reward feedback signal for the deep RL agent.
In reality, this information is obtained from sensors or communication tech-
nologies such as induction loop detectors, traffic cameras, RFID sensors, or
Bluetooth information from vehicles [20]. These traffic sensors are known to
have reliability issues with sensor performance and possible failures due to
several different factors, such as wear and tear from lack of maintenance for
traffic sensors, unreliable number of Bluetooth drivers, varying weather con-
ditions, occlusions, or under-performing computer vision detection algorithm
for traffic cameras, etc [4, 23, 32, 44]. With all the uncertainty from issues
mentioned above, it is imperative that deep RL agent learns a more robust
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policy in the event these sensors provide information that is slightly different
from the actual traffic states [9, 11, 29, 30, 33].

In this paper, we utilize various sensor information to define a set of state
representation for the deep RL agent. Utilizing a variety of state representa-
tions broadens the selection of states used to represent the current state of
the environment as close to the real world as possible. To train a more robust
agent, we employ a similar approach as randomized smoothing [6] by incorpo-
rating noise into the state dimension. More specifically, the noise is introduced
into the queue length dimension only to mimic real-world queue length ap-
proximation methods. With perturbations introduced, we show that the deep
RL agent learns a more robust policy towards several degrees of noise. This
broadens the selection of states used to represent the current environment
state, mimicking real-world situations.

2 Related Works
2.1 Traditional Traffic Control

Traffic signals operated in the United States are separated into three types of
control methods: 1) Pre-timed 2) Semi-actuated 3) Fully-actuated [12]. Pre-
timed control uses a fixed timing schedule employed by experienced traffic
engineers based on monitoring historical traffic patterns and data for any given
intersection. Pre-timed control is generally used when the distance between
two or more traffic intersections is relatively small and the traffic pattern
throughout the day is consistent (i.e., Downtown Manhattan or Chicago). This
traffic controller is the cheapest among the three types of control methods
because it does not require any traffic sensor to function. A semi-actuated
controller is generally used in an intersection with a major and minor road.
The controller would always allocate the green phase to the major road but
switches to the minor road to clear small volume of vehicles. This control
method needs an induction loop sensor near the stop bar on the minor road to
detect incoming vehicles required for actuation [13]. A fully-actuated controller
is used when both conflicting directions are major roads, where induction loop
sensors are required in all directions to detect traffic flow conditions.

2.2 Deep Reinforcement Learning in Traffic Control

Deep RL as an ASCT approach for minimizing congestion has been shown
to perform better than conventional methods of traffic controllers [19, 31,
37]. Typically, the deep RL agent is trained inside a traffic simulator where
the simulator is capable of simulating a good approximate model of complex
traffic conditions. Examples of such simulators include SUMO [14], VISSIM
[8] and AIMSUM [2]. In the simulation, the deep RL agent takes a state and
reward input that describes the current traffic state and decides on the best
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Fig. 1 Deep Reinforcement Learning Loop: This figure illustrates the interaction loop be-
tween agent and environment. The agent interacts with the environment with an action,
where the environment returns a state and reward. In this paper, only the queue length
dimension can be perturbed with synthetic noise, while other dimensions are unaffected. A
perfect queue length is hard to obtain with approximation methods. Hence this perturba-
tion introduces a better representation of uncertainty instead of complete knowledge in the
simulation.

action. After numerous training iterations under various traffic conditions, the
agent would learn a generalized policy that minimizes congestion. Research in
the deep learning community for traffic control generally revolves around five
major aspects:

1. Novel architectures: Researchers in this section strive to develop novel Deep
RL architectures that specifically benefit the traffic control problem. Wei
et al. formulated their network with a phase gate to explicitly activate
different layers depending on the current traffic phase [42]. Lin et al. rep-
resented the state space as a 2-D grid containing sensor information for a
grid network, which acts as input into a Residual Network [10] to learn the
relationship between states and actions [22].

2. State space design: Over the past few years, researchers have tried various
state-space representations for the traffic control problem. Most approaches
revolve around capturing and representing the current state of traffic so the
deep RL agent can decide on the best action to take. Notably, researchers
tried discretizing roads [21, 31, 43], segmenting lanes into bins [41], top-
down view of the traffic intersection [42] and utilizing traffic sensors [19,
37, 42].

