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Fig. 1. Simulation of memory effect in scattering. Coherent images of translucent materials typically involve highly-fluctuating speckle structure. Despite
their semi-random structure, speckles have strong statistical properties. For example, the memory effect property states that, as one tilts the illumination
direction (setup at left), the resulting speckles shift. This property is at the core of multiple computational imaging applications. The memory effect is valid
over a limited angular range that depends on material properties. Due to the absence of analytical formulas, it is generally necessary to measure this angular
range for materials of interest empirically in the lab. We present a Monte Carlo rendering approach for simulating physically-accurate speckle images, as well
as their statistics, as a function of material parameters. The figure shows speckle images rendered by our algorithm for a few illumination directions, as well as
their auto-correlation (black insets), demonstrating the speckle shift property. As the angle difference increases, the correlation decays, and the decay rate is
different for different material parameters—in this case, materials with Henyey-Greenstein (HG) phase functions of different parameters д. For the isotropic
scattering case, д = 0, the pattern similarity is lost at the third column, whereas for the forward scattering case, д = 0.9, correlation is preserved. We verify the
accuracy of our algorithm against an exact, yet computationally heavy, wave solver, as well as against analytical formulas derived under limiting assumptions.

We present a Monte Carlo rendering framework for the physically-accurate

simulation of speckle patterns arising from volumetric scattering of coher-

ent waves. These noise-like patterns are characterized by strong statistical

properties, such as the so-called memory effect. These properties are at the

core of imaging techniques for applications as diverse as tissue imaging,

motion tracking, and non-line-of-sight imaging. Our rendering framework

can replicate these properties computationally, in a way that is orders of

magnitude more efficient than alternatives based on directly solving the

wave equations. At the core of our framework is a path-space formulation for

the covariance of speckle patterns arising from a scattering volume, which
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we derive from first principles. We use this formulation to develop two

Monte Carlo rendering algorithms, for computing speckle covariance as well

as directly speckle fields. While approaches based on wave equation solvers

require knowing the microscopic position of wavelength-sized scatterers,

our approach takes as input only bulk parameters describing the statistical

distribution of these scatterers inside a volume. We validate the accuracy

of our framework by comparing against speckle patterns simulated using

wave equation solvers, use it to simulate memory effect observations that

were previously only possible through lab measurements, and demonstrate

its applicability for computational imaging tasks.
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1 INTRODUCTION
Scattering refers to the propagation of radiation (for instance, light

or sound) in non-uniform media, composed of small discrete scatter-

ers, usually particles of varying refractive properties: As an incident

wave propagates through the medium, it will interact with scatterers

multiple times, and each such interaction will change the wave’s

shape. Scattering is commonly encountered when visible light inter-

acts with a large variety of materials, for instance biological tissues,

minerals, the atmosphere and clouds, cosmetics, and many indus-

trial chemicals. As a result of the ubiquity of scattering, its study

has attracted numerous research efforts in computer graphics and

vision, and much more broadly in medical imaging, remote sensing,

seismic imaging, and almost any field of natural science.

The appearance of scattering materials is qualitatively very dif-

ferent, depending on whether they are imaged under incoherent or
coherent conditions. In the incoherent case, scaterring results in im-

ages with smoothly-varying intensity distributions, often referred to

as translucent appearance. By contrast, under coherent imaging con-

ditions, the appearance of scattering materials is characterized by

speckles, that is, pseudo-random high variations in the output waves

and captured intensity images. Speckles have been the subject of

multiple textbooks [Erf 1978; Goodman 2007; Jacquot and Fournier

2000; Kaufmann 2011], as despite their random structure, they have

strong statistical properties that are characteristic of the underly-

ing material. For example, a remarkable property of speckles is the

memory effect: speckle fields produced under small perturbations

in imaging parameters (e.g., change in illumination direction) are

highly correlated shifted versions of each other (see Fig. 1). These

speckle statistics have received strong attention since the invention

of coherent laser illumination [Berkovits and Feng 1994; Feng et al.

1988; Freund et al. 1988; Li and Genack 1994], and are at the core of

a large array of imaging techniques, with applications as diverse as

motion tracking, estimating blood flow, looking around the corner,

and seeing through scattering layers.

Unfortunately, and in stark contrast with the incoherent case,

our ability to accurately simulate scattering in the coherent case

is severely limited. Available algorithms generally fall into two

categories. The first category consists of algorithms that compute

output waves by numerically solving Maxwell’s equations [Thierry

et al. 2015; Treeby and Cox. 2010; Yee 1966]. These algorithms are

physically accurate, but require as input the microscopic structure
of the scattering medium, that is, knowledge of the exact (at sub-

wavelength accuracy) locations of all scatterers in the medium. Even

when such a microscopic characterization is available (e.g., specific

samples examined with a microscope, or volumes with hallucinated

scatterer locations), the high computational complexity of wave

equation solvers makes them inapplicable for volumes larger than

a few hundred cubic wavelengths, or containing more than a few

hundred scatterers. The second category consists of approximate

Monte Carlo rendering algorithms [Sawicki et al. 2008; Xu 2004],

which accumulate the complex throughput (amplitude and phase)

of paths sampled using standard volumetric path tracing. These

algorithms are efficient, but cannot reproduce statistical properties

of real speckles such as the memory effect. The lack of speckle

rendering algorithms that are both physically accurate and computa-
tionally efficient is a significant obstacle in the wide range of fields

interested in coherent imaging of scattering volumes. Symptomatic

of these shortcomings of existing rendering tools is the fact that

the only reliable way for estimating the memory effect has been by

conducting painstaking optical lab experiments [Schott et al. 2015].

In this paper, we change this state of affairs by developing aMonte

Carlo framework for rendering speckles in volumetric scattering.

Our framework builds on the following insight: Due to the central

limit theorem, speckles are instances of a multivariate Gaussian dis-

tribution [Goodman 2007]. Therefore, it is sufficient to model their

(scene and material-dependent) mean and covariance. To achieve

this, we draw inspiration from Monte Carlo volume rendering algo-

rithms for the incoherent case: These algorithms treat the scattering

medium as a continuous volume, inside which light can scatter ran-

domly at any location. Given bulk parameters characterizing the

statistical distribution of scatterers in the medium, Monte Carlo algo-

rithms synthesize images corresponding to the average distribution

of scattered light across all scatterer instantiations that can be gener-

ated from the bulk parameters [Moon et al. 2007]. This macroscopic

view of the medium enables efficient rendering, without the need

to know and simulate the medium’s microscopic structure.

To extend this approach to the coherent case, we begin by deriving

a new path-integral formulation [Veach 1997] for the propagation

of coherent light inside a scattering medium, which accurately en-

capsulates the first-order and second-order statistics of resulting

speckle patterns. From this formulation, we derive two Monte Carlo

rendering algorithms. The first algorithm estimates speckle covari-

ance, which, together with an estimate of speckle mean obtained

using a closed-form expression, can be subsequently used to sample

multiple speckle images. The second algorithm directly simulates

a physically-accurate speckle image, and operates by having sam-

pled paths contribute to multiple pixels in a way that produces

accurate speckle statistics. Both algorithms take as input only bulk

macroscopic scattering parameters, as in the incoherent case. We

validate our theory and algorithms in a fewways: First, we show that

our approach can closely match “groundtruth” speckle estimates,

obtained by averaging solutions of the wave equation across mul-

tiple particle instantiations, while also being orders of magnitude

faster. Second, we show that our approach agrees with analytical

formulas for speckle correlations derived for specific cases (e.g.,

diffusion). Finally, we show that our approach can accurately repro-

duce well-documented properties of speckles, such as the memory

effect and coherent backscattering.We show example applications of

our framework, including simulating speckle-based computational

imaging techniques, and evaluating the extent of their applicability.

1.1 Why render speckle patterns?
There exist several imaging techniques that directly leverage second-

order speckle statistics. Example applications include motion track-

ing [Jacquot and Rastogi 1979; Jakobsen et al. 2012; Smith et al.

2017], looking around the corner [Batarseh et al. 2018; Freund 1990;

Katz et al. 2012], and seeing through [Bertolotti et al. 2012; Katz

et al. 2014] or focusing through [Mosk et al. 2013; Nixon et al. 2013;

Osnabrugge et al. 2017; Vellekoop and Aegerter 2010] tissue and

other scattering layers. Most of these imaging techniques rely on
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the memory effect of speckles, a fact that has motivated significant

research on quantifying this effect for different materials. Existing

computational approaches generally attempt to derive closed-form

expressions for the memory effect [Akkermans and Montambaux

2007; Baydoun et al. 2016; Berkovits and Feng 1994; Dougherty

et al. 1994; Feng et al. 1988; Freund and Eliyahu 1992; Fried 1982;

Osnabrugge et al. 2017]. Unfortunately, these expressions only hold

under assumptions such as diffusion or the Fokker-Planck limits,

restricting their applicability. As a result, it has generally been nec-

essary to measure the memory effect empirically using involved

optical setups [Mesradi et al. 2013; Schott et al. 2015; Yang et al. 2014].

Our algorithm allows quantifying the memory effect for arbitrary

scattering materials computationally, through accurate yet efficient

simulations. This can significantly enhance our understanding of

the applicability of memory effect techniques to different materials.

Additionally, this new simulation capability can save considerable

lab effort for tasks such as discovering optimal settings for computa-

tional imaging systems, and evaluating new imaging configurations.

The ability to efficiently render speckle patterns can facilitate

the widespread adoption of data-driven approaches in fields where

coherent imaging of scattering is common, such as tissue imaging

and material science. Previously, the lack of physically-accurate

simulation tools meant that training datasets had to be collected

using lab measurements, an approach that is not scalable.

Finally, speckle statistics can be beneficial for inverse rendering,
that is, retrieving material parameters from image measurements.

While previous approaches use intensity measurements [Gkioulekas

et al. 2016, 2013; Holodovski et al. 2016; Levis et al. 2015], measure-

ments of speckle statistics may capture additional information and

allow inverse rendering techniques to be applied in finer scales,

where it is not possible to image without coherent effects.

2 RELATED WORK
Monte Carlo rendering of wave optics effects has recently attracted

increased attention in computer graphics. A primary focus has been

on rendering diffraction and speckle effects generated by surface
microgeometry [Bergmann et al. 2016; Cuypers et al. 2012; Stam

1999; Sur et al. 2018; Werner et al. 2017; Yan et al. 2018; Yeh et al.

2013], without tackling volumetric scattering. Some approaches

focusing on scattering and speckle effects can be found in the optics

literature [Lu et al. 2004; Pan et al. 1995; Schmitt and Knüttel 1997].

For instance, Xu et al. [2008; 2004] modify volumetric path tracing,

by tracking complex phase as a path is traced through the volume.

By aggregating complex contributions from paths on the sensor, this

technique produces images that resemble speckle patterns. However,

because every pixel is rendered independently, this approach cannot

reproduce spatial correlations between pixels. Additionally, it is

impossible to use these approaches to reproduce correlations that

exist across multiple illumination directions as in the memory effect.

There have been attempts to use Monte Carlo algorithms to eval-

uate various properties of coherence and partial coherence of light

after propagating through a scattering tissue [Pierrat et al. 2005;

Shen et al. 2017]. Often these are based on using the radiative trans-

fer equation (RTE) and intensity-based Monte Carlo rendering, then

applying a Fourier transform on its result. Such approaches can be

justified as a special case of our algorithm.

An important result in the study of speckle statistics, which can

be used to derive Monte Carlo rendering algorithms, is the cor-
relation transfer equation (CTE) [Dougherty et al. 1994; Ishimaru

1999; Twersky 1964]. This integral equation extends the RTE, by

modeling correlation of fields at different space points. As we show

in Sec. 6.1, there are physical phenomena that are not accounted

for by the CTE, such as coherent backscattering. While there exist

some Monte Carlo rendering algorithms that take this effect into

account [Ilyushin 2012; Sawicki et al. 2008], they only simulate in-

tensity and not general covariance. We revisit the derivation of the

CTE and its underlying assumptions, aiming to derive a more gen-

eral rendering framework that accurately models both covariance

and coherent backscattering.

