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ABSTRACT

The resonant interaction of relativistic electrons and whistler-mode waves is an important mechanism of electron acceleration and scattering
in the Earth radiation belts and other space plasma systems. For low amplitude waves, such an interaction is well described by the quasi-linear
diffusion theory, whereas nonlinear resonant effects induced by high-amplitude waves are mostly investigated (analytically and numerically)
using the test particle approach. In this paper, we develop a mapping technique for the description of this nonlinear resonant interaction.
Using the Hamiltonian theory for resonant systems, we derive the main characteristics of electron transport in the phase space and combine
these characteristics to construct the map. This map can be considered as a generalization of the classical Chirikov map for systems with
nondiffusive particle transport and allows us to model the long-term evolution of the electron distribution function.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5144477

I. INTRODUCTION

Whistler-mode waves are electromagnetic emissions within
the frequency range from the lower-hybrid up to electron cyclotron
frequency widely observed in space1,52,88,103,105 and laboratory76,92

plasmas. These waves are generated by various types of electron distri-
butions with thermal anisotropy,43,96 beam distributions,9,47,100,101 or
both,10,54,57 and they play an important role in the isotropisation of
originally unstable electron distributions.33,49,82 A classical theory of
whistler-mode resonant interaction with electrons is the quasi-linear
theory42,51,97 that assumes a broad spectrum of low amplitude waves.
This theory allows us to describe the main characteristics of electron
acceleration53,85 and scattering64,86 in the Earth radiation belts, in the
solar wind,71 and at the Earth bow shock.98,99 However, quasi-linear
theory cannot describe resonant interactions with the very intense
coherent waves38,79 often observed in space plasmas.2,87,90,102,103,106,107

Such sufficiently intense whistler-mode waves can resonate nonli-
nearly with electrons.23,39,65 Such nonlinear interaction can lead to
phase trapping or non-diffusive scattering of particles6,75 and can

result in a very fast electron acceleration.7,28,29,31,34,67,81,104 Therefore,
the effects of nonlinear resonant interaction are actively investigated
(see reviews in Refs. 8, 10, 14, 68, and 73).

Since self-consistent Vlasov or particle-in-cell simulations of
whistler-mode wave generation and their resonances with elec-
trons30,40,48,83 can hardly cover the long-term dynamics of the electron
distribution in realistic space plasma systems, alternative approaches
need to be considered. Besides the test particle approach (i.e., the
numerical integration of a large number of electron trajectories4,46,66),
the most interesting approach for the investigation of nonlinear elec-
tron resonances with whistler-mode waves consists of the derivation
of a kinetic equation (master-equation93) describing the evolution of
the electron distribution. This approach generalizes the quasi-linear
diffusion equation by including terms responsible for electron nonlin-
ear acceleration and scattering.15,20,31,69 Such terms can be derived
analytically17,91 or numerically.35,36,69

A less investigated but potentially useful approach is the mapping
technique already widely used for systems with small wave
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amplitudes.55,70 The well-known Chirikov map27 describes phase
space diffusion and transport induced by periodical random jumps of
particle momentum. The resonance of electrons and whistler-mode
waves results in a similar type of dynamics: each resonant interaction
corresponds to an electron energy (and pitch-angle) jump inducing
particle transport in phase space. For small amplitude whistler-mode
waves, the map of electron resonant jumps is quite similar to the
Chirikov map,24,44,45 but nonlinear resonant interaction should signifi-
cantly change such a map. In this study, we develop a map describing
electron motion in a system with multiple passages through nonlinear
resonances. We have also demonstrated that this map models well the
electron distribution evolution and can be used to study the radiation
belt dynamics.

II. BASIC EQUATIONS

To derive the basic properties of the nonlinear electron (me is the
rest mass and �e is the charge) interaction with a single field-aligned
whistler-mode wave [x is a constant frequency, kðx; sÞ is the wave
number given by the cold plasma dispersion relation77 and depends
on the field-aligned coordinate s], we consider the Hamiltonian of

electron motion
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

e c
4 þ p2kc

2 þ 2IxXcemec2
q

and a small perturba-

tion by wave-field (i.e., we consider waves with the wave field energy
much smaller thanmec2, see details in, e.g., Refs. 18 and 91),

H ¼ mec
2cþ Uw s; Ixð Þsin /þ wð Þ;

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

p2k
m2

e c
2
þ 2IxXce

mec2

s
; (1)

where c is the speed of light, c is the Lorentz factor of the gyroaveraged
system, Xce ¼ eB0ðsÞ=mec is the electron gyrofrequency in the back-
ground magnetic field B0ðsÞ given by the reduced dipole model,23

Uw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2IxXceme
p

eBw=cmeck with Bw the wave amplitude, and Ix is
the magnetic moment normalized in a such a way that IxXce has the
dimension of energy. The conjugate pairs of variables in Eq. (1) are
field-aligned coordinate and momentum, ðs; pkÞ, and gyrophase and
magnetic moment, w; Ix . Hamiltonian (1) can be derived from the
Hamiltonian of 3D charged particle motion with two key assumptions:
(1) the background magnetic field is sufficiently strong to magnetize
electron and allows introduction of magnetic moment Ix, which is con-
served in the absence of wave (note magnetic moment is conjugate to
the gyrophase w, and Ix introduction results in two Hamiltonian equa-
tions: _I x ¼ �@H=@w; _w ¼ @H=@Ix , see Ref. 50) and (2) wave field
energy is much smaller than mec2, and thus wave field can be consid-
ered as a perturbation in the Hamiltonian (see details of these deriva-
tions in, e.g., reviews of Refs. 8, 14, and 73). Note that Hamiltonian (1)
is written for electrons interacting with field-aligned whistler-mode
waves, i.e., only n¼�1 cyclotron resonance is available, and this
defines that wave field depends on /þ w (see more general form of
this Hamiltonian in, e.g., Refs. 8, 18, and 73).