3. Action definition: Several researchers approached the same optimization
problem with different action definition. To highlight several common ap-
proaches: Van et. al. directly switches between two green phases without
safety measures (no yellow, red, and minimum green phases). Liang et. al.
maintains a set of green time for four phases. At each simulation step, the
agent can add or subtract 5 seconds from the green time set. Li et. al.
is similar to Van et. al., but will not switch phases if a minimum green
time has not been reached to avoid flickering phase switches. Wei et. al.
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includes a 3-second yellow before turning red if the agent decides to switch
green phases. Tan et. al. includes yellow, red clearance, and minimum green
time if the agent decides to switch green phases. Timings of each yellow,
red clearance and minimum green was obtained from the Federal Highway
Authority.

4. Reward crafting: Reward crafting is an essential part of Deep RL research
in ASCT to ensure smooth and efficient convergence of the agent. The com-
munity experimented with various feedback signals such as average delay
[1], average travel time [25], queue lengths [19] and weighted combination
of multiple variables [31, 37, 42].

5. Application type: This section is split into two subsections: single inter-
section and corridor/grid level intersections. The former focuses solely on
solving a single intersection optimization problem via innovating in the four
major sections mentioned above [19, 37, 42]. The latter specifically focuses
on either multi-agent algorithms [5], or some form of transfer knowledge
from a single agent deployed at multiple intersections with communication
[31, 41].

Current research gaps are practical applications and novel architectures.
More specifically, there is a lack of traffic control utilizing deep learning meth-
ods that directly translates to field-testing. This paper aims to contribute to
that research direction by introducing noise into state space design to model
a more realistic noisy nature of sensors in the real world.

2.3 Noise-robust Deep Reinforcement Learning Agents

While adversarial machine learning has been thoroughly studied in machine
learning [7, 15, 26], the robustification of deep RL agents against an adversarial
attack or sensor anomaly have been relatively less studied. Lee et al. [17]
proposed a gradient-based white-box attack in action space. This represents
an adversary subtly attacking actuators with minimal energy without alerting
the authorities. Tan et. al. [36] expanded on the work done by Lee et. al. by
introducing the gradient-based white box adversary into the training scheme
to train a robust agent. Rodrigues et al. [33] developed a callback-based RL
framework to test out different scenarios that the authors are using to gain
informative insights towards building a more robust RL agent.

3 Methodology

3.1 Deep Reinforcement Learning

The recently developed variant of RL-leveraging deep neural networks repre-
senting the value or policy function is known as Deep RL. In general, RL can

be categorized into model-based RL and model-free RL. The key difference
between these methods is that model-based RL has to learn the environment
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Table 1 Defined Sets of State Space

State Spaces Description
SS:Basic Contains traffic signal phases and queue lengths.
SS:Actuation Phase and induction loop actuation.
SS:Pressure Traffic phase and residual formulation as max pressure [39].
SS:Speed Phase and induction loop averaged speeds.
SS:Speed Actuation Phase and induction loop actuation and average speeds.

model (e.g., learning a transition function F' that maps input ¢ to output t+1.).
In contrast, model-free RL has direct access to the environment for training.
In this work, we focus exclusively on model-free RL algorithms since we have
access to the environment model. There are two main algorithmic approaches
for solving the RL problem: Policy Optimization and Value-based. The former
directly optimizes the parameter 6 of the agent, while the latter optimizes a
Q-function (based on the Bellman equation [3]) that approximates the optimal
action-value function.

Formally, let s;, a;, and r; be defined as the state, action, and reward for
time step t respectively. At time step t, the deep RL agent , observes the
state s; and decide upon action a; to interact with the environment model.
Based on the environment model’s transition function E(sq,at), it will return
a transitioned state observation s;y; and the reward for the transitioned state
r¢. This interaction between the deep RL agent and the environment model is
repeated until a termination condition is met (e.g., if the agent accomplished
the environment task), or until a predefined total time step 7'

By refining the deep RL agent’s policy 7(a|s) over many simulation iter-
ations, the goal is to obtain an optimal policy 7*(a|s) such that every action
the agent takes maximizes the cumulative future rewards Gjy.

T
Gi=) R=ri+ e+ e+ +79"'r (1)
t=0
The constant v ranges from [0, 1] depending on the configuration of the
agent. Values closer towards 0 make the agent favor short term rewards,
whereas values closer towards 1 make the agent maximize possible higher fu-
ture rewards.

