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Fig. 1. Simulation of memory effect in scattering. Coherent images of translucent materials typically involve highly-fluctuating speckle structure. Despite
their semi-random structure, speckles have strong statistical properties. For example, the memory effect property states that, as one tilts the illumination
direction (setup at left), the resulting speckles shift. This property is at the core of multiple computational imaging applications. The memory effect is valid
over a limited angular range that depends on material properties. Due to the absence of analytical formulas, it is generally necessary to measure this angular
range for materials of interest empirically in the lab. We present a Monte Carlo rendering approach for simulating physically-accurate speckle images, as well
as their statistics, as a function of material parameters. The figure shows speckle images rendered by our algorithm for a few illumination directions, as well as
their auto-correlation (black insets), demonstrating the speckle shift property. As the angle difference increases, the correlation decays, and the decay rate is
different for different material parameters—in this case, materials with Henyey-Greenstein (HG) phase functions of different parameters g. For the isotropic
scattering case, g = 0, the pattern similarity is lost at the third column, whereas for the forward scattering case, g = 0.9, correlation is preserved. We verify the
accuracy of our algorithm against an exact, yet computationally heavy, wave solver, as well as against analytical formulas derived under limiting assumptions.

We present a Monte Carlo rendering framework for the physically-accurate
simulation of speckle patterns arising from volumetric scattering of coher-
ent waves. These noise-like patterns are characterized by strong statistical
properties, such as the so-called memory effect. These properties are at the
core of imaging techniques for applications as diverse as tissue imaging,
motion tracking, and non-line-of-sight imaging. Our rendering framework
can replicate these properties computationally, in a way that is orders of
magnitude more efficient than alternatives based on directly solving the
wave equations. At the core of our framework is a path-space formulation for
the covariance of speckle patterns arising from a scattering volume, which
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we derive from first principles. We use this formulation to develop two
Monte Carlo rendering algorithms, for computing speckle covariance as well
as directly speckle fields. While approaches based on wave equation solvers
require knowing the microscopic position of wavelength-sized scatterers,
our approach takes as input only bulk parameters describing the statistical
distribution of these scatterers inside a volume. We validate the accuracy
of our framework by comparing against speckle patterns simulated using
wave equation solvers, use it to simulate memory effect observations that
were previously only possible through lab measurements, and demonstrate
its applicability for computational imaging tasks.
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1 INTRODUCTION

Scattering refers to the propagation of radiation (for instance, light
or sound) in non-uniform media, composed of small discrete scatter-
ers, usually particles of varying refractive properties: As an incident
wave propagates through the medium, it will interact with scatterers
multiple times, and each such interaction will change the wave’s
shape. Scattering is commonly encountered when visible light inter-
acts with a large variety of materials, for instance biological tissues,
minerals, the atmosphere and clouds, cosmetics, and many indus-
trial chemicals. As a result of the ubiquity of scattering, its study
has attracted numerous research efforts in computer graphics and
vision, and much more broadly in medical imaging, remote sensing,
seismic imaging, and almost any field of natural science.

The appearance of scattering materials is qualitatively very dif-
ferent, depending on whether they are imaged under incoherent or
coherent conditions. In the incoherent case, scaterring results in im-
ages with smoothly-varying intensity distributions, often referred to
as translucent appearance. By contrast, under coherent imaging con-
ditions, the appearance of scattering materials is characterized by
speckles, that is, pseudo-random high variations in the output waves
and captured intensity images. Speckles have been the subject of
multiple textbooks [Erf 1978; Goodman 2007; Jacquot and Fournier
2000; Kaufmann 2011], as despite their random structure, they have
strong statistical properties that are characteristic of the underly-
ing material. For example, a remarkable property of speckles is the
memory effect: speckle fields produced under small perturbations
in imaging parameters (e.g., change in illumination direction) are
highly correlated shifted versions of each other (see Fig. 1). These
speckle statistics have received strong attention since the invention
of coherent laser illumination [Berkovits and Feng 1994; Feng et al.
1988; Freund et al. 1988; Li and Genack 1994], and are at the core of
a large array of imaging techniques, with applications as diverse as
motion tracking, estimating blood flow, looking around the corner,
and seeing through scattering layers.

Unfortunately, and in stark contrast with the incoherent case,
our ability to accurately simulate scattering in the coherent case
is severely limited. Available algorithms generally fall into two
categories. The first category consists of algorithms that compute
output waves by numerically solving Maxwell’s equations [Thierry
et al. 2015; Treeby and Cox. 2010; Yee 1966]. These algorithms are
physically accurate, but require as input the microscopic structure
of the scattering medium, that is, knowledge of the exact (at sub-
wavelength accuracy) locations of all scatterers in the medium. Even
when such a microscopic characterization is available (e.g., specific
samples examined with a microscope, or volumes with hallucinated
scatterer locations), the high computational complexity of wave
equation solvers makes them inapplicable for volumes larger than
a few hundred cubic wavelengths, or containing more than a few
hundred scatterers. The second category consists of approximate
Monte Carlo rendering algorithms [Sawicki et al. 2008; Xu 2004],
which accumulate the complex throughput (amplitude and phase)
of paths sampled using standard volumetric path tracing. These
algorithms are efficient, but cannot reproduce statistical properties
of real speckles such as the memory effect. The lack of speckle
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rendering algorithms that are both physically accurate and computa-
tionally efficient is a significant obstacle in the wide range of fields
interested in coherent imaging of scattering volumes. Symptomatic
of these shortcomings of existing rendering tools is the fact that
the only reliable way for estimating the memory effect has been by
conducting painstaking optical lab experiments [Schott et al. 2015].

In this paper, we change this state of affairs by developing a Monte
Carlo framework for rendering speckles in volumetric scattering.
Our framework builds on the following insight: Due to the central
limit theorem, speckles are instances of a multivariate Gaussian dis-
tribution [Goodman 2007]. Therefore, it is sufficient to model their
(scene and material-dependent) mean and covariance. To achieve
this, we draw inspiration from Monte Carlo volume rendering algo-
rithms for the incoherent case: These algorithms treat the scattering
medium as a continuous volume, inside which light can scatter ran-
domly at any location. Given bulk parameters characterizing the
statistical distribution of scatterers in the medium, Monte Carlo algo-
rithms synthesize images corresponding to the average distribution
of scattered light across all scatterer instantiations that can be gener-
ated from the bulk parameters [Moon et al. 2007]. This macroscopic
view of the medium enables efficient rendering, without the need
to know and simulate the medium’s microscopic structure.

To extend this approach to the coherent case, we begin by deriving
a new path-integral formulation [Veach 1997] for the propagation
of coherent light inside a scattering medium, which accurately en-
capsulates the first-order and second-order statistics of resulting
speckle patterns. From this formulation, we derive two Monte Carlo
rendering algorithms. The first algorithm estimates speckle covari-
ance, which, together with an estimate of speckle mean obtained
using a closed-form expression, can be subsequently used to sample
multiple speckle images. The second algorithm directly simulates
a physically-accurate speckle image, and operates by having sam-
pled paths contribute to multiple pixels in a way that produces
accurate speckle statistics. Both algorithms take as input only bulk
macroscopic scattering parameters, as in the incoherent case. We
validate our theory and algorithms in a few ways: First, we show that
our approach can closely match “groundtruth” speckle estimates,
obtained by averaging solutions of the wave equation across mul-
tiple particle instantiations, while also being orders of magnitude
faster. Second, we show that our approach agrees with analytical
formulas for speckle correlations derived for specific cases (e.g.,
diffusion). Finally, we show that our approach can accurately repro-
duce well-documented properties of speckles, such as the memory
effect and coherent backscattering. We show example applications of
our framework, including simulating speckle-based computational
imaging techniques, and evaluating the extent of their applicability.

1.1 Why render speckle patterns?

There exist several imaging techniques that directly leverage second-
order speckle statistics. Example applications include motion track-
ing [Jacquot and Rastogi 1979; Jakobsen et al. 2012; Smith et al.
2017], looking around the corner [Batarseh et al. 2018; Freund 1990;
Katz et al. 2012], and seeing through [Bertolotti et al. 2012; Katz
et al. 2014] or focusing through [Mosk et al. 2013; Nixon et al. 2013;
Osnabrugge et al. 2017; Vellekoop and Aegerter 2010] tissue and
other scattering layers. Most of these imaging techniques rely on
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the memory effect of speckles, a fact that has motivated significant
research on quantifying this effect for different materials. Existing
computational approaches generally attempt to derive closed-form
expressions for the memory effect [Akkermans and Montambaux
2007; Baydoun et al. 2016; Berkovits and Feng 1994; Dougherty
et al. 1994; Feng et al. 1988; Freund and Eliyahu 1992; Fried 1982;
Osnabrugge et al. 2017]. Unfortunately, these expressions only hold
under assumptions such as diffusion or the Fokker-Planck limits,
restricting their applicability. As a result, it has generally been nec-
essary to measure the memory effect empirically using involved
optical setups [Mesradi et al. 2013; Schott et al. 2015; Yang et al. 2014].
Our algorithm allows quantifying the memory effect for arbitrary
scattering materials computationally, through accurate yet efficient
simulations. This can significantly enhance our understanding of
the applicability of memory effect techniques to different materials.
Additionally, this new simulation capability can save considerable
lab effort for tasks such as discovering optimal settings for computa-
tional imaging systems, and evaluating new imaging configurations.

The ability to efficiently render speckle patterns can facilitate
the widespread adoption of data-driven approaches in fields where
coherent imaging of scattering is common, such as tissue imaging
and material science. Previously, the lack of physically-accurate
simulation tools meant that training datasets had to be collected
using lab measurements, an approach that is not scalable.

Finally, speckle statistics can be beneficial for inverse rendering,
that is, retrieving material parameters from image measurements.
While previous approaches use intensity measurements [Gkioulekas
et al. 2016, 2013; Holodovski et al. 2016; Levis et al. 2015], measure-
ments of speckle statistics may capture additional information and
allow inverse rendering techniques to be applied in finer scales,
where it is not possible to image without coherent effects.

2 RELATED WORK

Monte Carlo rendering of wave optics effects has recently attracted
increased attention in computer graphics. A primary focus has been
on rendering diffraction and speckle effects generated by surface
microgeometry [Bergmann et al. 2016; Cuypers et al. 2012; Stam
1999; Sur et al. 2018; Werner et al. 2017; Yan et al. 2018; Yeh et al.
2013], without tackling volumetric scattering. Some approaches
focusing on scattering and speckle effects can be found in the optics
literature [Lu et al. 2004; Pan et al. 1995; Schmitt and Kniittel 1997].
For instance, Xu et al. [2008; 2004] modify volumetric path tracing,
by tracking complex phase as a path is traced through the volume.
By aggregating complex contributions from paths on the sensor, this
technique produces images that resemble speckle patterns. However,
because every pixel is rendered independently, this approach cannot
reproduce spatial correlations between pixels. Additionally, it is
impossible to use these approaches to reproduce correlations that
exist across multiple illumination directions as in the memory effect.

