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Fig. 1. Rendering near-field speckle patterns. We propose an efficient and physically-accurate algorithm that can simulate speckle patterns produced by
coherent illumination sources located or focused very close to the material. One of the important properties of speckle is the memory effect: small translations of

the illuminator produce shifted, highly-correlated speckle patterns. In the figure, we used our algorithm to simulate light scattering in a medium with realistic
tissue parameters, at thicknesses of 50 ym, 250 ym, 500 ym, and a mean free path of 50 ym, equivalent to optical depths (OD) of 1, 5 and 10, respectively. In

each case the figure presents two speckle images obtained with a small shift of the input illumination, leading to correlated shifted speckle patterns (e.g.,
the shift is visible in the insets of the first two columns). As expected, when the thickness increases, more scattering is present, and thus the memory-effect
correlation becomes weaker (the correlation is less visible in the inset of the third column).

We introduce rendering algorithms for the simulation of speckle statistics
observed in scattering media under coherent near-field imaging conditions.
Our work is motivated by the recent proliferation of techniques that use
speckle correlations for tissue imaging applications: The ability to simulate
the image measurements used by these speckle imaging techniques in a
physically-accurate and computationally-efficient way can facilitate the
widespread adoption and improvement of these techniques. To this end,
we draw inspiration from recently-introduced Monte Carlo algorithms for
rendering speckle statistics under far-field conditions (collimated sensor
and illumination). We derive variants of these algorithms that are better
suited to the near-field conditions (focused sensor and illumination) required
by tissue imaging applications. Our approach is based on using Gaussian
apodization to approximate the sensor and illumination aperture, as well
as von Mises-Fisher functions to approximate the phase function of the
scattering material. We show that these approximations allow us to derive
closed-form expressions for the focusing operations involved in simulating
near-field speckle patterns. As we demonstrate in our experiments, these
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approximations accelerate speckle rendering simulations by a few orders of
magnitude compared to previous techniques, at the cost of negligible bias.
We validate the accuracy of our algorithms by reproducing ground truth
speckle statistics simulated using wave-optics solvers, and real-material
measurements available in the literature. Finally, we use our algorithms to
simulate biomedical imaging techniques for focusing through tissue.
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1 INTRODUCTION

A core challenge in medicine is the development of technologies
for imaging deep inside biological tissues at high spatial resolutions.
What makes this type of imaging possible is the fact that, when a
light source illuminates tissue, a significant amount of light enters,
travels inside, and re-emerges out of the tissue. What makes this
type of imaging difficult is the fact that, when inside the tissue, light
scatters multiple times. Thus, the fundamental challenge that needs
to be solved to enable imaging inside tissue is inverting the multiple
scattering process, in order to extract the information that light
carries about the tissue it interacted with.
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In recent years, several imaging techniques have emerged that
address this challenge by taking advantage of the fact that images
of tissue under coherent (e.g., laser) illumination contain significant
speckles: These are pseudo-random, high-frequency spatial varia-
tions in the intensity of the captured images. The statistical proper-
ties of these speckle patterns is a classical research area within optics,
having been the subject of several textbooks [Erf 1978; Goodman
2007; Jacquot and Fournier 2000; Kaufmann 2011]. This research
has revealed that, despite its random appearance, a speckle has
strong statistical properties that provide rich information about the
underlying scattering material (e.g., tissue). Perhaps best known
among them is the memory effect (ME) property, illustrated in Fig. 1,
which describes how speckle fields remain correlated under small
changes in imaging conditions. The memory effect is at the core of
speckle-based techniques for tissue imaging applications such as
fluorescence imaging and adaptive optics focusing inside tissue.

Unfortunately, most previous studies of speckle statistical proper-
ties and of the memory effect, have been performed under imaging
conditions that are not suitable for tissue imaging. Typically, most
studies assume that both the light sources and the sensors are out-
side and at a large distance from the scattering volume, a set of
conditions referred to as far-field imaging. By contrast, tissue imag-
ing applications require both sources and sensors to be focused
very close to the tissue (e.g., confocal microscopy), or even located
inside it (e.g., fluorescent particles), a set of conditions known as
near-field imaging. Far-field imaging simplifies analysis, simulation,
and experiments relating to speckles. However, inferences drawn
for the far-field case do not necessarily generalize to the near-field
one. Our goal is to develop physically-accurate and efficient render-
ing algorithms that can help improve our understanding of speckle
statistical properties under near-field conditions.

For this, we draw inspiration from Bar et al. [2019], who intro-
duced a Monte Carlo framework for simulating speckle correlations
in a way that combines physical accuracy and computational ef-
ficiency. Unfortunately, despite offering orders-of-magnitude ac-
celeration compared to previous physically-accurate simulation
techniques (e.g., wave equation solvers), the algorithms of Bar et
al. [2019] are primarily intended for simulating far-field speckle sta-
tistics, and remain impractical for the near-field case. For example,
as we show in our experiments, using their framework to simulate
current techniques for focusing inside scattering [Judkewitz et al.
2014] can take several days on a large cluster. These performance
characteristics significantly constrain the scope of investigations
that can be performed using these algorithms (e.g., evaluation of
effectiveness of existing techniques under different imaging param-
eters or for tissue samples of different optical parameters).

With these considerations in mind, we develop a computationally-
efficient algorithm for simulating near-field (focused) speckle sta-
tistics inside scattering media. To this end, we extend the Monte
Carlo rendering algorithm of Bar et al. [2019] in several ways that
make it better-suited for near-field simulations. Our innovations
are three-fold: First, we derive a path-integral expression for near-
field speckle statistics. Second, we approximate optical apertures
and material phase functions using von Mises-Fisher functions, to
obtain analytical expressions for connecting paths traced inside
a volume to near-field sources and sensors. Third, we develop an

ACM Trans. Graph., Vol. 39, No. 6, Article 187. Publication date: December 2020.

importance sampling scheme for starting the volume path trac-
ing process that takes into account the focused beams inside the
medium. In our experiments, we validate the physical accuracy of
our algorithms by showing that they can reproduce speckle corre-
lation statistics simulated using wave-equation solvers, as well as
speckle correlation measurements of real materials that are publicly
available in the literature [Osnabrugge et al. 2017]. Our algorithms
match this synthetic and measured groundtruth more accurately
than existing simulation techniques (e.g., multi-slice layer based
algorithms [Schott et al. 2015]) and analytical models (e.g., tilt-shift
memory effect [Osnabrugge et al. 2017]) from optics. Additionally,
we show that our algorithms allow us to simulate focusing-inside-
tissue applications, which require near-field conditions. For the
small volumes we simulate, our algorithm is already 3000x faster
than an adaptation of the far-field algorithm [Bar et al. 2019]; and
this performance difference will only increase for real-sized volumes.
We believe that the ability to simulate near-field speckle statistics
outside the lab will accelerate ongoing research on speckle-based
techniques for tissue imaging applications. To fortify this effort, we
have made our implementation publicly available [Bar et al. 2020].

1.1 Why render near-field speckle statistics?

Speckle statistics have strong potential for applications in the con-
text of tissue imaging, where scattering by cells and other variations
of the local index of refraction in the tissue drastically degrade
image contrast. For example, several papers have suggested using
speckle correlations to detect incoherent fluorescence sources inside
the tissue. As Katz et al. [2014] have observed, due to the memory
effect, the auto-correlation of random speckle images, together with
a phase retrieval algorithm, can help remove the effect of scattering
and reveal the location of the sources under the skin. Unfortunately,
this idea has been successfully demonstrated mostly in the far-
field setting, with the sources located at a large distance outside
the scattering medium, rather than inside it. The only successful
demonstration of this idea in the near-field we are aware of is by
Chang et al. [2018], whose experiments were able to recover fluo-
resent particles spanning a small spatial range of 10 ym. We argue
that this state of affairs is due to the limited exploration of near-field
speckle statistics, an issue we hope our paper will help address.
Another important application of speckle techniques in tissue
imaging is the use of adaptive optics [Mertz et al. 2015] to focus
light at points deep inside tissue. Achieving this type of focusing
requires using a coherent wavefront of a shape specific to the tissue
sample being imaged. Determining the exact wavefront is challeng-
ing, and typically involves using external information or a guiding
star [Horstmeyer et al. 2015]. Once this wavefront is found, the
memory effect can be used to scan an area inside tissue, e.g., by
shifting and tilting the wavefront to focus at neighboring points [Os-
nabrugge et al. 2017]. In our experiments, we simulate this approach,
and show preliminary investigations on the effectiveness of using
the tilt-shift memory effect. By enabling researchers to perform such
investigations in simulation, without the need for lab experiments,
we hope that our paper can help expand the scanning range and
operational capabilities of techniques for focusing inside tissue.
Furthermore, the ability to efficiently render speckle patterns
can facilitate the widespread adoption of data-driven approaches in



tissue imaging. The use of such approaches is in part motivated
by analogous successes in the far-field case, where it has been
demonstrated that machine learning algorithms can improve the
performance of memory-effect-based imaging around the corner
and through scattering [Li et al. 2018; Metzler et al. 2020, 2018].
The successful deployment of machine learning algorithms requires
large, physically-accurate datasets. Previously, the lack of physically-
accurate simulation tools meant that datasets had to be collected
using lab measurements, an approach that is not scalable. We hope
that our rendering tools can help reduce the data collection over-
head, making machine learning approaches tractable.

Last but not least, accurate speckle rendering algorithms can
be useful for inverse rendering problems involving speckle mea-
surements. In particular, prior work has shown that differentiable
rendering techniques can be used to recover accurate scattering pa-
rameters of real-world materials from incoherent intensity measure-
ments [Gkioulekas et al. 2013]. We expect that our algorithms can be
combined with modern differentiable rendering techniques [Nimier-
David et al. 2020; Zhang et al. 2020, 2019]. In turn, this has the
potential to enable recovering accurate high-resolution models of
important material classes, such as biological tissue, from measure-
ments of speckle fields and speckle correlations.

1.2 Limitations

Our algorithms are subject to a few limitations that suggest im-
portant directions for future research. First, they assume that the
simulated scattering medium is homogeneous, meaning that its
optical scattering parameters are the same at all spatial locations
inside the volume. Our algorithms additionally assume that the
medium is exponential, meaning that it comprises uncorrelated scat-
terers [Bitterli et al. 2018; d’Eon 2018; Jarabo et al. 2018]; and scatters
light isotropically, meaning that its phase function is rotationally-
invariant [Jakob et al. 2010]. These assumptions are commonly used
in biomedical imaging research and applications to approximate
how biological tissues scatter light at optical and infrared wave-
lengths. Therefore, our algorithms can be used to simulate imaging
applications involving such materials.

Second, our algorithms are primarily geared towards transmission
mode imaging configurations, where illumination and sensing hap-
pen at opposite sides of a scattering volume. This is a consequence
of our use of von Mises-Fisher functions to approximate the imaging
aperture and material phase function. When using these approxi-
mations to simulate reflection mode imaging configurations, where
illumination and sensing are on the same side of a scattering volume,
accuracy will depend on the exact material parameters. In particu-
lar, when simulating materials with phase functions that have very
little back-scattering, accuracy suffers because of numerical issues.
We provide a detailed analysis in App. A.4. In practical terms, this
means that our algorithms can be used to simulate tissue imaging
applications such as fluorescence imaging and focusing through
tissue, both of which correspond to transmissive configurations;
but should be used with caution for applications such as confocal
microscopy, which corresponds to a reflective configuration.