3.2 State Space Formulation

Various sensor observations can be obtained to serve as the state information
for the deep RL agents. For this study, we utilized information from the in-
duction loop sensor and traffic signals. Induction loop sensors provide vehicle
speed and occupancy information, while traffic signals provide phase informa-
tion for respective lanes. For this experiment, we are interested in studying
how well the deep RL agent performs under imperfect state information in
the queue length dimension, assuming there are no outliers in both speed and
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Fig. 2 Synthetic Noise Addition in the queue length dimension: This figure illustrates the
noise injection method to the queue length dimension using a discrete Gaussian distribution
with g4 = 0 and the tails of the Gaussian approximately defined with the desired noise
level. An example queue length vector with a length of 4 is shown on the left. After passing
through the noise injection method, the resulting perturbed queue length vector is shown
at the right. At the bottom left element, the sampled integer from the discrete Gaussian is
-2, hence the true queue length is reduced by 2. The second element happens to sample 0,
which retains the true queue from before. The third element illustrates if the sampled value
is negative, and the true queue value is already at zero, the maximum it can be reduced is
up to 0. The fourth element simply shows that a positive integer is sampled hence increasing
the true queue value by 3.

occupancy actuations. Figure 1 illustrates the generic RL loop with agent and
environment interaction. In the general RL scenario, the environment returns
a state and reward that will be given directly to the RL agent. In this ex-
periment, the queue length dimension is injected with synthetic noise before
passing to the RL agent. Additionally, we investigate if the deep RL agent will
leverage other state information such as occupancy and average speed when
the queue length dimension does not accurately describe the current conges-
tion in the environment. In this experiment, we train deep RL agents with
the set of defined state spaces listed in Table 1. SS:Basic is defined with traf-
fic signals and queue length information for each traffic direction. The other
four definitions of state spaces include the same input as SS:Basic except for
SS:Pressure, where the queue length information is described with residual
queue [39]. SS:Actuation uses total number of actuation in the last time step
as additional state input. SS:Speed uses speed as the additional state input,
averaged across the number of vehicles that pass through the induction loop
in the last time step. The final state definition, SS:Speed Actuation, represents
the state space with traffic phase, queue length, average speed, and the number
of actuation together.

Several studies have shown that it is possible to closely approximate the
true total number of queue length if the appropriate sensor setup and con-
dition is present [18, 24, 35]. To introduce uncertainties in the queue length
dimension for training the deep RL agent, we add a perturbation §; into the
state space S; using a discrete Gaussian distribution. Figure 2 shows an exam-
ple of the noise insertion to the queue length dimension. The discrete Gaussian
distribution has a mean p at 0 and the tails of the discrete Gaussian approxi-
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Fig. 3 Traffic Intersection Setup: We performed an experiment using a single intersection
with a through and protected left turn. All four road segments are 300 meters long, with
each road containing two lanes.

mately defined with the desired injection noise. For this example in Figure 2,
the queue length dimension is 4, hence 4 separate samples from the discrete
Gaussian distribution is obtained to apply to each element in the queue length
vector. The sampled noise can be positive, zero, or negative. The true queue
length can be reduced to zero at max if the sampled noise is negative and
larger than the current queue element.

3.3 Action Space Formulation

This experimental setup consists of through and protected left-turn lanes (as
seen in Figure 3). Since the intersection includes through and protected left
turns, the agent will change through a set of pre-defined phase list configu-
ration. The action space is a discrete action space, where a; = 0 keeps the
current phase configuration, a; = 1 triggers to the next phase in the phase
list, and a; = 2 skips to the next two phases in the phase list. Suppose the
agent decides to keep the current phase. In that case, the simulation will only
step through one second of simulation time, allowing the agent to immediately
make another decision in the next simulation step. To change the current phase
configurations, the environment will simulate through the required yellow, red
clearance, and minimum green time before allowing the agent to make another
decision again.

3.4 Reward Formulation
Defining the correct reward function for the deep RL agent given the envi-

ronment is fundamental to the convergence of the agent. The reward function
acts as a feedback loop to inform how good the previous action decided by
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Table 2 Model Hyperparameters

Parameter Value
Explorer Linear Decay
Optimizer Adam
Minibatch 16
Replay start 50,000
Decay end 200,000
Gamma 0.90
Target update 2000
Epsilon le-5

the agent was conditioned upon the state information provided from the en-
vironment. The deep RL agent’s goal is to eventually maximize the long-term
rewards obtained for the whole trajectory. Hence, it is imperative that the
correct reward function is crafted for the ASCT environment. For this exper-
iment, we used a simplified version of the reward function used in Tan et. al.
[37] as follows,

