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Abstract Whistler mode waves are among the most intense electromagnetic emissions and play an
important role in the energy redistribution between electron populations in the Earth inner
magnetosphere through wave-particle resonant interactions. Usually generated by transversely anisotropic
plasma sheet electron populations (∼10–30 keV) through cyclotron resonance, whistler mode waves can
effectively accelerate a small fraction of the seed population of energetic electrons (∼100 keV) up to
relativistic energies. However, these waves can be efficiently damped through simultaneous interactions
with much more numerous suprathermal electrons (∼0.1–1 keV) via Landau resonance. Recent
observations indeed show that electron distributions accompanied by intense whistler mode emissions
often contain a plateau-like electron population at energies close to the energy of Landau resonance with
the waves. However, simultaneous observations of these waves and of the related plateau population does
not prove a causal relationship. Here, we test the hypothesis that such a plateau population may have been
formed by whistler mode waves generated earlier, or by other types of waves. Combining analytical
estimates and spacecraft observations, we show that this plateau population is often unlikely to be formed
by whistler mode waves alone. We suggest three alternative scenarios that can lead to the formation of
plateau populations and test these scenarios based on spacecraft observations. We show that a plateau
population can be formed by ultralow frequency electric fields (carried by kinetic Alfven waves or time
domain structures) often accompanying injections of plasma sheet electrons—the energy source for
whistler mode waves. We also discuss the possible role of ionospheric secondary electrons.

1. Introduction
Whistler mode waves are intense electromagnetic waves observed in the inner magnetosphere (Agapitov
et al., 2013; Li et al., 2011; Meredith et al., 2012; Tsurutani & Smith, 1979), in the near-Earth plasma sheet
(Khotyaintsev et al., 2011; Zhang et al., 2018), at the Earth's magnetopause (Le Contel et al., 2016; Wilder
et al., 2016), bow shock (Wilson et al., 2014), and in the solar wind (Tong et al., 2019). With frequencies below
(but comparable with) electron cyclotron frequency, these waves are excited by electron thermal anisotropy
(Sagdeev & Shafranov, 1961) or electron flow anisotropy (Gary & Feldman, 1977; Gary & Li, 2000; Vasko
et al., 2019). Their generation and resonant interaction with electron result in a relaxation of the initially
anisotropic electron distribution (Galeev & Sagdeev, 1979; Gary & Wang, 1996; Kuzichev et al., 2019; Tao
et al., 2017) and in a significant electron acceleration (e.g., Thorne et al., 2013, and references therein). The
importance of whistler mode waves for the description of electron dynamics has sparked a lot of very detailed
experimental and theoretical investigations (see, e.g., recent reviews by Albert et al., 2013; Artemyev et al.,
2016; Millan & Thorne, 2007; Ni et al., 2016; Omura et al., 2013; Shklyar & Matsumoto, 2009; Thorne, 2010).

The transversely anisotropic electron distributions naturally produced in the inner magnetosphere and
plasma sheet (An et al., 2017; Yue et al., 2016; Zhang et al., 2018) tend to generate whistler mode waves with
field-aligned wave number—for which the wave growth rate is the largest (Fu et al., 2014; Kennel et al., 1970;
Summers et al., 2013). However, wave propagation in an inhomogeneous geomagnetic field results in wave
vector divergence (Bortnik et al., 2006; Katoh, 2014; Kimura, 1966; Lundin & Krafft, 2001; Shklyar et al.,
2004), and oblique whistler mode waves are often observed in the inner magnetosphere (Agapitov et al.,
2013, 2018; Li, Santolik, et al., 2016; Santolík et al., 2009; Zhou et al., 2019). The main difference between
field-aligned and oblique waves of fixed frequency is the energy range of resonant electrons: field-aligned
lower-band chorus waves below half the electron gyrofrequency resonate with >10 keV electrons through
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cyclotron resonance, whereas oblique lower-band chorus waves can resonate with much colder electrons
through the Landau resonance (e.g., Shklyar & Matsumoto, 2009, and references therein). Waves generated
by cyclotron resonance with transversely anisotropic electrons can principally be damped through Landau
resonance with lower-energy electrons (Shklyar, 2011b, 2017), providing an energy transfer from hot to cold
particles. Such a process may modify the shape of the electron distribution and, thus, can change the prop-
erties of the generated waves (as suggested by Li et al., 2019; Ratcliffe & Watt, 2017). Indeed, a series of
observations report the formation of electron plateau populations (i.e., with a very weak local gradient of
their field-aligned velocity distribution) around energies of Landau resonance with whistler mode waves
(Agapitov et al., 2016; Chen et al., 2019; Li, Mourenas, et al., 2016; Min et al., 2014). Therefore, there is an
open question: Can whistler mode waves form this plateau electron population themselves?

Formally speaking, this question can be addressed by numerical simulations of whistler mode wave gen-
eration and resonant interaction with electrons. However, the overwhelming majority of such simulations
consider whistler mode waves that cannot deviate from the field-aligned propagation (e.g., Fu et al., 2014;
Katoh & Omura, 2007, 2013; Lu et al., 2010; Tao, 2014). At the present time, only a limited number of 2-D
simulations have been performed in an inhomogeneous magnetic field (required to consider realistic oblique
waves) and the question of plateau formation was generally not considered in these simulations (Agapitov
et al., 2018; Drake et al., 2015; Katoh & Omura, 2016; Ke et al., 2017; Kuzichev et al., 2019). Only two sim-
ulations have yet described a plateau formation. A 2-D simulation in a homogeneous magnetic field from
Ratcliffe and Watt (2017) indicated the formation of a plateau following the linear growth of oblique waves
at half the cyclotron frequency (where waves can reach both cyclotron and Landau resonance with elec-
trons), but the initial amplitudes of the waves were already high due to numerical noise. A 1-D simulation
in a homogeneous magnetic field (Li et al., 2019) has also shown a self-consistent formation of a plateau
via parallel electron acceleration by oblique chorus waves, the corresponding local reduction of tempera-
ture anisotropy suppressing wave growth at half the cyclotron frequency and leading to separate lower-band
and upper-band chorus waves (a similar mechanism of anisotropy reduction was considered by Agapitov
et al. (2016) to explain the usual absence of intense parallel lower-band chorus waves when intense very
oblique lower-band waves are present). In the simulation, however, the coordinate system was rotated to
generate oblique waves in a 1-D setup, thereby excluding the generation of the most unstable field-aligned
waves; moreover, the considered initial temperature anisotropy was much larger than that in observations
(Li et al., 2019).

Why is this question of the formation of an electron plateau distribution so important? Whistler mode
waves are known to provide an energy cascade from energetic (10 − 100 keV in the inner magnetosphere)
anisotropic electron populations (provided by plasma injections Tao et al., 2011; Zhang et al., 2018 or inner
magnetosphere compression by the solar wind Li et al., 2015; Yue et al., 2017) to relativistic and ultrarela-
tivistic energies (Horne et al., 2005; Thorne et al., 2013). But if most of the anisotropic electron energy (the
free energy for wave generation) is expended for plateau formation (i.e., transferred to cold electrons), then
the efficiency of these waves in relativistic electron acceleration could be significantly reduced. The question
of plateau formation (or not) by whistler mode waves is part of the bigger question about the actual wave
energy budget available for relativistic electron acceleration. Therefore, the formation of electron plateau
distributions observed simultaneously with whistler mode waves (Chen et al., 2019; Li, Mourenas, et al.,
2016; Min et al., 2014) requires more investigations.