Third, our algorithms become inefficient for very optically-deep
(e.g., more than 10 times the mean free path) volumes, where light
is expected to perform a large number of scattering events. This
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limitation is due to the fact that our algorithms use volume path trac-
ing to sample light paths, and is thus shared with standard Monte
Carlo volume rendering algorithms for simulating incoherent inten-
sity [Novak et al. 2018]. As in the intensity case, techniques based
on the diffusion approximation [Jensen et al. 2001] would be better-
suited for simulating speckle statistics at volumes of larger optical
depths. However, we note that near-field speckle correlations decay
as a function of optical depth much faster than intensity does; and
are essentially non-existent for volumes of optical depths signif-
icantly larger than what we simulate. Consequently, biomedical
imaging techniques based on speckle correlations are typically only
applicable for optical depths below the diffusive regime, coincid-
ing with the range of optical depths we emphasize in our experi-
ments. Considering that neither single-scattering [Narasimhan et al.
2006] nor diffusion approximations [Feng et al. 1988] are effective
in this range, our algorithms provide a suitable simulation tool for
researchers investigating these biomedical imaging techniques.

2 RELATED WORK

Speckle in computational imaging. Speckle statistics have found
wide applicability in computational imaging. Example applications
include motion tracking [Jacquot and Rastogi 1979; Jakobsen et al.
2012; Smith et al. 2017], looking around the corner [Batarseh et al.
2018; Freund 1990; Katz et al. 2012], and seeing through [Abooka-
sis and Rosen 2004; Bertolotti et al. 2012; Katz et al. 2014; Rosen
and Abookasis 2003; Takasaki and Fleischer 2014] or focusing
through [Choi et al. 2011; Edrei and Scarcelli 2016; Katz et al. 2010,
2012; Lai et al. 2015; Mosk et al. 2012; Nixon et al. 2013; Rueckel et al.
2006; van Putten et al. 2011; Vellekoop and Aegerter 2010; Vellekoop
et al. 2012, 2010; Vellekoop and Mosk 2007; Yaqoob et al. 2008] tissue
and other scattering layers. Most of these imaging techniques rely
on the memory effect of speckles, and therefore are based on spatial
correlations between speckle images. Alternatively, imaging tech-
niques such as diffusing wave spectroscopy [Pine et al. 1988], laser
speckle contrast imaging [Boas and Yodh 1997], and dynamic light
scattering [Goldburg 1999] use temporal speckle correlations [Berne
and Pecora 2000; Dougherty et al. 1994] to estimate flow (e.g., blood
flow [Durduran et al. 2010]) and liquid composition parameters.

Analytical models for speckle statistics. Quantifying differences in
speckle characteristics between the near-field and far-field cases can
be done using analytical tools that approximate speckle statistics
with closed-form mathematical expressions. Most available such
tools are for the far-field case [Akkermans and Montambaux 2007;
Baydoun et al. 2016; Berkovits and Feng 1994; Dougherty et al. 1994;
Feng et al. 1988; Freund and Eliyahu 1992; Fried 1982], though re-
cently tools have been introduced for the near-field case [Judkewitz
et al. 2014; Osnabrugge et al. 2017]. For example, Osnabrugge et
al. [2017] derived a tilt-shift model for the memory effect, assuming
that the underlying scattering material is optically thin and very
forward-scattering. Deriving closed-form expressions requires re-
strictive assumptions (single scattering, diffusion, or Fokker-Planck
limits), which typically do not apply to the predominantly-turbid
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tissue scattering. Developing efficient and physically-accurate ren-
dering tools for near-field speckle statistics can help assess the accu-
racy of these approximations, and facilitate their broader adoption
in application regimes where they are accurate.

Rendering wave-optics effects. Monte Carlo rendering techniques
within computer graphics have typically focused on simulating inco-
herent light transport. More recently, there have been a few works
on simulating wave optics effects, such as diffraction and speckle
due to rough surface geometry [Bergmann et al. 2016; Cuypers et al.
2012; Sadeghi et al. 2012; Stam 1999; Sur et al. 2018; Werner et al.
2017; Yan et al. 2018; Yeh et al. 2013]. Variants of volumetric path
tracing for simulating speckle in scattering have appeared in op-
tics [Lu et al. 2004; Mout et al. 2016; Pan et al. 1995; Sawicki et al.
2008; Schmitt and Kniittel 1997; Xu 2004], though these typically can-
not estimate second-order statistics (e.g., the memory effect). Bar et
al. [2019] addressed this shortcoming by introducing a Monte Carlo
algorithm that uses simultaneous path connections to multiple light
sources and sensors, to correctly model speckle correlations between
them. Unfortunately, their algorithm is primarily tailored to far-field
imaging and becomes inefficient for the near-field case, as discussed
in Sec. 3. The difference between the two cases is reminiscent of
the challenges in rendering depth-of-field effects in incoherent light
transport, where special rendering algorithms are required due to
the need to sample many rays on the aperture plane [Barsky and
Kosloff 2008; Kolb et al. 1995; Soler et al. 2009].

3 BACKGROUND ON SPECKLE STATISTICS

We begin by providing background on speckle statistics and on their
Monte Carlo modeling for the far-field case. We use this background
in Sec. 4 to contrast the far-field and near-field cases, which helps
highlight the challenges involved in rendering the latter case, and
positions our work relative to the prior art of Bar et al. [2019].

Notation and setting. We use bold letters for vectors (e.g., points
0, 1, v), with a circumflex for unit vectors (e.g., directions @, i V).

We consider scattering volumes V € R? that satisfy the assump-
tions underlying classical radiative transfer for isotropic [Jakob et al.
2010] exponential media [Bitterli et al. 2018; d’Eon 2018; Jarabo et al.
2018]: Each volume comprises a set of scatterers, whose locations
in the volume are statistically independent. These scatterers are
assumed to be small enough relative to the wavelength of light
to be considered infinitesimal points. They are also assumed to
be spherically symmetric, and thus scatter incident light waves in
a rotationally-invariant way. We model speckle fields arising in
such volumes due to incident illumination that we assume to be
monochromatic, fully-coherent and unpolarized. These fields are a
function of the volumes’ bulk properties, which we describe next.

Bulk material properties. We use a statistical description of the
optical properties of scattering volumes. In particular, the scattering
and absorption coefficients os and o, model, respectively, the portion
of energy that is scattered and absorbed upon interaction with a
scatterer. Their sum is the extinction coefficient oy = 04 + 05, and
its inverse is the mean free path, MFP = 1/o;, which is the average
distance in the volume light travels between two scattering events.
Given a volume V, it is common to express its geometric dimensions
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Fig. 2. Transmissive imaging configurations. Previous work [Bar et al.
2019] simulated speckle statistics by directional sources and sensors, as in
(a). In contrast this work considers speckles by focused camera and sources,
as in (b). (c-d) demonstrate what is implied when evaluating such speckle
correlations using a Monte Carlo algorithm. In the directional formulation,
one draws 4 directional connections from each path toward the illumination
and viewing directions. In contrast, to simulate speckles through a focused
lens, one needs to trace all paths via the aperture.

(c) Directional paths

relative to MFP. For example, a volume has optical depth OD = 2
if its thickness is equal to 2 - MFP, meaning that light travelling
through the volume undergoes on average two scattering events.
The scattering amplitude function s(cos 0) describes how a field
interacts with a scatterer: if a scatterer is illuminated from direction
i, the complex scattered field u at direction ¥ is u‘i} =s(i- V). The

phase function is defined as p(cos §) = |s(cos 8)|2. It is commonly
characterized by an anisotropy parameter —1 < g < 1, equal to the
average cos 0: g = 0 corresponds to scattering equally in all direc-
tions, and g = 1 to fully forward scattering. Tissue is characterized
by very forward scattering (g > 0.9) [Cheong et al. 1990].

These parameters are a function of wavelength, and the scatterers’
shape, size, and refractive index. For spherical scatterers, they can
be computed using Mie theory [Bohren and Huffman 1983; Frisvad
et al. 2007]. The three coefficients also depend on the density ¢, equal
to the expected number of scatterers in a unit volume. We assume
that scattering volumes are spatially homogeneous, meaning that
scatterers are uniformly distributed, or equivalently, that the bulk
parameters are the same everywhere inside a volume.

3.1 Modeling and rendering far-field speckle statistics

Transmissive far-field imaging. We focus on the geometry illus-
trated in Fig. 2(a): Scatterers are placed at a configuration of locations



O = {01, 02, ...} inside the volume V, each sampled independently
from the others, using the volume density ¢. This configuration is
imaged using light sources and sensors that are on opposite sides
of the volume, a setting we refer to as transmission mode imaging.
Additionally, in this background section, we assume that the volume
is illuminated by a directional plane wave 1, and imaged with a direc-
tional sensor V. We refer to these conditions together as the far-field
imaging conditions. If we know the exact scatterer locations, and
incoming and outgoing directions, we can solve the wave equation

to obtain the complex-valued scattered field ui;o, arising from the
interaction of the incident illumination with the scattering volume.

Defining speckle statistics. For any volume with a given scatterer
configuration O, the scattered field typically contains large fluctu-
ations with a semi-random noise structure known as speckle (see,
e.g., Fig. 1). We can characterize speckle using the first and second-
order statistics of fields due to different volumes with the same bulk
material properties. In particular, we can define the speckle mean,

m:, =Eo [ulo] , (1)

and the speckle covariance,

1 Z
Cvl v = =Eo |u [ ] mA vz > )
2
where (-)* is complex conjugation. u1 O, uéz’o are two speckle fields

generated by the same scatterer conﬁguration O, when illuminated
by two monochromatic, mutually-coherent incident waves from il i2,
and measured at two sensors ¥, ¥2. The expectation Eg is taken

with respect to all scatterer configurations O sampled from the

same density ¢. As we detail in App. A.1, the speckle mean mi can
be computed using a closed-form expression and is typlcally zero.

Therefore, we focus on modeling the speckle covariance CA1 e

The definition of Eq. (2) suggests a straightforward approach for
computing this covariance: randomly sample many scatterer con-
figurations O from the material bulk parameters, solve the wave
equation numerically to compute u1 O, u‘i;’o
approximate the expectation in Eq. (2). Unfortunately, while exact
wave-equation solvers exist [Thierry et al. 2015; Treeby and Cox.
2010; Yee 1966], their computational complexity is prohibitive, typi-
cally making them intractable for volumes of width larger than a few
dozen wavelengths. This computational cost is further exacerbated
by the need to use the solvers multiple times for averaging.

PT=P=iil=v=v

, and use averaging to

For an alternatlve note first that, when 1
and mA =0, CA ¢ reduces to the intensity I‘ This intensity is typ-
ically modeled in computer graphics using the radiative transfer
equation, or its integral form, the volume rendering equation. The
latter gives rise to Monte Carlo volume rendering algorithms, which
compute intensity using as input only the volume’s bulk mate-
rial properties [Novak et al. 2018]. Bar et al. [2019] derived analo-
gous Monte Carlo volume rendering algorithms for computing the

speckle covariance clot for any directions i, 12, ¥1, ¥2. Like their

% l v2
intensity counterparts, these algorithms take as input bulk material
parameters, and not particle positions. Bar et al. [2019] showed that

their approach is physically accurate, orders-of-magnitude faster
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than wave-equation solvers, and scalable to much larger volumes.
We proceed to review this Monte Carlo rendering approach.