There have been attempts to use Monte Carlo algorithms to eval-
uate various properties of coherence and partial coherence of light
after propagating through a scattering tissue [Pierrat et al. 2005;
Shen et al. 2017]. Often these are based on using the radiative trans-
fer equation (RTE) and intensity-based Monte Carlo rendering, then
applying a Fourier transform on its result. Such approaches can be
justified as a special case of our algorithm.

An important result in the study of speckle statistics, which can
be used to derive Monte Carlo rendering algorithms, is the cor-
relation transfer equation (CTE) [Dougherty et al. 1994; Ishimaru
1999; Twersky 1964]. This integral equation extends the RTE, by
modeling correlation of fields at different space points. As we show
in Sec. 6.1, there are physical phenomena that are not accounted
for by the CTE, such as coherent backscattering. While there exist
some Monte Carlo rendering algorithms that take this effect into
account [Ilyushin 2012; Sawicki et al. 2008], they only simulate in-
tensity and not general covariance. We revisit the derivation of the
CTE and its underlying assumptions, aiming to derive a more gen-
eral rendering framework that accurately models both covariance
and coherent backscattering.

Our derivation is fundamentally based on supplanting the true
scattering volume, consisting of multiple discrete scatterers at fixed
locations, with a continuous volume where scattering can happen
randomly at any location. This macroscopic treatment of scattering
underlies all current Monte Carlo volume rendering algorithms,
and has also been used to accelerate rendering of so-called dis-
crete random media, where the scatterers can be arbitrarily large
or dense [Meng et al. 2015; Moon et al. 2007; Miiller et al. 2016].
More recently, a number of works have used this approach to derive
generalized versions of the RTE and Monte Carlo rendering algo-
rithms, for media where the distribution of scatterer locations has
spatial correlations, so-called non-exponential media [Bitterli et al.
2018; d’Eon 2018a,b; Jarabo et al. 2018]. Even though we focus ex-
clusively on exponential media, our work provides the foundations
for future investigations of Monte Carlo rendering of speckles in
non-exponential media.

Finally, there is also research on temporal correlations in the
presence of scatterer motion, e.g., in liquid dispersions [Berne and
Pecora 2000; Dougherty et al. 1994]. Many established techniques
use these temporal speckle correlations to estimate flow (e.g., blood
flow [Durduran et al. 2010]) and liquid composition parameters.
Example techniques include diffusing wave spectroscopy [Pine et al.
1988], laser speckle contrast imaging [Boas and Yodh 1997], and
dynamic light scattering [Goldburg 1999]. Here we focus on spatial
speckle correlations leaving these temporal effects for future work.

3 MODELING SPECKLE STATISTICS

Setting and notation. We use bold letters for three-dimensional
vectors (e.g., points x, i, v), with a circumflex for unit vectors (e.g.,
directions w, i, v). We also use Xy for the unit vector from x to y. We
assume fully-coherent and unpolarized illumination, which can be at
either the near or the far field: Near-field illumination is an isotropic
source at point i, whereas far-field illumination is a directional plane-
wave source at direction i. Likewise, imaging is done with sensors
at either near-field points v or far-field directions v. We often abuse
the point notation i, v for both the far-field and near-field cases,
except where context requires otherwise.

We consider scattering volumes V € R that satisfy four assump-
tions: First, they consist of scatterers with size comparable to the
illumination wavelength, and which can therefore be considered
infinitesimal. Second, the scatterers are far from each other, with an
average pairwise distance (the mean free path) an order of magnitude
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Fig. 2. Simulating speckle and their statistics. (a) Consider a rectangular scattering volume illuminated by a plane wave and a scattered field sensed by
collinear sensors. For each scatterer instantiation we solve the wave equation using the package of Thierry et al. [2015] and compute the scattered field, shown
in (b, ). Different scatterer positions lead to different high-fluctuation speckle fields. The empirical covariance of multiple fields obtained with the wave solver
is demonstrated in (d), and is closely matched by the covariance computed directly by our Monte Carlo algorithm (e). To demonstrate the good agreement we
overlay a diagonal plot (f). The diagonal of the speckle covariance is equivalent to intensity images from standard incoherent Monte Carlo algorithms. In the
lower row (g) we consider a situation where the same scatterers instantiation is illuminated by two different incident directions highlighting that despite their
semi-random structure speckles have strong statistical properties. In particular, the memory effect of speckles: when the same set of scatterers is illuminated
by two incident directions the resulting speckle patterns are shifted versions of each other (h-i). This also implies that the covariance of the speckle fields (j)
generated by two illumination directions has a shifted diagonal, where the diagonal offset corresponds to fields shift. Our Monte Carlo algorithm is physically
correct and captures all such statistics, while having a computational complexity several orders of magnitude smaller than the wave equation solver.

larger than the wavelength. Third, the locations of scatterers are
statistically independent. Fourth, scatterers scatter incident waves
in a way that is invariant to rotation. These assumptions underly
classical radiative transfer [Bitterli et al. 2018]. To simplify nota-
tion, in the main paper we derive results assuming scatterers of a
single type (same shape, size, and refractive index), and extend to
the case of multiple types in App. A.1. We denote by ¢(x), x € V
the, possibly spatially-varying, density describing the distribution
of scatterers in the medium. Finally, we do not model the interface
of volume V, ignoring interface events (reflection and refraction).

The scattered field. An incident wave of wavelength A interacting
with scatterers stimulates a scattered field (or scattered wave) u,
which can be computed by solving the Helmholtz equation. When
a single particle at location o is illuminated from direction i, the
scattered field u at distance |x — o] > A is,
exp{lk|x—o|}’ k= 2_7r 1)

A
The real scalar c; is the scattering cross-section, and accounts for
the total energy scattered by the scatterer. The complex function
s(cos 0) is the scattering amplitude function, describing scattering
at different angles. We can derive from it the positive probability
function p(cos 8) = |s(cos 8)|?, known in computer graphics as the
phase function. All three quantities are functions of wavelength and
the scatterer’s shape, size, interior and exterior refractive index. For
spherical scatterers, they can be computed using Mie theory [Bohren

u(x) = es - s(i-ox) -

Ix — o
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and Huffman 1983; Frisvad et al. 2007]. We note that the scattering
amplitude function is often defined as the product 4/cs - s(cos ). We
separate the two terms and assume that p(cos 6) integrates to 1.

We now consider the geometry illustrated in Fig. 2a: Scatterers
are placed at locations O = {01, 0, . . .}, each sampled independently
from the others, from the density ¢(x). This configuration is illumi-
nated from a source i, and imaged with a sensor v. Knowing the
exact scatterer locations, we can solve the wave equation to obtain
the complex-valued scattered field ui,’o, which typically contains
large fluctuations with a semi-random noise structure known as
speckles (see flatland speckles in Fig. 2b, c).

Speckle statistics. Images modeled with the radiative transfer
equation equal the expected intensity of the scattered field, averaged
over all particle instantiations O sampled from ¢(x), as in Fig. 2f:

. . 2
I = Eo |[ut® )

These intensity images are typically smooth, without speckles. This
is because of the incoherent addition in Eq. (2): The expectation is
formed by averaging intensities of waves, whereas speckles are the
result of coherent addition of complex valued waves. To capture
speckle statistics, we can begin with the speckle mean,

mi, =Eo [ui,’o] . ®3)
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We can similarly define higher-order statistics of speckles. Of par-
ticular importance will be the speckle covariance,

Cluiz = Eo i,0 _i,0%

. -
. -_— ll . 12 )
V1,V Uy, Uy, My, My, , 4)

where (-)* denotes complex conjugation. In this case, u&}l’o, ui,zz’o are
two speckle fields generated by the same scatterer configuration O,
when illuminated by two incident waves from iy, iz, and measured
at two sensors vq,vz. When iy = iz = i,vi = vz = v the term
Ci,’,lv + |mL|? from Egs. (3) and (4) reduces to the intensity I. of
Eq. (2). As we discuss in Sec. 4.1, the speckle mean can be computed
using a closed-form expression; in fact, because the speckle mean is
the aggregate of complex numbers of essentially randomly-varying
phase, it is typically zero. Therefore, when characterizing speckle
statistics, the most challenging part is computing the covariance.

Gaussianity of speckles. Before we discuss ways to compute the
speckle mean and covariance, one may wonder whether it is nec-
essary to consider higher-order speckle statistics. The answer, in
general, is negative: Classical results in optics [Goodman 2007] state
that the space of solutions ui;o of the wave equation, for all particle
configurations O sampled from ¢(x), follows a multivariate Gauss-
ian distribution with scene-dependent mean and covariance. The
Gaussianity results from the central limit theorem, as the particle
locations are independent random variables. Consequently, the mul-
tivariate mean and covariance of Egs. (3) and (4) provide sufficient
statistics for speckle, and can be used to sample speckle patterns that
are indistinguisable from patterns generated by specifying exact
particle positions and solving the wave equation.

Computing speckle statistics. A straightforward approach for com-
puting the speckle mean and covariance is to sample N different
scatterer configurations O, ... 0N, solve the wave equation for
each configuration, and then compute the empirical moments:

N
i 1 i,on
my ~ N E Uy (5)
n=1

1Y ;
i,y § i1,0™  i;,0™" iy ip *
CV1,V2 ~ N Uy, Uy, My, - My, - (6)
n=1

Fig. 2(d k) shows speckle covariances evaluated with this procedure.
Solving the wave equation is only tractable for very small number
of particles (a few thousands), and this computational cost is further
exacerbated by the need to repeat this process multiple times. Our
goal is to devise Monte Carlo algorithms that can compute speckle
covariance directly and much more efficiently.

Bulk parameters. Unlike wave equation solvers, our algorithms
are not tied to a specific configuration of scatterers. Instead, they
rely only on the distribution of scatterers in the medium, as well as
their size, shape, and refractive properties. As in the radiative trans-
fer literature, we describe these using the phase function p(cos 0)
defined previously, and the scattering, absorption, and extinction
coefficients, o, 04, 0; respectively, defined as

(%)
4/37r3’ @
ot(x) = a5(x) + 04(x), (8)

05(x) = N(x)es, ga(x) = N(x)cq + o4, N(x) =

XB+17 V]

X0~

Fig. 3. Fields as path sums. The scattered field can be expressed as the sum
of complex throughput contributions (%) from all possible paths passing
through scatterers in a configuration O.

where: ¢, ¢4 are the scattering and absorption cross-sections, corre-
sponding to the energy scattered or absorbed upon interaction with
one particle; r is the radius of the particles; N(x) is the expected
number of particles in the unit volume at location x; and agl"d is
the absorption coefficient of the containing medium, determined by
the imaginary part of the medium’s refractive index. We also often
reference the mean free path MFP = 1/o;. The above definitions
consider only particles of a single type, but in App. A.1 we extend
them to multiple particle types.

4 PATH-SPACE VIEW OF SPECKLE STATISTICS

In this section, we derive path-space expressions for the speckle
mean and covariance. These expressions will form the basis for the
Monte Carlo rendering algorithms of Sec. 5. We note that, tradition-
ally in computer graphics, path-space expressions are derived by
recursively expanding integral equations such as the surface and
volume rendering equations. Here, we start directly with a path-
space view, and discuss the relationship with an integral equation
known as the correlation transfer equation (CTE) in App. A.4.