In this paper, we consider this question using energy conservation and entropy growth laws, combined with
simultaneous wave and plasma measurements. We check whether the initial, transversely anisotropic elec-
tron distribution can be transformed into a distribution including a plateau population in such a way that
it results in an increase of total entropy of the system and a conservation of total energy. We provide sev-
eral analytical estimates and consider electron distributions recorded within short time intervals of intense
whistler mode wave observations. The main conclusion of our analysis is that the plateau population is
often unlikely to be formed by whister mode waves generated earlier and that, on the contrary, a preexist-
ing plateau population can significantly reduce wave damping and, therefore, determine the characteristics
of the fastest-growing whistler mode waves. We also examine several alternative mechanisms that could
explain the formation of the plateau electron populations observed during the same time intervals as whistler
mode emissions.
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2. Theoretical Estimates
To simplify estimates, we consider the transformation of a single anisotropic Maxwellian distribution
𝑓init = C0 exp

(
−mv2||∕2T0|| − mv2

⟂∕2T0⟂

)
into a combination of an anisotropic Maxwellian distribution

and a beam distribution 𝑓final = 𝛿C1 exp
(
−mv2||∕2T1|| − mv2

⟂∕2T1⟂

)
+ (1 − 𝛿)C2 exp

(
−mv2

⟂∕2T2
)
·∑

± exp
(
−m(v|| ± vD)2∕2T2

)
∕2 where Ci = n(2𝜋Ti||∕m)−3∕2(Ti⟂∕Ti||)−1, and n is the initial density of hot

particles (that is much smaller than the total density n0 including the cold particle population). This trans-
formation assumes that (1) 𝑓init is unstable to whistler mode wave generation through cyclotron resonance
(Sagdeev & Shafranov, 1961); (2) whistler mode waves, being generated around the equatorial plane, prop-
agate along curved magnetic field lines with an increase of their wave normal angle along propagation
(Shklyar et al., 2004); (3) oblique whistler mode waves interact with electrons through Landau resonance
and get damped at high latitudes (Bortnik et al., 2006; Chen et al., 2013); (4) this Landau resonant inter-
action results in a generation of electron beams with vD ≃ vLandau = 𝜔∕k||; (5) the scattering of cyclotron
resonant electrons (with parallel velocity vCyclotron = (𝜔 − Ωce)∕k||) by the generated wave results in an
isotropization of the electron distribution (Gary, 2005). Therefore, there are three input parameters of the
system, (T0||,A0 = T0⟂∕T0||, 𝛽init|| = 8𝜋nT0||∕B2

bg), and five output parameters: T1||,A1 = T1⟂∕T1||,T2, vD, and
𝛿 (note that 𝛽final|| = 𝛽init||Tfinal||∕T0||, where Tfinal|| = 𝛿T1|| + (1 − 𝛿)

(
T2 + mv2

D
)

is the parallel temperature of
the final distribution). At first sight, such a large number of free parameters (three inputs and five outputs)
seems to prevent us from checking whether this transformation is possible. However, there are actually five
constraints that allow to exclude all the final parameters. Let us consider below these five constraints.

In this set of assumptions, the wave damping requires additional clarification. Although the damping rate
can be calculated for local plasma parameters, in the radiation belts wave damping is a spatial rather than
a temporal effect: waves propagating along magnetic field lines are usually almost fully damped when they
reach the lower-hybrid resonance at magnetic latitudes ∼30–40◦, and the intensity of reflected waves (prop-
agating from high latitudes toward the equator) is quite small (e.g., Agapitov et al., 2013). High-latitude
observations suggest that wave damping is also associated with the loss of wave coherence (Tsurutani et al.,
2013). These two effects result in a decrease of the efficiency of wave-particle interaction with waves at high
latitudes (as well as with reflected waves) and, thus, such waves could not contribute significantly to the
isotropization of the electron distributions. In other words, we can assume that there is no electron scatter-
ing by reflected waves and that the typical lifetime of wave packets is less than a quarter of the wave bounce
period along field lines. In the future, full numerical simulations (including ray tracing with hot plasma
effects, see Breuillard et al., 2013; Chen et al., 2013; Maxworth & Golkowski, 2017, and Watt et al., 2013) will
be needed to take into account, in more detail, the latitudinal and azimuthal distributions of wave damping.

2.1. Maximum Growth Rate of Whistler Mode Wave Generation
In the approximation of the cold plasma with a small population of resonant particles (i.e., when n is much
smaller than the cold plasma density), the whistler mode wave growth rate is given by this equation (Kennel
et al., 1970):

𝛾 = 𝜋2

(
Ωce − 𝜔

)3

kΩcen0

⎛⎜⎜⎝
∞

∫
0

v2
⟂

(
𝜕𝑓

𝜕v⟂
−

v⟂
v||

𝜕𝑓

𝜕v||
)

dv⟂ − 𝜔

Ωce − 𝜔

∞

∫
0

v⟂𝑓dv⟂
⎞⎟⎟⎠v||

= vCyclotron (1)

where n0 is the total plasma density (generally larger than hot electron density n). For a sufficiently dense
plasma with 𝜔2

pe ≫ Ω2
ce (with 𝜔pe and Ωce the electron plasma frequency and gyrofrequency) and parallel

wave propagation, the cold plasma dispersion can be simplified to 𝜔 = Ωce
(
1 + (𝜔pe∕kc)2)−1 (e.g., Shklyar

et al., 2004). Substituting 𝑓init into equation (1), we obtain the wave growth rate

𝛾 =
√
𝜋

2

(
Ωce − 𝜔

)3n

k
√

2T0||∕mΩcen0

((
T0⟂

T0|| − 1
)
− 𝜔

Ωce − 𝜔

)
exp

(
−

mv2
Cyclotron

2T0||
)

(2)

shown in Figure 1b. For given input parameters (T0||,A0 = T0⟂∕T0||, 𝛽init||), the condition that the waves
are generated with the maximum growth rate can be written as 𝜔 = 𝜔∗(T0||,A0,𝛽init|| ) and, thus, the Lan-
dau resonant velocity is vLandau = 𝜔∗∕k|| = vLandau(T0||,A0,𝛽init|| ). Therefore, the beam velocity vD ≈ vLandau

in 𝑓final is a function of the system input parameters (see Figure 1c). Note that this approximation holds
only for low to moderate wave amplitudes, whereas for intense waves (e.g., high-amplitude chorus) a more
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Figure 1. (a) Scheme of evolution of particle distribution function: from transversely anisotropic electrons to beam
formation and anisotropy reduction. (b) Whistler mode wave growth rate and dispersion relation (note that the growth
rate is normalized to the ratio n∕n0 of hot electron density to total plasma density). (c) Landau velocity of the fastest
growing waves as a function of A0 for T0|| = 10 keV and three values of 𝛽init||. (d) Condition of the whistler mode wave
marginal stability Afinal = 1 + a𝛽b

final|| (top) and A1 = A1(T1||,T2
) for 𝛽init|| = 1 and 𝛿 = 0.9; (e) T1|| as a function of T2 for

different 𝛿 and A1 given by equation (3), vD = vLandau. (f) Parametric regions (in (𝛿,T2) space) with 𝑓final having
plateau (red) and without plateau (blue); A1 given by equation (3), vD = vLandau,T1|| given by energy conservation.
(g) Ratio of entropies of the final and initial electron distributions in (𝛿,T2) space. The black curve shows the
parametric boundary from panel (f). (h) Three distribution functions 𝑓final for T2 = 1 keV: 𝛿 = 0.9 corresponds to a
distribution with a final entropy larger than the initial entropy and with plateau, 𝛿 = 0.6 corresponds to a distribution
with final entropy larger than initial entropy and with beams (potential plateau); 𝛿 = 0.95 corresponds to a distribution
with final entropy smaller than the initial entropy. For all the displayed calculations, we use A0 = 3,T0|| = 10 keV,
𝛽init|| = 1, if other values are not given inside the figure.