Covariance rendering. Bar et al. [2019] derive their algorithm
from a path integral expression for speckle covariance, obtained by
considering the correlation of fields that travel along all possible
pairs of paths from i! to ¥!, and from i? to ¥2. They showed that
this expression can be simplified to use only pairs of paths that
coincide everywhere, except for their connections to it vl §2 92,
We review this simplified formulation. Consider the space P of sub-
paths X = 0 — -+ — op, B > 1, where each vertex o}, € V;
we denote by @}, = 0y, 0547 the direction of the b-th edge of the
sub-path. These vertices correspond to the shared part of two full
paths ! = i' 501 —>...s0op—¥, %% = >0, —...mog—¥2,
formed by connecting the sub-path to il,¥! and i%, ¥%. Then, the
speckle covariance of Eq. (2) can be expressed as:

21 %2
C:A,f’l{,z:‘/P lAllAz x°) dx* (3

1 %2
where the far-field path contribution function c.;"., equals the cor-
vl ¥

relation of the fields that travel along %!, %% For B > 2, this equals:

Vz(?ﬁ) FE) - v(il—01)s(i! - &1)

vl
-v(0g—v")s(@p-1 - V')
-v(i2—01)*s(i% - @1)*
-v(0g—v?) s(@p-1 - V), 4
and for B = 1:

vl Az(ﬁs) = g5 - v(i'—01)v(01—1)s(i! - ¥1)
- 0(i%2501) v(01—9%)*s(i - ¥2)". (5)

In the above, f(x°) is the standard radiometric throughput of x°,
augmented by scattering coefficients at the first and last vertex,

—o¢llopr1—op ||

T p(@p_1 - Dp). (6)
llop+1 — opll

FGE) = (0)° ﬂ

Finally, v(-) is the complex volumetric throughput, defined as:
U((;)—>0) — e_%g“d(‘;’_”’)eik((‘;'o), (7)
U(0—>(0) =e Zotd(o—m)) —zk(a) 0) (8)
where k = 27/A is the wavenumber and A the wavelength of the
illumination; and d(& — o),d(0 — @) denote the distance a ray
entering or leaving, respectively, o at direction @, travels inside the
scattering volume V. Fig. 2(c) visualizes these terms.
The covariance rendering algorithm of Bar et al. [2019] uses
a Monte Carlo path sampling approach to evaluate the speckle
covariance integral of Eq. (3). This algorithm takes advantage of
the presence of the radiometric throughput term in Eq. (4), and
samples sub-paths X° using standard volumetric path tracing. Then,
for each sampled sub-path, the endpoints o1, op are connected to
the far-field illuminations i, i and sensors ¥1, ¥2, to compute the
complex volumetric throughput terms in Egs. (4) and (5).
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We note that when i' = 2 =i, %! = ¥? = ¥, the above algorithm

becomes equivalent to the standard volumetric path tracing algo-
rithm used in computer graphics to render intensity I\EI [Novak et al.
2018]. A key observation by Bar et al. [2019] is that, in the case of
covariance Ci;lfi{,z’ each sampled sub-path X° needs to contribute to
two pairs of irfput-output directions (blue and green connections
in Fig. 2(c)). Using the same sub-paths for both (i, ¥1), (i2, ¥2) pairs
is necessary to account for the correlation of fields from different
illuminator-viewpoint combinations, and this correlation cannot be
modeled using paths sampled independently for each pair.

Before concluding this section, we mention that Bar et al. [2019]
present a variant of the above-described algorithm that simulates
scattered fields ui;l ufz in a way that accurately reproduces their
correlations. In the rest of the paper, we show how to adapt both of
these rendering algorithms to the near-field case. We present most
of our theory in Secs. 4-6 in the context of covariance rendering,
then adapt it in Sec. 7 for field rendering.

4 NEAR-FIELD SPECKLE STATISTICS

As mentioned in the introduction, many important applications
require imaging speckle fields using a sensor that is focused at some
point, rather than being at infinity; and using illumination that is
better modeled as a point than as a directional source. Both of these
points can be near or even inside the scattering volume. To distin-
guish them from the far-field case of the previous section, we refer
to these conditions together as the near-field imaging conditions.
Scattered fields formed under far-field and near-field conditions
often have very different characteristics, as we discuss in the rest
of the section. As in Sec. 3.1, we focus on transmission mode imag-
ing configurations, where illumination and sensing are on opposite
sides of the volume. The imaging configuration is shown in Fig. 2(b).

Modeling near-field speckle statistics. We use the notation u‘i,, ul
to indicate scattered fields due to far-field and near-field imaging
conditions, respectively, with the circumflex distinguishing between
directional to point sources/sensors. If we know the scattered field
uif for all illumination and sensing directions i, ¥, we can compute

the scattered field ul, by integrating over the sensor and illumination
apertures (Fig. 2(d)) [Goodman 1968; Mertz 2019]. Concretely:

/1eSZ /ve al(l)av(v)u dv di, 9)

where §? is the unit sphere and, assuming an ideal lens,
ay(®) = m@e*V qid) = m)e k() (10)

The functions m(i) and m(¥) denote illumination and viewing
aperture amplitudes. Typically, these are binary functions indicating
which directions pass through an aperture of a finite extent. We
indicate the width of these masks using the angle ©pax between
the optical axis and the propagating direction that most deviates
from this axis, and we refer to sin ®max as the numerical aperture
(NA) (Fig. 3(a)). The term exp(ik(¥ - v)) is the phase accumulated in
direction v when focusing at the point v; and analogously for the
term exp(—ik(i - i)). Using paraxial optics approximations, it is also
possible to express the two integrals of Eq. (9) as a double Fourier
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transform with respect to the variables iand ¥, and thus ué is often
referred to as the Fourier field [ Goodman 1968; Mertz 2019].

The near-field speckle covariance CV ¢ L2 can be defined analo-

gously to the far-field covariance in Eq. (2) Combining this defini-
tion with Eq. (9), we can relate near-field and far-field covariances:

iLiZ _
vi,v?

/ / / / g1 (¥ ey (i)ay2 (92) (i) c‘q‘v ditdi?de'de®.  (11)

Why is rendering near-field covariance difficult? Eq. (11) provides a
conceptually simple way to compute near- ﬁeld covariance statistics:
We sample, or discretize, the domains of ¥ 91, 92,121, estimate the
corresponding far-field covariance values as in Sec. 3.1, and form
their weighted average using the weights in Eq. (11).

In practice, this approach is computationally impractical, because

of the very large number of samples of the far-field covariance C All fz

we need to compute. This number is determined by the w1dth w
of the volume V and the numerical aperture ®m,x, and not by the
size of the sensor. As we show in App. A.2, Nyquist sampling rate
implies the number of samples per axis of integration should be:

2W sin(Opmax)

N =
A

(12)
For some representative numbers, we consider simulating a rel-
atively thin volume of thickness 400 ym. We assume that we im-
age a spatial area of size 100 ym X 100 ym using a numerical aper-
ture sin(@max) = 0.5 and illumination wavelength A = 0.5 ym.
We need to simulate a volume that is at least as wide as the de-
focused beam, as light contributing to the scattered field can be
due to scattering anywhere inside the beam (see Fig. 3). For the
dimensions mentioned, the defocus blur has size 400 ym at the far
edge of the target, suggesting that we need to simulate a volume of
width W = 100 ym + 400 ym = 500 ym. Then Eq. (12) suggests using
N = 1000 samples on each coordinate axis of the four directions
we integrate in Eq. (11). Therefore, to simulate the near-field covari-
ance, we need (1000)3 samples, which is prohibitively large. We note
that real near-field scenes used in, e.g., Osnabrugge et al. [2017] are
bigger and would require an even more far-field samples.

Our discussion so far has been about covariance rendering, but
similar arguments apply for field rendering, where using Eq. (9)
would require N* samples, or (1000)* for the above example. We dis-
cuss the field rendering case in detail in Sec. 7, but for demonstration,
we compare in Fig. 3 speckle images rendered by our proposed field
rendering algorithm and using Eq. (9). Due to memory constraints,
the far-field directions were sampled at 10% of the Nyquist sampling
rate; this aliased sampling results in clear replica artifacts in the cor-
responding images. Even under these aliased sampling conditions,
rendering using Eq. (9) was 100X slower than our algorithm, while
requiring 30 GB GPU memory. These challenges cannot be allevi-
ated by using a large number of samples for single scattering and
fewer samples for multiple scattering, as is often done in intensity
rendering [Belcour et al. 2014]: even though intensity images from
multiple scattering have low spatial frequency, coherent multiple
scattering still creates high-frequency speckle patterns.
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1

FF. image with i

400pm

FF.image with i>  N.F.image withi' ~ N.F. image with i
viewing objective

.
(@) (b) (©

Fig. 3. Near-field challenges. Consider an imaging setup as in (a) where one wants to image a 100 gm X 100 ym area through a 400 ym thick tissue with a
0.5N A objective. The resulting imaging cone is 400 pm wide. As scattering can arise from anywhere inside the imaging cone, for realistic simulation the
medium should be at least as wide as the defocus cone, requiring us to simulate a slab of wider than 500 ym. Assuming e.g. A = 0.5 pm, this results in
N = 1000 samples in each axis. (b) Two speckle images generated by two nearby illuminators, rendered using far-field covariances, sampled at 10% of the
Nyquist limit revealing aliasing. The simulation still runs 100X slower than our near-field approach, and occupies as much as 30 GB GPU global memory. (c)
Aliasing-free speckle images by our suggested near field approach. Note the ME shift demonstrated in the insets.

Complex volumetric throuput : v(im0) = ¢~ 201 d(@—0),ik(é-0)
Aperture function focused at i : aj(i)=m(i)eik (i)

Aperture function X throughput : i3, 01) = aj(Dv(i—o0)

Scattering amplitude function: s(d1 - @2)

Convolved aperture function: Y(@,01,i) = /ieSZ i3, 01)s(i - @)

(throughput up to first scatterer)
(a) ai(i, 01) (b) Y(@1, 01,1)

dj(wlo1) Y(@loy,1) = di(@lo1) x5 dv(a@lor) dy(@loy) - Y(&|o1, i)

Fig. 4. Notation summary and visualization. (a) The aperture function al(l, 01) includes an apodization mask m(i), a complex wave focusing at i and a
conjugate wave focusing at oy, the first point on the sampled path (attenuation exp(—1/20;d(& — 0)) is not visualized). (b) The aperture function convolved
angulary with the scattering amplitude function leads to Y(®1, 01, i), the throughput up to the first point and direction. That is, to compute the field
propagating from o; at direction & we integrate over all directions i in the aperture. For each direction we consider the value of the aperture function in this
direction, times the amount of energy scattered from ito @;. (c) Visualizing the pipeline of the single-scattering covariance in Eq. (18). lllumination aperture &;
is convolved with scattering function s to generate Y(@, 01, i), which is then multiplied with the viewing aperture dy. For visualization the real component of
the involved spherical functions is projected onto the 2D @x, @y plane (north hemisphere only).

4.1 Near-field covariance path integral where now the contribution of each sub path is determined by the
To overcome the computational challenges of evaluating near-field near-field path contribution function c ,. For B > 2, this equals:
speckle covariance, we first derive for it a path-integral expression, o

which will absorb the directional integrations of Eq. (11) into the Cir{lvz &%) = f(&°) - Y(d1, 01, il)Y((f’B—h op,v')

path contribution function. Then, in Sec. 5, we introduce an approx-

~ PN ~ 2 *
imation that allows us to compute this path contribution function Y(@1,01,i%) Y(@p-1,08, V"),  (14)

analytically. This completely removes the need for directional inte- where T denotes integration over the aperture of terms in Eq. (4):
gration, drastically reducing computational complexity. . . .
By combining Eq. (3) and Eq. (11), we can express the near-field Y(@1,01,i) = / . di(i, 01)s(i - @1) di, (15)
i€

covariance as a path integral on the same space of sub-paths P:

Y(OA)B—I’ OB, V)

/ iv(9, 05)s(@p1 - 9) A0, (16)
ves?

and a denotes weighed aperture functions a:

iLi? _ iLi? o5y 328 R N
Colye = /P“vl,vz(x)dx’ (13) G o) = aDulioo),  dv(¥,05) = ay(@ulop—¥).  (17)
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Similarly, for B = 1, the contribution function equals:
:1 52 = - n n . n
ci,flvz (%) = gs(01) - / Ayt L oY (¥, 01, il)do!
’ vles?
*

/ 2 (V2 00)Y (¥, 01,i%) d¥?| . (18)
v2eS?

We use d;(i/o1), Y(d1]o1, i) to denote versions of these functions
with respect to only their first argument, conditioned on fixed val-
ues for their other arguments. These are complex functions on the
unit sphere S2. In particular, Y(e1 o1, i) can be thought of as a convo-
lution of the aperture function d;(i|o;) with the scattering amplitude
function s(i - &). We summarize and visualize these terms in Fig. 4.