Fields as path sums. Our starting point is the classical theory
of Twersky [1964]: Given a configuration O of scatterers, we can
approximate the solution to the Helmholtz equation as the sum
of contributions over all paths X through O. That is, consider the

(enumerable) set Pi;o of all ordered sequences:
X=x9—...—Xpy1, Withxg =i, Xgy1 =V, X1,...,xg €0, (9)

where B =0,..., 0. Then, the scattered field can be expressed as

B
o i
wO=>" p@ =" pixo—x1) [ | uixpo1 = x5 >xp41). (10)
b=1

%eph© %eph©
These paths are shown in Fig. 3. The complex throughput terms pu(-)
describe the amplitude and phase changes at each path segment,
accounting for the scattering amplitude s and traveled length:
H(Xp_1 = Xp = Xpy1) = E(Xp = Xp11)s(Xp_1Xp - XpXpy1), (11)
H(xo = x1) = £(X0 = X1). (12)

The complex transmission terms &(-) account for phase change and
radial decay between path vertices xy, X341, defined for points at
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the near field and far field, respectively, as

eiklxl—xz\

E(x1—x2) = , E(i-x) =KD (xov)=e KD (13)

Ix1 — %2l

We note thatm for a fixed configuration O of scatterers, the complex
transmission £(x;—x2) does not have an attenuation term. As we
see below, volumetric attenuation comes into play only once we
start considering multiple random scatterer configurations.

Speckle statistics as path integrals. Using Eq. (10), we can now
express the mean and covariance by averaging over all particle
configurations O that can be sampled from the density ¢:

my=Eo| > p®|, (14)

xeph©

idp  _
Cvl,v2z =Eo Z

=1 i1 O o
X'ePy 7, X2 €P

21 22\ i iy *
pGE) - )| —mit iz, (15)
iy, O
v2
Note that, within the expectation, the summation is over paths X!, X
through the same particle instantiation O. By exchanging the order
of expectation and summation in Egs. (14) and (15), we have:

mi, = /P PO, (16)

iy,1 51 -2 -1 S F 151 122 i i, *
cik, = [, |, PR ERGHE 6 6 -l )

vystvy

where now the space P{, includes paths with vertices xi, . . ., xpg that
can be anywhere in the volume V, not only on fixed particle loca-
tions. Unlike Pi,’o, Pl is not an enumerable space, thus summation
is replaced with integration. The term p(X) is the probability that
the path X is included in the enumerable path space Pi,’o for some
particle configuration O sampled from ¢. Similarly p(x!, ¥?) is the
probability that all vertices on both ¥!, %2 are included in the same
sampled particle configuration O.

In the following sections, we show that ml, can be computed in
closed form, and we greatly simplify the path integral for C‘i,ll”i‘z,z by
characterizing the pairs of paths that have non-zero contributions.

4.1 The speckle mean

Evaluating the speckle mean is addressed by standard textbooks on
scattering [Ishimaru 1999; Mishchenko et al. 2006]. We present these
results here, starting from a more general case, which subsumes the
computation of speckle mean. The general case will also be useful
for computing speckle covariance in the next section.

We consider a particle at xy, illuminated from an incident wave
with incident direction w. As this wave scatters, we want to evaluate
the average contribution of all paths X starting at x; and arriving at
a second point xy. This average equals [Mishchenko et al. 2006]

[sz pX)p(x) dx = 7(x1, x2) * pw—%x1—X3), (18)
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Fig. 4. Paths for speckle mean. (a) The average contribution of all paths
connecting x1 and x; (dashed lines) reduces to the contribution of the direct
path (solid line). (b) We numerically simulate the speckle mean for the setup
in the inset. We sample multiple particle configurations, use a wave equation
solver to compute the field scattered from a source at point x; to a sensor
at point x2, and average the solutions. The empirical mean of the scattered
fields agrees with the speckle mean computed using Eq. (18).

where p is defined as in Eq. (11). The volumetric attenuation t is the
probability of getting from x; to x» without encountering other par-
ticles, and equals for the near-field and far-field cases, respectively:

1 o .
T(XI,XZ):e—%foat(axﬁ(l—a)xz)da’ T(iy X):e—%fo at(xl—al)da, (19)

For a homogeneous medium, 7(x1, x2) = eXp(—%at |x2 — x1|). The
factor 1/2 in the exponent of Eq. (19) makes 7 the square root of
the volumetric attenuation term in standard radiative transfer. Intu-
itively, this is because we deal with the field rather than intensity.

The main intuition behind Eq. (18) is that, as most paths contribute
essentially random complex phases, they cancel each other out.
Therefore, the total field from x; to x; equals the field that travels
only along the direct path between the two points, attenuated by
the exponentially decaying probability 7(x1, x2), see Fig. 4(a).

Computing the speckle mean. We can now adapt this result for
the speckle mean ml, of Eq. (16), which is a special case of Eq. (18).
Being the mean of paths from i to v without conditioning on an
incoming direction w, we can omit the s term due to scattering, thus

mi, = / pE(E) % = 1, v) - i > V), (20)
7

where now y is defined as in Eq. (12) instead of Eq. (11).

The main consequence of this section is that computing the
speckle mean becomes a direct illumination problem, which can
be solved analytically without the need for path integration. In
Fig. 4(b), we numerically evaluate the speckle mean by averaging
multiple solutions of the wave equation as in Eq. (5), showing a
good agreement with the analytic formula of Eq. (20). We note that,
as the speckle mean decays exponentially with the distance, in most
cases it is negligible, making the computation of covariance the
main challenge in simulating speckle. We discuss this next.
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(b) Permuted order of nodes
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Fig. 5. Path pairs for speckle covariance. (a) When averaging over path pairs, we need only consider pairs that share the same vertices, as path segments
from x; to x;11 with arbitrary length, and thus phase, cancel each other on average. (b) Pairs sharing the same vertices in different order also cancel out on
average, due to length differences. Only pairs with the same vertices in the same order xi, ..., xp (c) or reversed order xp, ..., X1 contribute to the average.

4.2 The speckle covariance

We have shown in Eq. (17) that the speckle covariance can be ex-
pressed as an integral over pairs of paths X! from i; to v; and ¥?
from iy to vy. Unlike the mean, there is no closed-form expression
for this integral. However, we can considerably simplify Eq. (17) by
characterizing the pairs of paths %!, %% for which its integrand

ez =R X pE) - &) (21)
is non-zero, as well as deriving a simple formula for cz:1 3. for those
pairs. Some of the arguments we use are discussed in Mishchenko
et al. [2006]. We formalize these arguments and extend them to
accurately account for both speckle covariance and, as we see below,
coherent back-scattering. Our end result is a path-integral expres-
sion for covariance that lends itself to Monte Carlo integration.

Valid pairs of paths. Intuitively, if we aggregate complex contribu-
tions ¢z 32 from different pairs of paths with very different phases,
they will likely average to zero. The exception to this argument is
cases where cz1 32 is not complex; this happens when every segment
Xj, — Xp4q that appears in X! also appears in 2.

Consider, as in Fig. 5(a), the set of path pairs %!,%? that have
an arbitrary number of vertices, but share only vertices xi, ..., Xp
(in any order). Then, as in Sec. 4.1, we expect all the different path
segments from x; to xp,; to average to the direct path between
these points. In App. A.2, we prove that indeed all path pairs with
disjoint vertices collapse to their joint vertices, and the average
contribution of all pairs of paths sharing vertices xi, ..., xp is

cqize = v(E) &) TID_ os(xp), (22)
where v(%) = v(xo > x)ITp_v(xp_1 = Xp = Xpyq).  (23)

The complex volumetric throughput terms v(-) combine the volumet-
ric attenuation of Eq. (19) with the complex throughput of Eqgs. (11)
and (12). They can be defined as

V(Xp—1 = Xp = Xpy1) = T(Xps Xpp1) - H(Xp—1 = Xp = Xpy1), (24)
v(xo — x1) = 7(x0,X1) - (X0 — X1). (25)

To recap, the complex volumetric throughput is the product of three
factors: (i) the volumetric attenuation 7; (ii) the complex transmis-
sion &, whose phase is proportional to the path segment length; and

(iii) the scattering amplitude function s due to change of direction
(for paths with B > 1). The different terms are summarized in Fig. 6.
We can therefore restrict the integration space of Eq. (17) to only
pairs of paths that share all vertices except, perhaps, their endpoints.
The contribution of such pairs, given by Eq. (22), is Markovian
and can be computed analytically. Next, we further constrain the
integration space, by examining when pairs of paths sharing the
same vertices but in different order have non-zero contribution.

Vertex permutations. We now consider the contribution of a pair
of paths sharing the same vertices x1, . . ., xg, but in different permu-
tations. The phase of the segment x;, — X3 is proportional to the
length of that segment. Permutations that do not trace the vertices in
the same order have segments of different lengths (Fig. 5b), and thus
different phases. Intuitively, as in Sec. 4.1, they are likely to average
to zero. However, for each ordered set of vertices x; — - -+ — xp,
there is one important permutation for which this argument does not
apply, as path segments have the same length: the reversed permu-
tation (Fig. 5¢ and 5d). Therefore, we need to consider contributions
from pairs involving four paths [Mishchenko et al. 2006],

% = ipox1—. . >Xg—Va,

(26)
17 = ijoxpo. . oxovy, X = hoxgo. . ox oV

%! = ij—ox;—>. . .>xEoV,

The reversed paths are the cause of the well-documented phenom-
enon of coherent backscattering, which occurs when measuring
backscattering from a dense scattering volume, with far-field coher-
ent illumination and sensing. When the illumination and sensing
directions are exactly equal, the scattered intensity is increased.
For intuition behind this effect, we first note that every particle
instantiation O that contains the path x; — --- — xp, also con-
tains the reversed path xg — --- — xy; that is, the forward and
reversed paths are not independent events. Consequently, their contri-
bution in Eq. (15) is (u(x) + p(EL")) - (u(x?) + p(&>"))* rather than
pEHEED) + pERH)pERNT)”. To appreciate the difference between
these two terms, we consider the case i; =iy = i, vy = vy = v. Ne-
glecting the scattering amplitude s for simplicity, the contribution
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of the forward and reversed paths becomes

10 + 4| = Eimma)Ex—v) + £l

B-1 z
Bt etg—xp )| - (27)
The shared intermediate segments have the same phase, therefore,
2 2
1) + 4| = [ xp—v) + Elimxp)EGa )|

_ eik(iTxl—VTxB) L eik(iTxB—vTxl) 2

=2+ 2Re (e"k(”v)r("l"‘B)) ) (28)

When i + v is large, the average of the real term in Eq. (28) over
all space points is low. However, when i ~ —v, as in coherent
backscattering, the real term approaches unity, and therefore the
total contribution is doubled. In other words, we get constructive
interference between the forward and reversed paths.