Wave phase / is given by the differential equation: _/ ¼ kðsÞ_s
�x (we omit the argument x in the function k). In system (1) phases
/, w changes much faster than variables s, pk, and Ix because wave fre-
quency x and gyrofrequency Xce are much larger than the electron
bounce frequency �c=R where R is a spatial scale of B0ðsÞ gradient.
Therefore, the first small parameter of the system is c=RXce � 1. The
second small parameter of the system is Bw=B0 � 1, and we consider

sufficiently intense waves with Bw=B0 � c=RXce (this condition is sat-
isfied for a significant fraction of whistler-mode waves observed in the
Earth radiation belts, see Ref. 107).

Figure 1(a) shows several fragments of electron trajectories
around the resonance _/ þ _w ¼ 0 (with _w ¼ @H=@Ix � Xce=c): there
are two main effects63—electron trapping into resonance with the
energy increase Dctrap, and electron scattering on the resonance with
the energy decrease Dcscat . We plan to construct a map describing the
long-term evolution produced by these two processes.

We start with the determination of Dctrap; Dcscat and their
dependencies on particle characteristics. First, we use the generating
function,

W1 ¼
ð
kð~sÞd~s � xt

� �
þ w

� �
I þ sP;

to introduce phase u ¼ /þ w and conjugate momentum I,

HI ¼ �xI þmec
2cþ Uw s; Ið Þsinu;

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P þ kIð Þ2

m2
e c

2
þ 2IXce

mec2
:

s
(2)

Pairs of conjugate variables are ðI;uÞ and (s, P) with P ¼ pk � kI.
The resonance condition ( _u ¼ @HI=@I ¼ 0) for Hamiltonian (2)
defines the resonant momentum IRðs;PÞ,

kIR
mec
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Xce=kcð Þ2 � 2 XceP=kmec2

� �
kc=xð Þ2 � 1

s

�Xce

kc
� P
mec

: (3)

We expand Hamiltonian (2) around the resonance,

HI � Kþ 1
2
g I � IRð Þ2 þ Uw s; IRð Þsinu;

K ¼ �xIR þmec
2cR; cR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P þ kIRð Þ2

m2
e c

2
þ 2IRXce

mec2

s
;

g ¼ mec
2@

2c
@I2

����
I¼IR
¼ x2 kc=xð Þ2 � 1

� �
cR

; (4)

and use the generating function,

W2 ¼ ðI � IRÞfþ Ps�;

to introduce new pairs of conjugate variables ðf;PfÞ and ðs�;P�Þ with
Pf ¼ I � IR; s� ¼ sþ ð@IR=@PÞf; P� ¼ P � ð@IR=@sÞf, f ¼ u,

~HI ¼ K s�; P�ð Þ þ 1
2
gP2

f þ Uw s; IRð Þsin f

�K s;Pð Þ þ 1
2
gP2

f � rfþ Uw s; IRð Þsin f;

r ¼ K; IRf gs;P ¼
@K
@s
@IR
@P
� @K
@P

@IR
@s

: (5)

Using Hamiltonian (2), we get mec2Dc ¼ xDI (note @HI=@t ¼ 0)
and _I ¼ �@HI=@u ¼ �Uw cos ðuÞ, i.e., there is a conserved energy
h ¼ �xI þmec2c. Therefore, the energy change Dc due to resonant
interaction can be written as14,62
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mec
2Dc ¼ �xUw

ðþ1
�1

cosudt ¼ �2xUw

ðþ1
tR

cosudt;

¼ �2xUw

ðþ1
fR

cos f
gPf

df ¼ �
ffiffiffi
2
g

s
x
ðþ1
fR

Uw cos fdfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hf þ rf� Uw sin f

p ;

¼ �
ffiffiffiffiffiffiffiffiffi
2Uw

g

s
x
ðþ1
fR

a cos fdfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f� fRð Þ � a sin f� sin fRð Þ

p ;

¼ �
ffiffiffiffiffi
2r
g

s
xf fR; að Þ; (6)

where tR is the time of the resonant interaction, fR is the value of f at
t¼ tR, and we use the Hamiltonian equation _f ¼ @ ~HI=@Pf to express
Pf through the energy at the resonance hf ¼ ~HI � K ¼ Uw sin fR
�rfR [note that Eq. (6) is written for r> 0, whereas for r< 0, the f-
integration would be from �1 to fr, see details in Refs. 14 and 62].
Coefficient a ¼ Uw=r determines the mode of resonant interaction:
for jaj > 1 we deal with nonlinear interaction with hDcihf

6¼ 0, where
h�ihf

denotes averaging with respect to hf. Function f ðfR; aÞ is shown
in Fig. 2(a). This is a periodic function with the average value14,62

equal to

hDcihf
¼ x

p

ffiffiffiffiffi
2r
g

s ðfþ
f�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f� f�ð Þ � a sin f� sin f�ð Þ

p
df; (7)

where f6 are shown in the phase portrait of the Hamiltonian ~HI � K
[see Fig. 1(b)]. Note that we consider only systems with sufficiently
high-amplitude waves (for which jaj > 1 and hDci 6¼ 0), whereas for
low-amplitude waves hDci ¼ 0 and there is only diffusion �hðDcÞ2i
due to scattering (see Refs. 24, 44, and 45).