comprehensive analysis of nonlinear wave growth rates would be required (Omura et al., 2008, 2013; Shklyar
& Matsumoto, 2009)

2.2. Marginally Stable Electron Distribution
The final electron distribution 𝑓final should be nearly stable to whistler mode wave generation, that is, the
relaxation of the initially unstable distribution 𝑓init should stop when no waves with significant amplitudes
can be generated anymore. The parameters of the marginally stable distribution satisfy the equation Afinal =
1 + a𝛽−b

final|| with A the temperature anisotropy, a ≈ 0.21, b ≈ 0.58 (Gary, 2005; Gary & Wang, 1996). The
parameter Afinal is given by the following equation (Figure 1d):

Afinal =
𝛿T1⟂ + (1 − 𝛿)T2

𝛿T1|| + (1 − 𝛿)
(

T2 + mv2
D
) =

𝛿A1 + (1 − 𝛿)T2∕T1||
𝛿 + (1 − 𝛿)

(
T2 + mv2

D
)
∕T1|| (3)
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Therefore, for given T0||,A0,𝛽init|| , we obtain a constraint A1 = A1(T1||,T2,𝛿
), that is, the condition of marginal

stability reduces the number of output parameters. Note that the considered threshold for a marginally stable
distribution Afinal = 1 + a𝛽−b

final|| has been obtained for broadband low-amplitude waves in a homogeneous
magnetic field (Gary & Wang, 1996; Gary, 2005), that is, this equation is not guaranteed to hold for whistler
mode waves in the inner magnetosphere. Nevertheless, several observational studies have confirmed that
Afinal = 1+a𝛽−b

final|| is a reasonable approximation in the inner magnetosphere and in plasma injection regions
(Yue et al., 2016; Zhang et al., 2018).

2.3. Energy Conservation
Whistler mode wave generation/amplification via cyclotron resonance with hot particles (at v|| ≈ vCyclotron =
(𝜔 − Ωce)∕k||) and wave damping by Landau resonance with cold particles (at v|| = vLandau = 𝜔∕k||) can be
considered as an energy transfer between these two populations (Shklyar, 2011b, 2017), such that the wave
energy remains a negligible fraction of the transferred energy (Shklyar, 2011a). This last condition allows us
to write the conservation of total energy in the system under the form nT0||(1+2A0) ≈ 𝛿nT1||(1+2A1)+ (1−
𝛿)n(3T2 + mv2

D), where vD = vLandau and A1 = A1(T2,T1||, 𝛿). Therefore, energy conservation determines T1||
as a function of the input parameters (T0||,A0) and output parameters T2, 𝛿 (see Figure 1e).

2.4. Plateau Formation
The final distribution 𝑓final considered here should contain a plateau in the parallel velocity space. We
slightly relax this criterion and consider an 𝑓final comprising not necessarily a plateau but at least electron
beams, because such beams should quickly (on plasma time scales) relax to plateaus through the excitation
of electrostatic waves (Vedenov, 1967). Full numerical simulations have indeed demonstrated the relaxation
of electron beams over typical time scales of tens of inverse plasma frequencies (see, e.g., Fu et al., 2014;
Gary et al., 2000, and reference therein). Moreover, electrons scattering by whistler mode waves may also
contribute to beam relaxation and plateau formation (e.g., An et al., 2017; Zhang et al., 1993, and references
therein). Accordingly, we require that the equation 𝜕 ∫ 𝑓finalv⟂dv⟂∕𝜕v|| = 0 should have three roots: one
root is the peak of the distribution around zero velocities, and the two other roots are for the two symmet-
rical beams or plateaus. We take into account that A1, vD and T1|| are determined by the above constraints
of marginal stability of the final distribution (A1 = A1(T2,T1||, 𝛿), maximum growth rate of whistler mode
waves (vD = vLandau), and energy conservation (T1|| = T1||(T2, 𝛿)). As a result, the three roots of equation
𝜕 ∫ 𝑓finalv⟂dv⟂∕𝜕v|| = 0 determine a region in 2-D space of (𝛿,T2) (see Figure 1f) where plateau and beams
can be formed for a wide range of 𝛿 and sufficiently small T2 values.

2.5. Entropy Increase
For given input parameters, the four aforementioned constraints define vD,A1,T1|| and determine a para-
metrical region in (𝛿,T2) space. To further constrain the range of (𝛿,T2) values, we use the concept of entropy
increase inside a closed system, this system consisting here of an electron distribution trapped along a curved
geomagnetic field line. Assuming a spontaneous evolution of the electron distribution within the considered
closed system (without external forces), the entropy of 𝑓final should be larger than, or equal to, the entropy
of 𝑓init:

Sfinal = −

+∞

∫
−∞

ln
(
𝑓final

)
𝑓finaldv||

∞

∫
0

v⟂dv⟂ ≥ Sinit = −

+∞

∫
−∞

ln
(
𝑓init

)
𝑓initdv||

∞

∫
0

v⟂dv⟂ (4)

The inequality in equation (4) defines a prohibited range of (𝛿,T2) values. Figure 1g show s = Sinit∕Sfinal
in the (𝛿,T2) space. The requirement of an increase of entropy is found to significantly shrink the range of
available (𝛿,T2) values. Only large 𝛿 values remain acceptable, corresponding to small beams.

Note that we assume a closed system, where no new electron injection occurs during the very fast evolution
of the initial distribution. We further assume that the initially generated wave creates the beam via Landau
damping and gets fully damped at high latitude in the final state.

In low-latitude satellite observations, one may rather observe the nearly final electron distribution of entropy,
Sfinal

el,obs, together with a not yet fully damped wave of entropy, Sfinal
wave. In this case, the entropy change is not

exactly ΔS = Sfinal
el,obs − Sinit

el , but rather ΔS = (Sfinal
el,obs − Sinit

el ) + (Sfinal
wave − Sinit

el(wave)), with Sinit
el(wave) the entropy of

the small portion of the initial electron distribution that has transferred its energy to the observed wave. But
Sfinal

wave and Sinit
el(wave) are the final and initial entropies of the same bunch of energy transferred from particles
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Figure 2. Ratio of final to initial entropy of the electron distribution for the parameters of plateau (or beam) formation:
(a) A0 = 3, 𝛽init|| = 1,T2 = 1 keV; (b) T0|| = 10 keV, 𝛽init|| = 1,T2 = 1 keV. A1 is given by equation (3), vD = vLandau,T1||
is provided by energy conservation.

to wave, implying Sfinal
wave ∼ Sinit

el(wave). Moreover, Shklyar (2011a) has shown that the wave is only a mediator
in the energy transfer between initial and final electron populations, wave energy remaining a negligible
fraction of the total transferred electron energy. Accordingly, (Sfinal

wave − Sinit
el(wave)) can be neglected compared

with (Sfinal
el,obs − Sinit

el ).

2.6. Parametric Investigation
Figure 1h shows three distributions 𝑓final obtained for A0 = 3,T0|| = 10 keV, and 𝛽init|| = 1,A1 given by
equation (3), vD = vLandau,T1|| given by energy conservation. The distribution for 𝛿 = 0.65 corresponds
to strong beams, and the formation of such beams decreases the system entropy, that is, this distribution
cannot be formed spontaneously during a self-consistent evolution. The distribution for 𝛿 = 0.95 does not
contain any beams or plateau, that is, this distribution is beyond the scope of the parametric region of our
interest. The distribution for 𝛿 = 0.9 contains weak beams (or plateaus) and the entropy of this distribution
is higher than the entropy of the initial distribution, that is, the formation of such a distribution satisfies all
our requirements. For any input parameters (T0||,A0, 𝛽init||), we can therefore determine the range of (𝛿,T2)
for which the transformation shown in Figure 1a is physically possible, by using five different constraints
that define or limit the values of the output parameters.