With Egs. (14) and (18) at hand, conceptually we can compute

1.2
. i,i . .
the near-field covariance C,1 2 using a Monte Carlo rendering al-

gorithm exactly analogous to the one proposed by Bar et al. [2019]
for the far-field case: First, we sample sub-paths X° using standard
volumetric path tracing. Second, we compute the path contribution
function for each sampled path, and accumulate the results. We
note however that, unlike the far-field case, in the near-field case
the path contribution function cannot be computed analytically,
as it requires spherical integration for evaluating Y. Theoretically,
this could be done using a second-stage Monte Carlo integration
procedure, by importance sampling one or more directions in the
aperture plane. However, as we show experimentally in Sec. 8, be-
cause these integrals have complex integrands with highly-varying
phases, Monte Carlo estimates have very high variance. Considering
that this second-stage Monte Carlo integration procedure needs to
be performed separately for each sampled sub-path X°, it quickly
results in an overwhelming computational overhead, making this
overall rendering procedure intractable. In the next section, we side-
step this overhead by deriving closed-form approximations to these
integration and convolution operations, which can be computed
analytically without the need for Monte Carlo integration.

5 NEAR-FIELD USING VON MISES-FISHER FUNCTIONS

In this section, we present two main technical results. First, we show
how to use mixtures of von Mises-Fisher functions to approximate

the various spherical functions that appear in the near-field path con-
1

)
1’1V2 (X°) of Egs. (14) and (18). Second, we show
how this approximation allows us to derive closed-form expressions

. . . i
tribution function c,

.1 2
for the convolution and other integral terms in C:,flvz (X°). Overall,

this allows us to compute covariance contribution ’analytically for
each sampled sub-path X°, avoiding Monte Carlo integration.

Von Mises-Fisher functions. We begin with background on complex
von Mises-Fisher functions, defined as [Mardia and Jupp 2000]:

h(d)=1- (D) (19)

where & € S?, and g = p, + ip; is a complex three-dimensional
vector parameterizing the von Mises-Fisher function. We define:

o=l vi= Nl vy =lpl =y —y+2i(p - p). (20
ﬁ = ”/Y’ ﬁr = ”r/)’rs I‘A’i = ui/Yi~ (21)

The value |h(®)| is maximized when & = fi,. The scale y; is inversely
proportional to the support of the function: Large y; values result
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in a narrow function that is sharply peaked around p,, whereas
yr = 0 results in a uniform function over the sphere. Von Mises-
Fisher functions have found use in various applications in computer
graphics [Han et al. 2007], though we emphasize that, compared to
this prior work, we use complex functions (y; # 0).

Von Mises-Fisher functions can be thought of as a generalization
of the Gaussian distribution to the unit sphere, with variance o? =
% [Mardia and Jupp 2000]. Intuitively, we can see that this is the

case by considering that, when we constrain ||| = ||®]| = 1,
e—% Hd’_ﬁ”z o e‘Y(ﬁ“:’)’ (22)

where o denotes equality up to a multiplicative scale.

5.1 Working with von Mises-Fisher functions

Fitting with von Mises-Fisher functions. We aim to approximate the
spherical functions that appear in the near-field path contribution

2
Nt . . . .
Iy (X*) using von Mises-Fisher functions.

We first consider the aperture function &;(i), defined in Eqs. (10)
and (17). We reproduce the definition here for convenience:

:1
. 1
function <,

a1 = m(i)e_ik(i'i)v(i—ml) = m(i)e_”‘ﬁ'i)_ 20rd@—0)+ik(d-0) (23)

We want to express d;(i) as a von Mises-Fisher function. To achieve
this, we first choose to approximate the aperture mask m(-) as a real
von Mises-Fisher function. Denoting the optical axis of the system
by fi, (usually this is the z-axis fi, = z = [0, 0, 1]), we have,

m((I)) ~e Va e}’a(ﬁa'é’x (24)

This approximation is a form of apodization: a binary aperture,
which completely blocks or transmits fields propagating in different
directions, is replaced by a non-binary mask, which attenuates the
amplitude of transmitted fields by an increasing amount at larger
propagation angles. Such non-binary apertures are typical of sys-
tems that use short-focal-length lenses with strong aberrations. On
the illumination side, these non-binary apertures are also represen-
tative of the Gaussian profiles of laser beams. As we show in Sec. 8,
even when the underlying aperture is binary, using the apodiza-
tion of Eq. (24) produces accurate speckle statistics for transmissive
imaging configurations. We note that the mean width of the non-
binary aperture equals 04 = 1/4/¥a, and should be set to match the
width of the true binary aperture. Additionally, we can use yg = 0
to model isotropic point sources (e.g., fluorescent particles).

The phase terms in Eq. (23) already form a complex von Mises-
Fisher function. Thus, to complete our treatment of d;(i), we need to
add the attenuation term, for which we assume that the attenuation
is approximately constant over the aperture:

e—O.So-,d((I)—m) ~ e—O.Scr,d(ﬁa—m)' (25)
Putting things together, we approximate the aperture function as:
di(d.0) ~ - el (26)

with

1

p = e Yo bordli—0n),

U =Yafi, + ik(og —1i). (27)
We approximate the viewing aperture function similarly.

We now turn our attention to the scattering amplitude function s
in Egs. (14) and (18). We use the expectation-maximization algorithm
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Fig. 5. Phase function fitting. Visualizing the von Mises-Fisher mixture fit of some Henyey Greenstein phase functions as well as real world phase functions
measured by [Gkioulekas et al. 2013]. A small number of mixture components provides a good fit even when the phase function includes a back lobe (e.g. liquid
clay). The top row shows a full [-7, 7] range, and the lower row zooms around the central forward/backward lobe of the function for better visualization.

of Banerjee et al. [2005] to approximate s as a mixture of von Mises-
Fisher functions centered at i:

S(i, ‘A’) x Z ﬂ'meYs.m(i"Af)' (28)
m

InFig. 5, we show fits of this kind for Henyey-Greenstein phase func-
tions, as well as real-world phase functions measured by Gkioulekas
et al. [2013]; in all cases, the phase function is accurately approxi-
mated using a small number of mixture components.

Integration and convolution of von Mises-Fisher functions. The
approximations we derived facilitate computing the covariance in-
tegrals Egs. (14) and (18). In particular, these evaluation can now
be done analytically, without the need for Monte Carlo integration,
using the properties of von Mises-Fisher functions.

We consider first the spherical integration in Eq. (18). By approx-
imating the integrand as a von Mises-Fisher function, as described
above, we can compute this integral analytically using:

. sinh VE _ o~VE
/ net® =17~47rM =17-27IL. (29)
@eS? \/ﬁ \/ﬁ
In this equation, \/p equals:
VE = JBS + p+ (30)

where each term in the summation involves complex square power
rather than squared amplitude, and thus /s1 is a complex number.

We now consider the spherical convolution in Eq. (14). We use
the same approach as for integration, and replace the two functions
that are being convolved with their approximation in terms of von
Mises-Fisher functions we derived above. The resulting convolution
of two von Mises-Fisher functions is also available through a simple
analytical form. We note that, even though the exact convolution
result is not itself a von Mises-Fisher function, it can be accurately
approximated as one, as is necessary to facilitate subsequent com-
putation steps in our rendering algorithm. In particular, in App. A.3,
we show that the convolution can be approximated as:

* Sd) 2T XS (ueg
/ W) | ys(@g) 2T p(p w)+co, (31)
pes?

[

where

Bo = VHT Ys@o, Co = Po— ;_Z(ﬂ “ @) (32)

We discuss the selection of @, in App. A.3, but the simplest strategy
is to select it as the direction at the center of the viewing aperture.
We compare approximated and exact convolutions in App. A.4. Note
that, since the scattering amplitude function is approximated by
a mixture of von Mises-Fisher functions, we need to compute the
convolution with each mixture element separately.

5.2 Visualizing convolution

The function Y(®, 01, i), defined in Eq. (15) as the convolution of the
aperture function with the scattering function, equals the through-
put of a path up until the first scattering event. This function encodes
the contribution of a path starting at node o1 and emerging from it
at direction @. This function is a fundamental building block of the
near-field correlation, and as such we study and visualize its struc-
ture. In the next section, we use this to devise importance sampling
schemes for accelerating our Monte Carlo rendering algorithms.

Spatial structure. The aperture function d;(i; o1) is complex, and
its phase depends on the distance between the focus point i and
location o; of the first scatterer in the path (Fig. 4(a)). When the
phase variation is rapid, blurring this complex function will reduce
the magnitude to zero. We want to understand for which o; positions
the throughput contribution Y(®, 01, 1) is not zero. This will be
valuable for defining an importance sampling strategy that avoids
sampling o; in areas receiving no energy. To this end we define

e(oli) = / . [Y(@,0,1)]|. (33)

Fig. 6 visualizes the shape of e(o|i) for an x — z volume slice. This
is similar to the optics concept of a Gaussian beam [Yariv 1997],
focused at i. Considering that our illumination is a beam focused at
i, it is expected that scattering points 05 that are not located in the
area of the illumination beam will not receive light. However, while
the shape of a focused beam depends only on the aperture width
Ya. €(oli) also depends on the width of the scattering function ys. In
particular, assuming for ease of notation that the aperture axis is
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Fig. 6. Visualizing spatial and angular throughput components. Left: e(o|i), the energy of path starting points, as an x — z slice through the volume.
This resembles the shape of a Gaussian beam, which is narrow at the focus plane and wide at out-of-focus depths. The panels visualize two scattering functions
defined by ys = 2 (wide) and ys = 100 (narrow), showing that the beam waist is wider for narrow forward-scattering phase functions. Right: the angular part of
the throughput, Y(@|o, i) = a * s as a function of direction @, for a subset of o positions marked with corresponding colors on the Gaussian beams. These are
functions on the 3D sphere, and we show the north (forward) and south (backward) hemispheres projected on the @ — @y plane. The directions with high
throughput shift for points o at the periphery of the beam (e.g., orange and pink points). We display only the real part of these complex spherical functions.

aligned with the north pole fi, = z, we show in App. A.5 that:

*Hﬂxy*ix,yuz
e(oli) = Gloxyloz, i) = f(z)e 2= | (34)
with

+ 22
w(z;Ys, Ya) = yak_zys e (35)

a

2,2

ﬂ(z) — e_%atd(i_)oZ)ﬂ'k Ya(YS + ya)eya+ys. (36)

2w(z; s, Ya)?
and z = o, — i;. For every z plane, e(oli) is a planar Gaussian with
standard deviation equal to w(o; — iz). The Gaussian is narrowest
when o, — iz = 0, that is, when o5 is at the same depth as i. The
beam expands at depths away from the focus depth.

Angular structure. Fig. 6 also provides a visualization of the an-
gular part of the throughput, namely the variation of Y(®|o, i) as
a function of @, in a few positions of the first point o. For that, we
display the aperture function d;(ijo) as a spherical function (i.e., a
function of direction), before and after convolution with s. We com-
pare the exact convolution against the approximation based on von
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Mises-Fisher functions, showing good agreement. The directions
with highest power after convolution can shift, and may not be
located at the center of the sphere (e.g., the orange and pink points
in lower panel). This happens at the periphery of the beam. Below
we use the directional density Y(@li, o) for importance sampling.

6 IMPORTANCE SAMPLING

In Sec. 4.1 the covariance is expressed as an integral over path space,
where each path contributes a term c(x*). For convenience we repeat
here the definition for paths of length B > 2:

c(i&‘) = f(;(s) : Y(("\)1’ o1, il)r((f)B—l’ OB, Vl)

“Y(d1,01,%) T(dp-1,08,v?) .

—

37)

We use Monte Carlo approximation of this integral, by sampling N
sub-paths X*>" from a distribution p(x*>") and computing

_ l c(X5M)
C= Zn: FE0T (38)

The quality of this estimator depends on the sampling distribution
p, and estimation variance reduces when p closely approximates c.