The energy change in Eq. (7) represents the energy scattering
Dcscat ¼ hDcihf

and depends on the resonance position sR given by
the following equations:

h ¼ �xIR s;Pð Þ þmec
2cR s; Pð Þ; c0 ¼ cR s;Pð Þ; (8)

where mec2c0 is the initial electron energy and h can be written as
h ¼ �xIx0 þmec2c0 (with Ix0 being the initial Ix value). Equation (8)
can be rewritten as

cR ¼
Xce

kc
7

kcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kcð Þ2 � x2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Xce

kc

� �2

� 2h
mec2

Xce

kc

s�������
�������: (9)

Figure 2(b) shows the profile of Dcscat along the magnetic field line (we
use magnetic latitude k instead of coordinate s, i.e., kR is the solution of

equation sR=R ¼
Ð kR
0 dk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2k
p

cos k). For a given h (or equiva-
lently for a given initial pitch-angle a0 determining Ix0), we can plot
Dcscat as a function of initial energy mec2c0, see Fig. 2(c). As h is deter-
mined by a0 and c0, the energy scattering value mec2Dcscat depends on
a0; c0. Analogous dependencies of scattering on initial particle parame-
ters have been tested for several specific Hamiltonians.17,21,91 For
Hamiltonian (1), we compare the numerically calculated Dcscat with

FIG. 1. (a) Change of electron energy due to scattering (black; yellow shows averaged energy of scattered particles) and trapping (red). The time interval of one resonant inter-
action is shown. All electrons have initially the same energy and pitch-angle. For these trajectories and throughout the paper, we consider a curvature-free dipole magnetic
field23 with the radial distance from the Earth R¼ 4.5 of the Earth radii. The whistler-mode wave frequency is 0.35 times the electron cyclotron frequency at the equator, and
plasma frequency equals to 4.5 of the electron cyclotron frequency at the equator. To evaluate the wave number k, we use the cold plasma dispersion of whistler-mode
waves.77 The wave amplitude is 300 pT, typical for intense whistler-mode waves observed in the radiation belts.26,90,102,106 The distribution of the wave amplitude along mag-
netic field lines, BwðsÞ, is modeled by function tanhððk=dk1Þ2Þ exp ð�ðk=dk2Þ2Þ with k the magnetic latitude (ds ¼ Rdk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2k

p
cos k) and dk1 ¼ 2	; dk2 ¼ 20	. This

function fits the observed whistler-mode wave intensity distribution.1 To simplify the simulations, we consider waves in only one hemisphere, Bw¼ 0 for s< 0, and thus, there
is only one resonance for electrons within one bounce period. Waves are moving away from the equatorial plane, s¼ 0, to large s, i.e., only k> 0 are included. (b) Phase por-
trait of Hamiltonian ~HI �K ¼ gP2

f=2� rfþ Uw sin f for jUw=r j > 1.
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the analytical expression (7) in Fig. 2(c): to evaluate Dcscat numerically,
for several c0 we run 104 trajectories for Hamiltonian (1) for fixed h
and different c0 (the time of integration of each trajectory includes only
one resonant interaction) and then average energy changes.

In contrast to scattering, particle trapping is a non-local process.
The energy change due to trapping significantly exceeds Dcscat and
can be comparable with the initial particle energy. Particles can be
trapped if the probability of trapping P is positive.14,63 For system (5),
this probability is defined by the relation22

P ¼ �mec2

x
dDcscat
dI

¼ �mec2

x
Dcscat ; IRf g; (10)

where {�; �} is the Poisson bracket with respect to the variables s and P.
The value P depends on the initial energy c0 and Ix in terms of their
combination h ¼ �xIx0 þmec2c0. If Eq. (10) gives a negative value,
P should be set to be zero and there are no trapped particles.

Equation (10) determines the relative number of resonant par-
ticles that get trapped during a single resonant interaction. Analogous
equations have been verified using the test particle calculations for
several specific Hamiltonians in Refs. 17, 22, and 91. Note that due to
conservation of h, the change of I is equal to the change of cmec2=x,
and thus, Eq. (10) can be written as P ¼ �dDcscat=dc, i.e., the deriva-
tive of the profile DcscatðcÞ from Fig. 2(c) should give the PðcÞ profile
(for fixed h). Figure 2(d) shows this PðcÞ and the corresponding
numerical verifications (each numerical point shows the relative
amount of 104 particles that have been trapped during the first reso-
nant interaction).