Covariance path integral. We can now state concretely our path
integral formulation for speckle covariance. Consider the space
P of sub-paths X = x; — --- — xp, where each vertex can be

everywhere in V,and B =0, ..., co. Then, we can write:
i,ip -5\ 1S i ip *
e, = ‘/]PC(X YdX® —my, - mi, . (29)

To define the integrand c(x*), we first form the four complete paths
of Eq. (26), by connecting the forward and reversed versions of X*
to the illumination and sensing conditions i, vi and iy, vy. Then,

c(x®) = Cz1 52 +Cq1 32+ Cgur 32 + CzLr g2, (30)

where the summands are defined in Eq. (22). By expanding the
equations, and considering that now the pairs of paths have identical
intermediate segments, we can rewrite this sum as

o&) = f) - vz 31 > in)oxp 1 = x5 V1)
+u(xp_1 = Xp —ipv(xz = x1 —>V1))
: (U(Xz — X1 —i2)v(Xp_1 = Xg —V2)
.

Fu(xp —xp o R X —v)) L G

where f(x°) is the standard radiometric throughput of X°, augmented
by the scattering coeflicients at the first and last vertices,

B-1 B
2 2 2
FG) =loGa—x)l® | ] o 1=xp—xp0) | ] o5(x5)
b=2 b=1

=05(X1)0s (XB)TZ(XL x2)

B-1
[ [ p@omi% - Toxpr1) (ks Xpan)os(xp). (32)
b=2

The connections corresponding to the four complex volumetric
throughput terms v in Eq. (31) are illustrated in Fig. 6, whereas f(x*)
is the radiometric throughput of the central segments (gray path in
Fig. 6). As we see in the next section, the radiometric throughput
term in Eq. (32) allows us to reuse path sampling algorithms from
intensity rendering also for covariance rendering.
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We note that Eq. (29) allows for B = 0. This corresponds to
an empty sub-path X°, and therefore to complete paths that go
directly from i to vj and from iy to vy, without shared vertices. As
a final simplification to Eq. (29), we note from Eq. (20) that the term
mi‘,l1 . mifz* is exactly equal to the contributions of these direct paths.
Therefore, we can remove this term from Eq. (29) by restricting
integration to the space Pgy1 of sub-paths of length B > 1:

CyR, = /P e(x%) dx°. (33)
Bx1

We make three observations about the path integral formulation
of Eq. (33). First, if we ignore the reversed paths, then the resulting
path-integral formulation is equivalent to what can be obtained from
the correlation transfer equation (CTE). We discuss this in App. A4,
and we also discuss how the Monte Carlo algorithms we derive in
the next section compare to Monte Carlo algorithms derived from
the CTE. In the evaluation of Sec. 6.1 we show that considering only
forward paths can provide a good approximation in many cases;
however, in cases where the sensor is close to collocated with the
source, we should consider reversed paths as well.

Second, at the start of this section, we argued informally that
pairs of paths with different permutations of xj,...,xp do not
contribute to covariance. In App. A.3, we discuss this in more detail,
and additionally show empirical evidence for ignoring these pairs.
Likewise, the results in Sec. 6.1 show that accounting for only the
forward and reversed path is accurate enough.

Third, it is worth considering the case of iy = iy = iand v; =
vy = v. Then, the sum of the covariance with the product of means,
C‘i,‘l’,i‘z,z + mi}l . mifz*, becomes equal to the intensity IL of Eq. (2).
If we ignore reversed paths, then the path contribution ¢(x*) of
Eq. (31) reduces to the standard radiometric throughput f(X) of the
complete pathx = i — X° — v. Likewise, after adding the product
of means to Eq. (33), we obtain for Ii a path-integral expression
that exactly matches the one derived from the volume rendering
equation [Dutré et al. 2006; Novak et al. 2018; Veach 1997]. When we
consider reversed paths, the resulting path-integral expression for
I will be different from the one obtained by the volume rendering
equation; the difference corresponds to the observation, previously
reported in the literature [Mishchenko et al. 2006], that the radiative
transfer and volume rendering equations cannot explain coherent
back-scattering. Our derivation suggests a straightforward way to
incorporate coherent back-scattering into existing volume render-
ing algorithms for intensity, by also considering the radiometric
throughput of reversed paths. Finally, the fact that our formulation
is consistent (up to coherent back-scattering effects) with the ra-
diative transfer equation provides further justification for ignoring
pairs of paths with different permutations of the same vertices.

5 MONTE CARLO RENDERING ALGORITHMS

We use the results of the previous section, to derive two Monte
Carlo rendering algorithms. The first algorithm directly computes
the speckle covariance, which we can use, together with an estimate
of the speckle mean, to sample multiple speckle patterns. The second
algorithm directly renders a speckle pattern, so that the empirical
mean and covariance of multiple renderings is accurate.
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Complex transmission: E(xp—oxXpa1)= %

Scattering amplitude function: s(Xp_1Xp - XpXpi1)

Complex throughput: H(Xp-1—Xp—Xpy1) = f(Xb—>Xb+1)s(m : X/hx-b:)
Volumetric attenuation: (Xp, Xpt1) = ¢~ 20t X6 =Xpu |

Complex volumetric throughput: V(Xp_1Xp—Xpy1) = T(Xp, Xy ) H(Xp_12Xp—Xp41)
Radiometric throughput: F(xp_1=Xp—Xps1) = 0s(Xp)|[V(Xp_1—=Xp—Xp41)|?

Fig. 6. Types of path contributions. Summary of notation and relationships between different throughput terms used in our Monte Carlo algorithms.

ALGORITHM 1: Monte Carlo rendering of covariance C11°2

Vi,V2©

> Initialize covariance estimate.
Set C = 0.

for iteration = 1: N do
>Sample first vertex of subpath.

Sample point x; ~ go(x1) .
Sample uniformly direction w;.
>Update covariance with single scattering path.
Update
C +=V - v(ip—x)v(iy—=x1—v)v(iz—%1) " v(iz—x1—v2)"
>Continue tracing the subpath.
>Sample second vertex of subpath.
Sample distance d ~ o;(x1)|7(x1, X1 + dwq) |2
Set pointx; =x1 +d - 1.
Set b = 2.
while x; inside medium do
> Update covariance with next-event estimation.

Update C += %(v(x2—>x1—>i1)v(xb,1—>xb—>v1)
+u(xb_1—>xb—>i1)v(x2—>xl—>v1))

'(U(X2—>X1—>iz)v(xb—1—>xb—>vz)
01X 1) 0 —x10v2) )
>Sample next vertex of subpath.
Sample direction wp ~ p(wp_1 - ®p).
Sample distance d ~ o4(xp)|7(xp, Xp + dwp)|?.
Set point X341 = Xp +d - @p.
>Account for absorption.
Sample scalar a ~ Unifl0, 1].
if a > 05(Xp+1)/0+(Xp+1) then
> Terminate subpath at absorption event.
break
end
Setb =b+1.

end

end
> Produce final covariance estimate.
-1
Update C = «;C.
return C.

5.1 Rendering speckle covariance

To approximate the covariance integral of Eq. (33), we use a strat-
egy that samples sub-paths x**" from a distribution g(x*:") defined
below. We then form a Monte Carlo estimate of the covariance as
N -
A 1 C(XS,H)
1,1l —
CV1,V2 N Z q(g’(s,n) + q()'&s,r,n) (34)

n=1

ALGORITHM 2: Monte Carlo rendering of Jx1 field u for {(i,v) j}]J.=1.

>Initialize field estimate.
Setu = 0.
for iteration =1: N do
Sample random phase ¢ ~ Unif]0, 1].
Set z = 271¢,
>Sample first vertex of subpath.
Sample point x; ~ go(x1).
>Update field with single scattering path.
Update Vj, uj +=z - \/g - v(ij—x)v(ij—x—v;)).
> Continue tracing the subpath.
>Sample second vertex of subpath.
Sample uniformly direction w;.
Sample distance d ~ o4(x1)|7(x1, X1 + dw1)|?
Set point x; = %1 +d - w1.
Set b = 2.

while x;, inside medium do
Sample random phase ¢ ~ Uniff0, 1].
Set z = e%7i¢

> Update field with next-event estimation.

Update
Vi, uj+=2z- \/g (U(X2—>X1%ij)U(Xb_l—>xb—>Vj)
+v(x2—>x1—>vj)v(xb,1—>xb—>ij)).
>Sample next vertex of subpath.
Sample direction wi ~ p(wp—-1 - Wp).
Sample distance d ~ o4(xp)|7(Xp, Xp + dwp)|%.
Set point Xp41 = Xp + d - @p.
> Account for absorption.
Sample scalar a ~ Unif]0, 1].
if a > 05(xp4+1)/0t(Xp+1) then
> Terminate subpath at absorption event.
break
end

Setb=0b+1.

end

end
> Produce final field with correct mean.

Update Vj, u; = mi,J] + 1l%uj.
return u.

The denominator of Eq. (34) is the sampling probability. As it is
possible to independently sample both the forward and reserved
version of a subpath, the total probability is g(X°) + q(X*°").

The variance of the estimator in Eq. (34) reduces when g(x*) ap-
proximates c¢(X*). As ¢(X®) in Eq. (31) is Markovian, that is, expressed
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as a product of the contributions of individual segments, it lends
itself to local sampling procedures. The sampling algorithm we use
operates as follows: We sample the first vertex x; according to the
volume density, using the probability distribution g, defined as:

@ with V= / os(x)dx. (35)
For a homogeneous volume, g, reduces to the uniform density. Then,
taking advantage of the fact that ¢(x°*) includes the radiometric
throughput f(x°), we sample all other vertices of X° using volume
path tracing [Dutré et al. 2006; Novak et al. 2018]. Finally, as we trace
is, we perform next event estimation, connecting each vertex to the
endpoints of the forward and reversed paths of Eq. (26), as shown in
Fig. 6. This process is summarized in Alg. 1, which also details how
to handle single-scattering subpaths consisting of only one vertex.
We note that, in a heterogeneous volume, the exponential sampling
of distances d in Alg. 1 is replaced with a tracking algorithm such
as Woodcock tracking [Kutz et al. 2017]. When i; = iz, vi = vy, this
algorithm reduces to the standard volume path tracing algorithm
for rendering intensity, except for the sampling of the first vertex
and the addition of reversed paths for coherent back-scattering.

The probability of a sampled sub-path X° sampled as above, and
its contribution in Eq. (34), become:

4 = LG, and

qo(x) =

c(x%) VX))
g&) +q®") ~ 2 f®)
After term cancellations, we end up with only the terms v(-) in
Eq. (31), for the four next event estimation connections in Fig. 6.

(36)

5.2 Rendering speckle fields

As discussed in Sec. 3, the space of speckle images follows a multi-
variate Gaussian distribution. Thus the mean and covariance provide
sufficient statistics, which we can use to sample physically-correct
speckle images, statistically indistinguishable from ones generated
through an exact solution to the wave equation. However, with this
approach, sampling an image of ] pixels, such that the statistics of
all pixels are consistent with each other, requires that we first render
an J X J covariance matrix. While this is significantly more efficient
than solving the wave equation, for large J values this can still be
costly. To address this, we present a second rendering algorithm
that can synthesize speckle images directly.