Our derivation is fundamentally based on supplanting the true

scattering volume, consisting of multiple discrete scatterers at fixed

locations, with a continuous volume where scattering can happen

randomly at any location. This macroscopic treatment of scattering

underlies all current Monte Carlo volume rendering algorithms,

and has also been used to accelerate rendering of so-called dis-
crete random media, where the scatterers can be arbitrarily large

or dense [Meng et al. 2015; Moon et al. 2007; Müller et al. 2016].

More recently, a number of works have used this approach to derive

generalized versions of the RTE and Monte Carlo rendering algo-

rithms, for media where the distribution of scatterer locations has

spatial correlations, so-called non-exponential media [Bitterli et al.
2018; d’Eon 2018a,b; Jarabo et al. 2018]. Even though we focus ex-

clusively on exponential media, our work provides the foundations

for future investigations of Monte Carlo rendering of speckles in

non-exponential media.

Finally, there is also research on temporal correlations in the

presence of scatterer motion, e.g., in liquid dispersions [Berne and

Pecora 2000; Dougherty et al. 1994]. Many established techniques

use these temporal speckle correlations to estimate flow (e.g., blood

flow [Durduran et al. 2010]) and liquid composition parameters.

Example techniques include diffusing wave spectroscopy [Pine et al.

1988], laser speckle contrast imaging [Boas and Yodh 1997], and

dynamic light scattering [Goldburg 1999]. Here we focus on spatial

speckle correlations leaving these temporal effects for future work.

3 MODELING SPECKLE STATISTICS
Setting and notation. We use bold letters for three-dimensional

vectors (e.g., points x, i, v), with a circumflex for unit vectors (e.g.,

directionsω, i, v). We also use x̂y for the unit vector from x to y. We

assume fully-coherent and unpolarized illumination, which can be at

either the near or the far field: Near-field illumination is an isotropic

source at point i, whereas far-field illumination is a directional plane-

wave source at direction i. Likewise, imaging is done with sensors

at either near-field points v or far-field directions v. We often abuse

the point notation i, v for both the far-field and near-field cases,

except where context requires otherwise.

We consider scattering volumesV ∈ R3 that satisfy four assump-

tions: First, they consist of scatterers with size comparable to the

illumination wavelength, and which can therefore be considered

infinitesimal. Second, the scatterers are far from each other, with an

average pairwise distance (themean free path) an order of magnitude

ACM Trans. Graph., Vol. 38, No. 4, Article 39. Publication date: July 2019.



39:4 • Chen Bar, Marina Alterman, Ioannis Gkioulekas, and Anat Levin

x

z incident

i

v
sensors

Scatterers O

(x)

v
Fi
el
d

v

Fi
el
d

v2

v 1

v2

v 1

v

In
te
ns
ity

Wave solver
Monte-carlo

(a) setup with one illumination (b) sampled field 1 (c) sampled field 2 (d) wave solver cov. (e) Monte Carlo cov. (f) diagonal plot from (d, e)

x

z incident 1

i1

incident 2

i 2

v
sensors

Scatterers O

(x)

v

Fi
el
d

v

Fi
el
d

v2

v 1

v2

v 1

v

C
or
re
la
tio
n

Wave solver
Monte-carlo

(g) setup with two illuminations (h) sampled field 3 (i) sampled field 4 (j) wave solver cov. (k) Monte Carlo cov. (l) diagonal plot from (j, k)

Fig. 2. Simulating speckle and their statistics. (a) Consider a rectangular scattering volume illuminated by a plane wave and a scattered field sensed by
collinear sensors. For each scatterer instantiation we solve the wave equation using the package of Thierry et al. [2015] and compute the scattered field, shown
in (b, c). Different scatterer positions lead to different high-fluctuation speckle fields. The empirical covariance of multiple fields obtained with the wave solver
is demonstrated in (d), and is closely matched by the covariance computed directly by our Monte Carlo algorithm (e). To demonstrate the good agreement we
overlay a diagonal plot (f). The diagonal of the speckle covariance is equivalent to intensity images from standard incoherent Monte Carlo algorithms. In the
lower row (g) we consider a situation where the same scatterers instantiation is illuminated by two different incident directions highlighting that despite their
semi-random structure speckles have strong statistical properties. In particular, the memory effect of speckles: when the same set of scatterers is illuminated
by two incident directions the resulting speckle patterns are shifted versions of each other (h-i). This also implies that the covariance of the speckle fields (j)
generated by two illumination directions has a shifted diagonal, where the diagonal offset corresponds to fields shift. Our Monte Carlo algorithm is physically
correct and captures all such statistics, while having a computational complexity several orders of magnitude smaller than the wave equation solver.

larger than the wavelength. Third, the locations of scatterers are

statistically independent. Fourth, scatterers scatter incident waves

in a way that is invariant to rotation. These assumptions underly

classical radiative transfer [Bitterli et al. 2018]. To simplify nota-

tion, in the main paper we derive results assuming scatterers of a

single type (same shape, size, and refractive index), and extend to

the case of multiple types in App. A.1. We denote by ς(x), x ∈ V

the, possibly spatially-varying, density describing the distribution

of scatterers in the medium. Finally, we do not model the interface

of volume V , ignoring interface events (reflection and refraction).

The scattered field. An incident wave of wavelength λ interacting

with scatterers stimulates a scattered field (or scattered wave) u,
which can be computed by solving the Helmholtz equation. When

a single particle at location o is illuminated from direction i, the

scattered field u at distance |x − o| ≫ λ is,

u(x) =
√
cs · s (i · ôx) ·

exp {ik |x − o|}
|x − o|

, k =
2π

λ
. (1)

The real scalar cs is the scattering cross-section, and accounts for

the total energy scattered by the scatterer. The complex function

s(cosθ ) is the scattering amplitude function, describing scattering

at different angles. We can derive from it the positive probability

function ρ(cosθ ) = |s(cosθ )|2, known in computer graphics as the

phase function. All three quantities are functions of wavelength and

the scatterer’s shape, size, interior and exterior refractive index. For

spherical scatterers, they can be computed usingMie theory [Bohren

and Huffman 1983; Frisvad et al. 2007]. We note that the scattering

amplitude function is often defined as the product

√
cs · s(cosθ ). We

separate the two terms and assume that ρ(cosθ ) integrates to 1.

We now consider the geometry illustrated in Fig. 2a: Scatterers

are placed at locationsO = {o1, o2, . . .}, each sampled independently
from the others, from the density ς(x). This configuration is illumi-

nated from a source i, and imaged with a sensor v. Knowing the

exact scatterer locations, we can solve the wave equation to obtain

the complex-valued scattered field ui,Ov , which typically contains

large fluctuations with a semi-random noise structure known as

speckles (see flatland speckles in Fig. 2b, c).

Speckle statistics. Images modeled with the radiative transfer

equation equal the expected intensity of the scattered field, averaged

over all particle instantiations O sampled from ς(x), as in Fig. 2f:

I iv = EO

[���ui,Ov ���2] . (2)

These intensity images are typically smooth, without speckles. This

is because of the incoherent addition in Eq. (2): The expectation is

formed by averaging intensities of waves, whereas speckles are the

result of coherent addition of complex valued waves. To capture

speckle statistics, we can begin with the speckle mean,

mi
v = EO

[
ui,Ov

]
. (3)
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We can similarly define higher-order statistics of speckles. Of par-

ticular importance will be the speckle covariance,

C i1,i2
v1,v2 = EO

[
ui1,Ov1 · ui2,Ov2

∗
]
−mi1

v1 ·m
i2
v2

∗
, (4)

where (·)∗ denotes complex conjugation. In this case,ui1,Ov1 ,u
i2,O
v2 are

two speckle fields generated by the same scatterer configuration O ,

when illuminated by two incident waves from i1, i2, and measured

at two sensors v1, v2. When i1 = i2 = i, v1 = v2 = v the term

C i,i
v,v + |mi

v |
2
from Eqs. (3) and (4) reduces to the intensity I iv of

Eq. (2). As we discuss in Sec. 4.1, the speckle mean can be computed

using a closed-form expression; in fact, because the speckle mean is

the aggregate of complex numbers of essentially randomly-varying

phase, it is typically zero. Therefore, when characterizing speckle

statistics, the most challenging part is computing the covariance.

Gaussianity of speckles. Before we discuss ways to compute the

speckle mean and covariance, one may wonder whether it is nec-

essary to consider higher-order speckle statistics. The answer, in

general, is negative: Classical results in optics [Goodman 2007] state

that the space of solutions ui,Ov of the wave equation, for all particle

configurations O sampled from ς(x), follows a multivariate Gauss-

ian distribution with scene-dependent mean and covariance. The

Gaussianity results from the central limit theorem, as the particle

locations are independent random variables. Consequently, the mul-

tivariate mean and covariance of Eqs. (3) and (4) provide sufficient

statistics for speckle, and can be used to sample speckle patterns that

are indistinguisable from patterns generated by specifying exact

particle positions and solving the wave equation.

Computing speckle statistics. A straightforward approach for com-

puting the speckle mean and covariance is to sample N different

scatterer configurations O1, . . .ON
, solve the wave equation for

each configuration, and then compute the empirical moments:

mi
v ≈

1

N

N∑
n=1

ui,O
n

v , (5)

C i1,i2
v1,v2 ≈

1

N

N∑
n=1

ui1,O
n

v1 · ui2,O
n

v2
∗
−mi1

v1 ·m
i2
v2

∗
. (6)

Fig. 2(d,k) shows speckle covariances evaluated with this procedure.

Solving the wave equation is only tractable for very small number

of particles (a few thousands), and this computational cost is further

exacerbated by the need to repeat this process multiple times. Our

goal is to devise Monte Carlo algorithms that can compute speckle

covariance directly and much more efficiently.

Bulk parameters. Unlike wave equation solvers, our algorithms

are not tied to a specific configuration of scatterers. Instead, they

rely only on the distribution of scatterers in the medium, as well as

their size, shape, and refractive properties. As in the radiative trans-

fer literature, we describe these using the phase function ρ(cosθ )
defined previously, and the scattering, absorption, and extinction
coefficients, σs ,σa,σt respectively, defined as

σs (x) = N̄ (x)cs , σa (x) = N̄ (x)ca + σmed

a , N̄ (x) =
ς(x)

4/3πr3
, (7)

σt (x) = σs (x) + σa (x), (8)

x1

x2

xb-1

xB

x0=i1
xB+1=v1

xb

xb+1

Fig. 3. Fields as path sums. The scattered field can be expressed as the sum
of complex throughput contributions µ(®x) from all possible paths passing
through scatterers in a configuration O .

where: cs , ca are the scattering and absorption cross-sections, corre-

sponding to the energy scattered or absorbed upon interaction with

one particle; r is the radius of the particles; N̄ (x) is the expected
number of particles in the unit volume at location x; and σmed

a is

the absorption coefficient of the containing medium, determined by

the imaginary part of the medium’s refractive index. We also often

reference the mean free path MFP = 1/σt . The above definitions
consider only particles of a single type, but in App. A.1 we extend

them to multiple particle types.

4 PATH-SPACE VIEW OF SPECKLE STATISTICS
In this section, we derive path-space expressions for the speckle

mean and covariance. These expressions will form the basis for the

Monte Carlo rendering algorithms of Sec. 5. We note that, tradition-

ally in computer graphics, path-space expressions are derived by

recursively expanding integral equations such as the surface and

volume rendering equations. Here, we start directly with a path-

space view, and discuss the relationship with an integral equation

known as the correlation transfer equation (CTE) in App. A.4.