Being trapped at some resonant value sR defined by Eq. (8),
particles should escape at sdetrap with an energy gain Dctrap
¼ cRðsdetrapÞ � c0. This detrapping coordinate can be calculated using
the conservation of the adiabatic invariant ð2pÞ�1

Þ
Pfdf for trapped

particles (see details in, e.g., Refs. 17 and 91). Formally speaking, sdetrap

FIG. 2. Main parameters of the resonant system: (a) function f ðfR; aÞ; (b) function hDcscatðkRÞi, (c) function hDcscatðc0Þi; (d) probability of trapping Pðc0Þ. Symbols show
the results of numerical simulations (h=mec2 ¼ 1:454 corresponds to, e.g., a0 ¼ 45	 of the equatorial pitch-angle for 300 keV electron energy; see details of model parame-
ters in the caption of Fig. 1).
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is the solution of equation DcscatðsdetrapÞ ¼ DcscatðsRÞ, i.e., the function
(7) should have the same value at the trapping and detrapping
positions.22,94

To summarize, for a given h ¼ �xIx0 þ c0mec2, the resonant
system (1) can be reduced to a 1D system that is described by the pro-
file of energy change due to scattering DcscatðcÞ, probability of trap-
ping P ¼ maxð0;�dDcscat=dcÞ, and energy change due to trapping
DctrapðcÞ. These three functions allow us to construct a map describing
the system evolution on a time interval including many resonant
interactions.

III. MAPPING TECHNIQUE

Let us discuss the meaning of the probability of trapping, P.
Each trajectory far from the resonance is characterized by initial
energy c, magnetic moment Ix, coordinates in the ðs; pkÞ plane, and
phase f which coincides with u. Knowing these values, we can deter-
mine if particles will be trapped or scattered during the first resonant
interaction. However, particle phase f changes with time much faster
than particle s; pk coordinates (_f � Xce is the largest frequency in the
system). Even a small initial variation of f can result in a crucial
change of the particle’s fate: trapped particles may become scattered
and vice versa. Accordingly, instead of tracing individual trajectories
with given f, it is more suitable to adopt a probabilistic approach and
to consider the relative amount of trapped particle trajectories, equal
to P (see Refs. 60 and 72).

Will a particle be trapped or scattered depends on the f value at
the resonance, fR, but instead of f it is more convenient to use the nor-
malized resonant energy n ¼ ða sin fR � fRÞ=2p� ða sin fþ
�fþÞ=2p [where fR 2 ½fþ � 2p; f�
, see Fig. 1(b)], which is distrib-
uted uniformly (see numerical tests of n distributions in, e.g., Refs. 19
and 37); its values belong to the interval ½0; 1
. Within this interval, the
measure of the sub-range corresponding to trapping equals P, and
this sub-range is 0 � n � P. As the particle energy does not change
between two successive resonant interactions, we can write a map of
the c! �c transition during a single resonance interaction,

�c ¼ cþ
Dctrap cð Þ; n 2 0;P½ Þ;
Dcscat cð Þ; n 2 P; 1ð 
;

(

P ¼ �dDcscat=dc: (11)

The map (11) should be supplemented with a map for value n,
which is related to f change (gain) between two resonances through
the equation [see Eq. (A17) in Appendix],

�n ¼ n� Df=2p mod 1: (12)

The rate of f change is defined by the Hamiltonian system (2) (note
that f ¼ u), but it is more convenient to use notations of the
Hamiltonian system (1),

_f ¼ �xþ Xce sð Þ
c
þ k sð Þ

pk
mec

;

pk ¼ mec

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1� 2IxXce sð Þ

mec2

s
: (13)

Integrating Eq. (13) over the time interval between two resonances (in
the system under consideration this time is equal to the bounce period
sb), we obtain

Df ¼ xsb
-
c
� 1

� �
;

sb ¼
4
c

ðsmax

0

c2 � 1� 2IxXce sð Þ
mec2

� ��1=2
ds;

- ¼

ðsmax

0

Xce sð Þ c2 � 1� 2IxXce sð Þ
mec2

� ��1=2
ds

ðsmax

0

x c2 � 1� 2IxXce sð Þ
mec2

� ��1=2
ds

; (14)

where sb and - depend on energy c and Ix or, at h fixed, these func-
tions depend only on c (see Fig. 3). Note that the integral
c�1
Þ
kðsÞpkdt ¼

Þ
kðsÞds is equal to zero.

Combining Eqs. (14) and (11), we obtain the map for this reso-
nant system in the ðc; nÞ plane:

�n ¼ n� xsb -c�1 � 1
� �

=2p; P ¼ �dDcscat=dc;

�c ¼ cþ
Dctrap cð Þ; �n 2 0;P½ Þ;
Dcscat cð Þ; �n 2 P; 1ð 
:

(
(15)

This map describes variation of particle energy and phase. Figure
4(a) shows a typical trajectory obtained from 200 iterations for map
(15): the particle loses energy due to scattering and sometimes (when
the phase appears to be within the short range ½0;PÞ) gains energy
due to trapping. After a sufficiently large number of iterations, the
particle trajectory fills the entire ðf; cÞ plane (within the range of the
resonant energies for which Dcscat 6¼ 0), as shown in Fig. 4(b). This
property of map (16) requires sufficiently intense waves, i.e., there is a
threshold of wave intensity for stochasticity of particle trajectories.
This threshold is determined by the relation of wave amplitude Uw

and inhomogeneity of the phase gain, @ð�n � nÞ=@c (see the general
form of this relation in Ref. 12).