Our starting point is the following observation: Let C be the
J X J covariance matrix corresponding to all pairwise combinations
of J illumination and sensing conditions {(i, v); }11:1' Then, from
Egs. (33) and (31), we can write C as an integral of rank-1 matrices,

C= /P FES) - a®) - a*(Z) dxS, (37)

where: f(X°) is defined in Eq. (32), and a(X®) is a J X 1 vector with
Jj-th entry equal to the v(-) terms in Eq. (31) applied to i; and vj,

aj(x*) =(v(x2 — X1 = ij)u(xp-1 = X — V;)
+v(xp_1 — Xp — ijv(xz = x1 — VJ')). (38)

Sampling a J X 1 field u from a multivariate Gaussian with a
covariance as in Eq. (37) can be done by first initializing u to the
zero vector, then repeating the following: (i) Sample a subpath X°
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as in Alg. 1. (ii) Sample a complex number z of unit magnitude and
random phase. (iii) Increment u by \/% . \/g -z-a(x®) (where \/V /2
is the square root of the scale in Eq. (36)). This is summarized in
Alg. 2, which also shows how to handle single-scattering subpaths.
We elaborate on two details of the above procedure: First, a single
sample drawn according to Alg. 2 has the right covariance, but may
not follow a Gaussian distribution. By averaging multiple samples,
the central limit theorem implies that their average will converge
to a Gaussian distribution. To keep the total variance of the average
independent of the number of samples N, we scale each sample by
V1/N. Second, we draw the random variable z to ensure that the
mean of the samples is zero; we subsequently add the desired mean
(computed as described in Sec. 4.1) to the final estimate.

Relationship to path tracing. Like Alg. 1, Alg. 2 is also closely re-
lated to volumetric path tracing for rendering intensity: The weight
v is a complex square root of the next-event-estimation weight used
for intensity. We can see this from Eq. (24), where v is defined as
the product of: (i) the amplitude function s, which is the complex
square root of the phase function p; (ii) the volumetric attenuation r,
which is the square root of the volumetric attenuation for intensity;
and (iii) the unit-magnitude transmission &.

We note, however, a critical difference: In Alg. 2, every sampled
subpath is used to update all sources and sensors. This is the key
for generating speckle images with accurate second-order statistics,
and is the fundamental difference with previous speckle render-
ing algorithms [Sawicki et al. 2008; Xu 2004]. As those algorithms
update different pixels independently, they cannot reproduce corre-
lations between pixels or across different illumination conditions.
We demonstrate this in Sec. 6.1.

6 EXPERIMENTS AND APPLICATIONS

We perform three sets of experiments. First, we validate the accuracy
of our algorithms by comparing with a wave equation solver. Second,
we use our algorithms to quantify the memory effect. Third, we
reproduce computational imaging techniques based on that effect.

6.1 Validation against a wave-solver

To validate our rendering algorithms, we compare their outputs with
“groundtruth” obtained as in Eq. (6), by first solving the Helmholtz
equation for multiple scatterer configurations, and then computing
the empirical statistics of the resulting scattered fields.

Wave equation solvers. We experimented with two types of solvers,
both of which are well-established in the optics literature as accurate
simulators that can be used to validate experimental measurements,
albeit with very high computational cost. The first type of solvers
are based on finite-difference time-domain (FDTD) methods [Treeby
and Cox. 2010; Yee 1966], which voxelize the simulated volume at
a sub-wavelength resolution, and have memory and computation
complexity that scales with the size of the resulting grid. This makes
FDTD solvers unsuitable for our experiments, which require vol-
umes of linear dimension at least an order of magnitude larger than
the wavelength, due to the far-field assumption for scatterers and
our desire to model multiple scattering.
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Fig. 7. Coherent back-scattering (CBS). We used a 1004 x 1002 target
with OD = 2 to validate CBS, and simulate Intensity as a function of sensor
angle. (a) In the far-field case, when including both forward and reversed
paths (red), our algorithm closely matches the intensity of the wave solver
(blue). Neglecting reversed paths (orange) results in a mismatch at the exact
back-scattering direction. (b) In the near-field case, due to the absence of
CBS, both versions of our algorithm agree with the wave solver.

The second type of solvers use the integral version of the Helmholtz
equation, and have a complexity that scales with the number of scat-
terers rather than volume size. This is significantly more efficient
for our setting, though the complexity is still cubic in the number
of scatterers. Therefore, even integral solvers become impractical
for volumes with more than a few thousand scatterers. As an addi-
tional advantage, integral solvers produce higher-quality solutions,
because of better boundary-handling properties. For our validation
experiments, we use the p-diff toolbox [Thierry et al. 2015], which
is restricted to 2D volumes. Consequently, the experiments of this
sub-section are all performed in 2D. We emphasize that this is for
this sub-section only, and that the experiments of Secs. 6.2 and 6.3
are performed using full 3D simulations.

Coherent backscattering. Fig. 7 demonstrates coherent backscat-
tering intensity, rendered using our algorithm with iy = iz, vi = va.
We use a target of size 100Ax 100, with a mean free path of 501, lead-
ing to an optical depth (that is, average number of scattering events)
OD = 2. We simulate far-field sensors through all 360° around the
target, and near-field sensors located on a 360° circle of diameter
2004 around the target. We compare the mean speckle intensity
obtained from the electromagnetic solver with our Monte Carlo al-
gorithm, considering forward and reversed paths, and with a simpler
algorithm considering only forward paths derived in App. A.4. For
far-field sensors, we see that when the viewing direction approaches
the inverse of the illumination direction, a narrow peak in bright-
ness occurs, which is the manifestation of coherent backscattering.
This peak is not predicted when using forward-only paths, but is
indeed explained when using both forward and reversed paths. For
near-field sensors, coherent backscattering is less pronounced and
the outputs of two Monte Carlo algorithms are closer to each other.

Memory effect. In Fig. 8, we show simulated covariance matrices
for a target of size 201 X 204 at OD = 2 and 0.5. The particles have a

radius of 0.48, and their phase function is computed using Mie the-
ory. We visualize covariance matrices of a target illuminated by two
plane waves, measured at the far-field over 360° viewing directions.
In the covariance matrices, the memory effect is evident by the fact
that, for small angles (e.g., i = 1" in Fig. 8), the strongest correlation
is obtained at a diagonal that is offset from the main diagonal, and
the offset increases with the illumination angle difference. When
the angle difference is large (e.g., i = 20 in Fig. 8), the classical
version of the memory effect no longer holds and the covariance is
no longer a shifted diagonal. However, we can still observe some
correlation along a curved set of viewing directions. To the best of
our knowledge, such correlations have not yet been explored, and
provide an exciting direction of future research. In particular they
may allow for expanding the angular range of existing computa-
tional imaging techniques relying on the memory effect. We note
also that, while the shape of the correlation curve is consistent, its
exact value is a function of density, as seen from the two optical
depths simulated in Fig. 8.

Runtime comparison. Figs. 7 and 8 show that our Monte Carlo
algorithms provide accurate predictions of speckle correlations,
while being orders of magnitudes more efficient than the wave
solver. To quantify the performance difference, in the example of
Fig. 8, simulating the covariance with the wave solver approach
took six hours on a 50-core cluster, using the p-diff solver [Thierry
et al. 2015]. By contrast, our Monte Carlo algorithm produced the
same estimate in 45 minutes on a single core, using an unoptimized
Matlab implementation. The difference in performance becomes
even more pronounced as the number of scatterers increases.

Field samples. We use Alg. 2 to sample multiple speckle fields,
shown in Fig. 1, for target size and densities equivalent to the setup
of Fig. 8 at OD = 2. We use these to compute an empirical covari-
ance, shown n Fig. 9, which is in agreement with the covariance
rendered directly using Alg. 1. We also compare with the “electric
field Monte Carlo” (EMC) speckle rendering algorithm [Sawicki
et al. 2008; Xu 2004]. This approach extends standard volumetric
path tracing, by using the length of traced paths as complex phase.
Its main difference with our algorithms is that each sampled path
is used to update only one sensor point, and therefore different
illumination and viewing directions are updated independently. As
a consequence, while this approach can accurately render intensity
and even simulate coherent backscattering, it cannot reproduce spa-
tial correlation. We note, though, that while EMC also focuses on
modeling polarization correctly, we do not account for polarization.

6.2 Quantifying the memory effect of speckles

As discussed in Sec. 1.1, the memory effect of speckles has been at
the core of imaging techniques for a diverse range of applications,
including seeing through tissue and around corners. Because of its
wide applicability, understanding the range of illumination, viewing,
and material conditions which result in high correlation between
speckles is an active research area in optics.

There have been multiple attempts [Berkovits and Feng 1994;
Fried 1982; Osnabrugge et al. 2017] to derive closed-form expressions
for speckle correlation. The complexity of multiple scattering means
that this is only possible under various assumptions, which limit
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Fig. 8. Validating covariance rendering. Covariance matrices for illumination with two different plane waves, imaged at the far-field over viewing directions
spanning 360°. Matrices rendered with Alg. 1 (rows 1 and 3) closely match those from a wave equation solver (rows 2 and 4). The covariance matrices
demonstrate the memory effect for four different pairs of illumination angles and two different optical depths.

the approximation accuracy and the applicability of the resulting
expressions. We state below a commonly-used result [Akkermans
and Montambaux 2007; Feng et al. 1988] that is derived under a
diffusion (that is, high-order scattering) assumption:

(kOL)?

) ~ 2
© sinh2(kOL)

(39)

ACM Trans. Graph., Vol. 38, No. 4, Article 39. Publication date: July 2019.

where 0 is the angle between illumination and viewing directions, L
is the material thickness, and C(6) is the correlation between inten-
sity images (rather than complex fields) I, and Ii*? . The correlation
of Eq. (39) decays to zero exponentially fast as soon as k6L > 1,
hence the angular range at which the memory effect is valid is pro-
portional to 1/(kL). We discuss later in this section how the Monte
Carlo formulation can help understand this result.
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Fig. 10. Quantifying the memory effect. We compare analytical (dash) and numerical (solid) calculations of the correlation C(0) as a function of angle
0. (a) Varying OD in a forward-scattering configuration for a material with isotropic phase function g = 0. For high OD, the computed correlation agrees
with diffusion theory. As OD decreases, the range of the memory effect increases. (b) Varying albedo in a back-scattering configuration with a fixed g and
OD. The memory effect range increases for highly absorbing materials. (c) Varying the anisotropy parameter of the phase function in a forward-scattering
configuration with fixed OD. The memory effect range increases with g. (d) Validating similarity theory for g-MFP parameter pairs with constant ratio
(1 — g)/ MFP. Materials that are equivalent under similarity theory lead to similar, but not identical, correlation curves. (e) Varying the shape of the phase
function. Mixtures of HG phase functions with fixed zero average cosine can still lead to different correlation curves.