Fields as path sums. Our starting point is the classical theory

of Twersky [1964]: Given a configuration O of scatterers, we can

approximate the solution to the Helmholtz equation as the sum

of contributions over all paths ®x through O . That is, consider the

(enumerable) set Pi,Ov of all ordered sequences:

®x = x0→ . . .→xB+1, with x0 = i, xB+1 = v, x1, . . . , xB ∈ O, (9)

where B = 0, . . . ,∞. Then, the scattered field can be expressed as

ui,Ov =
∑

®x∈Pi,Ov

µ(®x) =
∑

®x∈Pi,Ov

µ(x0→x1)
B∏
b=1

µ(xb−1→xb →xb+1). (10)

These paths are shown in Fig. 3. The complex throughput terms µ(·)
describe the amplitude and phase changes at each path segment,

accounting for the scattering amplitude s and traveled length:

µ(xb−1 → xb → xb+1) = ξ (xb → xb+1)s(�xb−1xb · �xbxb+1), (11)

µ(x0 → x1) = ξ (x0 → x1). (12)

The complex transmission terms ξ (·) account for phase change and
radial decay between path vertices xb , xb+1, defined for points at
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the near field and far field, respectively, as

ξ (x1→x2)=
eik |x1−x2 |

|x1 − x2 |
, ξ (i→x)=eik (i·x), ξ ((x→v)=e−ik (v·x). (13)

We note thatm for a fixed configurationO of scatterers, the complex

transmission ξ (x1→x2) does not have an attenuation term. As we

see below, volumetric attenuation comes into play only once we

start considering multiple random scatterer configurations.

Speckle statistics as path integrals. Using Eq. (10), we can now

express the mean and covariance by averaging over all particle

configurations O that can be sampled from the density ς :

mi
v = EO


∑

®x∈Pi,Ov

µ(®x)
 , (14)

C i1,i2
v1,v22 = EO


∑

®x1∈Pi1 ,Ov
1

,®x2∈Pi2 ,Ov
2

µ(®x1) · µ(®x2)∗
 −mi1

v1 ·m
i2
v2

∗
. (15)

Note that, within the expectation, the summation is over paths ®x1, ®x2

through the same particle instantiation O . By exchanging the order

of expectation and summation in Eqs. (14) and (15), we have:

mi
v =

∫
Piv

p(®x)µ(®x) d®x, (16)

C i1,i2
v1,v2 =

∬
P
i
1

v
1
,P

i
2

v
2

p(®x1, ®x2)µ(®x1)µ(®x2)∗ d®x1 d®x2 −mi1
v1m

i2
v2

∗
, (17)

where now the space Piv includes paths with vertices x1, . . . , xB that

can be anywhere in the volumeV , not only on fixed particle loca-

tions. Unlike Pi,Ov , Piv is not an enumerable space, thus summation

is replaced with integration. The term p(®x) is the probability that

the path ®x is included in the enumerable path space Pi,Ov for some

particle configuration O sampled from ς . Similarly p(®x1, ®x2) is the
probability that all vertices on both ®x1, ®x2 are included in the same
sampled particle configuration O .
In the following sections, we show thatmi

v can be computed in

closed form, and we greatly simplify the path integral for C i1,i2
v1,v2 by

characterizing the pairs of paths that have non-zero contributions.

4.1 The speckle mean
Evaluating the speckle mean is addressed by standard textbooks on

scattering [Ishimaru 1999; Mishchenko et al. 2006]. We present these

results here, starting from a more general case, which subsumes the

computation of speckle mean. The general case will also be useful

for computing speckle covariance in the next section.

We consider a particle at x1, illuminated from an incident wave

with incident directionω. As this wave scatters, we want to evaluate

the average contribution of all paths ®x starting at x1 and arriving at

a second point x2. This average equals [Mishchenko et al. 2006]∫
P
x
2

x
1

p(®x)µ(®x) d®x = τ (x1, x2) · µ(ω→x1→x2), (18)

x1

x2

ഥ𝝎

(a)

Point 
source

Scattering 
particle

Sensor𝑥1
𝑥2

(b)

Fig. 4. Paths for speckle mean. (a) The average contribution of all paths
connecting x1 and x2 (dashed lines) reduces to the contribution of the direct
path (solid line). (b) We numerically simulate the speckle mean for the setup
in the inset. We sample multiple particle configurations, use a wave equation
solver to compute the field scattered from a source at point x1 to a sensor
at point x2, and average the solutions. The empirical mean of the scattered
fields agrees with the speckle mean computed using Eq. (18).

where µ is defined as in Eq. (11). The volumetric attenuation τ is the

probability of getting from x1 to x2 without encountering other par-
ticles, and equals for the near-field and far-field cases, respectively:

τ (x1, x2)=e−
1

2

∫
1

0
σt (αx1+(1−α )x2) dα , τ (i, x)=e−

1

2

∫ ∞

0
σt (x1−α i) dα , (19)

For a homogeneous medium, τ (x1, x2) = exp(− 1

2
σt |x2 − x1 |). The

factor 1/2 in the exponent of Eq. (19) makes τ the square root of

the volumetric attenuation term in standard radiative transfer. Intu-

itively, this is because we deal with the field rather than intensity.

Themain intuition behind Eq. (18) is that, asmost paths contribute

essentially random complex phases, they cancel each other out.

Therefore, the total field from x1 to x2 equals the field that travels

only along the direct path between the two points, attenuated by

the exponentially decaying probability τ (x1, x2), see Fig. 4(a).

Computing the speckle mean. We can now adapt this result for

the speckle meanmi
v of Eq. (16), which is a special case of Eq. (18).

Being the mean of paths from i to v without conditioning on an

incoming directionω, we can omit the s term due to scattering, thus

mi
v =

∫
Piv

p(®x)µ(®x) d®x = τ (i, v) · µ(i → v), (20)

where now µ is defined as in Eq. (12) instead of Eq. (11).

The main consequence of this section is that computing the

speckle mean becomes a direct illumination problem, which can

be solved analytically without the need for path integration. In

Fig. 4(b), we numerically evaluate the speckle mean by averaging

multiple solutions of the wave equation as in Eq. (5), showing a

good agreement with the analytic formula of Eq. (20). We note that,

as the speckle mean decays exponentially with the distance, in most

cases it is negligible, making the computation of covariance the

main challenge in simulating speckle. We discuss this next.
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x1

x2

x3 x4

i1 i2
v2 v1

(a) All paths

x1

x2

x3 x4

i1 i2
v2 v1

(b) Permuted order of nodes

x1

x2

x3 x4

i1 i2
v2 v1

(c) Same order of nodes

x1

x2

x3 x4

i1 i2
v1v2

(d) Reversed paths

Fig. 5. Path pairs for speckle covariance. (a) When averaging over path pairs, we need only consider pairs that share the same vertices, as path segments
from xj to xj+1 with arbitrary length, and thus phase, cancel each other on average. (b) Pairs sharing the same vertices in different order also cancel out on
average, due to length differences. Only pairs with the same vertices in the same order x1, ..., xB (c) or reversed order xB , ..., x1 contribute to the average.

4.2 The speckle covariance
We have shown in Eq. (17) that the speckle covariance can be ex-

pressed as an integral over pairs of paths ®x1 from i1 to v1 and ®x2

from i2 to v2. Unlike the mean, there is no closed-form expression

for this integral. However, we can considerably simplify Eq. (17) by

characterizing the pairs of paths ®x1, ®x2 for which its integrand

c®x1,®x2 = p(®x
1, ®x2) · µ(®x1) · µ(®x2)∗, (21)

is non-zero, as well as deriving a simple formula for c®x1,®x2 for those
pairs. Some of the arguments we use are discussed in Mishchenko

et al. [2006]. We formalize these arguments and extend them to

accurately account for both speckle covariance and, as we see below,

coherent back-scattering. Our end result is a path-integral expres-

sion for covariance that lends itself to Monte Carlo integration.

Valid pairs of paths. Intuitively, if we aggregate complex contribu-

tions c®x1,®x2 from different pairs of paths with very different phases,

they will likely average to zero. The exception to this argument is

cases where c®x1,®x2 is not complex; this happens when every segment

xb → xb+1 that appears in ®x1 also appears in ®x2.
Consider, as in Fig. 5(a), the set of path pairs ®x1, ®x2 that have

an arbitrary number of vertices, but share only vertices x1, . . . , xB
(in any order). Then, as in Sec. 4.1, we expect all the different path

segments from xb to xb+1 to average to the direct path between

these points. In App. A.2, we prove that indeed all path pairs with

disjoint vertices collapse to their joint vertices, and the average

contribution of all pairs of paths sharing vertices x1, . . . , xB is

c®x1,®x2 = υ(®x
1) · υ(®x2)∗ · ΠB

b=1σs (xb ), (22)

where υ(®x) = υ(x0 → x1)ΠB
b=1υ(xb−1 → xb → xb+1). (23)

The complex volumetric throughput terms υ(·) combine the volumet-

ric attenuation of Eq. (19) with the complex throughput of Eqs. (11)

and (12). They can be defined as

υ(xb−1 → xb → xb+1) = τ (xb , xb+1) · µ(xb−1→xb →xb+1), (24)

υ(x0 → x1) = τ (x0, x1) · µ(x0 → x1). (25)

To recap, the complex volumetric throughput is the product of three

factors: (i) the volumetric attenuation τ ; (ii) the complex transmis-

sion ξ , whose phase is proportional to the path segment length; and

(iii) the scattering amplitude function s due to change of direction

(for paths with B > 1). The different terms are summarized in Fig. 6.

We can therefore restrict the integration space of Eq. (17) to only

pairs of paths that share all vertices except, perhaps, their endpoints.

The contribution of such pairs, given by Eq. (22), is Markovian

and can be computed analytically. Next, we further constrain the

integration space, by examining when pairs of paths sharing the

same vertices but in different order have non-zero contribution.

Vertex permutations. We now consider the contribution of a pair

of paths sharing the same vertices x1, . . . , xB , but in different permu-

tations. The phase of the segment xb → xb+1 is proportional to the

length of that segment. Permutations that do not trace the vertices in

the same order have segments of different lengths (Fig. 5b), and thus

different phases. Intuitively, as in Sec. 4.1, they are likely to average

to zero. However, for each ordered set of vertices x1 → · · · → xB ,
there is one important permutation for which this argument does not

apply, as path segments have the same length: the reversed permu-

tation (Fig. 5c and 5d). Therefore, we need to consider contributions

from pairs involving four paths [Mishchenko et al. 2006],

®x1 = i1→x1→. . .→xB→v1, ®x2 = i2→x1→. . .→xB→v2,

®x1,r = i1→xB→. . .→x1→v1, ®x2,r = i2→xB→. . .→x1→v2.
(26)

The reversed paths are the cause of the well-documented phenom-

enon of coherent backscattering, which occurs when measuring

backscattering from a dense scattering volume, with far-field coher-

ent illumination and sensing. When the illumination and sensing

directions are exactly equal, the scattered intensity is increased.

For intuition behind this effect, we first note that every particle

instantiation O that contains the path x1 → · · · → xB , also con-

tains the reversed path xB → · · · → x1; that is, the forward and
reversed paths are not independent events. Consequently, their contri-
bution in Eq. (15) is (µ(®x1)+ µ(®x1,r )) · (µ(®x2)+ µ(®x2,r ))∗ rather than
µ(®x1)µ(®x2)∗ + µ(®x1,r )µ(®x1,r )∗. To appreciate the difference between
these two terms, we consider the case i1 = i2 = i, v2 = v2 = v. Ne-

glecting the scattering amplitude s for simplicity, the contribution
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of the forward and reversed paths becomes���µ(®x) + µ(®xr )���2 = |ξ (i→x1)ξ (xB→v) + ξ (i→xB )ξ (x1→v)|2

·

���ΠB−1
b=1 ξ (xb→xb+1)

���2 . (27)

The shared intermediate segments have the same phase, therefore,���µ(®x) + µ(®xr )���2 = ���ξ (i→x1)ξ (xB→v) + ξ (i→xB )ξ (x1→v)

���2
=

���eik(iT x1−vT xB ) + eik(iT xB−vT x1)���2
= 2 + 2Re

(
eik (i+v)

T (x1−xB )
)
. (28)

When i + v is large, the average of the real term in Eq. (28) over

all space points is low. However, when i ∼ −v, as in coherent

backscattering, the real term approaches unity, and therefore the

total contribution is doubled. In other words, we get constructive
interference between the forward and reversed paths.