R=-— Z Qi —w * Z O; (2)

i€lanes i€lanes

The reward function in Equation 2 is defined by the summation of queue
lengths @Q;, where ¢ represents each direction-bound lanes in the intersection.
The negative term associated together with it encourages the deep RL agent to
maximize this variable such that congestion is minimized. The second variable
is defined as the overflow variable O; for all direction-bound lanes in the inter-
section. If a given lane reaches its maximum detectable vehicle queue lengths
(i.e., if a sensor can detect up to 20 vehicles, but the true queue might be longer
than that), this term will start a timer as long the given lane is still at the
maximum detectable capacity. The associated weight parameter w; decides
how heavy to penalize the agent for each second the lane is at maximum ca-
pacity. This parameter aims to prevent the agent from allowing other lanes to
wait too long to avoid activating the overflow penalizing variable. The value of
wy varies depending on each experimental setting via a trial-and-error process.
For this experimental setting, the w; value is 5. Both variables’ summation
will drive the deep RL agent to minimize congestion at the intersection level
while not keeping other lanes from waiting too long.

4 Experimental Setup

We conducted our experiment with Simulation of Urban MObility (SUMO)
[14], an open-sourced traffic simulator capable of simulating microscopic traf-
fic scenarios. We chose SUMO because it is a cross-platform compatible and
a lightweight simulator. This allows the user to easily deploy and train mul-
tiple experimental runs anywhere. We also used another open-source library,
ChainerRL, for deep RL agent model implementations and modifications.



10 Kai Liang Tan et al.

Table 3 Performance results for both Nominal and Robust agent across different noise
levels

Nominally Trained (Noise 0)
Average Reward

State Space 0 T 2 3 1 5 6 7 g 9 10
SSBasic 2.400 3511 4055 6747 0317 8287 10079 9320 8738 0360  9.223

SS:Actuation 3108 -2.200 2514 3400 3842 4294  -4.967 -5220 5150 -4875  -5.646

SS:Pressure 2.597 -2.738  -3.253  -3.786  -5.365  -6.508  -6.950 -8.520  -7.076  -6.219  -7.246
SS:Speed 3.045 -3.247 -3.479  -4.268  -A.137  -5.136  -5.721  -6.163  -6.425  -5.889  -6.258

SS:Speed Actuation  -4.279 -7.959  -11.495 -13.288 -15.503 -12.551 -12.742 -11.147 -12.483 -10.889 -13.431
Robustly Trained (Noise 5)
Average Reward

State Space 0 T 5 3 1 5 6 7 8 9 10
SS:Basic -6.858 -5.671 -4.660 -4.086 -3.606 -3.705 -3.312 -3.282 -3.101 -3.148 -3.470

SS:Actuation -5.001 -4.784 -3.610 -3.211 -2.951 -2.710 -3.577 -2.637 -2.913 -3.675 -2.757

SS:Pressure -5.515 -4.611 -3.691 -3.411 -3.242 -3.297 -3.139 -2.964 -3.121 -3.131 -3.238
SS:Speed -6.126 -3.814 -3.198 -2.788 -3.029 -2.779 -2.785 -2.809 -2.684 -2.807 -2.801

SS:Speed Actuation  -3.627 -3.118 -3.032 -2.961 -2.932 -3.123 -3.156 -3.222 -3.056 -3.080 -3.134

We modeled our problem as a 4-way intersection problem with protected
left-turns, as seen in Figure 3. Each direction bound (North, South, East, and
West) has two through lanes and one protected left turn. We generated vari-
ous traffic volumes for each training simulation, where one simulation episode
simulates 4 hours of real-world traffic. Traffic input volume in Northbound and
Southbound for this experiment is 500 4 100 vehicles for each outbound direc-
tion. Similarly, traffic input volume in Eastbound and Westbound is 100 £ 50
vehicles for each outbound direction. We maintained heavier traffic to be N-S
bound instead of generalizing it to W-S bound traffic since this experiment’s
scope is to train a robust deep RL agent instead of attaining state-of-the-art
performance results.

For this experiment, we chose Double DQN [38] as the deep RL architecture
because it is an improved DQN [28] in terms of stability of learning by reducing
maximization bias using two Q-networks. The architecture consists of two
fully connected layers to craft the agent’s policy. The first layer consists of
64 neurons, followed by 32 neurons in the second layer. Each fully connected
layer is coupled with a rectified linear unit (ReLU) function. The final output
of the second layer is passed through a discrete action-value function with the
shape of 3, which produces the Q-values of the action spaces available for this
environment setup. The other model’s hyperparameters are listed in Table 2.