ALGORITHM 1: Monte Carlo rendering of covariance Cl1-i2

Vi,V2©

>Initialize covariance estimate.
Set C = 0.
for iteration = 1: N do
>Sample a subpath:
>Sample first vertex from the sum of Gaussian beams.
Sample beam index j € {1, 2}
Sample point 0; ~ e(01 |i/) .
>Update covariance with single scattering path.
Update C += m /{rleSZavl ¥, 01)Y(F!, 01, il)

¥
(w823, 00X, 01, 12)
>Sample first direction from the angular throughput.
Sample direction @1 ~ [Y(&!|o?, i/)|2.
>Continue tracing the subpath:
>Sample second vertex of subpath.
Sample distance d ~ ,e~t<.
Set point 02 = 01 + d - @1.
Set b = 2.
while oy, inside medium do
>Update covariance with next-event estimation.

— 1 A :1 ~ 1
Update C += P(OI)P((I)1|01)Y((01’ 01, i )l(@p-1,0p, V")

Y(d)ls 01, iz)*.r((;)bfl’ Op, VZ)*
>Sample next vertex of subpath:
>Sample direction from phase function.
Sample direction @p, ~ [s(Dp_q - Dp)[%
>Sample free path.
Sample distance d ~ o,e™ %t q
>Create next vertex of subpath.
Set point 0441 = 0p +d - Dp.
>Account for absorption.
Sample scalar a ~ Uniff0, 1].
if a > o5/0; then
>Terminate subpath at absorption event.

break
end

Setb=0b+1.

end

end

>Produce final covariance estimate.
Update C = %C .
return C.

Bar et al. [2019] sample sub-paths from a distribution p(x®) o f(X°),
where the first node o7 and direction @; are sampled uniformly.

This uniform sampling strategy can be problematic, because the
term ¢ (Eq. (37)) includes the throughput Y of the start and end
segments. In particular, as discussed in Sec. 5.2, the spatial part
of Y has a shape similar to a Gaussian beam (Fig. 6). As the beam
assigns zero weight to most points in space, uniform sampling of the
starting node o1 will produce many paths with zero contribution.
When the phase function is narrow, a similar argument holds for
the first direction 1. We address this issue by deriving importance
sampling strategies for the start node and direction.

To this end, we sample the path from a distribution

plog—...—op) =plog—...>o0p|d1,01)p(d1]01)p(01). (39)
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The first scattering point is sampled from

plor) o 5 (leCor )2 + le(or ). (40)

We implement this sampling by first uniformly sampling one of
he two beams in the summand, and then sampling o; from the
Gaussian beam G(oxy|oz, i/) of Eq. (34), where j € 1, 2 denotes the
index of the sampled beam. The first direction is sampled from

p(@1]01) o< [Y(@1]o1, )] (41)
The rest of the path is sampled from
plog =, ..., = ogloy,@1) x f(o; —,...,— 0p), (42)

as in standard volumetric path tracing. The sampling scheme is
summarized in Alg. 1, and we provides details in App. A.6. We note
that we choose to importance sample the first segment of the path
rather than the last one because, for most imaging configurations in
this paper, we had a small number of illuminators and a large number
of camera pixels. We can importance sample the last segment when
iluminators are more than camera pixels, or importance sample both
the first and last segment in bidirectional algorithms.

7 FIELD RENDERING

So far we focused on evaluating speckle covariance. A complemen-
tary question is how to directly render speckle images. Suppose, for
example, that we want to generate Nj images from Nj different illu-
mination points, where each image includes Ny sensor points. This
requires sampling Nj v = Nj - Ny complex numbers. One approach
for this is to evaluate the corresponding covariance matrix of size
Niv X Nj v, and then use it to sample values. However, for large
Ni. v, the covariance matrix can be impractically large. Instead, we
seek an algorithm with complexity O(Nj y) rather than O(Nizv).
For this, we follow Bar et al. [2019], who note that the covariance
matrix as given by Eq. (3), (14) and (18) is essentially an infinite
summation of rank-1 matrices, decomposed over the path space

- [reonevopanamy g, @)
P
for all (k, m) pairs k,m € {1,..., Nj v}, with

b(ik Vk) _ /{,egzavk ™, OI)Y(\A’,OI,ik), B=1
’ Y(([)],Ol,ik)Y(LbB,OB,Vk), B>2

cik,i'"

vk, ym

(44)

Despite the fact that this rank-one decomposition is over-
complete, we can use it to sample from the covariance matrix. We
sample sub-paths X° ~ p(X®), using the same importance function
as in Sec. 6. The field is updated using b(i¥, v¥), resulting in

u(ik,vk) — \/LJT] Z b(ik,Vkl)_Es’n) %eZHign’ (45)

where {, € [0, 1] is a random phase ensuring
E[b(ik, vK|%5m)e?71in] = 0. (46)

As different paths are sampled independently, and given the zero-
mean property, contributions from different sub-paths are uncorre-
lated. Namely, for n; # ny:

E b(ik,vk|§s’"1)e2”i§”1 . b(im’vm&s,nz)*e—Zﬂignz =0, (47)
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Fig. 7. Comparisons w1th far field rendering. (a) Imaging setup. We use illumination and viewing pairs defined by A = i2
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. (This setup is also used in Fig. 8-11.) (b-d) We compare covariances rendered using our near-field (N.F.) algorithm against those

obtained by renderlng far- ﬂeld (F.F.) correlations and applying focusing. We also compare with covariances rendered with a binary aperture of equivalent
width to our apodized aperture. As binary apertures cannot be well-approximated using von Mises-Fisher functions, we only render them using the far-field
algorithm. The volume has size 504 X 504 X 20A. We evaluate two aperture widths in (b,c) and two phase functions in (c,d). Each square visualizes correlation

as a function of 7, and different rows correspond to different x-axis illuminator shifts A = i2 — il

for all (k, m) pairs. Therefore, we see that E [u(lk vEY L u(i™, vmy* ]

equals the desired covariance of Eq. (43).

Fig. 1 shows speckle images rendered with this algorithm. We
note that in Eq. (45), the same set of paths is used to update all
illuminators and sensors. As a result, the speckle images due to
different illuminators in Fig. 1 are correlated, shifted versions of each
other, corresponding to the memory effect property. Rendering each
of these images independently, using a standard Monte Carlo volume
rendering approach, would fail to reproduce these correlations.

8 EVALUATION

We now evaluate the efficiency and accuracy of our proposed ren-
dering algorithms. We compare our algorithms against three alterna-
tives: First, we compare with an approach that uses the Monte Carlo
rendering algorithm of Bar et al. [2019] to produce far-field esti-
mates, and then converts them to near-field estimates using Eqs. (2)
and (9). We also consider a few variants of this approach that benefit
from various acceleration techniques. Second, we compare with
groundtruth estimates produced by a wave-equation solver. Third,
we compare with estimates produced using a layered propagation
approach popular in the optics literature. Additionally, we show
experiments evaluating performance improvements due to the im-
portance sampling scheme of Sec. 6. In Sec. 9, we show experiments
relating to the tilt-shift memory effect [Osnabrugge et al. 2017], in-
cluding experiments validating our algorithms against groundtruth
measurements of real materials.

Experimental configurations. Our experiments focus on illumina-
tion and imaging configurations that are known from literature to
produce strongly-correlated fields. We describe these configurations
using Fig. 7(a) as reference: As we focus on transmission mode imag-
ing, the focused illumination is placed at the back of the sample, and
the focused sensor is placed at the front. We refer to App. A.4 for
an evaluation of our technique under reflective imaging conditions.
We consider the case where the illumination focus points i!, i? and
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. We see close agreement in all cases.

sensing focus points v!, v? are all located at the same depth plane,

at the back plane of the volume. This configuration corresponds, for
example, to the fluorescent imaging setting, where a fluorescent par-
ticle is deep inside a medium such as tissue, and a camera attempts
to observe it by focusing through the scattering at the illuminator’s
plane.

We denote by i}c’y, ii,y, V}C’y, vfc’y the x — y coordinates of the
corresponding 3D points on the focus plane. We denote by A =
ii,y - il y the 2D displacement between the illumination direc-
tions, and by 7 = V}C’y - i}(’y the 2D displacement between the
illumination and viewing directions (Fig. 7(a)). Classical memory
effect theory [Feng et al. 1988] states that strong correlations ex-
ist between fields for illumination and viewing pairs satisfying
ii’y - i}c,y = vi,y - v;,y = A, for small A values. With this in
mind, in our experiments, we evaluate and visualize correlations of
the form:

11 +A

X, y’ X y (48)
x,y+rle,y+T+A’

C(A 1) =

for different displacements A and 7. For sufficiently wide volumes,
1

C(A, 7) is approximately invariant to i".

Comparison with far-field approach. We compare first with the
simulation approach based on the far-field rendering algorithms of
Bar et al. [2019]. To reduce the computational burden, we compare
with an approach based on a combination of Egs. (2) and (9), rather
than Eq. (11): We first discretize the illumination and viewing aper-
tures into a set of directions i and ¥. For each set of (i, ¥) values,
we use the implementation provided by Bar et al. [2019] to sample
far-field scattered waves u; which we subsequently convert to the
near-field scattered waves using Eq. (9). By running the field ren-
dering algorithm of Bar et al. [2019] multiple times, we end up with
multiple samples of near-field scattered waves, corresponding to
different scatterer configurations. Finally, we use these near-field
scattered waves to approximate the covariance as in Eq. (2). We
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Fig. 8. Acceleration of far-field rendering. (a) N.F (1x runtime). (b) F.F.
with dense discretization of aperture integral (400X runtime). (c) F.F. with
sparser discretization of aperture integral (100X runtime) (d, e) F.F. with
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Table 1. Runtimes of different algorithms for achieving RMSE < 0.01.

10A X 104 X 44 | 254 X 254 X 104 | 504 X 504 x 201
N.F. 0.46s 2.12s 6s
E.F. Tab. 31s 221s 2.4%x10%s
EF. M.C. 199s 1.47 x 103 s 2.04x 10%s

note that, in Sec. 4, we presented the formal approach for estimat-
ing near-field covariance using far-field rendering, based on the
far-field covariance Eq. (11) rather than fields. In these experiments,
we opt for the field-based approach, because the number of far-field
samples it requires scales more favorably with the width W of the
simulated volume (W* scaling for the field-based approach, W8
scaling for the covariance-based approach).

In our experiments, to keep the number of far-field samples man-
ageable, we simulate a relatively small volume of size 504 X 501 % 201
with mean free path MFP = 104, leading to an optical depth OD = 2.
We consider two choices of aperture width, o, = 0.6 and o4 = 0.25,
and both wide and narrow forward-scattering Henyey-Greenstein
phase functions (low and high g values, respectively). When using
the far-field approach, we simulate both von Mises-Fisher-apodized
and binary aperture masks m(-) of the same width, to quantify the ef-
fect of our apodization approximation on accuracy (binary apertures
can only be evaluated at the far-field, at increased computational
complexity, as the von Mises-Fisher approximation does not ap-
ply). We show the results in Fig. 7. We observe that, in all cases,
our near-field rendering algorithm produces very similar results to
the far-field approaches. We also note that the far-field approach
produces very close results when using apodization and binary
masks, indicating that our apodization approximation does not in-
troduce significant bias. At the same time, our near-field approach
is orders-of-magnitude faster, as we quantify in detail below.

In Fig. 8, we additionally compare against two accelerated variants
of the far-field approach. We reuse the configuration of Fig. 7(d), this
time with a wider 7 grid. First, we render far-field covariance only
for a (fixed) regular subset of directions. As the number of samples is
significantly lower than that required by the Nyquist sampling rate
in Eq. (12), aliased replicas appear. Second, we use a Monte Carlo
strategy that randomly samples the directions at which far-field
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Table 2. Equal-time comparisons of different algorithms.