Covariance path integral. We can now state concretely our path

integral formulation for speckle covariance. Consider the space

P of sub-paths ®xs = x1 → · · · → xB , where each vertex can be

everywhere in V , and B = 0, . . . ,∞. Then, we can write:

C i1,i2
v1,v2 =

∫
P
c(®xs ) d®xs −mi1

v1 ·m
i2
v2

∗
. (29)

To define the integrand c(®xs ), we first form the four complete paths

of Eq. (26), by connecting the forward and reversed versions of ®xs

to the illumination and sensing conditions i1, v1 and i2, v2. Then,

c(®xs ) = c®x1,®x2 + c®x1,®x2,r + c®x1,r ,®x2 + c®x1,r ,®x2,r , (30)

where the summands are defined in Eq. (22). By expanding the

equations, and considering that now the pairs of paths have identical

intermediate segments, we can rewrite this sum as

c(®xs ) = f (®xs ) ·
(
υ(x2→x1→ i1)υ(xB−1→xB→v1)

+ υ(xB−1→xB→ i1)υ(x2→x1→v1)
)

·

(
υ(x2→x1→ i2)υ(xB−1→xB→v2)

+ υ(xB−1→xB→ i2)υ(x2→x1→v2)
)∗
, (31)

where f (®xs ) is the standard radiometric throughput of ®xs , augmented

by the scattering coefficients at the first and last vertices,

f (®xs ) =|υ(x1→x2)|2
B−1∏
b=2

|υ(xb−1→xb→xb+1)|
2

B∏
b=1

σs (xb )

=σs (x1)σs (xB )τ 2(x1, x2)
B−1∏
b=2

ρ(�xb−1xb · �xbxb+1)τ 2(xb , xb+1)σs (xb ). (32)

The connections corresponding to the four complex volumetric

throughput termsυ in Eq. (31) are illustrated in Fig. 6, whereas f (®xs )
is the radiometric throughput of the central segments (gray path in

Fig. 6). As we see in the next section, the radiometric throughput

term in Eq. (32) allows us to reuse path sampling algorithms from

intensity rendering also for covariance rendering.

We note that Eq. (29) allows for B = 0. This corresponds to

an empty sub-path ®xs , and therefore to complete paths that go

directly from i1 to v1 and from i2 to v2, without shared vertices. As

a final simplification to Eq. (29), we note from Eq. (20) that the term

mi1
v1 ·m

i2
v2

∗
is exactly equal to the contributions of these direct paths.

Therefore, we can remove this term from Eq. (29) by restricting

integration to the space PB≥1 of sub-paths of length B ≥ 1:

C i1,i2
v1,v2 =

∫
PB≥1

c(®xs ) d®xs . (33)

We make three observations about the path integral formulation

of Eq. (33). First, if we ignore the reversed paths, then the resulting

path-integral formulation is equivalent to what can be obtained from

the correlation transfer equation (CTE). We discuss this in App. A.4,

and we also discuss how the Monte Carlo algorithms we derive in

the next section compare to Monte Carlo algorithms derived from

the CTE. In the evaluation of Sec. 6.1 we show that considering only

forward paths can provide a good approximation in many cases;

however, in cases where the sensor is close to collocated with the

source, we should consider reversed paths as well.

Second, at the start of this section, we argued informally that

pairs of paths with different permutations of x1, . . . , xB do not

contribute to covariance. In App. A.3, we discuss this in more detail,

and additionally show empirical evidence for ignoring these pairs.

Likewise, the results in Sec. 6.1 show that accounting for only the

forward and reversed path is accurate enough.

Third, it is worth considering the case of i1 = i2 = i and v1 =
v2 = v. Then, the sum of the covariance with the product of means,

C i1,i2
v1,v2 +m

i1
v1 · m

i2
v2

∗
, becomes equal to the intensity I iv of Eq. (2).

If we ignore reversed paths, then the path contribution c(®xs ) of
Eq. (31) reduces to the standard radiometric throughput f (®x) of the
complete path ®x = i → ®xs → v. Likewise, after adding the product
of means to Eq. (33), we obtain for I iv a path-integral expression

that exactly matches the one derived from the volume rendering

equation [Dutré et al. 2006; Novak et al. 2018; Veach 1997]. When we

consider reversed paths, the resulting path-integral expression for

I iv will be different from the one obtained by the volume rendering

equation; the difference corresponds to the observation, previously

reported in the literature [Mishchenko et al. 2006], that the radiative

transfer and volume rendering equations cannot explain coherent

back-scattering. Our derivation suggests a straightforward way to

incorporate coherent back-scattering into existing volume render-

ing algorithms for intensity, by also considering the radiometric

throughput of reversed paths. Finally, the fact that our formulation

is consistent (up to coherent back-scattering effects) with the ra-

diative transfer equation provides further justification for ignoring

pairs of paths with different permutations of the same vertices.

5 MONTE CARLO RENDERING ALGORITHMS
We use the results of the previous section, to derive two Monte

Carlo rendering algorithms. The first algorithm directly computes

the speckle covariance, which we can use, together with an estimate

of the speckle mean, to sample multiple speckle patterns. The second

algorithm directly renders a speckle pattern, so that the empirical

mean and covariance of multiple renderings is accurate.
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Complex transmission: ξ (xb→xb+1)= e ik |xb−xb+1 |

|xb−xb+1 |
Scattering amplitude function: s(�xb−1xb · �xbxb+1)
Complex throughput: µ(xb−1→xb→xb+1) = ξ (xb→xb+1)s(�xb−1xb · �xbxb+1)
Volumetric attenuation: τ (xb , xb+1) = e−

1

2
σt |xb−xb+1 |

Complex volumetric throughput: υ(xb−1→xb→xb+1) = τ (xb , xb+1)µ(xb−1→xb→xb+1)
Radiometric throughput: f (xb−1→xb→xb+1) = σs (xb )|υ(xb−1→xb→xb+1)|2

x1

xB

i1 i2
v2 v1

Fig. 6. Types of path contributions. Summary of notation and relationships between different throughput terms used in our Monte Carlo algorithms.

ALGORITHM 1: Monte Carlo rendering of covariance C i1 ,i2
v1 ,v2 .

◃Initialize covariance estimate.
Set C = 0.

for iteration = 1 : N do
◃Sample first vertex of subpath.

Sample point x1 ∼ qo (x1) .
Sample uniformly direction ω1.

◃Update covariance with single scattering path.
Update

C += V · υ(i1→x1)υ(i1→x1→v1)υ(i2→x1)∗υ(i2→x1→v2)∗.
◃Continue tracing the subpath.

◃Sample second vertex of subpath.
Sample distance d ∼ σt (x1) |τ (x1, x1 + dω1) |

2
.

Set point x2 = x1 + d ·ω1.

Set b = 2.

while xb inside medium do
◃Update covariance with next-event estimation.

Update C += V
2

(
υ(x2→x1→i1)υ(xb−1→xb→v1)

+υ(xb−1→xb→i1)υ(x2→x1→v1)
)

·

(
υ(x2→x1→i2)υ(xb−1→xb→v2)

+υ(xb−1→xb→i2)υ(x2→x1→v2)
)∗
.

◃Sample next vertex of subpath.
Sample direction ωb ∼ ρ(ωb−1 ·ωb ).

Sample distance d ∼ σt (xb ) |τ (xb , xb + dωb ) |
2
.

Set point xb+1 = xb + d ·ωb .

◃Account for absorption.
Sample scalar a ∼ Unif[0, 1].

if a > σs (xb+1)/σt (xb+1) then
◃Terminate subpath at absorption event.

break

end
Set b = b + 1.

end
end

◃Produce final covariance estimate.
Update C = 1

N C .

return C .

5.1 Rendering speckle covariance
To approximate the covariance integral of Eq. (33), we use a strat-

egy that samples sub-paths ®xs ,n from a distribution q(®xs ,n ) defined
below. We then form a Monte Carlo estimate of the covariance as

C i1,i2
v1,v2 ≈

1

N

N∑
n=1

c(®xs ,n )
q(®xs ,n ) + q(®xs ,r ,n )

(34)

ALGORITHM2:Monte Carlo rendering of J×1 field u for {(i,v)j}
J
j=1.

◃Initialize field estimate.
Set u = 0.
for iteration = 1 : N do

Sample random phase ζ ∼ Unif[0, 1].

Set z = e2π iζ .
◃Sample first vertex of subpath.

Sample point x1 ∼ qo (x1).
◃Update field with single scattering path.

Update ∀j , uj += z ·

√
V
2
· υ(ij→x1)υ(ij→x1→vj ).

◃Continue tracing the subpath.
◃Sample second vertex of subpath.

Sample uniformly direction ω1.

Sample distance d ∼ σt (x1) |τ (x1, x1 + dω1) |
2

Set point x2 = x1 + d ·ω1.

Set b = 2.

while xb inside medium do
Sample random phase ζ ∼ Unif[0, 1].

Set z = e2π iζ .
◃Update field with next-event estimation.

Update

∀j , uj += z ·

√
V
2
·

(
υ(x2→x1→ij )υ(xb−1→xb→vj )

+υ(x2→x1→vj )υ(xb−1→xb→ij )
)
.

◃Sample next vertex of subpath.
Sample direction ωk ∼ ρ(ωb−1 ·ωb ).

Sample distance d ∼ σt (xb ) |τ (xb , xb + dωb ) |
2
.

Set point xb+1 = xb + d ·ωb .

◃Account for absorption.
Sample scalar a ∼ Unif[0, 1].

if a > σs (xb+1)/σt (xb+1) then
◃Terminate subpath at absorption event.

break

end
Set b = b + 1.

end
end

◃Produce final field with correct mean.

Update ∀j , uj =m
ij
vj +

√
1

N uj .
return u.

The denominator of Eq. (34) is the sampling probability. As it is

possible to independently sample both the forward and reserved

version of a subpath, the total probability is q(®xs ) + q(®xs ,r ).
The variance of the estimator in Eq. (34) reduces when q(®xs ) ap-

proximates c(®xs ). As c(®xs ) in Eq. (31) is Markovian, that is, expressed
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as a product of the contributions of individual segments, it lends

itself to local sampling procedures. The sampling algorithm we use

operates as follows: We sample the first vertex x1 according to the

volume density, using the probability distribution qo defined as:

qo (x) =
σs (x)
V

with V =

∫
σs (x)dx. (35)

For a homogeneous volume,qo reduces to the uniform density. Then,

taking advantage of the fact that c(®xs ) includes the radiometric

throughput f (®xs ), we sample all other vertices of ®xs using volume

path tracing [Dutré et al. 2006; Novak et al. 2018]. Finally, as we trace

®xs , we perform next event estimation, connecting each vertex to the

endpoints of the forward and reversed paths of Eq. (26), as shown in

Fig. 6. This process is summarized in Alg. 1, which also details how

to handle single-scattering subpaths consisting of only one vertex.

We note that, in a heterogeneous volume, the exponential sampling

of distances d in Alg. 1 is replaced with a tracking algorithm such

as Woodcock tracking [Kutz et al. 2017]. When i1 = i2, v1 = v2, this
algorithm reduces to the standard volume path tracing algorithm

for rendering intensity, except for the sampling of the first vertex

and the addition of reversed paths for coherent back-scattering.

The probability of a sampled sub-path ®xs sampled as above, and

its contribution in Eq. (34), become:

q(®xs ) =
1

V
f (®xs ), and

c(®xs )
q(®xs ) + q(®xs ,r )

=
V

2

c(®xs )
f (®xs )

. (36)

After term cancellations, we end up with only the terms υ(·) in
Eq. (31), for the four next event estimation connections in Fig. 6.

5.2 Rendering speckle fields
As discussed in Sec. 3, the space of speckle images follows a multi-

variate Gaussian distribution. Thus themean and covariance provide

sufficient statistics, which we can use to sample physically-correct

speckle images, statistically indistinguishable from ones generated

through an exact solution to the wave equation. However, with this

approach, sampling an image of J pixels, such that the statistics of

all pixels are consistent with each other, requires that we first render

an J × J covariance matrix. While this is significantly more efficient

than solving the wave equation, for large J values this can still be

costly. To address this, we present a second rendering algorithm

that can synthesize speckle images directly.