FIG. 3. Functions xsbðcÞ; -ðcÞ for a fixed value of h (h=mec2 ¼ 1:454 corre-
sponding, e.g., to an equatorial pitch-angle a0 ¼ 45	 for a 300 keV electron; see
details of model parameters in the caption of Fig. 1).
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The spreading of a single trajectory means that any initial distri-
bution of energy should tend toward a uniform distribution (note that
we are speaking of energies for a fixed h, i.e., the energy distribution
along the resonant curve56,78). A similar result has been obtained
through numerical simulations and solutions59 of the kinetic equa-
tion15 describing the long-term dynamics of many trajectories (1). In
Sec. IV, to check the derived map (15), we compare the results pro-
vided by this map with results of test particle simulations, as well as
with results obtained by solving the full kinetic equation.

IV. VERIFICATION OF MAPPING RESULTS

Let us fix h and consider a 1D energy distribution WðcÞ (note
that W is a cut of the 2D energy/pitch-angle distribution). We can rep-
resent this distribution as a set of 106 individual particles with different
initial energies and randomly distributed phases. Then, the trajectory
of each particle can be traced numerically using Hamiltonian equa-
tions (1) over a time interval including many resonance interactions.
This method reproduces the evolution of WðcÞ driven by the wave-
particle resonant interaction. Alternatively, we can trace trajectories
and reproduce the evolution of WðcÞ using the map (15). The third
approach is to solve the kinetic equation that describes W evolution
due to nonlinear resonant interactions,15,18

@W
@t
¼ V

@W
@J
þ dV

dJ
W� �Wð ÞH Jð Þ; (16)

where JðcÞ ¼
Ð csbðc0Þdc0; V ¼ Dcscat=sb; W� ¼ Wðc�Þ with

c� þ Dctrapðc�Þ ¼ c, and H¼ 0 for P¼ 0 and H¼ 1 for P > 0.
Equation (16) can be re-written in a simplified form,

@W
@t
¼ V

@W
@c
þ dV

dc
W�sbðc�Þ=sbðcÞ �Wð ÞH cð Þ þ ‘; (17)

where the term ‘ includes derivatives�@sb=@c and can be omitted for
a sufficiently weak sbðcÞ dependence [see details of c! JðcÞ transfor-
mation in Refs. 16 and 18].

We consider such three types of solutions of WðcÞ evolution [test
particles, Eq. (16), and map (15)] for two initial distributions W.
Figure 5 shows these three solutions for initial power law energy distri-
bution and three moments of time (note that solutions obtained via

test particle simulations and Eq. (16) depend on time, whereas the
map (15) depends on the iteration number that should be transformed
to time using the bounce period sbðcÞ for each trajectory). All three
solutions show a very similar evolution of WðcÞ: the distribution gets
flattened within the resonant energy range (where Dcscat 6¼ 0) and
forms a plateau. This is the effect of a competition between trapping
(energy increase) and scattering (energy decrease) that ultimately
results in a uniform distribution (note that this uniform distribution is
formed along the resonance curves,56,78 i.e., for h ¼ const). A similar
evolution, although more complicated, can be seen in Fig. 6 showing
three solutions for an initial WðcÞ with a local maximum. This maxi-
mum starts drifting to lower energies (due to scattering), whereas a
new maximum forms at high energies (due to trapping acceleration).
Finally, WðcÞ will be flattened and form a plateau within the resonant
energy range. Such an evolution of WðcÞ has been predicted and
described [considering solutions of Eq. (16)] in Refs. 11 and 59.

The flattening of the WðcÞ distribution for fixed h corresponds to
decay of gradients of the 2D (energy, pitch-angle) electron distribution
along the resonance curve. These curves are defined as solutions of
combined equations of resonant condition and energy conservation in
the wave reference frame.56,78 For a narrow wave spectrum, the quasi-
linear diffusion also reduces gradients along these curves in the 2D
space of (energy, pitch-angle), i.e., results shown in Figs. 5 and 6 are in
agreement with the theory of the quasi-linear diffusion. However, non-
linear wave-particle interaction reduces gradients along resonance
curves much faster than the quasi-linear diffusion does (see the discus-
sion in Ref. 11).

V. DISCUSSION

In this study, we have developed a map describing the dynamics
of systems with nonlinear resonant wave-particle interactions. For
illustration, we used wave and background plasma parameters typical
of the Earth inner magnetosphere, where relativistic electrons resonate
with high amplitude whistler-mode waves. This system is well investi-
gated in the regime of low wave amplitudes where quasi-linear diffu-
sion equations are applicable,56,74,84 but so far there is no method
allowing to model the long-term evolution of this system in the pres-
ence of nonlinear resonant effects. One of the most widespread

FIG. 4. (a) Particle trajectory for map (15): c and n as functions of iteration number, gray color shows the capture probability P. (b) Particle trajectory in ðn; cÞ plane for 105
iterations. (h=mec2 ¼ 1:454 corresponds to, e.g., a0 ¼ 45	 of the equatorial pitch-angle for 300 keV electron energy; see details of model parameters in the caption of Fig. 1).
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techniques, test particle simulation,5,25,28,29,41,58,67 provides a lot of
important information about electron acceleration and scattering rates,
but such simulations are limited to quite short time intervals. This lim-
itation mostly comes from the need to integrate the entire (bounce)
particle trajectory even if energy and magnetic moment only change at
the locations of wave-particle resonances. Therefore, a natural solution
consists of considering only resonance-induced changes of particle
energy and pitch-angle, like in the quasi-linear diffusion approach.