Let us explore the ranges of initial parameters for which this transformation is possible. We fix T1 = 1 keV
(a typical temperature for observed plateaus/beams, see Li, Mourenas, et al., 2016; Li et al., 2019, Min et al.,
2014) and vary the initial T0|| ∈ [10, 50] keV (typical temperature of anisotropic electrons in the injection
region, Zhang et al., 2018, and inner magnetosphere, Demekhov et al., 2017; Fu et al., 2014; Li, Mourenas,
et al., 2016), A0. Figure 2 shows these parametric regions in the (T0||, 𝛿) and (A0,𝛿) spaces. Both T0|| and A0
have a weak influence on the range of 𝛿 where entropy grows and plateau/beam can be formed. The range
of 𝛿 with Sfinal∕Sinit > 1 is quite narrow and only corresponds to distributions with beam density below 20%
of the hot electron density (especially for the realistically moderate anisotropy). Taking into account that
many approximations have been made to plot Figure 2, we also show the permitted 𝛿 range for the relaxed
condition Sfinal∕Sinit > 0.9, for which the beam density can reach up to 30% of the hot electron density.

For realistic systems, therefore, the main role should be played by the energy conservation equation.
Accordingly, we can start from the observed electron distribution with a plateau/beam and assume that
it is marginally stable (with A1 close to the marginal stability threshold), and then transfer the entire
plateau/beam energy into the energy of the initial anisotropic distribution: although this inverse transfor-
mation can likely be performed with a decrease of entropy, the reconstructed initial distribution may easily
turn out to be unrealistically energetic or unstable (e.g., T0|| exceeding a reasonable range, or A0 well exceed-
ing realistic levels). In the next section, we check the parameters of reconstructed initial distributions for
several events during which final electron distributions with plateaus have been observed (note that the
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evolution of the unstable initial electron distribution is generally sufficiently fast to prevent its observation
by satellites; e.g., see Fu et al., 2014).

3. Applications to Observed Electron Distributions
We examine four events of electron plateau observations in the presence of whistler mode chorus waves,
to check if these plateaus could have been formed by such whistler mode waves. In each case, we fit both
transverse and parallel electron phase space densities (PSD) by combinations of Maxwellian and Kappa dis-
tributions, and calculate the drift energy density of the electron beam corresponding to the observed plateau
EDrift,beam = nbeammev2

D,final (for the two symmetric beams). Next, we transfer this (final) beam drift energy
back to the (initial) transverse energy of the anisotropy of the electron population that could potentially
generate, via cyclotron resonance, the observed waves in Landau resonance with the beam. Hereafter, Lan-
dau resonance and wave growth rate are calculated using the full formulae for oblique whistler mode waves
(Artemyev et al., 2016), based on the wave normal angle of the observed chorus wave. To ensure exact con-
servation of total electron density, we delete in the reconstructed (initial) distribution the final beam, but
add an initial beam population of the same density (representing electrons that have been accelerated by
chorus waves) of similar temperature and initial drift velocity vD,init = 0. Finally, we calculate the differ-
ence Sfinal − Sinit between the observed (final) and estimated (initial) entropies of the electron distribution,
normalized to the entropy S0 of one final anisotropic electron population. For each event, this allows us to
check the likelihood of a formation of the observed plateau by the observed whistler mode wave generated
by the initial temperature anisotropy alone. The modified components of the electron distribution (i.e., the
beam and temperature anisotropy) are Maxwellian distributions, justifying to consider the classical entropy
S given in equation (4).

As the above procedure still leaves some range of uncertainty for the inferred parameters (corresponding
to the unknown magnitude of entropy variation), we can use additional considerations on the efficiency of
energy transfer (from the initial electron distribution to the wave) as a function of energy, to further limit
the parameter domain. Based on a comparison between cyclotron resonance diffusion surfaces and constant
energy surfaces, the strongest energy transfer between transverse electron energy and whistler mode chorus
waves mainly takes place when v⟂ ≥ v|| for a realistic, smooth latitudinal distribution of chorus waves
obtained from combined Van Allen Probes and Cluster satellites statistics (Agapitov et al., 2018; Horne &
Thorne, 2003; Summers et al., 1998)—that is, when the wave amplitude does not increase too strongly with
latitude. Therefore, the increase of the transverse PSD in the reconstructed initial distribution (as compared
with the measured final PSD) should be mostly confined to E⟂ ≥ E||,Cyclotron, with

E||,Cylotron = 250 keV ·
(

Ωce − 𝜔

𝜔pe cos 𝜃

)2 (Ωce

𝜔
cos 𝜃 − 1

)
the minimum electron energy for cyclotron resonance with the considered wave having a wave normal angle
𝜃 (Mourenas et al., 2015). The transverse energy of electrons with smaller initial E⟂ should be much less
quickly lost during wave generation (at least, well above a very narrow loss-cone for the considered events
at McIlwain shells L > 4).

The first event has been described by Min et al. (2014) and the electron distributions during this event are
shown in Figure 3a. There is a clear plateau of parallel electron phase space density at ∼1 keV and a signifi-
cant transverse temperature anisotropy over almost the entire observed energy range (we use measurements
from the Electrostatic Analyzer McFadden et al., 2008 onboard THEMIS A spacecraft Angelopoulos, 2008).
Min et al. (2014) have shown that this plateau is accompanied by quasi-parallel whistler mode waves and that
the plateau energy is close to the electron energy for Landau resonance with these waves. We fit the trans-
verse (see red curve) and parallel (see black curve) electron PSD by combinations of Maxwellian and kappa
distributions and calculate the total drift energy density of the electron beam corresponding to the observed
plateau. Next, we transfer this whole final beam drift energy back to the initial energy of the anisotropy
of the electron population that could have generated (via cyclotron resonance) the observed waves in Lan-
dau resonance with the beam (blue curve in Figure 3a). By simply increasing the transverse temperature
of the corresponding Maxwellian, we increase the transverse initial PSD (as compared with its final level)
mainly above 5 keV—that is, for E⟂ near or above E||,Cyclotron ∼ 10 keV. The ratio of the observed (final) and
estimated/reconstructed (initial) anisotropies of the electron population in the energy range of cyclotron res-
onance with the waves, and the normalized difference Sfinal − Sinit of observed (final) and estimated (initial)
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Figure 3. Four events of observations of electron plateau distributions and whistler mode waves: (a) Event with
quasi-parallel whistler mode waves observed by THEMIS A on 10 March 2011 at 22:31:35–22:31:50 (Min et al., 2014);
(b,c) events with very oblique whistler mode lower-band chorus waves observed by Van Allen Probe A on 3 December
2012 at 04:42:30–04:43:10, and on 12 May 2013 at 22:35:50–22:36:10 (Li, Mourenas, et al., 2016); (d) event with
quasi-parallel whistler mode waves observed by Van Allen Probe A on 6 December 2015 at 07:15:00–07:30:00 (Li et al.,
2019). Red and black circles show the measured transverse and parallel electron phase space densities, red and black
curves show fits to these observations, gray curves shows the electron beam distribution allowing to fit the observed
plateau, and blue curves show the transverse electron PSD with an increased anisotropy recalculated/reconstructed by
including the energy of the (final) beam distribution. Solid and dashed blue curves show two different options of
increased transverse PSD, mainly at low or high energy, respectively. The anisotropy ratio and normalized entropy
difference of the observed (final) Sobserv and reconstructed (initial) Sestim electron distributions are indicated in each
panel (blue numbers corresponding to dashed blue curves).

classical entropies of the full electron distribution are indicated in Figure 3a. Our estimates suggest that this
plateau distribution is unlikely to have been formed spontaneously by whistler mode waves generated by
the initial anisotropic electron population, because such an energy transfer between cyclotron and Landau
resonant electrons would correspond to a decrease of entropy.