Our starting point is the following observation: Let C be the

J × J covariance matrix corresponding to all pairwise combinations

of J illumination and sensing conditions {(i, v)j }
J
j=1. Then, from

Eqs. (33) and (31), we can write C as an integral of rank-1 matrices,

C =
∫
P
f (®xs ) · a(®xs ) · a∗(®xs ) d®xs , (37)

where: f (®xs ) is defined in Eq. (32), and a(®xs ) is a J × 1 vector with

j-th entry equal to the υ(·) terms in Eq. (31) applied to ij and vj ,

aj (®xs ) =
(
υ(x2 → x1 → ij )υ(xB−1 → xB → vj )

+ υ(xB−1 → xB → ij )υ(x2 → x1 → vj )
)
. (38)

Sampling a J × 1 field u from a multivariate Gaussian with a

covariance as in Eq. (37) can be done by first initializing u to the

zero vector, then repeating the following: (i) Sample a subpath ®xs

as in Alg. 1. (ii) Sample a complex number z of unit magnitude and

random phase. (iii) Increment u by

√
1

N ·

√
V
2
·z ·a(®xs ) (where

√
V /2

is the square root of the scale in Eq. (36)). This is summarized in

Alg. 2, which also shows how to handle single-scattering subpaths.

We elaborate on two details of the above procedure: First, a single

sample drawn according to Alg. 2 has the right covariance, but may

not follow a Gaussian distribution. By averaging multiple samples,

the central limit theorem implies that their average will converge

to a Gaussian distribution. To keep the total variance of the average

independent of the number of samples N , we scale each sample by√
1/N . Second, we draw the random variable z to ensure that the

mean of the samples is zero; we subsequently add the desired mean

(computed as described in Sec. 4.1) to the final estimate.

Relationship to path tracing. Like Alg. 1, Alg. 2 is also closely re-

lated to volumetric path tracing for rendering intensity: The weight

υ is a complex square root of the next-event-estimation weight used

for intensity. We can see this from Eq. (24), where υ is defined as

the product of: (i) the amplitude function s , which is the complex

square root of the phase function ρ; (ii) the volumetric attenuation τ ,
which is the square root of the volumetric attenuation for intensity;

and (iii) the unit-magnitude transmission ξ .
We note, however, a critical difference: In Alg. 2, every sampled

subpath is used to update all sources and sensors. This is the key
for generating speckle images with accurate second-order statistics,

and is the fundamental difference with previous speckle render-

ing algorithms [Sawicki et al. 2008; Xu 2004]. As those algorithms

update different pixels independently, they cannot reproduce corre-

lations between pixels or across different illumination conditions.

We demonstrate this in Sec. 6.1.

6 EXPERIMENTS AND APPLICATIONS
We perform three sets of experiments. First, we validate the accuracy

of our algorithms by comparing with a wave equation solver. Second,

we use our algorithms to quantify the memory effect. Third, we

reproduce computational imaging techniques based on that effect.

6.1 Validation against a wave-solver
To validate our rendering algorithms, we compare their outputs with

“groundtruth” obtained as in Eq. (6), by first solving the Helmholtz

equation for multiple scatterer configurations, and then computing

the empirical statistics of the resulting scattered fields.

Wave equation solvers. Weexperimentedwith two types of solvers,

both of which are well-established in the optics literature as accurate

simulators that can be used to validate experimental measurements,

albeit with very high computational cost. The first type of solvers

are based on finite-difference time-domain (FDTD) methods [Treeby

and Cox. 2010; Yee 1966], which voxelize the simulated volume at

a sub-wavelength resolution, and have memory and computation

complexity that scales with the size of the resulting grid. This makes

FDTD solvers unsuitable for our experiments, which require vol-

umes of linear dimension at least an order of magnitude larger than

the wavelength, due to the far-field assumption for scatterers and

our desire to model multiple scattering.
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Fig. 7. Coherent back-scattering (CBS). We used a 100λ × 100λ target
with OD = 2 to validate CBS, and simulate Intensity as a function of sensor
angle. (a) In the far-field case, when including both forward and reversed
paths (red), our algorithm closely matches the intensity of the wave solver
(blue). Neglecting reversed paths (orange) results in a mismatch at the exact
back-scattering direction. (b) In the near-field case, due to the absence of
CBS, both versions of our algorithm agree with the wave solver.

The second type of solvers use the integral version of theHelmholtz

equation, and have a complexity that scales with the number of scat-

terers rather than volume size. This is significantly more efficient

for our setting, though the complexity is still cubic in the number

of scatterers. Therefore, even integral solvers become impractical

for volumes with more than a few thousand scatterers. As an addi-

tional advantage, integral solvers produce higher-quality solutions,

because of better boundary-handling properties. For our validation

experiments, we use the µ-diff toolbox [Thierry et al. 2015], which

is restricted to 2D volumes. Consequently, the experiments of this

sub-section are all performed in 2D. We emphasize that this is for

this sub-section only, and that the experiments of Secs. 6.2 and 6.3

are performed using full 3D simulations.

Coherent backscattering. Fig. 7 demonstrates coherent backscat-

tering intensity, rendered using our algorithm with i1 = i2, v1 = v2.
We use a target of size 100λ×100λ, with a mean free path of 50λ, lead-
ing to an optical depth (that is, average number of scattering events)

OD = 2. We simulate far-field sensors through all 360° around the

target, and near-field sensors located on a 360° circle of diameter

200λ around the target. We compare the mean speckle intensity

obtained from the electromagnetic solver with our Monte Carlo al-

gorithm, considering forward and reversed paths, and with a simpler

algorithm considering only forward paths derived in App. A.4. For

far-field sensors, we see that when the viewing direction approaches

the inverse of the illumination direction, a narrow peak in bright-

ness occurs, which is the manifestation of coherent backscattering.

This peak is not predicted when using forward-only paths, but is

indeed explained when using both forward and reversed paths. For

near-field sensors, coherent backscattering is less pronounced and

the outputs of two Monte Carlo algorithms are closer to each other.

Memory effect. In Fig. 8, we show simulated covariance matrices

for a target of size 20λ × 20λ at OD = 2 and 0.5. The particles have a

radius of 0.48λ, and their phase function is computed using Mie the-

ory. We visualize covariance matrices of a target illuminated by two

plane waves, measured at the far-field over 360° viewing directions.

In the covariance matrices, the memory effect is evident by the fact

that, for small angles (e.g., i = 1
°
in Fig. 8), the strongest correlation

is obtained at a diagonal that is offset from the main diagonal, and

the offset increases with the illumination angle difference. When

the angle difference is large (e.g., i = 20
°
in Fig. 8), the classical

version of the memory effect no longer holds and the covariance is

no longer a shifted diagonal. However, we can still observe some

correlation along a curved set of viewing directions. To the best of

our knowledge, such correlations have not yet been explored, and

provide an exciting direction of future research. In particular they

may allow for expanding the angular range of existing computa-

tional imaging techniques relying on the memory effect. We note

also that, while the shape of the correlation curve is consistent, its

exact value is a function of density, as seen from the two optical

depths simulated in Fig. 8.

Runtime comparison. Figs. 7 and 8 show that our Monte Carlo

algorithms provide accurate predictions of speckle correlations,

while being orders of magnitudes more efficient than the wave

solver. To quantify the performance difference, in the example of

Fig. 8, simulating the covariance with the wave solver approach

took six hours on a 50-core cluster, using the µ-diff solver [Thierry

et al. 2015]. By contrast, our Monte Carlo algorithm produced the

same estimate in 45 minutes on a single core, using an unoptimized

Matlab implementation. The difference in performance becomes

even more pronounced as the number of scatterers increases.

Field samples. We use Alg. 2 to sample multiple speckle fields,

shown in Fig. 1, for target size and densities equivalent to the setup

of Fig. 8 at OD = 2. We use these to compute an empirical covari-

ance, shown n Fig. 9, which is in agreement with the covariance

rendered directly using Alg. 1. We also compare with the “electric

field Monte Carlo” (EMC) speckle rendering algorithm [Sawicki

et al. 2008; Xu 2004]. This approach extends standard volumetric

path tracing, by using the length of traced paths as complex phase.

Its main difference with our algorithms is that each sampled path

is used to update only one sensor point, and therefore different

illumination and viewing directions are updated independently. As
a consequence, while this approach can accurately render intensity

and even simulate coherent backscattering, it cannot reproduce spa-

tial correlation. We note, though, that while EMC also focuses on

modeling polarization correctly, we do not account for polarization.

6.2 Quantifying the memory effect of speckles
As discussed in Sec. 1.1, the memory effect of speckles has been at

the core of imaging techniques for a diverse range of applications,

including seeing through tissue and around corners. Because of its

wide applicability, understanding the range of illumination, viewing,

and material conditions which result in high correlation between

speckles is an active research area in optics.

There have been multiple attempts [Berkovits and Feng 1994;

Fried 1982; Osnabrugge et al. 2017] to derive closed-form expressions

for speckle correlation. The complexity of multiple scattering means

that this is only possible under various assumptions, which limit
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Fig. 8. Validating covariance rendering. Covariance matrices for illumination with two different plane waves, imaged at the far-field over viewing directions
spanning 360°. Matrices rendered with Alg. 1 (rows 1 and 3) closely match those from a wave equation solver (rows 2 and 4). The covariance matrices
demonstrate the memory effect for four different pairs of illumination angles and two different optical depths.

the approximation accuracy and the applicability of the resulting

expressions. We state below a commonly-used result [Akkermans

and Montambaux 2007; Feng et al. 1988] that is derived under a

diffusion (that is, high-order scattering) assumption:

C(θ ) ≈
(kθL)2

sinh2(kθL)
, (39)

where θ is the angle between illumination and viewing directions, L
is the material thickness, and C(θ ) is the correlation between inten-

sity images (rather than complex fields) I i
v
and I i+θ

v+θ . The correlation

of Eq. (39) decays to zero exponentially fast as soon as kθL > 1,

hence the angular range at which the memory effect is valid is pro-

portional to 1/(kL). We discuss later in this section how the Monte

Carlo formulation can help understand this result.
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Fig. 9. Validating speckle field rendering. We show covariance matrices between the same illumination directions i1 = i2 = 0°, where the matrix diagonal
is intensity (top row), and different illumination directions i1 = 0°, i2 = 4° (bottom row). The empirical covariance of speckle fields sampled using Alg. 2 in (b)
closely matches the covariance rendered directly using Alg. 1 in (a). By contrast, speckle fields rendered with EMC [Sawicki et al. 2008] exhibit no spatial
correlations (c), but can reproduce the correct intensity in the case of the top row, as seen from the plots of the matrix diagonals in (d).
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Fig. 10. Quantifying the memory effect.We compare analytical (dash) and numerical (solid) calculations of the correlation C(θ ) as a function of angle
θ . (a) Varying OD in a forward-scattering configuration for a material with isotropic phase function д = 0. For high OD, the computed correlation agrees
with diffusion theory. As OD decreases, the range of the memory effect increases. (b) Varying albedo in a back-scattering configuration with a fixed д and
OD. The memory effect range increases for highly absorbing materials. (c) Varying the anisotropy parameter of the phase function in a forward-scattering
configuration with fixed OD. The memory effect range increases with д. (d) Validating similarity theory for д-MFP parameter pairs with constant ratio
(1 − д)/MFP . Materials that are equivalent under similarity theory lead to similar, but not identical, correlation curves. (e) Varying the shape of the phase
function. Mixtures of HG phase functions with fixed zero average cosine can still lead to different correlation curves.