The generalization of the diffusion equation with inclusion of terms
related to nonlinear wave-particle interaction results in Eq. (16) or
similar types of kinetic equations.15,18,75 However, this kinetic equation
still relies on the assumption of a uniform distribution of resonant
phases (i.e., it excludes effects related to phase correlation at multiple
passages through the resonance) and it cannot be easily generalized for
systems with multiple waves. These two problems can be resolved
using the map approach that includes resonant phase dynamics while

FIG. 6. Evolution of the distribution WðcÞ for h=mec2 ¼ 1:454 (this value of h corresponds to, e.g., equatorial pitch-angle a0 ¼ 45	 for 300 keV electron energy; see details of
the model parameters in the caption of Fig. 1): black color shows results of test particle simulations (106 trajectories), red color shows solutions of Eq. (16), and green color
shows results of mapping (15). The initial distribution WðcÞ is shown in all panels with gray curves. Time is normalized to R/c (the quarter of the bounce period) with R¼ 4.5
Earth radii.

FIG. 5. Evolution of distribution WðcÞ for h=mec2 ¼ 1:454 (this value of h corresponds to, e.g., equatorial pitch-angle a0 ¼ 45	 for 300 keV electron energy; see details of the
model parameters in the caption to Fig. 1): black color shows results of test particle simulations (106 trajectories), red color shows solutions of Eq. (16), and green color shows
results of mapping (15). The initial distribution WðcÞ is shown in all panels with gray curves. Time is normalized on R/c (a scale of the quarter of the bounce period) with
R¼ 4.5 Earth radii.
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also allowing the inclusion of many resonances. Let us consider these
two issues in more detail.

Assuming a uniform distribution of resonant phases corresponds
to the assumption that two successive resonances are not correlated,
i.e., that electron energy jumps Dc (due to trapping or scattering) can
be considered as independent over a long run. This important prop-
erty of the resonant system usually results from the dependence of the
phase gain Df on energy c [see Eq. (15)]. This gain is usually large
Df � xsb � 1 (since the whistler-mode wave period is much smaller
than the electron bounce period along magnetic field lines) and, thus,
even a small change of energy Dc due to resonant interaction should
result in a significant change of Df: dðDfÞ � ð@Df=@cÞDc, justifying
the assumption of randomly distributed phases. However, resonances
can be correlated (and the distribution of resonant phases can be non-
uniform, see Ref. 12) for systems with small @Df=@c. Such a situation
can hardly appear in the Earth radiation belts, but it is more realistic
for resonant electron interaction with strong electrostatic waves and
solitons around the bow shock.95 This corresponds to Landau reso-
nant interaction without the term -=c in Eq. (15) and with the time
interval between resonances �sb weakly depending on energy.
Therefore, the proposed map technique may be useful for investiga-
tions of nonlinear wave-particle interactions in such systems, where
the assumption of a uniform distribution of resonant phases is not
applicable.

The map (15) has been constructed for a system with a single
wave (single resonance). In this system, the condition h ¼ const
reduces the initially 2D space [energy/pitch-angle or ðc; IxÞ] to 1D
space. However, unlike kinetic equation (16), this map can be general-
ized to many resonances resulting in particle motion in the ðc; IxÞ
space. Indeed, the map describes change of the resonant phase f
between two resonances and energy change on the resonance. The f
change can be modified by replacing the integration over the entire
bounce period with the integration between two resonances in Eq.
(14), whereas the energy change can be replaced with energy and Ix
changes. This generalization looks much simpler to achieve than the
corresponding generalization of the kinetic equation (16).

Figure 4 shows that after many iterations the particle trajectory
fills the entire available space in the ðf; cÞ space. For ensembles includ-
ing many trajectories, the final state of the distribution function will be
a uniform distribution where phase space density W should have the
same value for all energies. This is the final state for both quasi-linear
diffusion, that tends to reduce gradients of W along the resonance
curve, and nonlinear wave-particle interaction described by Eq. (16),
which has only one stationary solution W ¼ const (see Ref. 11).
Therefore, the map (15) describes distribution flattening, @W=@c! 0,
and allows estimating a typical timescale of this flattening. For exam-

ple, Fig. 7 shows the evolution of the dispersion D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hc2i � hci2

q
of

distribution W for four different initial W (shown in the inserted
panel). The dynamics of W is described by 105 trajectories of map (15),
and D is normalized to the dispersion of the uniform distribution for
the same c range (i.e., D=D0 � 1 means W � const; initial phases of
trajectories are random and distributed uniformly). As the map (15)
describes discrete changes of energy with time, the beginning of the D
evolution consists of step-like jumps (note that we transformed the
iteration number to time for each trajectory to plot D vs time). Each
jump corresponds to one map iteration. Jumps occur at approximately

the same time for all trajectories (the time between two jumps weakly
depends on energy, sbðcÞ, and does not depend on phase n); thus,
step-like jumps in Fig. 7 correlate well for different initial distributions.
Independently of the initial distribution, D=D0 � 1 after �100sb, and
this timescale is much shorter than typical quasi-linear time scales53,85

(note for initially narrow distributions, the nonlinear wave-particle
interaction includes formation of two maxima on a certain time inter-
val, see Fig. 6, and such two-maximum distributions can have
D=D0 > 1).