We trained two deep RL agents: one with no noise induced into the queue
length dimension (Nominal), another with noise 6 = 5 (Robust). We trained
each agent across 5 different seeds to ensure the results produced are not
seed-specific.

5 Results and Discussion

5.1 Robustness Improvements

In this section, we want to study the effectiveness of the training with noisy
queue length approximation. We tested each Nominal and Robust agent with

noise ranging from 0 to 10. Since each agent is trained with 5 different seeds,
each trained seed agent is tested across 5 different seeds as well. This produces
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Fig. 4 Nominal vs Robust Performance: This plot illustrates overall inference performance
for deep RL agents trained nominally and robustly. The top row represents Nominal agents,
while the bottom row represents Robust agents. Each column represents the state space set
used to train deep RL agents. The y-axis for each row shows the rewards obtained during
test time to distinguish good performers against poor performers. In an ideal situation
with no congestion, the reward will be 0. Hence a good performing agent will obtain less
negative rewards (closer to 0) while a bad performing agent will receive more negative
rewards (further from 0). The x-axis shows the noise injection level added to the queue
length vector. 0 represents no perturbation added, while 10 represents 410 if possible. The
horizontal bar across each column shows the average performance across perturbations.

25 testing results in which the average of all 25 runs is taken as the result for
each noise level. This similar process is repeated for each different state space
listed in Tab. 1. All results across state space and noise level are shown in
Tab. 3 and Fig. 4.

5.1.1 Nominal Performance

Generally, the Nominal agent would perform the best in the clean environment
0 = 0. The summary results in Tab. 3 shows that three of out five Nominal
agents performed the best in the clean environment (indicated by bold). Both
remaining Nominal agents trained with SS:Actuation and SS:Speed performed
the best in the environment with very minimal perturbation (6 = 1). As the
synthetic noise perturbation increases, the performance of each agent trained
with corresponding state-space decreases. SS:Speed Actuation is heavily af-
fected by the increase in synthetic noise perturbation, followed by SS:Basic.
SS:Actuation, SS:Pressure, and SS:Speed performance did decrease as the noise
level increased, but not as significantly compared to SS:Basic and SS:Speed
Actuation. For SS:Basic, a decrease in agent’s performance along with the
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increase in noise level is understandable since it relies on queue length to de-
scribe the current state representation of the environment. However, SS:Speed
Actuation contains more state information to understand the current state con-
ditions. A possible explanation would be that the agent trained with SS:Speed
Actuation did not converge to the optimal policy yet given the same training
parameters as other state spaces sets. From Tab. 3, the best performance for
SS:Speed Actuation is much worse than other state-space sets.

5.1.2 Robust Performance

By introducing perturbation noise § = 5 during training, the deep RL agent
learns a more robust policy to maximize reward instead of allocating heavy
attention on the queue length dimension. From the Robust model performance
(bottom row) in Figure 4, it is evident that the average performance improved
across increasing noise levels for each state space as compared to their nom-
inal agent counterpart. The average performance improvement comes from
the fact that the Robust agent is trained with 6 = 5, a moderate noise level
compared to the range of noise we use for testing. Trivially, since the noise
generation is based on a discretized Gaussian distribution, as seen in Figure
2, the deep RL agent’s policy should perform well within the presence of noise
level £5. Environments with little to no noise introduced did not perform
as well because those environments have minimal perturbation in the queue
length dimension. As the noise level increases, the deep RL agent’s rewards
increase gradually until it plateaus as the noise approaches 5. However, some
state sets performed better than others despite the same noise setting being
imposed on the environment. This might indicate that some additional states
might have helpful information for the deep RL to describe the current envi-
ronment state other than just queue length. In SS:Basic, we observe that it
is one of the worst-performing state definitions. Even after increasing noise,
the deep RL agent did not manage to attain reward of more than —3 in Ta-
ble 3. SS:Actuation, SS:Pressure, and 5S:Speed had similar performances on
average. This is interesting because this shows other state spaces sets such as
actuation, average speed, and residual queue helps to infer the environment
state well enough to perform better than directly utilizing queue length alone.
Finally, SS:Speed Actuation performance is almost the same throughout all
noise levels. Since the queue length dimension is no longer as reliable as be-
fore, SS:Speed Actuation has more state information to utilize. The deep RL
agent learns to diversify and use average speed, actuation, and the noisy queue
length information to maximize its rewards. Although the agent trained with
S5S:Speed Actuation did not receive the best rewards compared to other state
spaces, it produced a more robust policy against various noise levels.
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Fig. 5 Nominal and Robust agent weights trained with SS:Speed Actuation. The bottom
x-axis represents the input dimension of 32. The inputs are grouped by the type of state
information: queue length, average speed, actuation, and phase signals. Each group is 8
elements long. The Nominal agent weight distribution is nontrivial (boxed region) to fully
utilize the queue length input. This generates better latent vector representation in the first
layer. However, the Robust agent weights show a smoother weight distribution compared
to the Nominal agent, indicating the agent learned not to overly rely on the queue length
inputs to represent the latent vectors.