Two other events of plateau observations accompanied by very oblique whistler mode lower-band chorus
waves (taken from Li, Mourenas, et al., 2016) are shown in Figures 3b and 3c. In both cases, the electron dis-
tribution contains a very small and localized plateau near ∼300 eV (we use measurements from the Helium,
Oxygen, Proton, and Electron mass spectrometer Spence et al., 2013 onboard the Van Allen Probes Mauk
et al., 2013). Note that Li, Mourenas, et al. (2016) have shown that the observed very oblique waves are
in Landau resonance with the observed plateau. We fit the observed distributions and transfer the whole
plateau/beam drift energy back to the (transverse) energy of the anisotropy of the electron population poten-
tially interacting through cyclotron resonance with the observed waves, and which could have formed the
plateau. For these two events, we test two different options for the reconstructed (initial) transverse PSD
distributions, by increasing the perpendicular temperature mainly in the lower or higher energy range of
the domain of cyclotron resonance with the waves. Increasing the transverse PSD mainly at low energy (at
E⟂ ≥ 0.4 keV, see solid blue curves in Figures 3b and 3c) corresponds for the event of Figure 3c to an increase
of entropy from initial to final state, suggesting that the observed whistler mode waves could have formed
the plateau through an energy transfer between the cyclotron and Landau resonant electron populations
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Figure 4. Difference between observed (final) and estimated (initial)
entropies of the electron distribution for the four events in Figure 3,
normalized to the entropy S0 of one final anisotropic electron population,
as a function of the fraction 𝛼factor of the observed (final) beam drift energy
assumed to have been transferred from the (initial) temperature anisotropy
at higher energies. Solid lines show entropy evolution as a function of
energy transfer fraction 𝛼factor when all beam electrons have been
accelerated by whistler mode chorus waves, and dashed lines show the
same process but when only half of the beam electrons have been
accelerated by these waves.

during this event. In contrast, the entropy decreases from initial to final
state during the event of Figure 3b, indicating that this plateau/beam
is unlikely to have been formed by the observed waves. Increasing the
transverse PSD mainly at high energy (at E⟂ > 0.7 keV or at E⟂ > 2
keV, see dashed blue curves in Figures 3b and 3c) corresponds for both
events to a decrease of entropy from initial to final states, suggesting that
these plateau/beam distributions are unlikely to have been formed by
whistler mode waves generated by the initial anisotropic electron popu-
lation without beam. But which of these initial distributions is the most
realistic?

As noted above, since the strongest energy transfer between transverse
electron energy and chorus waves mostly occurs for v⟂ ≥ v|| (Agapitov
et al., 2018; Horne & Thorne, 2003; Summers et al., 1998), one expects
the increase of the transverse PSD in the (reconstructed) initial distribu-
tion to be mostly limited to E⟂ ≥ E||,Cyclotron, because lower E⟂ electrons
will loose much less energy during wave generation. For the two events
in Figures 3b and 3c, one finds E||,Cyclotron ≃ 0.6 keV and ≃2.2 keV,
respectively (for 𝜔∕Ωce ∼ 0.32 and 0.34, (cos 𝜃 − 𝜔∕Ωce) ∼ 1∕75, and
𝜔pe∕Ωce ∼ 8.5 and ∼4, see Li, Mourenas, et al., 2016). On this basis, ini-
tial transverse electron distributions with PSD increases limited to the
higher energy range (dashed blue curves) appear more realistic. This cor-
responds to a decrease of entropy from initial to final states in both events
of Figures 3(b,c), suggesting that the very oblique chorus waves generated
by the initial anisotropic electron population are unlikely to have formed
these plateaus ab initio.

The last event of plateau distribution accompanied by quasi-parallel whistler mode chorus waves is shown in
Figure 3d (this event has been previously described by Li et al., 2019). There is a clear plateau at∼4 keV. We fit
the observed electron distribution (we use measurements from Helium, Oxygen, Proton, and Electron mass
spectrometer, Spence et al., 2013 onboard the Van Allen Probes, Mauk et al., 2013) and transfer the whole
plateau/beam drift energy back to the energy of the anisotropy of the electron population interacting through
cyclotron resonance with the observed waves, which are also in Landau resonance with the plateau. Here,
the transverse PSD is mainly increased for E⟂ near and above E||,Cyclotron ≃ 15 keV. Our estimates suggest
that this plateau distribution is unlikely to have been formed by the whistler mode waves generated by the
anisotropic electron population, because such an energy transfer between cyclotron and Landau resonant
electrons would correspond to a decrease of entropy.

However, we have assumed in Figure 3 that the whole beam drift energy came from the anisotropy of the
initial distribution. Actually, Landau resonant wave-driven electron acceleration produces a plateau dis-
tribution in parallel velocities by trapping electrons around Landau resonance (within the range of the
trapping velocity proportional to the square root of the wave electric field) and by accelerating the initially
more numerous electrons at parallel velocities smaller than the Landau resonant velocity up to higher par-
allel energies, where they increase the distribution, ultimately forming a plateau (e.g., Vedenov et al., 1962).
Therefore, the (final) beam electrons are expected to have had a significant initial parallel velocity vD,init,
close to the minimum parallel velocity of the final plateau.

To take the finite initial parallel velocity vD,init of electrons into account, we hereafter assume that only a
fraction 𝛼factor < 1 of the (final) beam drift energy has been transferred from the (initial) electron population.
Conservation of total electron density requires to delete in the reconstructed (initial) distribution the final
beam, and to add an initial beam population of the same density and similar temperature, but now with a
reduced initial drift velocity vD,init = vD,final(1 − 𝛼factor)1∕2.

Accordingly, we decrease in Figure 4 the fraction 𝛼factor of final beam drift energy actually gained by electrons
from Landau-resonant whistler mode waves, to check the consequences on the entropy variation in each of
the four events of Figure 3 (considering only the more realistic higher-energy anisotropy increases in the
two events with very oblique waves). Figure 4 (see solid curves) shows that for the four events, a production
of the full beam by chorus wave-driven parallel acceleration would correspond to a decrease of the entropy,
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Figure 5. Linear growth rate of the observed very oblique whistler mode lower-band chorus waves in the event shown
in Figure 3b for an electron distribution with reduced plateau/beam density (as compared with the beam shown by
gray in Figure 3b): density reduction factor is 1, 1/2, and 1/3 for three panels from left to right. A∕A∗ is the ratio of
electron anisotropy to marginal electron anisotropy for the measured background magnetic field and plasma
parameters (see details in Li, Mourenas, et al., 2016). For this event, we have 𝛽|| = 4 × 10−2 and A∗ ≈ 2.36.

even if only 10% of the final beam drift energy comes from the waves. Nevertheless, if only half of the beam
electrons are accelerated by the same chorus waves, the entropy decreases only when 𝛼factor > 0.2 for events
in Figures 3a and 3c and when 𝛼factor > 0.4 for events in Figures 3b and 3d. An inspection of plateaus in
Figure 3 shows that they begin near ∼1/3 of the beam drift energy for events in Figures 3(a,d), near ∼ 1∕2
of the beam drift energy for the event in Figure 3b, and near ∼1/1.5 of the beam drift energy for the event
in Figure 3c, leading to probable (realistic) 𝛼factor values of 0.66, 0.5, and 0.3, respectively. All these values
correspond to a decrease of entropy from initial to final states, even if only half of the beam electrons are
accelerated by chorus waves. It confirms that the formation of the observed plateaus/beams in these four
events is unlikely to have been caused by Landau resonance with the observed whistler mode waves.