104 X 104 X 4A{254 X 251 X 104|501 X 501 x 204
1s 60s 5s 500s 15s | 6000s

N.F. 0.0089{0.0076{0.0096| 0.0093 {0.0135| 0.0110

N.F. biased ref.|0.0053|0.0021|0.0050| 0.0018 {0.0080| 0.0045

FF. Tab. 0.0396{0.0078{0.0672| 0.0056 {0.0915| 0.0051

FF. M.C. 0.1140{0.0198{0.2024| 0.0207 |0.3317| 0.0632

covariance is computed when evaluating the integral of Eq. (11).
The number of random samples is selected to achieve the lowest
possible error for equal runtime. As the integrand is complex, using
Monte Carlo approximation results in very high variance. At the
cost of increased runtime, Fig. 8(e) demonstrates a better estimate.

Runtime and bias evaluation. We compare the runtime of our
near-field approach against two versions of the far-field approach: a
tabulated version, computing all far field directions before applying
near field transformation, as in Fig. 8(b); and a Monte Carlo version,
randomly sampling directions, as in Fig. 8(d-e). Table 1 shows the
runtime each approach requires to converge to a root-mean-square-
error (RMSE) relative to a reference rendering below 0.01. In all
cases, our near-field approach has the best performance, and the
performance improvement increases as the width W of the simulated
volume increases. For the volume size we use for the results in Fig. 7,
our near-field approach is 400X faster than the tabulated far-field
approach, and 3000x faster than the Monte Carlo approach. The
performance advantage will become even larger for volumes with
sizes corresponding to realistic lab experiments. All algorithms were
implemented and run on a V100 NVIDIA GPU.

Table 2 reports RMSE from equal-time comparisons of the three
approaches using volumes of different sizes. Error was measured
against a reference rendering produced by running the far-field
approach till convergence. For each volume size, we report RMSE
for both a small and a long rendering time. The latter allows us to
quantify the bias of the near-field approach. While any such bias is
too small to be noticeable in the visual comparisons of Fig. 7, the nu-
merical difference between the near-field and far-field covariances
does not fully converge to zero. We anticipate that most of the bias
is due to the assumption that volumetric attenuation is constant
for all directions through the aperture (see Eq. (25)). In the second
row of Table 2 we compare our near-field approach against a refer-
ence evaluated using the far-field approach but with an equivalent
constant directional attenuation, showing smaller error.

The benefit of importance sampling. To evaluate the effect of the
importance sampling scheme we introduced in Sec. 6, we compare
in Fig. 9 covariance estimates produced by our Monte Carlo al-
gorithm, using three different sampling strategies: first, uniform
sampling of both the first path vertex and direction; second, impor-
tance sampling of the first vertex and uniform sampling of the first
direction; and third, importance sampling of both the first vertex
and direction. We observe first that, when run till convergence (e.g.,
in the top panel where the sample is small and the phase function
has significant side-scattering), all three combinations converge
to the same result. This confirms that importance sampling does
not introduce any addiional bias. We additionally observe that the
estimate using importance sampling of both the first vertex and
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Fig. 9. The benefit of importance sampling. The figure compares uni-
form sampling vs. importance sampling (1.S.) of the first scatterer on the
path o4, vs. importance sampling of both the first scatterer and the first
direction 01, @1. Top panel: a small target whose size is only 201 X 201 X 201.
For such small targets uniform sampling converges as well, although re-
quiring a larger number of path samples (compare results with 103 samples
to 10° samples), demonstrating that our importance sampling strategy is
consistent. Middle panel: When expanding the size of the target volume,
convergence of uniform sampling is very slow. As the phase function is
rather wide, importance sampling of the first direction does not improve
much. Lower panel: If we also use a very forward scattering phase function,
convergence is much accelerated by importance sampling the first direction.

direction results in reduced noise in all cases. The improvement
becomes more pronounced as the width of the volume increases
(second panel in Fig. 9); this is because, as the size of the Gaussian
beam relative to the volume decreases, uniform vertex sampling
will result in more paths starting in points of the volume that do
not receive any light. Finally, the improvement achieved by using
importance sampling increases even further as the phase function
becomes more forward-scattering (third panel in Fig. 9); in this case,
it is necessary to importance sample the first direction as well, oth-
erwise the majority of path-starting directions will have near-zero
contribution. Fig. 10 additionaly shows convergence plots for the
first and third volumes in Fig. 9.
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Fig. 10. Convergence plots. log(RMSE) of different sampling strategies as
a function of sample number, for the first and third volumes in Fig. 9.

Comparison with a wave-equation solver. Bar et al. [2019] demon-
strated the accuracy of their far-field covariance rendering algo-
rithm by comparing against numerical wave-equation solvers. For
additional validation, we also compare directly with the p-diff
solver [Thierry et al. 2015] they use. The solver takes as input a
configuration of scatterer locations, and uses numerical techniques
to solve the wave equation and output an estimate of the complex
scattered field. To compute covariance, we run the solver for multi-
ple scatterer instantiations sampled from the same distribution, then
use the results to estimate the speckle covariance of Eq. (2). We note
that this simulator only works in 2D; thus, for these comparisons
only, we restrict our Monte Carlo rendering algorithm to 2D as well.

The left part of Fig. 11 shows correlations values C(A, 7) (Eq. (48)),
as a function of 7 for a few A and g values, simulated using p-diff
and our technique. Note that, as these simulations are in 2D, 7 is
a scalar, and thus C(A, 7) is a 1D curve. We observe that the plots
computed with our technique closely match those produced by the
wave-equation solver, demonstrating the accuracy of our technique.
At the same time, for this small example our technique is three
orders of magnitude faster, and can scale to much larger volumes.

Comparison with multi-slice layered propagation. We compare
additionally with the multi-slice beam propagation method [Schott
et al. 2015], which is a popular numerical approach in optics for
simulating wave propagation. This approach accounts for multiple-
scattering effects by approximating the simulated volume as a se-
quence of planar slices orthogonal to the optical axis; layers are
modeled as infinitesimally-thin 2D phase masks, separated by free
space. The phase mask of each layer is selected to scatter light with
an angular spread matching the phase function of the simulated
volume. This technique has high computational efficiency compared
to exact wave-equation solvers, but cannot model back-scattering,
and has worse accuracy for wide scattering angles.

The right part of Fig. 11 shows correlation estimates from this
technique, using the same experimental settings as in our com-
parisons with the wave-equation solver. We observe that, for very
forward-scattering phase functions, both our Monte Carlo algo-
rithm and the layered propagation technique closely match the
groundtruth produced by the solver. However, for phase functions
with significant side-scattering, the accuracy of the layered propaga-
tion technique is significantly worse than that of ours. Additionally,
our Monte Carlo algorithm is significantly faster than the layered
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Fig. 11. Wave optics alternatives. We compare covariances obtained with our approach, against those by a wave-equation solver, and a multi-slice simulator
from optics. Our simulator is physically accurate, producing results in close agreement with those of the solver, while being orders of magnitude faster.
The multi-slice approach is valid for a very forward-scattering phase function (g = 0.98) and small optical depth. For a wider phase function (g = 0.3), the
multi-slice approach produces inaccurate results, due to incorrect modeling of back and side scattering angles. The comparison is performed in 2D due to the

limitations of the solver. The simulated volume is 2004 X 704 wide with OD = 3.
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Fig. 12. The tilt-shift memory effect. (a) Setup: two beams with spatial
displacement A, and angular displacement 0 enter the volume. We compute
the correlation between the speckle patterns measured at the b plane as a
function of both tilt and shift, assuming that the input displacement A4
is selected to maximize Eq. (50). The bottom images visualize the results.
(b,c) Analytic and measured correlation, reproduced from Osnabrugge et
al. [2017]. (d-e) Correlation computed by our algorithm for two different
phase functions with the same average cosine g = 0.98.

propagation technique, as the latter requires for each layer a high-
resolution discretization of the wave, resulting in large dense arrays
that need to be convolved to model propagation between layers.

9 THE TILT-SHIFT MEMORY EFFECT

In this section, we use our near-field rendering technique to study
the tilt-shift memory effect property introduced by Osnabrugge et
al. [2017]. We first briefly review this property, using Fig. 12(a) as a
reference: A scattering volume of thickness L is illuminated by two
input beams from its top surface, denoted in Fig. 12(a) as the a plane.
The scattered fields u!, u? due to the two beams are imaged by a cam-
era focused at the lower plane of the volume, denoted in Fig. 12(a)
as the b plane. The two illumination beams have a displacement
relative to each other equal to i2 — il = A4. The key observation
of Osnabrugge et al. [2017] is that we can increase the correlation

of the speckle fields due to the two beams if we additionally tilt
the beams at angles —0/2, 0/2 respectively. Intuitively, appropriately
selecting the tilting angle as a function of the displacement A4
helps increase the overlap between the defocused beams inside the
medium, and thus increases the correlation of the resulting speckle
fields.

This observation motivates evaluating how speckle field correla-
tion varies as a function of tilt angle and shift displacements at the
input and output planes. Concretely, we can write this as a function:

C(Ag:Ap.0) = E Z ul(z = Dpf2) - uP(t + Ab/z)*e"’"e] ., (49)

T

where the expectation is taken over all fields with the same material
parameters (e.g., fields generated by different scatterer instantiations
O sampled from the same density). Osnabrugge et al. [2017] derived
an analytic approximation for this function that takes the form:

_L3k2(9j+(ﬁ+ib)2)
C(Dg, Ap,0) ~ 8(Ap — Mg — LO)e "\ V22T ] (50

where §(-) is the Dirac delta function, and ¢y, is the transport mean
free path € = MFP/(1 — g). Their derivation is based on three
simplifying assumptions: it uses a layered representation similar
to that of the multi-slice layered propagation technique in Sec. 8;
at each layer, it assumes forward-only propagation; and it uses a
differential equation to integrate over multiple scattering planes.

Additionally, Osnabrugge et al. [2017] show measurements of the
function C(Ag4, Ap, 0) for a tissue phantom of thickness L = 258 ym,
made of silica microspheres immersed in agarose gel. By combining
Mie theory [Frisvad et al. 2007] with the dispersion and sizing
properties of the materials used for fabrication, the authors estimate
for the phantom an anistropy parameter g = 0.98 and mean free path
MEFP = 296 ym. In Fig. 12(b,c), we replicate from their paper (using
data provided by the authors) the measured correlation C(Aq, Ay, 6),
as well as the analytical prediction using the model of Eq. (50). The
correlation is displayed as a function of (Ay, ) alone, with A4
selected according to the Dirac delta relationship in Eq. (50).

To evaluate the accuracy of our near-field covariance rendering
algorithm, we use it to estimate the function C(Aq, Ay, 0) for the
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same tissue phantom. We refer to App. A.7 for details on how to sim-
ulate this with our framework. We perform simulations using both
the exact Mie-theory phase function describing the phantom, as
well as a von Mises-Fisher phase function with the same g = 0.98 av-
erage cosine. Comparing with the measured data and the analytical
approximation in Fig. 12(b,c), we make the following observations:
Both our renderings and the analytical approximation produce a
correlation function with a dominant lobe that has the same orien-
tation as the one in the measured data. However, our simulations
match the dimensions of this lobe more closely than the analytical
model. Overall, our simulations reproduce the important qualitative
features of the measuremenets, confirming the accuracy of our algo-
rithms. Differences between our renderings and the measurements
are likely due to inaccurate modeling of the true material properties
of the phantom—as seen in Fig. 12(d-e), replacing the exact reported
phase function with an approximation results in a better match to
the measurements—and due to aberrations in the imaging optics.
We also note that Osnabrugge et al. [2017] measured correlation
with an interferometric setup, which typically produces very noisy
estimates of small signals such as weak speckle correlations.