The diffusion assumption used to derive Eq. (39) means that the

formula applies only when the average number of scattering events

on a path is large. However, empirical observations suggest that, in

practice, the memory effect is valid through a much wider range. A

few scenarios that have been observed to increase this range are (i)

an average number of scattering events that is lower than the diffu-

sive regime, (ii) absorption, (iii) forward scattering phase functions

[Schott et al. 2015]. Forward scattering is particularly important in

practice, as tissue is known to be highly forward scattering and is

usually described by an Henyey-Greenstein (HG) phase function

with anisotropy parameter д ∈ [0.85 − 0.95]. Given the lack of ana-

lytic formulas and the practical importance of the problem, there

have been multiple attempts to empirically measure the range of

the memory effect of materials of interest in the lab [Mesradi et al.

2013; Schott et al. 2015; Yang et al. 2014].

Our Monte Carlo algorithm can compute the expected correla-

tions directly, without the need for approximations or lab measure-

ments. We note first that our Monte Carlo algorithm computes

correlations of complex fields while Eq. (39) evaluates intensity cor-

relations. However, field correlations can be easily converted to

intensity correlations using 2|C i1,i2
v1,v2 |

2
. Additionally, correlations are
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Fig. 11. Wavelength dependency of the memory effect. We compare analytical (dash) and numerical (solid) calculations of the correlation C(θ ) as a
function of angle θ , for varying illumination wavelengths. Wavelength-dependent scattering properties were computed using Mie theory. (a) Small particles of
radius 10 nm, with corresponding OD = 20 for 400 nm, OD = 3 for 650 nm and OD = 1 for 900 nm. (b) Large particles of radius 10 µm with average OD = 20. (c)
Large particles as in (b), with average OD = 50.
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Fig. 12. Sampling speckle images.We use different illumination angles (at shifts of ∆ = 0.0025°) and anisotropy parameters д. In the top three rows, we
show images rendered with Alg. 2, where we can observe the memory effect: For д = 0, the correlation is lost at a shift of 3∆, whereas for д = 0.9, correlation
remains even at shift of 10∆. In the bottom row, we show images rendered with the EMC algorithm [Xu 2004], where each view is sampled independently.

computed as a function of simple parameters such as sample thick-

ness, and material σt , σs and phase function. In Fig. 10, we show

numerical simulations of the expected correlation as a function of

angle θ . In Fig. 10a we use a forward scattering configuration, a sam-

ple of thickness L = 1mm at illumination wavelength λ = 500 nm,

σa = 0, isotropic phase function д = 0, and varying mean free path

(MFP) values. For a high optical depth, the correlation computed

by our algorithm agrees with the theoretical formula of Eq. (39),

and as the optical depth decreases, the range of the memory effect

increases. In Fig. 10b we simulate a backscattering configuration

for fixed д = 0, MFP = 0.1mm, σt = 1/MFP , and varying albedo
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σs/σt . As expected, the memory effect is stronger as absorption in-

creases (albedo decreases), as absorption attenuates the contribution

of longer paths to the measured fields.

In Fig. 10c we keep the thickness and mean free path fixed to

L = 1mm, MFP = 0.1mm, and vary the anisotropy parameter д of

the phase function. In agreement with previous empirical observa-

tions [Schott et al. 2015], increasing д increases the transport mean

free path, and thus the memory effect range expands. In Fig. 10d

we investigate another common analytical approximation, the so-

called similarity theory [Wyman et al. 1989; Zhao et al. 2014], which

states that scattering coefficients and phase functions satisfying

σ ∗
s (1 − д∗) = σs (1 − д) should produce similar scattering measure-

ments. Using L = 1mm, σa = 0, we set at д = 0 a mean free

path of MFP = 250 µm (leading to OD = 4), and then vary д and

σs = σt = 1/MFP while maintaining the similarity relation. The

graphs in Fig. 10d show that similarity theory is reasonably accurate,

though low д values have a somewhat heavier tail. Finally in Fig. 10e

we simulate a mixture of two HG phase functions whose mean co-

sine is always set to 0. We can see that the exact shape of the phase

function influences the memory effect, and two phase functions

with the same mean cosine can lead to very different decay graphs.

In Fig. 11 we study how the memory effect changes as a function

of wavelength. In Fig. 11a we used particles of radius 10 nm, for

which the cross-section varies with wavelength, and as a result the

mean free path varies with wavelength as well. In Fig. 11(b-c) we

used bigger particles of radius 10 µm and set the density to achieve

OD = 20 and OD = 50 respectively. As the phase function of such

large particles is very forward scattering, the transport mean free

path is much larger than the mean free path, and the thickness of the

material is only two transport mean free paths for Fig. 11b and five

transport mean free paths for Fig. 11c. We can see that the memory

effect range varies with wavelength. When the transport mean free

path is sufficently smaller than the target thickness, the graphs

approach the theoretical prediction by the diffusion approximation.

Sampling speckle images. In Fig. 12 we use the sampling algorithm

of Sec. 5.2 to sample speckle images as seen from a sensor at infinity

over a viewing range of 0.1°, when the illumination direction is

shifting (from 0° to 0.025°, at ∆ = 0.0025° intervals). As can be seen,

these images reproduce the memory effect: For small changes in illu-

mination angle the speckles appear as shifted versions of each other.

When the illumination angle difference increases, the correlation de-

cays. We show this simulation for a few anisotropy parametersд and
as illustrated in Fig. 10c, when the anisotropy increases the memory

effect can be observed over a wider angular range. In the last row

of Fig. 12 we show simulations using the electric field Monte Carlo

approach [Sawicki et al. 2008; Xu 2004], which updates different

viewing and illumination directions independently. We observe that

no joint speckle statistics are produced and the resulting images

appear as independent noise.

Understanding the memory effect bounds. Before concluding this
section, it is worth mentioning that our path integral formulation

can provide an intuitive way to understand the memory effect range

derived in Eq. (39). Consider two pairs of illumination and viewing

directions i1, i2, v1, v2 s.t. i1 − i2 = v1 − v2 = ω, and consider a path

starting at x1 and ending at xB . Dropping attenuation, the phase
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Fig. 13. Reproducing the seeing-through-scattering algorithm of
Katz et al. [2014]. A set of illuminators with the arrangement at the top of
(a) generates a semi-random speckle image, yet the auto-correlation of the
speckle image is similar to the auto-correlation of the original illuminators
and hence the illuminators can be recovered from the speckle image using
phase retrieval algorithms. In (b,c) we show the auto-correlation and the
corresponding reconstruction for different material parameters simulated
with our speckle renderer. The success of the algorithm depends on the
validity of the memory effect in this angular range for each type of material.

contributed by this path to the correlation is

eik ((i1−i2)x1−(v1−v2)xB ) = eikω(x1−xB ). (40)

If this complex number can have highly varying phases, than sum-

ming over multiple random paths averages to zero. The different

paths interfere constructively only if the phase difference is neg-

ligible, roughly when k |ω | |x1 − xn | < 1. Intuitively, the average

distance between an entrance point and an exit point on the tar-

get scales with the target depth, and it is reasonable to expect that

E[|x1−xn |] is proportional to L. This implies that the memory effect

holds when k |ω |L < 1, in agreement with Eq. (39).

6.3 Seeing-through-scattering application
To demonstrate an application of speckle correlations, we repro-

duced the algorithm of Katz et al. [2014]. This algorithm attempts to

recover a set of incoherent light sources located behind a scattering

layer. Remarkably, due to the memory effect, the auto-correlation

of the speckle image should be equivalent to the auto-correlation of

light sources positions. Thus, given the seemingly random speckle

image, one can recover the position of light sources behind it by ap-

plying an iterative phase retrieval algorithm [Fienup 1982]. In Fig. 13

we show the result of this reconstruction applied on speckle images

rendered with Alg. 2. We use two of the materials in Fig. 10c, with

anisotropy parametersд = 0.85,д = 0.9. The hidden source is placed

over an angular range of 0.0125° = 5∆. As evaluated in Figs. 10c

and 12, for this angular range the correlation for д = 0.9 is high, but

for д = 0.85 we are already outside the memory effect range. Indeed

the д = 0.9 speckle auto-correlation at the bottom of Fig. 13b is

almost equivalent to the source auto-correlation (Fig. 13a[bottom]),

while the auto-correlation of speckles rendered with д = 0.85 is

darker due to the lower correlation (Fig. 13c[bottom]). As a result,
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phase retrieval with the д = 0.9 speckles provides a good recon-

struction of the original illuminator arrangement (Fig. 13b[top]). For

д = 0.85 (Fig. 13c[top]) only a cropped version of the illuminator

pattern is recovered (along with background noise), as within this

subset of illuminators the angular differences are smaller and the

correlation is stronger. Experiments of this kind can be used to eval-

uate the applicability of the imaging technique of Katz et al. [2014]

under different conditions, and to select optimal values for various

parameters involved in an optical implementation of the technique.

7 SINGLE-SCATTERING APPROXIMATION
Before we conclude, we report an interesting property of speckle

covariance, which can be used to accelerate its estimation under

certain illumination and imaging conditions.

When simulating covariance usingMonte Carlo rendering, we can

separate contributions from paths of different numbers of bounces B.
For example, in Fig. 14, we show simulations for a cube volumeV of

dimensions 100λ×100λ×100λ, and with OD = 5, resulting in strong

multiple scattering. We simulate the covariance for multiple pairs

of illumination and imaging sets satisfying i1 − v1 − (i2 − v2) = ω,

for some target 3D vector ω. In each simulation, we decompose the

rendered speckle covariance into two components, one accounting

for contributions from paths that scattered once (B = 1), and another

accounting for paths that scattered two or more times (B ≥ 2).

Within each rendered covariance matrix, the bottom left corner

corresponds to rendering intensity.

We observe that, for the intensity case, the multiple-scattering

component is dominant. By contrast, for cases where the differ-

ence between the two illumination or the two viewing directions is

more than some small amount, the multiple-scattering component

becomes negligible. This happens because, as the angle difference

becomes large enough to bring us outside the range of the memory

effect, multiply-scattered paths have complex contributions with

randomly-varying phase, and therefore average to zero.

We conclude that, when the imaging and illumination conditions

are such that we are outside the memory effect range, speckle covari-

ance can be computed using only single scattering. Namely, from a

short derivation we can obtain the formula:

C i1,i2
v1,v2 =s(i1 · v1)s(i2 · v2)

∗

∫
V

σs (x)eik((i1−v1)−(i2−v2))·xη(x) dx, (41)

where η(x) = τ (x, i1)τ (x, v1)∗τ (x, i2)∗τ (x, v2). This integral can be

evaluated much more efficiently than that of Eq. (33), without the

need for expensive path tracing algorithms.

The above discussion indicates that, whenever we are outside the

memory effect range, we can accelerate the computation of speckle

covariance by using the single-scattering approximation, without

significant loss in accuracy. This is analogous to the use of the single-

scattering approximation for accelerating intensity rendering [Sun

et al. 2005; Walter et al. 2009], with an important difference: In the

case of intensity the single-scattering approximation is valid only for

very optically-thin volumes [Narasimhan et al. 2006]. By contrast,

in the case of covariance, the approximation can be accurate even

for optically thick materials, given appropriate illumination and

viewing conditions, making it more broadly applicable.

8 DISCUSSION
We presented a path-integral formulation for the covariance of

speckle fields generated by the interaction of coherent light with

scattering volumes. Using this formulation, we derived two Monte

Carlo rendering algorithms, one for directly estimating covariance,

and another for directly generating speckle patterns. As we demon-

strated in Sec. 6, our algorithms provide a unique combination of

physical accuracy (closely matching solutions of the wave equation,

reproducing known physical phenomena such as memory effect

and coherent backscattering), computational efficiency (outperform-

ing wave equation solvers by orders of magnitude), and parsimony

(using only bulk macroscopic parameters of a volume, instead of

requiring knowledge of its microscopic structure). We conclude the

paper with a discussion of limitations and possible future directions.

Both of our Monte Carlo rendering algorithms share strong simi-

larities with Monte Carlo volume rendering algorithms for intensity,

and in particular volumetric path tracing. This facilitates integra-

tion into popular physically-accurate rendering engines [Jakob 2010;

Pharr et al. 2016], and reusing existing technology for efficient imple-

mentations. Likewise, existing results about the computational and

theoretical properties of volumetric path tracing should be straight-

forward to apply to our setting. We should highlight, however, an

important difference with the intensity case: The endpoints of each

sampled path are connected to multiple light sources and sensors.