The realistic 𝛼factor values inferred from minimum plateau energies are closer to a domain of entropy increase
for the two events with very oblique whistler mode waves in Figures 3b and 3c. But even if the observed
plateau populations could potentially have been formed by the simultaneously observed very oblique waves,
the generation of such waves would actually require a very strong initial anisotropy in the absence of a
plateau. Indeed, to provide wave growth at high wave normal angles where Landau damping is strong
without a plateau, cyclotron amplification needs to be stronger than Landau damping. However, Landau
resonant electrons have generally much higher fluxes (at lower energy) than cyclotron resonant electrons,
usually preventing oblique wave generation (Artemyev et al., 2016; Chen et al., 2013; Kennel et al., 1970).

To illustrate this point, Figures 5 show the growth rate of the observed very oblique waves (for the event in
Figure 3b) for an initial electron distribution with a reduced plateau/beam density (as compared with its
observed final density). We plot the growth rate as a function of electron anisotropy A normalized to the
final, marginal anisotropy level A∗ = Afinal = 2.36. Considering a plateau/beam density merely reduced by
factor ∼1/3, we would need to start with an anisotropy exceeding the marginal stability level by more than
a factor ≃3–4 to overcome Landau damping and start the generation of very oblique waves with 𝜃 > 60◦

as in observations (Li, Mourenas, et al., 2016). Moreover, the minimum energy E||,Cyclotron of cyclotron reso-
nance with parallel (𝜃 = 0) lower-band chorus waves is only ≃2–4 times larger than for very oblique waves.
Therefore, a strong increase of the anisotropy in the energy range favoring very oblique wave growth is also
likely to favor parallel wave growth (initially prevented by a much weaker anisotropy and a strong Landau
damping). Indeed, Figure 6 shows that for the huge initial anisotropy A ≃ 5A∗ required for very oblique
wave generation, the growth rate of parallel lower-band chorus waves would strongly exceed the growth rate
of very oblique waves at similar frequencies. Such parallel waves would then largely dominate the energy
transfer and much more quickly reduce the initial anisotropy than very oblique waves, likely hindering very
oblique wave growth. Moreover, such parallel waves were not observed during this event. This suggests that
a generation of the observed very oblique waves by the sole temperature anisotropy (without plateau/beam)
is not realistic. It is much more probable that the plateau distribution was preexisting when the very oblique
waves were generated.

Based on the above investigation, the observed plateau population is often likely to have been formed by
some alternative mechanism—at least, not by the observed whistler mode waves alone. It is more probable
that the observed whistler mode waves appear in Landau resonance with this plateau population mostly
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Figure 6. Growth rates of all whistler mode chorus waves in the presence
of an electron distribution as the final distribution in Figure 3b but with a
strongly increased anisotropy A ≃ 5A∗ in the full energy range of cyclotron
resonance with very oblique waves.

because such resonant waves are not damped (as suggested by Artemyev
et al., 2016; Li, Mourenas, et al., 2016; Mourenas et al., 2015). Our
estimates show that for quasi-parallel waves, the observed plateau distri-
butions contain a too high energy to be generated by whistler mode waves
alone (since such a generation would result in a decrease of entropy).
During the events with very oblique lower-band chorus waves, some frac-
tion (<50%) of the plateau distribution could be formed by the observed
waves, but (i) this would require a very high (almost unrealistic) ini-
tial anisotropy to overcome the initially strong Landau damping and (ii)
this would be inconsistent with the observed absence of additional, high
amplitude parallel lower-band chorus waves that should be generated
more efficiently by this same huge initial anisotropy (except in the case
of a confinement of this huge anisotropy to a narrow low energy range,
lower than the energy range for cyclotron resonance with parallel waves).

We caution that the above estimates do not pretend to provide a full
description of the system—e.g., there could exist other initial distribu-
tions containing the energy of the observed plateaus but keeping a smaller
entropy than the final distributions. Therefore, we leave a definitive
answer to the question of the actual contribution of whistler mode waves
to the formation of these observed plateaus for future self-consistent
numerical simulations. Note, however, that such simulations should be
performed in 2-D to describe the effect of wave propagation divergence,

and the use of such 2-D codes for self-consistent simulations of whistler mode wave growth and propaga-
tion has only recently started (Agapitov et al., 2018; Drake et al., 2015; Ke et al., 2017; Kuzichev et al., 2019;
Lu et al., 2019; Ratcliffe & Watt, 2017).

4. Alternative Scenarios of Plateau Formation
Since the observed whistler mode waves are unlikely to form the observed plateaus in the electron velocity
distribution, then some alternative mechanism(s) should exist. Such plateaus are seen principally for small
pitch angle electrons and, thus, they could be formed by the relaxation of field-aligned electron beams. What
could be the origin of such beams? The most widespread origin of electron beams observed in space plasma
is a spatially localized field-aligned electric field, that is, a field-aligned potential drop generated either by
DC electric fields (Lysak, 1990) or by low-frequency waves (Chaston et al., 2012; Lysak & Song, 2011) and
nonlinear structures (Matsumoto et al., 1994). Let us consider below three possible origins of such electron
beams with energies about the energy of Landau resonance with whistler mode waves.

4.1. Kinetic Alfven Waves
Significant populations of intense whistler mode waves are observed around plasma injections into the
inner magnetosphere (Khotyaintsev et al., 2011; Tao et al., 2011; Zhang et al., 2018), and the same injec-
tions are sources of ultralow frequency kinetic Alfven waves (KAW) (Chaston et al., 2012; Ergun et al., 2015;
Malaspina et al., 2015) that carry a significant field-aligned electric field (Lysak, 2008; Stasiewicz et al., 2000).
This field-aligned electric field can effectively accelerate electrons along magnetic field lines (Damiano
et al., 2015, 2016; Watt & Rankin, 2009, 2012) and form a field-aligned plateau in the electron distribution
(Artemyev et al., 2015; Damiano et al., 2016). Electron acceleration by KAW can result in wave damping at
high latitudes (Sharma Pyakurel et al., 2018), but around the equatorial plane KAWs are likely amplified by
the unstable ion flow of the plasma injection. Such KAWs are widely observed and their energy is sufficiently
important to heat ions (Chaston et al., 2014; Liang et al., 2016; Lin et al., 2017).

Figure 7 shows an example of plasma injection observed by THEMIS D (GSM coordinates are x ∼ −8RE, 𝑦 ∼
0.3RE). There is a strong KAW activity (broadband magnetic and electric fields around 03:42–03:44 UT) at the
injection front seen as a jump of Bz field and electron spectra at∼ 03:42:30 UT (see also Malaspina et al., 2014,
2015). Electron distributions just behind the front show the formation of a plateau at energies ∼100–300 eV
at small pitch angles (compare panels (e) and (f)), and this plateau is continuously observed behind the
front, where THEMIS also detected intense whistler mode emissions (see panels (c) and (d) with electric
and magnetic spectra after 03:47 UT). For the observed whistler mode waves at a frequency 𝜔 ∼ 0.15Ωce, the
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Figure 7. THEMIS D observations on 5 January 2017 (GSM coordinates x ∼ −8RE , 𝑦 ∼ 0.3RE): (a) GSM Bz (black) and
ion v𝑦 (red) profiles (note that we use v𝑦 as an indication of injection because at such a small radial distance ion
duskward drift is stronger than earthward motion, (e.g., see Gabrielse et al., 2019); (b) electron phase space density
measured by ESA (McFadden et al., 2008); (c, d) electric and magnetic spectra from the fff data set (Bonnell et al., 2008;
Cully et al., 2008; Le Contel et al., 2008) with solid and dashed black lines showing 𝑓ce and 0.1𝑓ce; (e, f) electron
spectra for transverse (black) and field-aligned (red) pitch angles. The dashed red curve in panel (f) shows the
field-aligned PSD measured at 03:50 UT, when the most intense whistler mode waves are observed.

cold plasma dispersion gives a velocity for Landau resonance v|| = 𝜔∕k ∈ [5, 10] × 103 km/s, corresponding
to a parallel energy (𝜔∕k)2me∕2 ∼ 150 eV close to the plateau energy. Note that this plateau distribution has
been formed well before the generation of whistler mode waves, but it is still observed during whistler mode
emissions.