5.2 Visual Improvements

To further understand which aspect of the deep RL agent is improved upon
from its nominal counterpart, we chose to compare the differences between the
Nominal and Robust agents only with SS:Speed Actuation. This section will
investigate the visual changes in the agent’s policy and change in performance.

5.2.1 Weights Visualization

To understand how the policy of the deep RL agent adapted to the noisy queue
approximation, we decided to inspect and compare the weights of both the
Nominal agent and the Robust agent. Figure 5 visualizes the first layer weights
of the deep RL agent trained using SS:Speed Actuation state space. The left
column shows the Nominal agent, while the right column shows the Robust
agent. The length of the state space for §S5:Speed Actuation is 32, which reflects
the input channels in the x-axis. The output channel is 64, which is consistent
in Sec. 4. The input vector is grouped by the type of state information: queue
length, average speed, actuation, and phase signal. One empirical observation
is the difference between both agent’s weights in the queue length dimension.
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Fig. 6 Simulation Time Performance for SS:Speed Actuation: This figure shows the perfor-
mance of Nominal agent (top row) versus Robust agent (bottom row) across the simulation
from time interval ¢ = (0,200) in a noise injection environment (§ = 10).The y-axis rep-
resents the queue length values, while the x-axis represents simulation seconds. Spanning
along the x-axis direction in each subplot, there is a summation in queue lengths in the
North-South direction (blue line) and West-East direction (orange line). In between those
two lines are the current simplified phase signal, either green in North-South or West-East.
A quick observation shows the Nominal agent struggles to keep the North-South congestion
low showing a severe noise is highly likely injected during certain periods of time. However,
the Robust agent manages to prevent an accumulation of congestion despite the same traffic
and noise being introduced.

This suggests that by training the agent with discrete Gaussian noise, the
agent suggests a better generalization compared to exploiting the queue length
dimension alone. In the Nominal agent, the highlighted column contains more
differences in values between each other. In contrast, the Robust agent has
averaged values across the columns. This observation is consistent across all
seeds and all state definitions in this experiment.

5.2.2 Simulation Visualization

Figure 6 illustrates the simulation performance during the evaluation environ-
ment with noise level § = 5, where the heavy traffic flow is on the North-South
bound traffic flow. The y-axis represents the queue length accumulation at the
given time ¢, while the x-axis represents the time simulation time. The sim-
plified phase is shown along the x-axis at the given time ¢. The darker green
color represents the green phase given for West-East bound vehicles, while
the lighter green would correspond to the green phase for North-South bound
vehicles. The top and bottom row corresponds to the Nominal and Robust



Robust Deep Reinforcement Learning for Traffic Signal Control 15

agents’ performance, respectively. The Nominal agent has shown to struggle
with correctly discerning the high traffic flow in the West-East direction due
to the poisoned state space from ¢ = 25 to ¢ = 60. This resulted in incorrectly
giving green to West-East direction even though the proportion of congestion
was clearly in the North-South direction. From ¢ = 75, the nominal agent man-
aged to clear off the congestion built up in the W-E direction, possibly because
the state space at that time was not heavily perturbed. Not long after, when
t = 115, there was heavy noise which caused the agent to incorrectly cause
another major congestion in the North-South direction. This shows how frag-
ile an agent trained with the assumption of perfect congestion knowledge can
easily cause a build-up in congestion, which is not desirable to drivers. Given
the same traffic volume, the Robust agent managed to reduce the congestion
in the North-South direction. This caused a slight increase in volume in the
West-East direction. However, this is still highly desirable because the robust
agent managed to curb the congestion build-up from the rush of volume in the
North-South direction.

5.3 Realistic Noise Simulation as a Truck Event

In this section, we are interested in testing the robustness of the Robust agent
under realistic noise settings in the real world. These realistic noise charac-
teristics are often random and unknown, making it hard to train realistic
noise-aware deep RL agents. We attempt to emulate realistic scenarios where
we can formulate the noise conditions based on known a known Truck Event
problem.