This makes it challenging to importance-sample the first vertex and

direction when starting to trace a path, which in turn can result in

high variance in the resulting renderings. For example, in a material

with a very forward-scattering phase function, we can select the

first vertex and direction by importance-sampling at most one of the

sensor or source connections; consequently, most other connections

will produce paths of close-to-zero contributions.

A way to ameliorate this issue can be to apply to the speckle

rendering setting variance reduction techniques that have been suc-

cessful for intensity rendering. For example, multiple importance

sampling [Veach and Guibas 1995b] can be used to reduce variance

when the start of a path is sampled based on only one out of many

source and sensor connections. More generally, it will be important

to investigate path sampling techniques algorithms better suited

to speckle rendering. To this end, we hope that our path-integral

formulation for speckle covariance can provide the theoretical foun-

dation for these investigations, analogous to how the path-integral

formulation for intensity spurred the invention of algorithms such

as bidirectional path tracing [Veach and Guibas 1995a] and Metropo-

lis light transport [Veach and Guibas 1997]. In particular, we observe

that our formulation is reciprocal, and therefore lends itself to the

development of bidirectional, or even multidirectional for multiple

sources and sensors, path sampling algorithms.

Despite their ability to accurately model first and second-order

statistics of volumetric speckle, our theory and algorithms currently

do not take into account wave effects that are likely to be impor-

tant in real-world imaging situations. Namely, our path integral

formulation ignores refraction and reflection events at the scat-

tering volume’s interface. While perfectly smooth interfaces can

be incorporated into our formulation exactly analogously to stan-

dard Monte Carlo volume rendering, handling rough interfaces is
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Fig. 14. Decomposing speckle covariance by number of bounces. We simulate the covariance of multiple illumination and viewing configurations
satisfying i1 − v1 − (i2 − v2) = ω , and plot contribution of single and multiple-scattering paths to the covariance as a function of two angles, α =
min(∠(i1, i2), ∠(v1, v2)), β = min(∠(i1, v1), ∠(i2, v2)). The multiple scattering term reduces to zero as soon as one of the above angular differences increases.

non-trivial due to the need to account for diffraction and speckle

from surface events [Bergmann et al. 2016; Cuypers et al. 2012;

Werner et al. 2017; Yan et al. 2018]. Additionally, our theory and

algorithms cannot operate in scattering volumes that do not satisfy

the assumptions of classical radiative transfer (Sec. 3). There is, by

now, considerable literature extending Monte Carlo volume render-

ing to, for example, discrete random media with large and dense

scatterers [Moon et al. 2007]; anisotropic media where scattering

is not rotation-invariant [Jakob et al. 2010]; and non-exponential

media where the locations of scatterers are not independent of each

other [Bitterli et al. 2018]. All of these works focus exclusively on in-

tensity rendering, and it would be interesting to investigate how to

extend their techniques to the speckle rendering setting. Finally, our

framework assumes unpolarized and fully-coherent illumination.

Incorporating polarization effects into our framework can be done

using existing techniques for both intensity [Jarabo and Arellano

2018] and speckle [Sawicki et al. 2008; Xu 2004] rendering. Account-

ing for partial coherence has received some attention [Pierrat et al.

2005; Shen et al. 2017], and these works can provide inspiration for

developing similar extensions of our framework.

In this paper we chose to focus on spatial speckle correlations.
However, this is only one of many other classes of second-order

speckle statistics. For example, when the same volume is imaged

under coherent illumination of different wavelengths, the resulting

speckle patterns exhibit cross-wavelength correlations. This is a

correlation property that so far remains relatively unexplored. As

another example, speckle patterns in images of the same volume

captured over time exhibit temporal correlations, due to moving

scatterers in the volume [Dougherty et al. 1994]. These temporal

correlations have found widespread use in techniques such as dy-

namic light scattering [Berne and Pecora 2000] and diffusing wave

spectroscopy [Pine et al. 1988]. Even outside of volumes, speckle

patterns due to surface microgeometry exhibit correlation proper-

ties analogous to the memory effect in volumes [Goodman 2007],

with applications in non-line-of-sight imaging [Katz et al. 2012].

We hope that our results will motivate the development of analo-

gous theoretical and simulation tools for these types of correlations.

We expect that such tools can help broaden our understanding of

speckle correlation effects, and extend their applicability to imaging

applications. For instance, our rendering algorithms allow us to

study the spatial memory effect and related applications in cases

where common assumptions (diffusion, Fokker-Planck limit [Os-

nabrugge et al. 2017]) do not hold. Likewise, rendering algorithms

for temporal correlations can allow extending related applications to

cases where the common assumption of Brownian motion of scatter-

ers is invalid [Duncan and Kirkpatrick 2008]. Finally, the ability to

render physically-accurate speckles can facilitate incorporating ma-

chine learning techniques into related imaging applications, where

the collection of training data has been a major burden.

Last but not least, the findings of Sec. 7 suggest that measuring

and rendering speckle covariance holds promise for inverse render-
ing applications. The fact that speckle covariance measurements are

dominated by single scattering for a much larger class of materials

than intensity measurements can potentially drastically simplify the

volumetric inverse rendering problem, e.g., by potentially allowing

us to replace the complex differentiable rendering of Gkioulekas et

al. [2016; 2013] with simple analytic algorithms of Narasimhan et

al. [2006]. In addition to simplifying computation, it will be interest-

ing to examine whether speckle covariance measurements can be

used to relax previously reported ambiguities between scattering

parameters [Wyman et al. 1989; Zhao et al. 2014].
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A APPENDIX
A.1 Dealing with multiple particle types
In the main paper, we assumed, for simplicity, particles of a single

type. We now show that, with small adjustments, our formulation

can be extended to mixtures of particle types. We index particles of

each type with a subscript ι. For each particle type ι, we assume we

are given a, possibly spatially varying, density ςι (x). We also denote

its scattering and absorption cross-sections by cs ,ι , ca,ι , its radius
by rι , and its (normalized) scattering amplitude function by sι .
We start by defining the bulk scattering parameters, resulting

from the mixture of particle types. Then, we revisit some equations

in the main text that need to be adjusted for the case of multiple

particle types. We denote by N̄ι (x) the mean number of particles of

type ι in the unit volume at x. For spherical particles, this equals

N̄ι (x) =
ςι (x)
4/3πr3ι

. (42)

To account for the fact that we use normalized amplitude and phase

functions, we define the total scattering and absorption coefficients

σs ,σa as the expected energy scattered or absorbed from all particles

in a unit volume, which becomes,

σs (x) =
∑
ι
N̄ι (x)cs ,ι , σa (x) =

∑
ι
N̄ι (x)ca,ι + σmed

a , (43)

where σmed

a is the attenuation coefficient of the containing medium.

The extinction coefficientσt isσt = σs+σa . Wewill need to consider

the bulk outer product of amplitude functions, defined as:

S(θ1, θ2) =
∑
ι
βιsι (θ1)sι (θ2)

∗
with βι =

cs ,ι N̄ι∑
ι cs ,ι N̄ι

. (44)

The phase function can be defined as a special case of the above,

ρ(θ ) = S(θ , θ ). The reason why the product of scattering amplitude

functions at two angles is defined via Eq. (44) and not as s(θ1)s(θ2) is
because, when two paths scatter at the same point, their scattering

is also due to the same particle of a single type.

To see how S(θ1, θ2) becomes relevant for speckle rendering, we

first introduce the notation

ϒ((ω1,ω2) → xo → (x1, x2)) =∑
ι
βιυι (ω1 → xo → x1)υι (ω2 → xo → x2)∗, (45)

where υι (·) is the equivalent of the complex volumetric throughput

υ(·) of Eq. (24), but with the amplitude function of particle type ι:

υι (ω j→xo→xj ) = τ (xo, xj )ξ (xo→xj )sι (ω j ·�xoxj ). (46)

The term ϒ((ω1,ω2) → xo → (x1, x2)) replaces all terms of the

form υ(ω1 → xo → x1)υ(ω2 → xo → x2)∗ in the definition of

the speckle covariance in Sec. 4.2. The resulting changes to the

corresponding covariance rendering algorithm of Sec. 5.1 are sum-

marized in Alg. 3. Effectively, ϒ(·) accounts for the fact that, when
two paths scatter at the same location, they interact with the same

particle of a single type, so the same sι should apply to both paths.

Finally, we discuss how to adjust Alg. 2 for directly sampling

a speckle image, for the case of multiple types of particles. The

covariance in Eq. (37) for the multiple type case becomes:

C =
∫
P
f (®xs )

∑
ι1,ι2

βι1βι2 · aι1,ι2 (®x
s ) · a∗ι1,ι2 (®x

s ) d®xs , (47)

and Eq. (38) becomes:

aι, j (®xs ) =
(
υι (x2 → x1 → ij )υι (xB−1 → xB → vj )

+ υι (xB−1 → xB → ij )υι (x2 → x1 → vj )
)
. (48)

Therefore, for every vertex sample, we should also sample a particle

type ι ∼ βι . We summarize the changes in Alg. 4.

A.2 Integrals in path space
Our goal in this section is to derive expectations of path contribu-

tions and justify Eq. (22). To analyze the path contributions, we will

divide the space of all path pairs ®x1, ®x2 from i1, i2 to v1, v2 into sets

defined by the vertices they have in common. Let ®xs = {x1, . . . , xB }
denote a set of vertices and ®xs ,P1 , ®xs ,P2 two possibly different per-

mutations of these vertices. We look at the set of all paths that share

exactly the vertices in ®xs in orders P1, P2 orders:

L(®xs ,P1 , ®xs ,P2 )={
(®x1, ®x2) ®x1= {i1→. . .→xP1(1)→. . .→xP1(B)→. . .→v1}

®x2= {i2→. . .→xP2(1)→. . .→xP2(B)→. . .→v2}

}
, (49)

where any occurrence of . . . in Eq. (49) can be replaced with any

sequence of vertices, as long as they are different from each other.
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ALGORITHM 3: Monte Carlo rendering of covariance C i1 ,i2
v1 ,v2 .

◃Initialize covariance estimate.
Set C = 0.

for iteration = 1 : N do
◃Sample first vertex of subpath.

Sample point x1 ∼ qo (x1) inside medium.

Sample uniform direction ω1.

◃Update covariance by single scattering path
Update C += Vυ(i1→x1)υ(i2→x1)∗ϒ((i1, i1)→x1→(v1, v2)).

◃Continue tracing the subpath.
◃Sample second vertex of subpath.

Sample distance d ∼ σt (x1) |τ (x1, x1 + dω1) |
2
.

Set point x2 = x1 + d ·ω1.

Set b = 2.

while xb inside medium do
◃Update covariance with next-event estimation.

Forward-only version:

Update C += V
2
ϒ(x2→x1→(i1, i2))ϒ(xb−1→xb→(v1, v2)).

Or, forward and reversed version:

Update C += V
2

(
ϒ(x2→x1→(i1, i2))ϒ(xb−1→xb→(v1, v2))

+ϒ(x2→x1→(i1, v2))ϒ(xb−1→xb→(v1, i2))
+ϒ(x2→x1→(v1, i2))ϒ(xb−1→xb→(i1, v2))
+ϒ(x2→x1→(v1, v2))ϒ(xb−1→xb→(i1, i2))

)
.

◃Sample next vertex of subpath.
Sample direction ωb ∼ ρ(ωb−1 ·ωb )

Sample distance d ∼ σt (xb ) |τ (xb , xb + dωb ) |
2
.

Set point xb+1 = xb + d ·ωb .

◃Account for absorption.
Sample scalar a ∼ Unif[0, 1].

if a > σs (xb+1)/σt (xb+1) then
◃Terminate subpath at absorption event.

break

end
Set b = b + 1.

end
end

◃Produce final covariance estimate.
Update C = 1

N C .

return C .