Let us compare the energy range ∼ EKAW of electron acceleration by KAWs (i.e., the energies of plateau
formation) and the energy of Landau resonance with whistler mode waves ELandau = v2

Landaume∕2 ≈
(𝜔∕k||)2me∕2. The phase velocity of KAWs is quite small (about the Alfven speed ∼ vA) in comparison
with vLandau, but the large electrostatic potential of KAWs significantly increases the resonance width (e.g.,
Damiano et al., 2016), leading to an energy range of electron acceleration EKAW ≈ eΦ and

EKAW = eΦ =
eE||,KAW

k||,KAW
≈

eE⟂,KAW
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Ti
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Figure 8. Energy ratio (6) for three sets of system parameters corresponding to plasma injections (low density):
(left) near-Earth plasma sheet with Ti ∼ 10 keV, Te ∼ 3 keV, ne ∼ 1 cm−3,B0 ∼ 30 nT (see, e.g., Artemyev et al., 2016);
(middle) the outer edge of the radiation belts L ∼ 7 with Ti ∼ 30 keV, Te ∼ 15 keV, ne ∼ 1 cm−3,B0 ∼ 60 nT (see, e.g.,
Artemyev et al., 2018); (right) the ring current region with Ti ∼ 50 keV, Te ∼ 10 keV, ne ∼ 2.5 cm−3,B0 ∼ 100 nT
(see, e.g., Yue et al., 2018). The whistler mode wave frequency is taken as 𝜔 = 0.35Ωce, corresponding to lower-band
chorus waves.

where 𝛽i is the ion beta (ratio of ion thermal pressure to magnetic field pressure) and we use E||,KAW∕E⟂,KAW ≈
(k||,KAW∕k⟂,KAW)(Te∕Ti) and cE⟂,KAW∕B⟂,KAW ≈ vAk⟂,KAW𝜌i, where 𝜌i is the ion gyroradius (see Chaston et al.,
2003; Streltsov et al., 1998). The ratio EKAW∕ELandau given by

EKAW

ELandau
≈
(

𝜔

Ωce

(
cos 𝜃 − 𝜔

Ωce

))−1 𝜔pe

Ωce

√
8Ti

mec2

Te

Ti

B⟂,KAW

B0
cos2𝜃 (6)

is shown in Figure 8 as a function of B⟂,KAW∕B0 and 𝜃 for different spatial domains (different 𝛽i,Te,Ωpe∕Ωce
values). It turns out that sufficiently intense KAWs with B⟂,KAW∕B0 > 0.1–0.2 can produce a plateau electron
distribution allowing the generation of weakly oblique to very oblique whistler mode waves with negligible
Landau damping within the injection regions, almost independently from the plasma conditions (within
reasonable ranges of Ti,Te, and 𝜔pe∕Ωce parameters). Moreover, KAWs of lower amplitudes may still allow
the generation of quasi-electrostatic very oblique whistler mode waves.

4.2. Time Domain Structures
Besides KAWs, strong field-aligned electric fields are associated with nonlinear electrostatic structures
constituting the broadband electrostatic turbulence (Mozer et al., 2014, 2015). In the near-equatorial mag-
netosphere, such a turbulence mainly consists of electrostatic solitary waves (most likely electron acoustic
solitons, see Agapitov et al., 2018; Vasko et al., 2017) and electron holes (Schamel, 1979; Vasko et al.,
2017); a general name for these electrostatic fields is time domain structures (TDS) (Mozer et al., 2014,
2015). The typical velocity of these electrostatic structures is about the phase speed of electron acoustic
waves vEAW ≈ ve,hot(ncold∕nhot)1∕2 (see more accurate estimates in Vasko et al., 2017), that exist only in a
two-temperature electron plasma with cold (density ncold, temperature Te,cold) and hot (density nhot > ncold,
temperature Te,hot) electron components (Gary & Tokar, 1985). TDS can effectively accelerate (Artemyev
et al., 2014; Mozer et al., 2016; Vasko et al., 2016) and scatter (Vasko et al., 2018) electrons, forming
a plateau population at energies ETDS ≈ mev2

EAW∕2 and even higher (if TDS accelerate electrons along
an inhomogeneous background magnetic field, see Agapitov et al., 2018; Artemyev et al., 2017; Mozer
et al., 2016).

Figure 9 shows one example of TDS and whistler mode wave observations around a plasma injection (a
strong drop of low-energy electrons and a jump of Bz field; see similar observations in statistics of injections
from Gabrielse et al., 2012; Malaspina et al., 2015). The electric field spectrum shows broadband electric
field noise without a magnetic field counterpart (see panels (c) and (d)), that is, we indeed deal with an
electrostatic turbulence. Within the region filled by this turbulence, the distribution of electrons is modified:
there is a clear formation of a plateau population at ≃100–200 eV (compare panels (e) and (f)). Whistler
mode waves, observed behind the injection front, propagate with a phase speed 𝜔∕k|| ∼ 7 × 103 km/s close
to the speed of this plateau. As for the electron population observed around KAW emissions (see Figure 5),
electrons interacting with TDS show an enhanced field-aligned phase space density over a wide energy range
reaching up to ∼1 keV. This may be the result of electron acceleration by TDS (or KAW) parallel electric
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Figure 9. THEMIS E observations on 3 January 2017 (GSM coordinates are x ∼ −9RE, 𝑦 ∼ −2RE): (a) GSM Bz (black)
and ion v𝑦 (red) profiles (note that we use v𝑦 as an indication of injection because at such small radial distances the ion
duskward drift is stronger than earthward motion, e.g., see Gabrielse et al., 2019); (b) electron PSD measured by ESA
(McFadden et al., 2008); (c, d) electric and magnetic spectra from the fff data set (Bonnell et al., 2008; Cully et al., 2008;
Le Contel et al., 2008) with solid and dashed black lines showing 𝑓ce and 0.1𝑓ce; (e,f) electron spectra for transverse
(black) and field-aligned (red) pitch angles. The dashed red curve in panel (f) shows the field-aligned phase space
density measured at the time 05:07:20 UT when the most intense whistler mode waves are observed.

Figure 10. Energy ratio (7) for three sets of system parameters corresponding to plasma injections (low density;
ncold∕nhot = 1∕2, see, e.g., Vasko et al., 2017): (left) cold plasma sheet with Te ∼ 1 keV and 𝜎 = 3; (middle) near-Earth
hot plasma sheet Te ∼ 5 keV and 𝜎 = 3 (see, e.g., Artemyev et al., 2018); (right) same as in Figure 10 (middle), but with
a very weak magnetic field gradient 𝜎 = 1 (the factor 𝜎 determines the increase of the background magnetic field
magnitude within the latitude region where TDS propagate without significant damping, see discussions in Artemyev
et al., 2014; Mozer et al., 2016; and Vasko et al., 2016). The whistler mode wave frequency is taken as 𝜔Ωce = 0.35.
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Figure 11. THEMIS A observations on 2 December 2016 (GSM coordinates are x ∼ −6.5RE , 𝑦 ∼ −2.5RE): (a) GSM Bz
(black) and ion vz (red) profiles (note that due to the special mode of ESA operation with low energy resolution at
>1 keV (Mozer et al., 2017), the plasma moments are quite noisy); (b) electron phase space density measured by ESA
(McFadden et al., 2008); (c, d) electric and magnetic spectra from the fff data set (Bonnell et al., 2008; Cully et al., 2008;
Le Contel et al., 2008); (e, f) electron spectra for transverse (black) and field-aligned (red) pitch angles.

fields in the inhomogeneous background magnetic field (see discussion in Artemyev et al., 2017 and results
of Damiano et al., 2016; Mozer et al., 2016; Watt & Rankin, 2009).