There is an important point to note about map Eq. (15): this map
has been constructed using Hamiltonian equations of electron interac-
tion with a coherent sinusoidal wave. More realistic whistler-mode
waves are propagating in the form of localized wave packets with sig-
nificant amplitude modulation106 and variation of phase coherence.3,89

These effects can essentially alter the wave-particle interaction, mostly
reducing the efficiency of nonlinear resonant acceleration and scatter-
ing.32,79,80 The wave amplitude modulation may be included in theo-
retical description of nonlinear wave-particle interaction,13,59 whereas
effects of phase coherence are yet to be investigated theoretically.
Therefore, the presented map technique requires further modifications
to model realistic whistler-mode characteristics.

To conclude, in this paper, we have considered nonlinear reso-
nances between relativistic electrons and intense whistler-mode waves.
We have demonstrated that the long-term dynamics of the electron
distribution can be described by a map taking into account the impor-
tant interdependence between the probability of trapping P and
energy change due to scattering Dcscat : P ¼ �dDcscat=dc. This map is

FIG. 7. Evolution of dispersion D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hc2i � hci2

q
for four distributions WðcÞ and

h=mec2 ¼ 1:454 (this value of h corresponds to, e.g., 45	 of the equatorial pitch-
angle for 300 keV electron energy; see details of model parameters in the caption
of Fig. 1). Dispersions are normalized to the dispersion D0 of the uniform distribu-
tion W ¼ const.
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different from the classical Chirikov map27 and allows describing both
effects of phase trapping and nonlinear scattering. The proposed map-
ping technique can be useful for the description of charged particle
acceleration in various space plasma systems including the Earth
radiation belts and the Earth bow shock.
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APPENDIX: PHASE VARIATION

In this Appendix, we derive formula (12), which expresses
variation of variable n between two resonance crossings via gain of
phase f between these crossings. We consider a quite general form
of Hamiltonian. Results of our derivation are directly applicable to
the particular system considered in the main text. This derivation is
somewhat similar to the derivation provided in Ref. 61 for change
of phase between separatrix crossings. Important to notice that, fol-
lowing the system description in the main text, we consider one res-
onance crossing per one period of slow motion, i.e., the two
resonance crossings are separated in time by one slow period.

Let us consider a general Hamiltonian as the sum of an unper-
turbed part H0ðI; p; qÞ and a small perturbation eH1ðI; f; p; qÞ (with
e� 1; note in the main text e � Bw=B0) where ðq; e�1pÞ; ðf; IÞ are
pairs of conjugate variables (hence ðf; IÞ are fast variables, (q, p) are
slow variables), and H1 is periodic in f. Momentum I is an adiabatic
invariant: _I ¼ �e@H1=@f, and I is constant in the averaged over f
system. There is no explicit dependence on time, and thus,
H ¼ h ¼ const. The resonance condition is determined by the
equation @H0=@I ¼ 0. Solving this equation for I gives the equation
I ¼ IRðp; qÞ of the resonance surface. Denote Kðp; qÞ ¼ H0ðIRðp; qÞ;
p; qÞ. The Hamiltonian can be expanded around the resonance
surface similarly to Eq. (5). We assume that the phase portrait of
the expanded Hamiltonian looks like the one shown in Fig. 8.

We introduce the improved adiabatic invariant J with the
variable transformation ðI; f; p; qÞ 7! ðJ; h;P;QÞ such that the new
Hamiltonian is H ¼ H0ðJ;P;QÞ þ e�H 1ðJ; P;QÞ where �H 1 is the
average of H1 over f (in the leading approximation).

Far from the resonance, h changes with the frequency,

_h ¼ @H0

@J
þ e

@ �H 1

@J
(A1)

with J ¼ const, and

_Q ¼ e
@H0

@P
þ e2

@ �H 1

@P
; _P ¼ �e

@H0

@Q
� e2

@ �H 1

@Q
: (A2)

We introduce x0ðJ;P;QÞ ¼ @H0=@J; x1ðJ;P;QÞ ¼ @ �H 1=@J ,
and consider large number N � 1 of rounds of f from t¼ t0 (when
the phase point is far from the resonance and moves toward the res-
onance) to t¼ tN; the last round is sufficiently far from the reso-
nance and h � f in the leading approximation. The last round ends
at f ¼ fc mod 2p (see Fig. 8 for the definition of fc). Then,

fcN ¼ f0 þ
ðtN
t0

x0 þ ex1ð Þdt mod 2p; (A3)

where fcN is fc value at t¼ tN. We introduce t� as the time of cross-
ing the resonance, i.e., x0ðJ;P;QÞjt¼t� ¼ 0, and rewrite Eq. (A3) as

fcN ¼ f0 þ
ðt�
t0

x0 þ ex1ð Þdt �
ðt�
tN

x0 þ ex1ð Þdt mod 2p: (A4)

Because t� � tN� 1=e, we can use _Q¼ e@H0=@P; _P ¼�e@H0= @P,
and Q� q; P� p in the last integral in Eq. (A4). We also assume
that fcN � fc� ¼ fcjt¼t� . To describe system dynamics for t 2 ½tN ; t�
,
we use the expansion of the Hamiltonian around the resonance:
H¼KþF and