The diffusion assumption used to derive Eq. (39) means that the
formula applies only when the average number of scattering events
on a path is large. However, empirical observations suggest that, in
practice, the memory effect is valid through a much wider range. A
few scenarios that have been observed to increase this range are (i)
an average number of scattering events that is lower than the diffu-
sive regime, (ii) absorption, (iii) forward scattering phase functions
[Schott et al. 2015]. Forward scattering is particularly important in
practice, as tissue is known to be highly forward scattering and is
usually described by an Henyey-Greenstein (HG) phase function

with anisotropy parameter g € [0.85 — 0.95]. Given the lack of ana-
lytic formulas and the practical importance of the problem, there
have been multiple attempts to empirically measure the range of
the memory effect of materials of interest in the lab [Mesradi et al.
2013; Schott et al. 2015; Yang et al. 2014].

Our Monte Carlo algorithm can compute the expected correla-
tions directly, without the need for approximations or lab measure-
ments. We note first that our Monte Carlo algorithm computes
correlations of complex fields while Eq. (39) evaluates intensity cor-
relations. However, field correlations can be easily converted to
intensity correlations using 2|Ci}1’,if,2 2 Additionally, correlations are
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Fig. 12. Sampling speckle images. We use different illumination angles (at shifts of A = 0.0025°) and anisotropy parameters g. In the top three rows, we
show images rendered with Alg. 2, where we can observe the memory effect: For g = 0, the correlation is lost at a shift of 3A, whereas for g = 0.9, correlation
remains even at shift of 10A. In the bottom row, we show images rendered with the EMC algorithm [Xu 2004], where each view is sampled independently.

computed as a function of simple parameters such as sample thick- (MFP) values. For a high optical depth, the correlation computed
ness, and material o, o5 and phase function. In Fig. 10, we show by our algorithm agrees with the theoretical formula of Eq. (39),
numerical simulations of the expected correlation as a function of and as the optical depth decreases, the range of the memory effect
angle 0. In Fig. 10a we use a forward scattering configuration, a sam- increases. In Fig. 10b we simulate a backscattering configuration
ple of thickness L = 1 mm at illumination wavelength A = 500 nm, for fixed g = 0, MFP = 0.1 mm, o; = 1/MFP, and varying albedo

04 = 0, isotropic phase function g = 0, and varying mean free path
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os/ot. As expected, the memory effect is stronger as absorption in-
creases (albedo decreases), as absorption attenuates the contribution
of longer paths to the measured fields.

In Fig. 10c we keep the thickness and mean free path fixed to
L = 1mm, MFP = 0.1 mm, and vary the anisotropy parameter g of
the phase function. In agreement with previous empirical observa-
tions [Schott et al. 2015], increasing g increases the transport mean
free path, and thus the memory effect range expands. In Fig. 10d
we investigate another common analytical approximation, the so-
called similarity theory [Wyman et al. 1989; Zhao et al. 2014], which
states that scattering coefficients and phase functions satisfying
0:(1 - g*) = 05(1 — g) should produce similar scattering measure-
ments. Using L = 1mm, o, = 0, we set at g = 0 a mean free
path of MFP = 250 ym (leading to OD = 4), and then vary g and
os = 0; = 1/MFP while maintaining the similarity relation. The
graphs in Fig. 10d show that similarity theory is reasonably accurate,
though low g values have a somewhat heavier tail. Finally in Fig. 10e
we simulate a mixture of two HG phase functions whose mean co-
sine is always set to 0. We can see that the exact shape of the phase
function influences the memory effect, and two phase functions
with the same mean cosine can lead to very different decay graphs.

In Fig. 11 we study how the memory effect changes as a function
of wavelength. In Fig. 11a we used particles of radius 10 nm, for
which the cross-section varies with wavelength, and as a result the
mean free path varies with wavelength as well. In Fig. 11(b-c) we
used bigger particles of radius 10 ym and set the density to achieve
OD = 20 and OD = 50 respectively. As the phase function of such
large particles is very forward scattering, the transport mean free
path is much larger than the mean free path, and the thickness of the
material is only two transport mean free paths for Fig. 11b and five
transport mean free paths for Fig. 11c. We can see that the memory
effect range varies with wavelength. When the transport mean free
path is sufficently smaller than the target thickness, the graphs
approach the theoretical prediction by the diffusion approximation.

Sampling speckle images. In Fig. 12 we use the sampling algorithm
of Sec. 5.2 to sample speckle images as seen from a sensor at infinity
over a viewing range of 0.1°, when the illumination direction is
shifting (from 0° to 0.025°, at A = 0.0025° intervals). As can be seen,
these images reproduce the memory effect: For small changes in illu-
mination angle the speckles appear as shifted versions of each other.
When the illumination angle difference increases, the correlation de-
cays. We show this simulation for a few anisotropy parameters g and
as illustrated in Fig. 10c, when the anisotropy increases the memory
effect can be observed over a wider angular range. In the last row
of Fig. 12 we show simulations using the electric field Monte Carlo
approach [Sawicki et al. 2008; Xu 2004], which updates different
viewing and illumination directions independently. We observe that
no joint speckle statistics are produced and the resulting images
appear as independent noise.

Understanding the memory effect bounds. Before concluding this
section, it is worth mentioning that our path integral formulation
can provide an intuitive way to understand the memory effect range
derived in Eq. (39). Consider two pairs of illumination and viewing
directions iy, i, v1, v2 s.t. i1 — iz = vi — V2 = o, and consider a path
starting at x; and ending at xg. Dropping attenuation, the phase
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Fig. 13. Reproducing the seeing-through-scattering algorithm of
Katz et al. [2014]. A set of illuminators with the arrangement at the top of
(a) generates a semi-random speckle image, yet the auto-correlation of the
speckle image is similar to the auto-correlation of the original illuminators
and hence the illuminators can be recovered from the speckle image using
phase retrieval algorithms. In (b,c) we show the auto-correlation and the
corresponding reconstruction for different material parameters simulated
with our speckle renderer. The success of the algorithm depends on the
validity of the memory effect in this angular range for each type of material.

contributed by this path to the correlation is

eik((ii—iz)x1—(vi—v2)xB) _ ,ikw(x1-xB) (40)

If this complex number can have highly varying phases, than sum-
ming over multiple random paths averages to zero. The different
paths interfere constructively only if the phase difference is neg-
ligible, roughly when k|w||x; — x| < 1. Intuitively, the average
distance between an entrance point and an exit point on the tar-
get scales with the target depth, and it is reasonable to expect that
E[|x1 —xpl] is proportional to L. This implies that the memory effect
holds when k|w|L < 1, in agreement with Eq. (39).

6.3 Seeing-through-scattering application

To demonstrate an application of speckle correlations, we repro-
duced the algorithm of Katz et al. [2014]. This algorithm attempts to
recover a set of incoherent light sources located behind a scattering
layer. Remarkably, due to the memory effect, the auto-correlation
of the speckle image should be equivalent to the auto-correlation of
light sources positions. Thus, given the seemingly random speckle
image, one can recover the position of light sources behind it by ap-
plying an iterative phase retrieval algorithm [Fienup 1982]. In Fig. 13
we show the result of this reconstruction applied on speckle images
rendered with Alg. 2. We use two of the materials in Fig. 10c, with
anisotropy parameters g = 0.85, g = 0.9. The hidden source is placed
over an angular range of 0.0125° = 5A. As evaluated in Figs. 10c
and 12, for this angular range the correlation for g = 0.9 is high, but
for g = 0.85 we are already outside the memory effect range. Indeed
the g = 0.9 speckle auto-correlation at the bottom of Fig. 13b is
almost equivalent to the source auto-correlation (Fig. 13a[bottom]),
while the auto-correlation of speckles rendered with g = 0.85 is
darker due to the lower correlation (Fig. 13c[bottom]). As a result,
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phase retrieval with the g = 0.9 speckles provides a good recon-
struction of the original illuminator arrangement (Fig. 13b[top]). For
g = 0.85 (Fig. 13c[top]) only a cropped version of the illuminator
pattern is recovered (along with background noise), as within this
subset of illuminators the angular differences are smaller and the
correlation is stronger. Experiments of this kind can be used to eval-
uate the applicability of the imaging technique of Katz et al. [2014]
under different conditions, and to select optimal values for various
parameters involved in an optical implementation of the technique.

7 SINGLE-SCATTERING APPROXIMATION

Before we conclude, we report an interesting property of speckle
covariance, which can be used to accelerate its estimation under
certain illumination and imaging conditions.

When simulating covariance using Monte Carlo rendering, we can
separate contributions from paths of different numbers of bounces B.
For example, in Fig. 14, we show simulations for a cube volume V' of
dimensions 1004 X 1004 x 1004, and with OD = 5, resulting in strong
multiple scattering. We simulate the covariance for multiple pairs
of illumination and imaging sets satisfying i — vi — (iz — v2) = o,
for some target 3D vector w. In each simulation, we decompose the
rendered speckle covariance into two components, one accounting
for contributions from paths that scattered once (B = 1), and another
accounting for paths that scattered two or more times (B > 2).
Within each rendered covariance matrix, the bottom left corner
corresponds to rendering intensity.

We observe that, for the intensity case, the multiple-scattering
component is dominant. By contrast, for cases where the differ-
ence between the two illumination or the two viewing directions is
more than some small amount, the multiple-scattering component
becomes negligible. This happens because, as the angle difference
becomes large enough to bring us outside the range of the memory
effect, multiply-scattered paths have complex contributions with
randomly-varying phase, and therefore average to zero.

We conclude that, when the imaging and illumination conditions
are such that we are outside the memory effect range, speckle covari-
ance can be computed using only single scattering. Namely, from a
short derivation we can obtain the formula:

C\i,ll”i‘%z =s(iy - vq)s(iz - Vz)*fv gs(X)eik((il*Vl)*(iz*vz))'xn(x) dx, (41)

where n(x) = 7(x, i1)7(x, v1)*7(x, i2)*7(xX, v2). This integral can be
evaluated much more efficiently than that of Eq. (33), without the
need for expensive path tracing algorithms.

The above discussion indicates that, whenever we are outside the
memory effect range, we can accelerate the computation of speckle
covariance by using the single-scattering approximation, without
significant loss in accuracy. This is analogous to the use of the single-
scattering approximation for accelerating intensity rendering [Sun
et al. 2005; Walter et al. 2009], with an important difference: In the
case of intensity the single-scattering approximation is valid only for
very optically-thin volumes [Narasimhan et al. 2006]. By contrast,
in the case of covariance, the approximation can be accurate even
for optically thick materials, given appropriate illumination and
viewing conditions, making it more broadly applicable.
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8 DISCUSSION

We presented a path-integral formulation for the covariance of
speckle fields generated by the interaction of coherent light with
scattering volumes. Using this formulation, we derived two Monte
Carlo rendering algorithms, one for directly estimating covariance,
and another for directly generating speckle patterns. As we demon-
strated in Sec. 6, our algorithms provide a unique combination of
physical accuracy (closely matching solutions of the wave equation,
reproducing known physical phenomena such as memory effect
and coherent backscattering), computational efficiency (outperform-
ing wave equation solvers by orders of magnitude), and parsimony
(using only bulk macroscopic parameters of a volume, instead of
requiring knowledge of its microscopic structure). We conclude the
paper with a discussion of limitations and possible future directions.