With this definition, we can divide the space of all paths ®x1, ®x2

into disjoint sets. We now argue that the throughput contribution

from each set L(®xs ,P1 , ®xs ,P2 ) averages to the volumetric throughput

contribution of the direct paths ®xs ,P1 , ®xs ,P2 . To show this, we first

use the notation b−
1
= P−1

1
(b) − 1, b+

1
= P−1

1
(b) + 1 for the vertices

before and after xb in the permuted sequence P1, and similarly

b−
2
= P−1

2
(b) − 1, b+

2
= P−1

2
(b) + 1 for P2.

Claim 1.∫
(®x1,®x2)∈L(®xs ,P1 ,®xs ,P2 )

p(®x1, ®x2)µ(®x1)µ(®x2)∗ =

B∏
b=0

ϒb (®x
1,P1 , ®x1,P2 )

B∏
b=1

σs (xb ), (50)

with ϒb (®x
1,P1 , ®x2,P2 ) = ϒ((xb−

1

, xb−
2

) → xb → (xb+
1

, xb+
2

)). (51)

Proof. Let us start by drawing an independent set of B vertices

x1, . . . , xB . According to the target density, the probability for these

ALGORITHM4:Monte Carlo rendering of J×1 field u for {(i,v)j}
J
j=1.

◃Initialize field estimate.
Set u = 0.
for iteration = 1 : N do

Sample random phase ζ ∼ Unif[0, 1].

Set z = e2π iζ .
◃Sample first vertex of subpath.

Sample point x1 ∼ qo (x1).
Sample particle type ι ∼ βι .

◃Update field with single scattering path.

Update ∀j , uj += z ·

√
V
2
· υι (ij→x1)υι (ij→x1→vj ).

◃Continue tracing the subpath.
◃Sample second vertex of subpath.

Sample uniformly direction ω1.

Sample distance d ∼ σt (x1) |τ (x1, x1 + dω1) |
2
.

Set point x2 = x1 + d ·ω1.

Set b = 2

while xb inside medium do
Sample random phase ζ ∼ Unif[0, 1].

Set z = e2π iζ .
Sample particle type ι ∼ βι .

◃Update field with next-event estimation
Forward-only version:

Update ∀j , uj += z ·

√
V
2
υι (x2→x1→ij )υι (xb−1→xk→vj ).

Or, forward and reversed version:

Update

∀j , uj += z ·

√
V
2

(
υι (x2→x1→ij )υι (xb−1→xb→vj )

+υι (x2→x1→vj )υι (xb−1→xb→ij )
)
.

◃Sample next vertex of subpath.
Sample direction ωb ∼ ρ(ωb−1 ·ωb ).

Sample distance d ∼ σt (xb ) |τ (xb , xb + dωb ) |
2
.

Set point xb+1 = xb + d ·ωb .

◃Account for absorption.
Sample scalar a ∼ Unif[0, 1].

if a > σs (xb+1)/σt (xb+1) then
◃Terminate subpath at absorption event.

break

end
Set b = b + 1.

end
end

◃Produce final field with correct mean.

Update ∀j , uj =m
ij
vj +

√
1

N uj .
return u.

particles is the last term of Eq. (50),

∏B
b=1 σs (xb ). For each position

xb , we draw a particle type ι(b) ∼ βι . Given the type of all particles

on the paths, we decompose the path probabilities.

Let Lb denote the set of all disjoint paths (®x1,b , ®x2,b ) from xP1(b)
to xP1(b+1) and from xP2(b) to xP2(b+1), and let ωb

1
,ωb

2
denote the

end direction of ®x1,b , ®x2,b (i.e. the direction at which the last seg-

ment is entering xP1(b+1) or xP2(b+1)). While the only constraint on

®x1,b , ®x2,b is that they are disjoint, we will make the approximation

that they are independent. Mishchenko et al. [2006] show that the

error introduced by this approximation is o(1/N̄ ) where N̄ is the
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expected number of particles in the medium. Thus we can write

p(®x1, ®x2) = p(®x1,0)p(®x2,0)
B∏
b=1

p(®x1,b |ω1,b−1)p(®x2,b |ωb−1
1

). (52)

Using Eq. (18):∫
L0
p(®x1,0, ®x2,0)µ(®x1,0)µ(®x2,0)∗

=

∫
®x1,0

p(®x1,0)µ(®x1,0) ·
∫
®x1,0

p(®x2,0)µ(®x2,0)
∗

= υ(i1 → xP1(1)) · υ(i2 → xP2(1))
∗. (53)

As all paths in L0 integrate to the direct path, we know that the

end directions when entering xP1(1), xP2(1) areω
1

0
=�i1xP1(1),ω2

0
=�i2xP2(1). Given the first segment’s end direction, we can apply Eq. (18)

to the second segment, and likewise to all successive segments:∫
Lb

p(®x1,b , ®x2,b |ω1

b−1,ω
2

b−1)µ(®x
1,b )µ(®x2,b )

∗
=

υι(P1(b))(ω
1

b−1 → xP1(b) → xP1(b+1))

υι(P2(b))(ω
2

b−1 → xP2(b) → xP2(b+1))
∗
. (54)

Concatenating Eqs. (53) and (54) assuming given particle position

and type, we obtain

B∏
b=0

υι(P1(b))(xP1(b−1)→xP1(b)→xP1(b+1))

υι(P2(b))(xP2(b−1)→xP2(b)→xP2(b+1))
∗. (55)

Eq. (55) is sorted by the order of vertices in the two permutations.

We now rewrite it using a generic vertex order 1, . . . ,B using the

notation b−j = P−1j (b) − 1, b+j = P−1j (b) + 1, resulting in

B∏
b=0

υι(b)(xb−
1

→xb→xb+
1

)υι(b)(xb−
2

→xb→xb+
2

)∗ (56)

If we now sum Eq. (56) for all possible particle type assignments,

and consider also the vertex sampling probability, we get Eq. (50).

A.3 Path permutations
As mentioned in Sec. 4.2, Claim 1 significantly simplifies the in-

tegration space of the path integral formulation for covariance,

by restricting it to path pairs with only shared vertices. However,

Claim 1 does not imply that these vertices appear at the same order.

The reason most permutations can be ignored stems from the fact

that the phase of the path throughput is proportional to the path

length. For permutations that do not trace the vertices in the same

order, the segment lengths are different (Fig. 5b), resulting in path

contributions of different path phases, whose sum quickly reduces

to zero. To demonstrate this empirically, in Fig. 15 we consider paths

of three vertices x1, x2, x3, which is the smallest path length with

non trivial permutations. We use i1 = i2, v1 = v2, and we fix the

vertices x1, x2 while varying the third vertex x3 over a 20λ × 20λ

area. We evaluate the path throughput contributions µ(®x1)µ(®x2,P )∗

for various permutations P of these vertices. When P is the identity

permutation, ®x1 and ®x2,P have the same length, thus µ(®x1)µ(®x2,P )∗

is always a positive number. If P is the reversed permutation, leading

to the path ®x2 = i → x3 → x2 → x1 → v, we get a fixed phase

only for the backscattering direction v ∼ −i. For other directions,

we see in the second row of Fig. 15b that perturbing the position

of x3 changes the phase, and thus the average of the pairwise path

throughput over all positions of x3 becomes zero,∫
µ(®x1)µ(®x2,P )

∗
dx3 ≈ 0. (57)

For all other permutations, there is no configuration of illumination

and viewing directions that leads to a fixed phase. Then, as can be

seen in Fig. 15c, varying the position of one of the vertices locally

quickly changes the phase, thus the average of different path con-

tributions over a local window is zero. There are some rare path

selections leading to a locally stationary phase, as can be seen in

Fig. 15d. However, the probability of selecting such paths is low, and

therefore the contribution to the overall covariance is negligible.

As an additional experiment, in Fig. 16 we numerically evaluate

the integral of all six permutations of three numbers when varying

two of the scatterers positions within a 2D square area,∬
µ(®x1)µ(®x2,P )

∗
dx2dx3, (58)

We see that, except for the forward and reversed permutations, the

throughput of other permutations integrates to a contribution about

two orders of magnitude smaller than the forward contribution.

A.4 The correlation transfer equation
Monte Carlo rendering algorithms for intensity were historically

derived in computer graphics from the volume rendering equation.

This is the integral form of the radiative transfer equation (RTE),

expressing radiance at one point as a function of radiance at other

points in space. Monte Carlo rendering algorithms are, then, derived

by recursively unrolling the volume rendering equation [Dutré et al.

2006; Novak et al. 2018]. We can follow the same direction to derive

Monte Carlo speckle rendering algorithms, starting from a key result

in the speckle correlation literature, namely the correlation transfer
equation (CTE) [Ishimaru 1999; Twersky 1964].

The CTE provides an expression for the second-order moment

of speckles at different spatial points under the same illumination

direction. Using our notation, we can write this as: E[ui,Ov1 ·ui,Ov2
∗
] =

C i
v1,v2 +m

i
v1m

i
v2

∗
. The CTE then states that:

E[ui,Ov1 · ui,Ov2
∗
] =mi

v1m
i
v2

∗
+∫

x
σs (x)

∫
ω
υ(ω → x → v1) · υ(ω → x → v2)∗Lix,ω , (59)

where Lix,ω is the “light field” as used traditionally in computer

graphics, namely the radiance arriving at point x from directionω.

The important observation made by the CTE is that, to compute

correlations between the fields at sensor points v1, v2, we need to

integrate only radiance from other space points, without the need

to memorize any other correlations. The radiance at other points

is weighted by the complex volumetric throughput υ, namely the

probability and phase of making a “single scattering” step from x
to v1 and v2. For the case v1 = v2, the covariance reduces to inten-

sity, and indeed Eq. (59) reduces to the volume rendering equation,

assuming zero emission inside the volume.
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Fig. 15. Phase of path permutations.We show the phase of pairwise path throughput as a function of the position of one of the shared vertices, for different
vertex permutations. For the forward permutation the phase is constant. For the reversed permutation a constant phase is achieved only at the backscattering
direction. Other permutations result in spatially varying phase, thus the corresponding pairwise path throughputs cancel out after spatial integration.
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Fig. 16. Contributions from path permutations. We show the mean
permutation throughput after integrating over spatial shifts of x2, x3. The
mean contribution of the neglected permutations is two orders of magnitude
smaller than the contributions of the forward and reversed permutations.

It is not hard to show that, for the case i1 = i2, a version of

Alg. 3 considering only forward paths is equivalent to a recursive

evaluation of the CTE. This version of the algorithm is derived by

approximating the covariance as

C i1,i2
v1,v2 ≈

1

N

∑
®xn
0
∼q

c®x1,n ,®x2,n

q(®xs ,n )
, (60)

rather than as

C i1,i2
v1,v2≈

1

N

∑
®xn
0
∼q

c®x1,n ,®x2,n +c®x1,n ®x2,n,r +c®x1,n,r ,®x2,n +c®x1,n,r ,®x2,n,r

q(®xs ,n ) + q(®xs ,r ,n )
. (61)

We highlight the forward-only version in Alg. 3 with blue font. A

similar forward-only version can be derived for Alg. 4, also shown

there in blue font.

The derivation of the CTE in, say, Mishchenko et al. [2006] fol-

lows from an expression of the solution to the wave equation as a

sum of path contributions, analogous to what we presented in Sec. 4.

Making the simplifying assumption that only forward path pairs

need to be considered, the derivation reorganizes all the paths in the

summation in a more compact recursive formula which is essentially

the CTE, or the volume rendering equation in the v1 = v2 case. The
fact that only forward paths are considered is an inherent assump-

tion necessary for the compactness of the CTE, as it is equivalent to

the fact that we only need to memorize the last vertex on a path and

ignore the rest of its history. However, this compactness comes at a

severe cost, namely the inability to explain coherent backscattering,

which is an interference effect generated by the full path and not

only by the last event. Due to this shortcoming, we chose to derive

our Monte Carlo rendering algorithms directly from a path space

formulation, and not from an integral equation.
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