9.1 Focusing through turbid media

Having shown that our rendering algorithms can accurately repro-
duce the tilt-shift memory effect, we now use them to analyze this
effect in the context of a specific biomedical imaging application: we
simulate focusing through turbid media with adaptive optics. This
involves using, e.g., a spatial light modulator to produce a coherent
wavefront whose shape is specific to the tissue sample being imaged.
Finding the exact shape of this wavefront is challenging and usually
requires having external information or a guiding star [Horstmeyer
et al. 2015]. Once we know the wavefront needed to focus at a spe-
cific point inside the volume, an important practical consideration
is whether we can use this information to refocus at other points in
a neighborhood around the original point [Judkewitz et al. 2014].
The memory effect property of scattered fields provides a way
to achieve this refocusing task. The way this works is that we first
use a guiding star to measure the scattered field that is created
due to emission from a single point iy, at the a plane (Fig. 12(a)).
Measuring this field u(vy, ) at all points vy y at the b plane provides
us with exactly the wavefront shape we need to focus at point iy, .
Then, the memory effect property suggests that a shifted wave

u(vx,y +A), (51)

can be used to roughly focus at iy, + A. Osnabrugge et al. [2017]
improve upon this idea by recommending to refocus using a wave
that is both shifted and tilted; that is, a wave of the form

u(vy,y + A)etFOBVxy (52)

where 6(A) is selected according to Eq. (50). For example, the
strength of the yellow spot at the fourth column of Fig. 13 is slightly
higher than at the second column. Using Eq. (50), Osnabrugge et
al. [2017] also predict the range of shifts for which this refocusing
is effective; that is, they estimate the scanning range for which
sufficient memory effect correlations exists.

We use our rendering algorithms to evaluate these refocusing
techniques, as shown in Fig. 13. The top part of the figure compares
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Fig. 13. Adaptive optics focusing. llluminating a scattering slab with the
complex wave visualized at the first and third columns of the top row leads
to a sharp focused point at the other edge of the random media slab. Due
to the ME, a small shift of the same pattern can focus at a nearby point,
but focusing power degrades with displacement (note the weak power at
the third row). Applying both shift and tilt to the input pattern (rightmost
columns) leads to a stronger power at the same displacement (compare the
power for the non-zero displacements at rows 2 and 3). Lower panel: Using
our approach to evaluate the expected power one can achieve with the shit
only and shift+tilt approaches, as a function of displacement (that is, the
average power of the yellow dot at the three top rows). The scan range
predicted by our accurate simulator is wider than the analytical prediction.
Note that configurations (b) and (c) have the same transport mean free
path and should be equivalent according to the simplified analytic model
of Eq. (50), yet they are very different according to an accurate MC simulator.
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refocusing simulations using only shifting (Eq. (51)) versus using
both shifting and tilting (Eq. (52)). We observe that using the tilted-
shifted wave improves refocusing, making the yellow focused spots
of the second column in Fig. 13 stronger than the fourth one, and
thus validating the observation of Osnabrugge et al. [2017]. We refer
to App. A.8 for more details regarding this simulation.

We can additionally use our rendering algorithms to more ac-
curately evaluate the scanning range over which this refocusing
technique remains effective. In the lower panel of Fig. 13 we plot
the expected power we can measure at focus points for different
displacements A, comparing the prediction by our model with the
analytical prediction of Osnabrugge et al. [2017]. We do simulations
for a material with a Henyey-Greenstein phase function of g = 0.98
and mean free path of MFP = 75 pum at wavelength A = 0.5 ym.
We test two material thicknesses L = 75 ym and L = 225 ym, cor-
responding to optical depths of OD = 1 and OD = 3. We observe
that the Monte Carlo simulations predict that the effective scanning



range is larger than the range predicted by the analytical model
of Eq. (50). We additionally observe that, even though the analyt-
ical model depends only on the transport mean free path ¢, our
simulations suggest that the scanning range varies significantly
for materials with the same transport mean free path, but different
phase function and actual mean free path (compare Fig. 13(b,c)).

These results demonstrate that our rendering algorithms can be
used to evaluate how the performance of existing imaging tech-
niques depend on exact material parameters, in ways that cannot
be predicted using existing analytical models.

10 CONCLUSION

We presented computationally-efficient algorithms for simulating
physically-accurate speckle fields and statistics under focused cam-
era and light sources. The key element of our algorithms is the use
of closed-form expression for transforming far-field correlations
to the near-field ones, for individual Monte Carlo paths. We also
derive efficient importance sampling strategies for path generation.

The closed-form expressions are made possible through the use
of von Mises-Fisher functions to approximate all spherical functions
appearing in the path integral expression of near-field speckle co-
variance. We make four such approximations: (i) We use apodization
in the aperture plane to convert the aperture mask into a spheri-
cal von Mises-Fisher function. (i) We assume the exponential at-
tenuation is constant through all aperture directions. (iii) We ap-
proximate the phase function as a mixture of von Mises-Fisher
functions. (iv) We approximate the analytical convolution of von
Mises-Fisher functions, which is not in general a von Mises-Fisher
function, as such a function. We have shown through simulations
that: (i) Even though apodization cannot express an exactly binary
aperture, if one matches its variance to the desired NA, a similar
depth of field and similar speckle statistics are produced. (ii) The
assumption of constant directional attenuation introduces negligible
bias. (iii) Real-word and common parametric phase functions can
be well-approximated using a small number of von Mises-Fisher
functions. (iv) The convolution of von Mises-Fisher functions can
be closely approximated as a von Mises-Fisher function. For narrow
phase functions emitting little energy in the backward direction, nu-
merical problems arise in back directions. As a result, our approach
mostly applies for transmission mode imaging, and further research
is required for reflection mode imaging.

As an application of our algorithms, we evaluated different per-
formance metrics for memory-effect-based adaptive optics scan-
ning, and showed that in practice performance can be better than
what predicted by previous approximate analytical models. We hope
that our algorithms will open the door for better understanding of
speckle statistics under near-field imaging conditions, in turn al-
lowing researchers to push the boundary of what is possible using
speckle-based techniques in deep tissue imaging.

ACKNOWLEDGMENTS

This work was supported by European Research Council Horizon
2020 635537, ISF 1947-20, Ollendorff Minerva Center of the Tech-
nion, Gordon center for system Engineering, Porat award, NSF

Rendering Near-Field Speckle Statistics in Scattering Media « 187:17

Expeditions award 1730147, DARPA REVEAL grant HR0011-16-C-
0028.

REFERENCES

David Abookasis and Joseph Rosen. 2004. NOISE 2 imaging system: seeing through
scattering tissue with a reference point. Opt. Lett. (2004).

Eric Akkermans and Gilles Montambaux. 2007. Mesoscopic Physics of Electrons and
Photons. Cambridge University Press.

Arindam Banerjee, Inderjit S. Dhillon, Joydeep Ghosh, and Suvrit Sra. 2005. Clustering
on the unit hypersphere using von Mises-Fisher distributions. JMLR (2005).

Chen Bar, Marina Alterman, Ioannis Gkioulekas, and Anat Levin. 2019. A Monte Carlo
Framework for Rendering Speckle Statistics in Scattering Media. ACM TOG (2019).

Chen Bar, Ioannis Gkioulekas, and Anat Levin. 2020. Project Website. https://github.
com/chabner/gaussianBeam-field.

Brian A. Barsky and Todd J. Kosloff. 2008. Algorithms for Rendering Depth of Field
Effects in Computer Graphics. ICCOMP (2008).

Mahed Batarseh, Sergey Sukhov, Zhean Shen, H. Gemar, Roxana Rezvani, and Aristide
Dogariu. 2018. Passive sensing around the corner using spatial coherence. Nature
Communications (2018).

Ibrahim Baydoun, Diego Baresch, Romain Pierrat, and Arnaud Derode. 2016. Radiative
transfer of acoustic waves in continuous complex media: Beyond the Helmholtz
equation. Physical Review E (2016).

Laurent Belcour, Kavita Bala, and Cyril Soler. 2014. A local frequency analysis of light
scattering and absorption. ACM TOG (2014).

Stephan Bergmann, Mahsa Mohammadikaji, Stephan Irgenfried, Heinz Worn, Jiirgen
Beyerer, and Carsten Dachsbacher. 2016. A Phenomenological Approach to Inte-
grating Gaussian Beam Properties and Speckle into a Physically-Based Renderer.
VMV (2016).

Richard Berkovits and Shechao Feng. 1994. Correlations in coherent multiple scattering.
Physics Reports (1994).

Bruce J. Berne and Robert Pecora. 2000. Dynamic light scattering: with applications to
chemistry, biology, and physics. Courier Corporation.

Jacopo Bertolotti, Elbert G. Van Putten, Christian Blum, Ad Lagendijk, Willem L. Vos,
and Allard P. Mosk. 2012. Non-invasive imaging through opaque scattering layers.
Nature (2012).

Benedikt Bitterli, Srinath Ravichandran, Thomas Miiller, Magnus Wrenninge, Jan Novak,
Steve Marschner, and Wojciech Jarosz. 2018. A radiative transfer framework for
non-exponential media. ACM TOG (2018).

David A. Boas and Arjun G. Yodh. 1997. Spatially varying dynamical properties of
turbid media probed with diffusing temporal light correlation. JOSA A (1997).

Craig F. Bohren and Donald R. Huffman. 1983. Absorption and scattering of light by
small particle. John Wiley & Sons.

Julie Chang and Gordon Wetzstein. 2018. Single-shot speckle correlation fluorescence
microscopy in thick scattering tissue with image reconstruction priors. Journal of
Biophotonics (2018).

Wai-Fung Cheong, Scott A. Prahl, and Ashley J. Welch. 1990. A review of the optical
properties of biological tissues. IEEE JQE (1990).

Youngwoon Choi, Taeseok Daniel Yang, Christopher Fang-Yen, Pilsung Kang, Ky-
oung Jin Lee, Ramachandra R. Dasari, Michael S. Feld, and Wonshik Choi. 2011.
Overcoming the Diffraction Limit Using Multiple Light Scattering in a Highly Dis-
ordered Medium. Phys. Rev. Lett. (2011).

Tom Cuypers, Tom Haber, Philippe Bekaert, Se Baek Oh, and Ramesh Raskar. 2012.
Reflectance Model for Diffraction. ACM TOG (2012).

Eugene d’Eon. 2018. A reciprocal formulation of nonexponential radiative transfer. 1:
Sketch and motivation. Journal of Computational and Theoretical Transport (2018).

Ronald L. Dougherty, Bruce J. Ackerson, Nafaa M. Reguigui, F. Dorri-Nowkoorani, and
Ulf Nobbmann. 1994. Correlation transfer: Development and application. JOSRT
(1994).

Turgut Durduran, Regine Choe, Wesley B. Baker, and Arjun G. Yodh. 2010. Diffuse
optics for tissue monitoring and tomography. Reports on Progress in Physics (2010).

Eitan Edrei and Giuliano Scarcelli. 2016. Memory-effect based deconvolution mi-
croscopy for super-resolution imaging through scattering media. Scientific Reports
(2016).

Robert K. Erf. 1978. Speckle Metrology. Elsevier.

Shechao Feng, Charles Kane, Patrick A. Lee, and A. Douglas Stone. 1988. Correlations
and fluctuations of coherent wave transmission through disordered media. Phys.
Rev. Lett. (1988).

Isaac Freund. 1990. Looking through walls and around corners. Physica A (1990).

Isaac Freund and Danny Eliyahu. 1992. Surface correlations in multiple-scattering
media. Phys Rev A (1992).

David L. Fried. 1982. Anisoplanatism in adaptive optics. JOSA (1982).

Jeppe Revall Frisvad, Niels Jorgen Christensen, and Henrik Wann Jensen. 2007. Com-
puting the scattering properties of participating media using Lorenz-Mie theory.
ACM TOG (2007).

ACM Trans. Graph., Vol. 39, No. 6, Article 187. Publication date: December 2020.


https://github.com/chabner/gaussianBeam-field
https://github.com/chabner/gaussianBeam-field

187:18 « Chen Bar, loannis Gkioulekas, and Anat Levin

Ioannis Gkioulekas, Shuang Zhao, Kavita Bala, Todd Zickler, and Anat Levin. 2013.
Inverse Volume Rendering with Material Dictionaries. ACM TOG (2013).

Walter I. Goldburg. 1999. Dynamic light scattering. American Journal of Physics (1999).