Both of our Monte Carlo rendering algorithms share strong simi-
larities with Monte Carlo volume rendering algorithms for intensity,
and in particular volumetric path tracing. This facilitates integra-
tion into popular physically-accurate rendering engines [Jakob 2010;
Pharr et al. 2016], and reusing existing technology for efficient imple-
mentations. Likewise, existing results about the computational and
theoretical properties of volumetric path tracing should be straight-
forward to apply to our setting. We should highlight, however, an
important difference with the intensity case: The endpoints of each
sampled path are connected to multiple light sources and sensors.
This makes it challenging to importance-sample the first vertex and
direction when starting to trace a path, which in turn can result in
high variance in the resulting renderings. For example, in a material
with a very forward-scattering phase function, we can select the
first vertex and direction by importance-sampling at most one of the
sensor or source connections; consequently, most other connections
will produce paths of close-to-zero contributions.

A way to ameliorate this issue can be to apply to the speckle
rendering setting variance reduction techniques that have been suc-
cessful for intensity rendering. For example, multiple importance
sampling [Veach and Guibas 1995b] can be used to reduce variance
when the start of a path is sampled based on only one out of many
source and sensor connections. More generally, it will be important
to investigate path sampling techniques algorithms better suited
to speckle rendering. To this end, we hope that our path-integral
formulation for speckle covariance can provide the theoretical foun-
dation for these investigations, analogous to how the path-integral
formulation for intensity spurred the invention of algorithms such
as bidirectional path tracing [Veach and Guibas 1995a] and Metropo-
lis light transport [Veach and Guibas 1997]. In particular, we observe
that our formulation is reciprocal, and therefore lends itself to the
development of bidirectional, or even multidirectional for multiple
sources and sensors, path sampling algorithms.

Despite their ability to accurately model first and second-order
statistics of volumetric speckle, our theory and algorithms currently
do not take into account wave effects that are likely to be impor-
tant in real-world imaging situations. Namely, our path integral
formulation ignores refraction and reflection events at the scat-
tering volume’s interface. While perfectly smooth interfaces can
be incorporated into our formulation exactly analogously to stan-
dard Monte Carlo volume rendering, handling rough interfaces is
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Fig. 14. Decomposing speckle covariance by number of bounces. We simulate the covariance of multiple illumination and viewing configurations
satisfying iy — vi — (iz — v2) = , and plot contribution of single and multiple-scattering paths to the covariance as a function of two angles, « =
min(Z£(iy, i2), £(v1, v2)), f = min(£(i1, v1), £(iz, v2)). The multiple scattering term reduces to zero as soon as one of the above angular differences increases.

non-trivial due to the need to account for diffraction and speckle
from surface events [Bergmann et al. 2016; Cuypers et al. 2012;
Werner et al. 2017; Yan et al. 2018]. Additionally, our theory and
algorithms cannot operate in scattering volumes that do not satisfy
the assumptions of classical radiative transfer (Sec. 3). There is, by
now, considerable literature extending Monte Carlo volume render-
ing to, for example, discrete random media with large and dense
scatterers [Moon et al. 2007]; anisotropic media where scattering
is not rotation-invariant [Jakob et al. 2010]; and non-exponential
media where the locations of scatterers are not independent of each
other [Bitterli et al. 2018]. All of these works focus exclusively on in-
tensity rendering, and it would be interesting to investigate how to
extend their techniques to the speckle rendering setting. Finally, our
framework assumes unpolarized and fully-coherent illumination.
Incorporating polarization effects into our framework can be done
using existing techniques for both intensity [Jarabo and Arellano
2018] and speckle [Sawicki et al. 2008; Xu 2004] rendering. Account-
ing for partial coherence has received some attention [Pierrat et al.
2005; Shen et al. 2017], and these works can provide inspiration for
developing similar extensions of our framework.

In this paper we chose to focus on spatial speckle correlations.
However, this is only one of many other classes of second-order
speckle statistics. For example, when the same volume is imaged
under coherent illumination of different wavelengths, the resulting
speckle patterns exhibit cross-wavelength correlations. This is a
correlation property that so far remains relatively unexplored. As
another example, speckle patterns in images of the same volume
captured over time exhibit temporal correlations, due to moving
scatterers in the volume [Dougherty et al. 1994]. These temporal
correlations have found widespread use in techniques such as dy-
namic light scattering [Berne and Pecora 2000] and diffusing wave
spectroscopy [Pine et al. 1988]. Even outside of volumes, speckle
patterns due to surface microgeometry exhibit correlation proper-
ties analogous to the memory effect in volumes [Goodman 2007],
with applications in non-line-of-sight imaging [Katz et al. 2012].
We hope that our results will motivate the development of analo-
gous theoretical and simulation tools for these types of correlations.
We expect that such tools can help broaden our understanding of
speckle correlation effects, and extend their applicability to imaging
applications. For instance, our rendering algorithms allow us to
study the spatial memory effect and related applications in cases

where common assumptions (diffusion, Fokker-Planck limit [Os-
nabrugge et al. 2017]) do not hold. Likewise, rendering algorithms
for temporal correlations can allow extending related applications to
cases where the common assumption of Brownian motion of scatter-
ers is invalid [Duncan and Kirkpatrick 2008]. Finally, the ability to
render physically-accurate speckles can facilitate incorporating ma-
chine learning techniques into related imaging applications, where
the collection of training data has been a major burden.

Last but not least, the findings of Sec. 7 suggest that measuring
and rendering speckle covariance holds promise for inverse render-
ing applications. The fact that speckle covariance measurements are
dominated by single scattering for a much larger class of materials
than intensity measurements can potentially drastically simplify the
volumetric inverse rendering problem, e.g., by potentially allowing
us to replace the complex differentiable rendering of Gkioulekas et
al. [2016; 2013] with simple analytic algorithms of Narasimhan et
al. [2006]. In addition to simplifying computation, it will be interest-
ing to examine whether speckle covariance measurements can be
used to relax previously reported ambiguities between scattering
parameters [Wyman et al. 1989; Zhao et al. 2014].
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A APPENDIX
A.1  Dealing with multiple particle types

In the main paper, we assumed, for simplicity, particles of a single
type. We now show that, with small adjustments, our formulation
can be extended to mixtures of particle types. We index particles of
each type with a subscript 1. For each particle type i, we assume we
are given a, possibly spatially varying, density ¢,(x). We also denote
its scattering and absorption cross-sections by c; ;, ¢q,;, its radius
by r,, and its (normalized) scattering amplitude function by s,.

We start by defining the bulk scattering parameters, resulting
from the mixture of particle types. Then, we revisit some equations
in the main text that need to be adjusted for the case of multiple
particle types. We denote by N, (x) the mean number of particles of
type ¢ in the unit volume at x. For spherical particles, this equals

6(x)

N,(x) = )
) 4/37r3

(42)

To account for the fact that we use normalized amplitude and phase
functions, we define the total scattering and absorption coefficients
05, 0q as the expected energy scattered or absorbed from all particles
in a unit volume, which becomes,

os(x) = Z Nl(x)cs,h oa(x) = ZNt(X)Ca,t + o_{rlned’ (43)

where o is the attenuation coefficient of the containing medium.

The extinction coefficient o7 is 0y = 05 +0,. We will need to consider
the bulk outer product of amplitude functions, defined as:
SO0 = 3 fis(005:(0)° with fi = —=T (4
1 2 s Ny

The phase function can be defined as a special case of the above,
p(0) = 5(8, 0). The reason why the product of scattering amplitude
functions at two angles is defined via Eq. (44) and not as s(61)s(62) is
because, when two paths scatter at the same point, their scattering
is also due to the same particle of a single type.

To see how S(61, 62) becomes relevant for speckle rendering, we
first introduce the notation

Y(w1, w2) = X0 — (X1,X2)) =

Zﬁlvl(wl — Xo — X0 (w2 = X — X2)7, (45)
L
where v,(-) is the equivalent of the complex volumetric throughput
v(-) of Eq. (24), but with the amplitude function of particle type i

v(@j—Xe—X;) = T(Xo, Xj)E(Xg=%})s (@] - XoX]). (46)

The term Y((w1, w2) — Xo — (X1, X2)) replaces all terms of the
form v(w; — X0 — x1)v(w2 — X, — X2)* in the definition of
the speckle covariance in Sec. 4.2. The resulting changes to the
corresponding covariance rendering algorithm of Sec. 5.1 are sum-
marized in Alg. 3. Effectively, Y(-) accounts for the fact that, when
two paths scatter at the same location, they interact with the same
particle of a single type, so the same s, should apply to both paths.
Finally, we discuss how to adjust Alg. 2 for directly sampling
a speckle image, for the case of multiple types of particles. The
covariance in Eq. (37) for the multiple type case becomes:

C= [16) Y ubu a0 a G @)

L1, 12

and Eq. (38) becomes:
a, j(X°%) =(UL(X2 — x1 = ij)v(xp-1 = X — V)

+v,(xg-1 — xg — ij)v(x2 — x1 — Vj))« (48)

Therefore, for every vertex sample, we should also sample a particle
type 1 ~ f,. We summarize the changes in Alg. 4.

A.2 Integrals in path space

Our goal in this section is to derive expectations of path contribu-
tions and justify Eq. (22). To analyze the path contributions, we will
divide the space of all path pairs X1, X3 from iy, iz to vy, v into sets
defined by the vertices they have in common. Let X* = {x1,...,xp}
denote a set of vertices and %P1, %52 two possibly different per-
mutations of these vertices. We look at the set of all paths that share
exactly the vertices in X° in orders Py, P, orders:
L(;(S’Pl , )_ES’PZ) —
ELEY) | ={i1—. . Xp (1) . —Xp,(B) - V1) (49)

-2 . ’
X" = {12—?. . .—>sz(1)—>. . .—>XPZ(B)—>. . .—>V2}

where any occurrence of . .. in Eq. (49) can be replaced with any
sequence of vertices, as long as they are different from each other.
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ALGORITHM 3: Monte Carlo rendering of covariance Cl1-i2

Vi,V2©

> Initialize covariance estimate.
Set C = 0.
for iteration =1: N do
> Sample first vertex of subpath.
Sample point x; ~ go(x1) inside medium.
Sample uniform direction w;.
>Update covariance by single scattering path
Update C += Vu(i;—x1)v(iz—x1) Y ((i1, i1)—>x1—(v1, v2)).
>Continue tracing the subpath.
>Sample second vertex of subpath.
Sample distance d ~ o4(x1)|7(x1, X1 + dew1)|?.
Set point x; = X1 + d - 1.
Set b = 2.
while x;, inside medium do
>Update covariance with next-event estimation.
Forward-only version:
Update C += %Y(xz—)xla(il, i)Y (xp_1—xp—(V1, V2)).
Or, forward and reversed version:
Update C += ¥ (Y0g—x1(i1, 12))Y(xp 1 =% (v1, v2))
Y (x2—x1 (i1, v2)) Y (X1 2% p—(v1, i2))
Y (xa—x1(v1, 12)) Y (xp-1 2% p (i1, v2))
Y (x2—x1 (v, v2)) Y (Xp—1—%Xp (i1, 12)) )
>Sample next vertex of subpath.
Sample direction wp ~ p(Wp_1 - wp)
Sample distance d ~ o4(xp)|7(Xp, Xp + dwp) %
Set point Xp41 =Xp +d - wp.
> Account for absorption.
Sample scalar a ~ Unif]0, 1].
if a > 05(xp41)/0t(Xp41) then
> Terminate subpath at absorption event.

break
end

Setb=0b+1.

end
end
> Produce final covariance estimate.
41
Update C = 5 C.
return C.