Queue prediction systems generally perform the best for standard-sized
passenger vehicles with total vehicle body lengths of 5 meters. These sys-
tem’s performance deteriorates when trucks and semi-trailers are present. On
average, trucks and semi-trailers are longer and larger than passenger vehi-
cles. This can potentially cause the queue prediction systems to underestimate
the true queue (Vision-based system), overestimate the true queue(Induction
Loop-based system), or both (Vision-Induction Hybrid). A vision-based sys-
tem relies on computer vision algorithms to count the total number of idle
vehicles in the intersection. A truck could potentially block passenger vehicles
that are either directly behind or adjacent to the truck, ultimately undercount-
ing the total number of idle vehicles in the intersection. Induction Loop-based
system relies on a combination of advance detectors, stop bar detectors, and
phase change data to determine the queue lengths [35]. A truck might poten-
tially trigger double or triple counts due to the length of the truck or multiple
actuation triggers. This would ultimately force the queue prediction system
to overestimate the true queue in the intersection. The Hybrid system relies
on both traffic cameras and induction loops to determine the queues, which
could cause both underestimating and overestimating the true queues in the
intersection.



16 Kai Liang Tan et al.

0
—
= -
- "= L e
. [~ P
. []
+
-10 .
M +
+ +
' ¢ ' N
+
3 +
*
-20
n ' *
+
°
g
o *
o . +
-30 ‘
. ‘
+
+
-40
+
’ $
+
+ ¢ ‘
$
-50
. B
~100 ¢ $ . '
+
3B -150 !
= *
c D
qu -200 ¢
o I Nominal
-250
Il Robust
~300 .
N oo oo oo oo oo oo oo o oo oo oo oo
3
¢ o & .b@ ‘6,19 & 8 K S & 8 K S
I P OO S O
& S & & 3 3 3° K N & S S
& & & S

Experimental Runs

Fig. 7 Agent’s Performance on Truck Event: This illustration shows Nominal and Robust
agent performance across different experimental runs with pre-defined environment condi-
tions. The x-axis represents different experimental runs; the y-axis shows the rewards. A
good performing agent would obtain a higher reward. Notice the y-axis on the top has a
different tick interval compared to the bottom. A quick glance shows how the Nominal agent
is more vulnerable to noisy perturbations (especially with higher levels of noise) compared
to the Robust agent.

To emulate the scenarios above, we introduced trucks into the simulation,
where each truck has a probability of disrupting the queue prediction sys-
tem. If a truck is approaching the intersection on the eastbound through lane
(East-West), the simulation will specifically insert noise perturbation into the
eastbound through queue value only. This rule is applied to all trucks that
are approaching the intersection. Since each truck approaching the intersec-
tion can disrupt the queue prediction system, we vary the total number of
trucks with a density parameter 2%, 5%, 10%, and 20% of the total passenger
vehicles in the simulation. Three different queue prediction systems - Vision,
Induction, and Hybrid, can be approximately replicated by using a discrete
Gaussian distribution. To replicate the Vision-based system, we sample from
the discrete Gaussian distribution and clip all positive values sampled. This
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Table 4 Result Summary for Truck Event

Experimental Run Agent Mean + Standard Deviation Min 25% 50% 75%  Max

a Nominal 10+68 318 26 24 24 21
can Robust 3.7+03 45 37 36 -35  -3.1
- Nominal 80 L 12.8 525 31 20 28 27

0;
Hybrid 2% Robust 4.2 £0.2 4.6 43 42 41 3.7
. Nominal 110.9 + 19.2 923 52 38 37 -34

07
Hybrid 5% Robust 5.0 £ 0.2 5.3 51 50 -49 45
) Nominal 222.3 £ 30.0 11074 -149 87 65 5.6
Hybrid 10% Robust 71405 7.8 75 -T2 68  -6.2
) Norninal 249.1 £ 40.1 11383 341  -31.9 -249 -20.3
Hybrid 20% Robust -19.8 + 2.4 235  -21.5  -20.1 -19.1 -15.0
Vision 2% Nominal 50L50 211 38 20 23 =21
1o 7% Robust 4.0 £0.6 5.1 44 40 36 -29
Vision 5% Norninal 78+£93 367 -48 42 35 26
° Robust 47 +1.3 -8.2 -5.0 47  -40 -238
Vision 10% Nominal 112.7 £ 11.0 472 125 95 67  -35
o Robust 8.0 £ 3.0 179 82 74 64 -43
Vision 20% Norminal 25.9 £ 13.3 597 -26.2  -223  -164 -12.3
< 0 Robust 20.2 + 10.7 542 247 -162 -12.3 -T2
Induction 2% Nominal 1.0 £ 17.1 571 37 30 26 17
0 Robust 3.8+ 0.6 5.0 42 38 34 26
Induction 5% Normninal 119.7 & 44.4 [186.0 -5.7 -39 34 24
nduction 97 Robust 4.3 +0.9 6.6 50  -45 36 2.8
) Nominal 240.2 + 63.6 2154 227 -12.3 65  -4.0