Therefore, we consider ETDS = 𝜎mev2
EAW∕2 where the factor 𝜎 ∈ [1, 5] is included to take into account an

increased acceleration in the magnetic field gradient. Comparing this energy with the energy for Landau
resonance gives:

ETDS

ELandau
≈

𝜎Te,hot

mec2

ncold

nhot

𝜔2
pecos2𝜃

𝜔
(
Ωce cos 𝜃 − 𝜔

) (7)

Figure 10 shows that electron acceleration by TDS can form a plateau population in Landau resonance with
very oblique whistler mode waves in the region of plasma injections, even for a very small magnetic field
(very large 𝜔pe∕Ωce > 10). For 𝜔pe∕Ωce ∼ 5–10 levels typical of near-Earth plasma injections (Zhang et al.,
2018) TDSs can form a plateau that could be in Landau resonance with either parallel or oblique whistler
mode waves.

4.3. Ionospheric Outflow
Whistler mode waves (and electron cyclotron harmonic waves often observed around plasma injections,
see Zhang & Angelopoulos, 2014) scatter hot (>1 keV) electrons into the ionosphere, and this results in
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a production of secondary electrons with energies below 500 eV (Khazanov et al., 2014, 2017). The prop-
agation of these electrons back toward the equatorial plane forms the so-called ionospheric outflow,
well modeled in kinetic simulations (Khazanov et al., 2015). This outflow is predominantly composed of
field-aligned cold electron fluxes, with a pitch angle distribution that becomes narrower farther away from
the ionosphere. Local beam instabilities driven by these cold field-aligned beams can scatter and thermal-
ize electrons (André & Eliasson, 1995; Ergun et al., 1993; Temerin & Cravens, 1990), and finally result in
the formation of a field-aligned plateau electron population near the equatorial plane. Therefore, electron
scattering toward the loss cone by whistler mode waves can form cold electron field-aligned plateau distribu-
tions as a result of ionosphere-magnetosphere interaction (Nishimura et al., 2015). Figure 11 shows a good
example of this kind of distribution. THEMIS A observes strong whistler mode waves in the inner magne-
tosphere without injection (quiet Bz) and without low-frequency electromagnetic field fluctuations (KAW
or TDS). However, the recorded whistler mode wave emissions are accompanied by observations of an elec-
tron plateau population at energies 20–70 eV. Note that the spacecraft potential is ∼18 eV and the observed
electron population is shifted by +18 eV—i.e., the actual plateau energies are ≃2–52 eV. The energies of this
plateau population are quite close to the energies predicted for ionospheric outflow (Khazanov et al., 2014,
2017) and are also similar to the energies of Landau resonance with whistler mode waves. Accurate mea-
surements of such a low-energy electron population were made possible by an especially designed regime of
THEMIS A ESA (Mozer et al., 2017) that was operating from November 2016 to June 2017. These observa-
tions suggest that the ionospheric outflow induced by electron scattering by equatorial whistler mode waves
can be responsible for the formation of a cold electron plateau population.

5. Discussion and Conclusions
A simplified theoretical analysis of whistler mode wave generation and resonant interaction with electrons,
combined with various satellite observations in the inner magnetosphere, shows that whistler mode waves
excited by transverse anisotropy alone are generally unlikely to have formed the observed plateau electron
distributions—at least not from the start. An ab initio formation of this plateau population by the observed
(Landau resonant) whistler mode waves alone would in general require a decrease of entropy, which is
impossible for closed systems, or an unrealistically high initial anisotropy confined to a narrow low-energy
range. However, significant energy transfers from cyclotron resonant energetic electrons (from plasma sheet
injections) to Landau resonant colder electrons via the mediation of whistler mode waves are still fully
possible and most likely do exist (Shklyar, 2011b, 2017). But such energy transfers are simply not sufficiently
intense in general to form the plateau electron distribution that often accompanies whistler mode waves
(Chen et al., 2019; Li, Mourenas, et al., 2016; Li et al., 2019; Min et al., 2014). The noted correlations between
plateau and whistler mode wave observations do not necessarily imply a causal link between them, but can
instead suggest that there is some other phenomenon causing both plateau formation and whistler mode
wave generation.

Two examples of whistler mode wave observations within regions of injections from the plasma sheet show
that strong low-frequency electric fields (carried by kinetic Alfven waves Malaspina et al., 2015 or TDS Mozer
et al., 2015) can lead to the formation of an electron plateau distribution. Among the initially broadband
whistler mode waves generated within such injection regions, the particular waves in Landau resonance
with such a plateau population will be much less damped and more efficiently amplified. This provides
an alternative explanation for the fact that observed whistler mode waves are often found to be in Landau
resonance with a plateau electron population (Li, Mourenas, et al., 2016; Li et al., 2019; Min et al., 2014).
Moreover, the very strong field-aligned electric fields of kinetic Alfven waves (driven by the hot ion popula-
tion, much more energetic than the electron population) can produce electron beams (Watt & Rankin, 2009)
that, in turn, can drive oblique whistler mode wave generation (Li, Mourenas, et al., 2016; Mourenas et al.,
2015; Sauer & Sydora, 2010). Such a scenario of coupling between kinetic Alfven waves/TDS and whistler
mode waves through the electron population resembles the mechanism of induced scattering in an unstable
plasma (Galeev & Sagdeev, 1979) (indeed, there are observations of TDS and whistler mode wave coupling
in the inner magnetosphere, e.g., see Agapitov et al., 2015). Although the primary region for kinetic Alfven
waves and TDS formation is the plasma injection region (the flow breaking region in the nightside magneto-
sphere, see Chaston et al., 2015; Ergun et al., 2015; Mozer et al., 2017), kinetic Alfven waves are also excited
around plasma boundaries well within the outer radiation belt (Chu et al., 2019; Malaspina et al., 2015), and
thus can form electron plateau populations even at small L shells.
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A third example of electron plateau formation suggests a possible role of the ionosphere in reshaping the
electron distribution. Indeed, whistler mode wave generation and electron scattering toward the loss cone
should result in the formation of outflowing populations of secondary electrons (Khazanov et al., 2015). Such
populations of ∼100 eV field-aligned electrons are observed on DMSP (Wing et al., 2019) and can change the
equatorial electron distribution (Nishimura et al., 2015). The feedback of the ionosphere to electron precip-
itations by whistler mode waves is generally neglected in wave-particle interaction studies, but through this
feedback, the ionosphere could change the electron population in the wave source region and, thus, control
the characteristics of excited whistler mode waves. This question is particularly important for the investiga-
tion of whistler mode wave driven aurora (Kasahara et al., 2018; Liang et al., 2011; Nishimura et al., 2010,
2011) and for the general problem of magnetosphere-ionosphere coupling (Khazanov et al., 2019; Wendel
et al., 2019).

To conclude, this study shows that the processes of whistler mode wave generation and interaction with
suprathermal (∼0.1–3 keV) electrons should not be considered in isolation from the other processes poten-
tially influencing the electron distribution. This suprathermal electron population, principally important
for whistler mode wave properties and interacting with these waves through Landau resonance, is gener-
ally unlikely to have been shaped in the form of the observed plateaus by the observed whistler mode waves
alone. It is more likely that these plateaus are mainly formed by other types of waves, such as kinetic Alfven
waves or TDS. Therefore, new full 2-D simulations (with a realistically inhomogeneous magnetic field) and
detailed investigations of the roles played by low-frequency waves and ionospheric feedback are required to
address the question of whistler mode wave relation to electron plateau distributions.
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