With this definition, we can divide the space of all paths %!, %2
into disjoint sets. We now argue that the throughput contribution
from each set L(5F1, %5-F2) averages to the volumetric throughput
contribution of the direct paths %1, %5P2. To show this, we first
use the notation b} = Pl_l(b) -1,bf = Pl_l(b) + 1 for the vertices
before and after x; in the permuted sequence P, and similarly
by =P, (b) - 1,b] = P, '(b) + 1 for P,.

Craim 1.

/ pELEFEUE?) =
(%1,x%)eL(x>P1,%5-F2)

B B
[ [ 5P [ Jost), (50)
b=0

b=1
with X (X7, %5P2) = Y((xprs xp7) = xp = (x5, %p2)). - (51)

PRrOOF. Let us start by drawing an independent set of B vertices
X1, . .., XB. According to the target density, the probability for these

ACM Trans. Graph., Vol. 38, No. 4, Article 39. Publication date: July 2019.

ALGORITHM 4: Monte Carlo rendering of Jx1 field u for {(i,v) j}]].=1.

>Initialize field estimate.
Setu = 0.
for iteration =1: N do
Sample random phase ¢ ~ Unif]0, 1].
Set z = 2714,
>Sample first vertex of subpath.
Sample point x; ~ go(x1).
Sample particle type 1 ~ S,.
>Update field with single scattering path.
Update Vj,u; +=z - \/g v, (ij—x)v, (1j—x1—v)).
> Continue tracing the subpath.
>Sample second vertex of subpath.
Sample uniformly direction ;.
Sample distance d ~ o;(x1)|7(x1, X1 + dwy)|?.
Set point x; = X1 + d - w1.
Setb =2
while x;, inside medium do
Sample random phase ¢ ~ Unif0, 1].
Set z = e?7i¢,
Sample particle type 1 ~ f,.
>Update field with next-event estimation
Forward-only version:

Update Vj, u; +=z - %v,(xz—>x1—>ij)vl(xb_1—>xk—>vj~),
Or, forward and reversed version:
Update
Vi, uj+=2z- \/g(v,(x2—>x1—>i_,-)v,(X;,,1—>xb—>v‘,-)
+U,(x2—>x1—>vj)v,(x;,,1—>x,,—>ij)>.
>Sample next vertex of subpath.
Sample direction wp ~ p(wp—_1 - ®p).
Sample distance d ~ o4(xp)|7(Xp, Xp + dwp) >
Set point Xp41 = Xp +d - @p.
> Account for absorption.
Sample scalar a ~ Unif]0, 1].
if a > 05(xp41)/0t(xp1) then

> Terminate subpath at absorption event.

break
end

Setb=b+1.

end

end
> Produce final field with correct mean.

Update Vj, u; = m:,jj + AU
return u.

particles is the last term of Eq. (50), ngl os(xp). For each position
Xp, we draw a particle type «(b) ~ fB,. Given the type of all particles
on the paths, we decompose the path probabilities.

Let L}, denote the set of all disjoint paths (X%, %2-?) from Xp,(b)

to Xp, (p4+1) and from xp,p) to Xp,(p+1), and let w{’, wé’ denote the

end direction of 1'%, %" (i.e. the direction at which the last seg-
ment is entering Xp, (p4+1) OF Xp,(p+1))- While the only constraint on
%10 %2b s that they are disjoint, we will make the approximation
that they are independent. Mishchenko et al. [2006] show that the

error introduced by this approximation is o(1/N) where N is the
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expected number of particles in the medium. Thus we can write

B
p@.52) = pE-OpE0) [ [ @l pE P 0f ). (52)

b=1

Using Eq. (18):

[ O Gy
0

= [ p 0 [ pGE )

= (i1 — xp,(1)) - v(iz = Xp,1))" (53)

As all paths in Lj integrate to the direct path, we know that the

et : 1T 2

eﬂiﬁectlons when entering Xp, (1), Xp,(1) are @, = i1xp,(1), @ =

izXp, (). Given the first segment’s end direction, we can apply Eq. (18)
to the second segment, and likewise to all successive segments:

21,b 22,b) .1 2 21,by,,22,b\% _
L P(X ’X |wb_17wb_1))u(x ),U(X ) -
b

VP, (b)) (@)1 = XP,(b) = XPy(b+1))
Vi(P2(b) (@5 = Xpyb) = Xpybe1)) - (54)

Concatenating Egs. (53) and (54) assuming given particle position
and type, we obtain

B
1_[ (P, (5))(XP,(b—1)XP, (b)) XP,(b+1))
b=0
V(P (b)) XPy(b—1)=XPy(5)—XPy(b+1)) - (55)
Eq. (55) is sorted by the order of vertices in the two permutations.
We now rewrite it using a generic vertex order 1,.. ., B using the
notation bj_ = Pj_l(b) -1, b;.r = Pj_l(b) + 1, resulting in
B
l_[ V() (Kb —Xp =Xt JUy(b) (Xp; —Xp—Xpz )" (56)
b=0
If we now sum Eq. (56) for all possible particle type assignments,
and consider also the vertex sampling probability, we get Eq. (50). D

A.3  Path permutations

As mentioned in Sec. 4.2, Claim 1 significantly simplifies the in-
tegration space of the path integral formulation for covariance,
by restricting it to path pairs with only shared vertices. However,
Claim 1 does not imply that these vertices appear at the same order.

The reason most permutations can be ignored stems from the fact
that the phase of the path throughput is proportional to the path
length. For permutations that do not trace the vertices in the same
order, the segment lengths are different (Fig. 5b), resulting in path
contributions of different path phases, whose sum quickly reduces
to zero. To demonstrate this empirically, in Fig. 15 we consider paths
of three vertices x1, X2, X3, which is the smallest path length with
non trivial permutations. We use ij = ip, vi = vy, and we fix the
vertices x1, Xz while varying the third vertex x3 over a 2014 x 201
area. We evaluate the path throughput contributions p(&!)u(x>P )
for various permutations P of these vertices. When P is the identity
permutation, ¥! and %% have the same length, thus p(x!)pu(x2-F)"
is always a positive number. If P is the reversed permutation, leading

to the path X =i — x3 — x3 — x; — v, we get a fixed phase
only for the backscattering direction v ~ —i. For other directions,
we see in the second row of Fig. 15b that perturbing the position
of x3 changes the phase, and thus the average of the pairwise path
throughput over all positions of x3 becomes zero,

/ WEGP) dxs ~ 0. (57)

For all other permutations, there is no configuration of illumination
and viewing directions that leads to a fixed phase. Then, as can be
seen in Fig. 15¢, varying the position of one of the vertices locally
quickly changes the phase, thus the average of different path con-
tributions over a local window is zero. There are some rare path
selections leading to a locally stationary phase, as can be seen in
Fig. 15d. However, the probability of selecting such paths is low, and
therefore the contribution to the overall covariance is negligible.

As an additional experiment, in Fig. 16 we numerically evaluate
the integral of all six permutations of three numbers when varying
two of the scatterers positions within a 2D square area,

// puEHEP) dxydxs, (58)

We see that, except for the forward and reversed permutations, the
throughput of other permutations integrates to a contribution about
two orders of magnitude smaller than the forward contribution.

A.4  The correlation transfer equation

Monte Carlo rendering algorithms for intensity were historically
derived in computer graphics from the volume rendering equation.
This is the integral form of the radiative transfer equation (RTE),
expressing radiance at one point as a function of radiance at other
points in space. Monte Carlo rendering algorithms are, then, derived
by recursively unrolling the volume rendering equation [Dutré et al.
2006; Novak et al. 2018]. We can follow the same direction to derive
Monte Carlo speckle rendering algorithms, starting from a key result
in the speckle correlation literature, namely the correlation transfer
equation (CTE) [Ishimaru 1999; Twersky 1964].

The CTE provides an expression for the second-order moment
of speckles at different spatial points under the same illumination

. . . . . . i,0 _i,O0O*
direction. Using our notation, we can write this as: E[uy,” - uy,” ]

Ch g, +mh m{,z*. The CTE then states that:
i,O0 1,0%y _ i i *
Eluy,” - ui,z 1= mi,l mi,z +
/as(x)/ v(iw—x—>vy) vlw—x— vz)*L;,w, (59)
X [}
where L;’ o is the “light field” as used traditionally in computer

graphics, namely the radiance arriving at point x from direction .

The important observation made by the CTE is that, to compute
correlations between the fields at sensor points vy, vy, we need to
integrate only radiance from other space points, without the need
to memorize any other correlations. The radiance at other points
is weighted by the complex volumetric throughput v, namely the
probability and phase of making a “single scattering” step from x
to v and vs. For the case vi = va, the covariance reduces to inten-
sity, and indeed Eq. (59) reduces to the volume rendering equation,
assuming zero emission inside the volume.
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Fig. 15. Phase of path permutations. We show the phase of pairwise path throughput as a function of the position of one of the shared vertices, for different
vertex permutations. For the forward permutation the phase is constant. For the reversed permutation a constant phase is achieved only at the backscattering

direction. Other permutations result in spatially varying phase, thus the corresponding pairwise path throughputs cancel out after spatial integration.
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Fig. 16. Contributions from path permutations. We show the mean
permutation throughput after integrating over spatial shifts of x2, x3. The
mean contribution of the neglected permutations is two orders of magnitude
smaller than the contributions of the forward and reversed permutations.

It is not hard to show that, for the case i; = iy, a version of
Alg. 3 considering only forward paths is equivalent to a recursive
evaluation of the CTE. This version of the algorithm is derived by
approximating the covariance as

iy
CV1,V2 ~ N z

~ gy

X1nx2n

(60)
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rather than as
1 Czl.n g2.n +C31nz2.n,r +C31n.r 32.n +C3ln.r 32.n.r

N g + &)

. (61)

We highlight the forward-only version in Alg. 3 with blue font. A
similar forward-only version can be derived for Alg. 4, also shown
there in blue font.

The derivation of the CTE in, say, Mishchenko et al. [2006] fol-
lows from an expression of the solution to the wave equation as a
sum of path contributions, analogous to what we presented in Sec. 4.
Making the simplifying assumption that only forward path pairs
need to be considered, the derivation reorganizes all the paths in the
summation in a more compact recursive formula which is essentially

the CTE, or the volume rendering equation in the vi = vy case. The
fact that only forward paths are considered is an inherent assump-

tion necessary for the compactness of the CTE, as it is equivalent to
the fact that we only need to memorize the last vertex on a path and
ignore the rest of its history. However, this compactness comes at a
severe cost, namely the inability to explain coherent backscattering,
which is an interference effect generated by the full path and not
only by the last event. Due to this shortcoming, we chose to derive
our Monte Carlo rendering algorithms directly from a path space
formulation, and not from an integral equation.
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