F ¼ 1
2
g I � IRð Þ2 þ eH1; g ¼ @

2H0

@I2

����
I¼IR
� const: (A5)

The Hamiltonian in new variables ðJ; h;P;QÞ can be expanded as

H ¼ Kþ 1
2
g J � IRð Þ2 þ e�H 1: (A6)

We introduce e ¼ gðJ � IRÞ2=2 and write

_e ¼ eg J � IRð Þr; r ¼ � IR;Kf g � const;

x0 ¼
@H
@J
¼ g J � IRð Þ: (A7)

Using dt ¼ de=ðde=dtÞ, we rewrite the integral

ðt�
tN

x0 þ ex1ð Þdt �
1
e

ð0
eN

x0de
g J � IRð Þr ¼

1
e

ð0
eN

de
r
¼ � eN

er
; (A8)

where eN is the value e along the trajectory at t¼ tN, and we omit
ex1 because t� � tN � 1=e. Using eþ e�H 1 ¼ F, we write

eN ¼ FN � e�H 1 � FN � e�H 1�; (A9)

FIG. 8. Schematic of the phase portrait.
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where FN is the value F along the trajectory at t¼ tN, and �H 1� is the
resonant value of �H 1. Substituting Eqs. (A8) and (A9) to Eq. (A4),
we obtain

fc� ¼ f0 þ
ðt�
t0

x0 þ ex1ð Þdt þ
FN � e�H 1�

er
mod 2p (A10)

or

FN
2per

¼
�H 1�
2pr
� 1
2p

f0 � fc� þ
ðt�
t0

x0 þ ex1ð Þdt

0
B@

1
CA mod 1: (A11)

We define Flast as the value of F along the trajectory at the last cross-
ing of the line f ¼ fc before crossing the resonance. Thus,
Flast ¼ FN mod 2per, because the change of F for one round of f
equals 2per. We introduce n ¼ ðFlast � eH1c�Þ=ð2perÞ, where H1c� is
the value of H1 at f ¼ fc; t ¼ t� and write

n ¼ Frac
�H 1� � H1c�

2pr
� f0 � fc�

2p
� 1
2pe

ðs�
s0

x0 þ ex1ð Þds

0
B@

1
CA: (A12)

Here, s ¼ et; s� ¼ et�. Note that n can be written as

n ¼ Flast � eH1c�
2per

¼ Flast � erfc� � eH1c� � erfc�ð Þ
2per

;

¼ Elast � Ec�
2per

; (A13)

where

E ¼ 1
2
g I � IRð Þ2 � erfþ eH1; (A14)

and Ec� is the value of E at f ¼ fc; t ¼ t�, and Elast is the value of E
at the last crossing of the line f ¼ fc before crossing the resonance.

Let us use Eq. (A12) to consider two successive resonance
crossings (note that there is only one resonant interaction for one
period of slow motion, i.e., two successive resonance crossings are
separated by one slow period). Far from the resonance, the
improved adiabatic invariant J can be considered as a constant.
Denote s� and sþ slow time moments of the resonance crossings
(s ¼ et). Let n6 be values of the variable n corresponding to these
two crossings. We are looking for a relation between nþ and n�.
Due to periodicity of the slow motion, values of fc�; H1c�; �H 1�, r
are the same at s ¼ sþ and s ¼ s�.

We consider value n� for the first of the resonance crossings,
and the corresponding value E ¼ Elast�. At s ¼ s�, the phase point
is on the line f ¼ fc� with I < IR at the position indicated by the
symbol I� in Fig. 8. We assume that this phase point crosses the
resonance without trapping. Thus, at some s ¼ s0 it arrives again to
the line f ¼ fc ¼ f0c� with the value E ¼ E0 and I > IR. The phase
point position is indicated by the symbol I0 in Fig. 8. We denote
n0 ¼ ðE0 � Ec�Þ=ð2perÞ. We have E0 � Elast�; n0 � n�.

At some moment of the slow time s0 2 ðs�; sþÞ, the phase
point is far from the resonance and has f ¼ f0. Then, Eq. (A12)
gives

nþ ¼ Frac
�H 1� �H1c�

2pr
� f0 � fc�

2p
� 1
2pe

ðsþ
s0

x0 þ ex1ð Þds

0
B@

1
CA:
(A15)

Similarly, considering the backward motion on the time interval
from s0 to s0, we get

n0 ¼ Frac
�H 1� �H1c�

2pr
� f0 � fc�

2p
þ 1
2pe

ðs0
s0

x0 þ ex1ð Þds

0
B@

1
CA: (A16)

In this expression, we can replace in the leading approximation n0

with n� and s0 with s� (note that

1
2pe

ðs0
s�

x0 þ ex1ð Þds

is small, because x0 vanishes on the resonant surface). Thus, for the
value Dn ¼ nþ � n�, we get

Dn ¼ nþ � n� ¼ �
1
2pe

ðsþ
s�

x0 þ ex1ð Þdsmod 1; (A17)

and this is the phase f gain between two resonance crossings
(between moments s� and sþ) normalized on 2p and taken with the
minus sign. In the main text, �H 1 ¼ 0 and, thus, x1 ¼ @ �H 1=@J ¼ 0.
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