Joseph W. Goodman. 1968. Introduction to Fourier Optics. McGraw-Hill.

Joseph W. Goodman. 2007. Speckle Phenomena in Optics: Theory and Applications.
Roberts and Company Pub.

Charles Han, Bo Sun, Ravi Ramamoorthi, and Eitan Grinspun. 2007. Frequency domain
normal map filtering. ACM TOG (2007).

Roarke Horstmeyer, Haowen Ruan, and Changhuei Yang. 2015. Guidestar-assisted
wavefront-shaping methods for focusing light into biological tissue. Nature Photonics
(2015).

Pierre Jacquot and Jean-Marc Fournier. 2000. Interferometry in Speckle Light. Springer.

Pierre Jacquot and Pramod K. Rastogi. 1979. Speckle motions induced by rigid-body
movements in free-space geometry: an explicit investigation and extension to new
cases. Appl. Opt. (1979).

Wenzel Jakob, Adam Arbree, Jonathan T. Moon, Kavita Bala, and Steve Marschner. 2010.
A radiative transfer framework for rendering materials with anisotropic structure.
ACM TOG (2010).

Michael L. Jakobsen, Hal T. Yura, and Steen G. Hanson. 2012. Spatial filtering velocime-
try of objective speckles for measuring out-of-plane motion. Appl. Opt. (2012).
Adrian Jarabo, Carlos Aliaga, and Diego Gutierrez. 2018. A radiative transfer framework

for spatially-correlated materials. ACM TOG (2018).

Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Hanrahan. 2001. A
practical model for subsurface light transport. ACM TOG (2001).

Benjamin Judkewitz, Roarke Horstmeyer, Ivo Vellekoop, and Changhuei Yang. 2014.
Translation correlations in anisotropically scattering media. Nature Physics (2014).

Ori Katz, Yaron Bromberg, Eran Small, and Yaron Silberberg. 2010. Focusing and
Compression of Ultrashort Pulses through Scattering Media. Nature Photonics
(2010).

Ori Katz, Pierre Heidmann, Mathias Fink, and Sylvain Gigan. 2014. Non-invasive single-
shot imaging through scattering layers and around corners via speckle correlation.
Nature Photonics (2014).

Ori Katz, Eran Small, and Yaron Silberberg. 2012. Looking around corners and through
thin turbid layers in real time with scattered incoherent light. Nature Photonics
(2012).

Guillermo H. Kaufmann. 2011. Advances in Speckle Metrology and Related Techniques.
Wiley.

Craig Kolb, Don Mitchell, and Pat Hanrahan. 1995. A Realistic Camera Model for
Computer Graphics. ACM TOG (1995).

Puxiang Lai, Lidai Wang, Jian Wei Tay, and Lihong V. Wang. 2015. Photoacoustically
guided wavefront shaping for enhanced optical focusing in scattering media. Nature
Photonics (2015).

Yunzhe Li, Yujia Xue, and Lei Tian. 2018. Deep speckle correlation: a deep learning
approach toward scalable imaging through scattering media. Optica (2018).

Qiang Lu, Xiaosong Gan, Min Gu, and Qingming Luo. 2004. Monte Carlo modeling of
optical coherence tomography imaging through turbid media. Applied optics (2004).

Kanti Mardia and Peter Jupp. 2000. Directional statistics. John Wiley & Sons.

Jerome Mertz. 2019. Introduction to Optical Microscopy. Cambridge University Press.

Jerome Mertz, Hari Paudel, and Thomas G. Bifano. 2015. Field of view advantage of
conjugate adaptive optics in microscopy applications. Applied Optics (2015).

Christopher A. Metzler, Felix Heide, Prasana Rangarajan, Muralidhar Madabhushi
Balaji, Aparna Viswanath, Ashok Veeraraghavan, and Richard G. Baraniuk. 2020.
Deep-inverse correlography: towards real-time high-resolution non-line-of-sight
imaging. Optica (2020).

Christopher A. Metzler, Philip Schniter, Ashok Veeraraghavan, and Richard G Baraniuk.
2018. prDeep: Robust phase retrieval with a flexible deep network. ICML (2018).

Allard P. Mosk, Ad Lagendijk, Geoffroy Lerosey, and Mathias Fink. 2012. Controlling
waves in space and time for imaging and focusing in complex media. Nature
Photonics (2012).

Marco Mout, Michael Wick, F. Bociort, Joerg Petschulat, and Paul Urbach. 2016. Sim-
ulating multiple diffraction in imaging systems using a path integration method.
Applied Optics (2016).

Srinivasa G. Narasimhan, Mohit Gupta, Craig Donner, Ravi Ramamoorthi, Shree K. Na-
yar, and Henrik Wann Jensen. 2006. Acquiring scattering properties of participating
media by dilution. ACM TOG (2006).

Merlin Nimier-David, Sébastien Speierer, Benoit Ruiz, and Wenzel Jakob. 2020. Radiative
backpropagation: an adjoint method for lightning-fast differentiable rendering. ACM
TOG (2020).

Micha Nixon, Ori Katz, Eran Small, Yaron Bromberg, Asher A. Friesem, Yaron Silberberg,
and Nir Davidson. 2013. Real-time wavefront shaping through scattering media by
all-optical feedback. Nature Photonics (2013).

Jan Novak, Iliyan Georgiev, Johannes Hanika, and Wojciech Jarosz. 2018. Monte Carlo
Methods for Volumetric Light Transport Simulation. Computer Graphics Forum
(2018).

Gerwin Osnabrugge, Roarke Horstmeyer, Ioannis N. Papadopoulos, Benjamin Judkewitz,
and Ivo M. Vellekoop. 2017. Generalized optical memory effect. Optica (2017).

ACM Trans. Graph., Vol. 39, No. 6, Article 187. Publication date: December 2020.

Yingtian Pan, Reginald Birngruber, Jirgen Rosperich, and Ralf Engelhardt. 1995. Low-
coherence optical tomography in turbid tissue: theoretical analysis. Applied optics
(1995).

David J. Pine, David A. Weitz, Paul M. Chaikin, and Eric Herbolzheimer. 1988. Diffusing
wave spectroscopy. Physical review letters (1988).

Joseph Rosen and David Abookasis. 2003. Seeing through biological tissues using the
fly eye principle. Optics Express (2003).

Markus Rueckel, Julia A. Mack-Bucher, and Winfried Denk. 2006. Adaptive wavefront
correction in two-photon microscopy using coherence-gated wavefront sensing.
Proceedings of the National Academy of Sciences (2006).

Iman Sadeghi, Adolfo Munoz, Philip Laven, Wojciech Jarosz, Francisco Seron, Diego
Gutierrez, and Henrik Jensen. 2012. Physically-Based Simulation of Rainbows. ACM
TOG. (2012).

John Sawicki, Nikolas Kastor, and Min Xu. 2008. Electric field Monte Carlo simulation
of coherent backscattering of polarized light by a turbid medium containing Mie
scatterers. Optical Express (2008).

Joseph M. Schmitt and A. Kniittel. 1997. Model of optical coherence tomography of
heterogeneous tissue. JOSA A (1997).

Sam Schott, Jacopo Bertolotti, Jean-Francois Léger, Laurent Bourdieu, and Sylvain
Gigan. 2015. Characterization of the angular memory effect of scattered light in
biological tissues. Optics Express (2015).

Brandon M. Smith, Pratham Desai, Vishal Agarwal, and Mohit Gupta. 2017. CoLux:
Multi-object 3D Micro-motion Analysis Using Speckle Imaging. ACM TOG (2017).

Cyril Soler, Kartic Subr, Frédo Durand, Nicolas Holzschuch, and Francois Sillion. 2009.
Fourier Depth of Field. ACM TOG (2009).

Jos Stam. 1999. Diffraction shaders. ACM TOG (1999).

Frédéric Sur, Benoit Blaysat, and Michel Grédiac. 2018. Rendering deformed speckle
images with a Boolean model. JMIV (2018).

Kevin T. Takasaki and Jason W. Fleischer. 2014. Phase-space measurement for depth-
resolved memory-effect imaging. Optical Express (2014).

Bertrand Thierry, Xavier Antoine, Chokri Chniti, and Hasan Alzubaidi. 2015. p-diff: An
open-source Matlab toolbox for computing multiple scattering problems by disks.
Computer Physics Communications (2015).

Bradley E. Treeby and Ben T. Cox. 2010. k-Wave: MATLAB toolbox for the simulation
and reconstruction of photoacoustic wave-fields. JBO (2010).

Elbert G. van Putten, Duygu Akbulut, Jacopo Bertolotti, Willem. L. Vos, Ad Lagendijk,
and Allard. P. Mosk. 2011. Scattering Lens Resolves Sub-100 nm Structures with
Visible Light. Phys. Rev. Lett. (2011).

Ivo M. Vellekoop and Christof M. Aegerter. 2010. Scattered light fluorescence mi-
croscopy: imaging through turbid layers. Opt. Lett. (2010).

Ivo M. Vellekoop, Meng Cui, and Changhuei Yang. 2012. Digital optical phase conjuga-
tion of fluorescence in turbid tissue. Applied Physics Letters (2012).

Ivo M. Vellekoop, Aart Lagendijk, and Allard P. Mosk. 2010. Exploiting disorder for
perfect focusing. Nature Photonics (2010).

Ivo M. Vellekoop and Allard P. Mosk. 2007. Focusing coherent light through opaque
strongly scattering media. Opt. Lett. (2007).

Sebastian Werner, Zdravko Velinov, Wenzel Jakob, and Matthias B. Hullin. 2017. Scratch
Iridescence: Wave-Optical Rendering of Diffractive Surface Structure. ACM TOG
(2017).

Min Xu. 2004. Electric field Monte Carlo simulation of polarized light propagation in
turbid media. Optical Express (2004).

Ling-Qi Yan, Milo§ Hasan, Bruce Walter, Steve Marschner, and Ravi Ramamoorthi. 2018.
Rendering specular microgeometry with wave optics. ACM TOG (2018).

Zahid Yaqoob, Demetri Psaltis, Michael Feld, and Changhuei Yang. 2008. Optical phase
conjugation for turbidity suppression in biological samples. Nature photonics (2008).

Amnon Yariv. 1997. Optical electronics in modern communications. New York : Oxford
University Press.

Kane Yee. 1966. Numerical solution of initial boundary value problems involving
Maxwell’s equations in isotropic media. IEEE TAP (1966).

Hengchin Yeh, Ravish Mehra, Zhimin Ren, Lakulish Antani, Dinesh Manocha, and
Ming Lin. 2013. Wave-ray Coupling for Interactive Sound Propagation in Large
Complex Scenes. ACM TOG (2013).

Cheng Zhang, Bailey Miller, Kai Yan, Ioannis Gkioulekas, and Shuang Zhao. 2020.
Path-space differentiable rendering. ACM TOG (2020).

Cheng Zhang, Lifan Wu, Changxi Zheng, Ioannis Gkioulekas, Ravi Ramamoorthi, and
Shuang Zhao. 2019. A differential theory of radiative transfer. ACM TOG (2019).



	Abstract
	1 Introduction
	1.1 Why render near-field speckle statistics?
	1.2 Limitations

	2 Related Work
	3 Background on speckle statistics
	3.1 Modeling and rendering far-field speckle statistics

	4 Near-field speckle statistics
	4.1 Near-field covariance path integral

	5 Near-field using von Mises-Fisher functions
	5.1 Working with von Mises-Fisher functions
	5.2 Visualizing convolution

	6 Importance Sampling
	7 Field rendering
	8 Evaluation
	9 The tilt-shift memory effect
	9.1 Focusing through turbid media

	10 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 The speckle mean
	A.2 Nyquist analysis of far field sampling rate
	A.3 Approximated Convolution
	A.4 Backscattering simulations
	A.5 Gaussian Beam
	A.6 Importance sampling of path starting point
	A.7 Change of focal plane
	A.8 Simulating adaptive optics scanning range