07

Induction 10% Robust 5.6 £ 1.6 91  -63 -55 -41 -33
Induction 20% Nominal -85.3 + 98.9 23272 -125.0 -30.2 -20.9 -6.1
0 Robust 1183 & 5.4 292 212 180 -149 -7.8

leaves only non-positive values in the sample for possible perturbation. Sim-
ilarly, to replicate the Induction-based system, we sample from the discrete
Gaussian distribution and clip all negative values to obtain only non-negative
samples. The Hybrid system will use the samples directly from the discrete
Gaussian distribution without any clippings.

Results from Fig. 7 show box plots of nominal and robust agent perfor-
mance in each experimental run. The x-axis represents rewards obtained by
agents, while the y-axis represents different experimental runs. Each experi-
ment contains two box plots representing Nominal and Robust agents. A good
performing agent would ideally achieve rewards closer to 0. Note that the top
subplot y-axis reward intervals are different from the bottom subplot. The full
data points of this box plot are shown in Tab. 4.

From the left of Fig. 7, the performance of both Nominal and Robust agent
in the Clean experiment are expected. The Clean experiment returns the ex-
act queue in the simulation without any noise introduced. The Nominal agent
performance is better than the Robust agent, with the first quartile, median,
and third quartile values of -2.6, -2.4, and -2.4 respectively, as seen in Tab. 4.
However, some of the Nominal agents run attained a very weak performance
seen as outliers in Fig. 7. By visual comparison, the number of outliers for
the Nominal agent versus the Robust agent is drastically different. This might
be possible since the agent trained with SS:Speed Actuation might not yet
converge to an optimal policy as mentioned in Sec. 5.1.1. The next experimen-
tal runs are Hybrid with increasing truck density of 2%, 5%, 10%, and 20%.
Across four of these runs, both agents’ performance reduced when comparing
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to the Clean experiment. As the truck density increases, the Nominal agent
performance deteriorates severely compared to the Robust agent counterpart.
The Robust agent might have seen many of these inaccurate queue lengths
during training time, hence it learned a more robust policy against those sce-
narios. In Tab. 4, the standard deviation of the Nominal agent across all four
Hybrid runs is very large when compared to the Robust agent, thus attain-
ing a more consistent performance. The next four runs are Vision runs with
similar increments in truck densities. The immediate observation from these
runs reveals that the inter-quartile range is higher than both Hybrid and In-
duction runs in their respective densities. This reveals that underestimating
queues does not affect the performance of both Nominal and Robust agents
as severely compared to Hybrid and Induction runs. Finally, the Induction
runs illustrate that the Nominal agent’s performance is greatly affected as the
truck density increases. For Induction 20% run, the inter-quartile range spans
from -20.93 (upper quartile) to -125.02 (lower quartile). This reveals that a
nominally trained agent does not perform well if the true queue length is per-
turbed by overestimating them. Inversely, the Robust agent performs better in
the Induction runs compared to Vision runs. This suggests the Robust agent
learns to maximize its rewards in the overestimating scenario more than its
underestimating counterpart since the Nominal agent’s performance suffered
drastically in the Induction runs.

6 Conclusion & Future Works

In this paper, we proposed robustly trained deep RL agents with a noisy queue
length dimension mimicking situations in the real world, where queue length
information acquisition might not be accurate. By leveraging reliable sensors
such as induction loop sensor, we can directly obtain crucial information such
as average speed and actuation. The deep RL agent can utilize those sensor
information along with the noisy queue length dimension to perform in a
gracefully degraded condition and not fail catastrophically across a range of
noise levels. We discussed the performances of the deep RL agent trained with
different state space definitions and how it performed in various noise levels.
We also empirically show the difference between a nominally trained agent and
a robustly trained agent in the policy and simulation performance. Finally, we
emulated a realistic noise scenario to test the robustness of the train deep
RL agent. A potential future direction for this work could be investigating
how this robust training affects a corridor-level ASTC, since a corridor traffic
control requires more coordination between traffic signals at each intersection.
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