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We introduce a new interferometric imaging methodology that we term
interferometry with coded mutual intensity, which allows selectively imag-
ing photon paths based on attributes such as their length and endpoints.
At the core of our methodology is a new technical result that shows that
manipulating the spatial coherence properties of the light source used in
an interferometric system is equivalent, through a Fourier transform, to
implementing light path probing patterns. These patterns can be applied to
either the coherent transmission matrix, or the incoherent light transport
matrix describing the propagation of light in a scene. We test our theory by
building a prototype inspired by the Michelson interferometer, extended to
allow for programmable phase and amplitude modulation of the illumination
injected in the interferometer. We use our prototype to perform experiments
such as visualizing complex fields, capturing direct and global transport
components, acquiring light transport matrices, and performing anisotropic
descattering, both in steady-state imaging and, by combining our technique
with optical coherence tomography, in transient imaging.
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1 INTRODUCTION

Light propagation is an inherently multi-path phenomenon: When
we look at our surroundings, we observe light that has interacted
with one or multiple objects, either by reflecting on their surfaces,
or by scattering in their interior. Imaging systems typically accumu-
late contributions from photons traveling along all of these paths,
indiscriminately of characteristics such as the paths’ origins and
lengths. This accumulation process confounds the information that
is available in imaging measurements about scene properties of
interest, such as the shape and material of objects of interest.
Computational light transport techniques attempt to overcome
this confounding effect, by measuring only light that has traveled
along specific subsets of all the possible paths in a scene. These
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subsets can be specified based on characteristics such as the end-
points and length of the paths, or combinations thereof. There is a
growing number of systems that can perform this type of selective
probing of the many light components that make up an image, includ-
ing systems based on projector-camera combinations, continuous-
wave amplitude-modulated sensors, streak cameras, single-photon
avalance diodes, as well as interferometry.

Our focus is on the latter type of systems: Interferometric systems
operate by simultaneously measuring two light waves that origi-
nated at the same light source, and have traveled along different
paths in an optical system. When superimposed on an optical sensor,
the two waves will produce some measurable interference. Depend-
ing on the wave-optics properties of the original illumination, only
light paths that satisfy certain characteristics will contribute to the
interference. Therefore, by controlling the coherence properties
of the source the waves originate from, and then measuring their
interference after propagation, it is possible to isolate contributions
from only specific light paths. This type of interferometric probing
has been demonstrated in the past [Gkioulekas et al. 2015], using a
system similar to optical coherence tomography [Huang et al. 1991].
However, these previously systems are severely limited in terms
of the types of probing they can perform, compared to probing
capabilities possible using other imaging technologies.

Our goal on this paper is to significantly expand the probing
capabilities that can be realized using interferometry. To this end,
we develop a new imaging technique that we term interferometry
with coded mutual intensity. Our technique is based on a setup
similar to the classical Michelson interferometer, augmented with
optical components for amplitude and phase modulation. These
components enable programmatic control of the spatial coherence
properties of the illumination injected in the setup.

We perform a detailed theoretical analysis of our technique, and
explan how the underlying wave-optics models relate to the incoher-
ent models of light propagation typically used in computer graphics.
Through this analysis, we show that our technique provides several
probing capabilities: First, it enables probing the coherent trans-
mission matrix of a scene, using arbitrary convolutional probing
patterns. Second, it allows probing the incoherent light transport
matrix of a scene, using probing patterns that are challenging to
implement with alternative techniques. Third, it facilitates incor-
porating these probing capabilities within other interferometric
techniques, for example optical coherence tomography.

Our paper begins with background on the Michelson interferom-
eter and the notions of spatial and temporal coherence. We then use
this background to relate interferometry to measurements of the
transmission matrix characterizing coherent propagation of light.
In particular, we explain how, by modulating the spatial coherence
properties of the illumination used for interferometry, we can con-
trol which elements of the transmission matrix contribute to image
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measurements. We continue to show how these interferometric mea-
surements can be converted to measurements of the light transport
matrix, characterizing radiometric propagation of light in a scene.
Then, we design and build a physical prototype implementing our
interferometric technique. Finally, we use this prototype to perform
experiments such as visualizing complex fields, capturing direct and
global transport components, acquiring light transport matrices,
and performing anisotropic descattering, both in steady-state and
transient imaging. We provide implementation details in the sup-
plement, and our code and data in the project website [Kotwal et al.
2020], to facilitate reproducibility and follow-up research.

1.1 Why use interferometry with coded mutual intensity?

Our paper focuses on closing the gap between the probing capa-
bilities that can be implemented using interferometric systems,
versus those that are already possible using projector-camera sys-
tems [O’Toole et al. 2012]. This is important for making probing
capabilities available in microscopic imaging applications, where
projector-camera systems can be difficult to deploy and interfero-
metric setups are widely-employed. For example, as we demonstrate
in Section 7, our paper makes it possible to integrate very general
probing functionalities with optical coherence tomography sys-
tems [Huang et al. 1991], commonly-used for tissue imaging and
retinal imaging application. Another application includes interfer-
ometric shape-measurement devices [Li et al. 2018, 2017; Maeda
et al. 2018], which are common in industry and fabrication where
it is necessary to obtain measurements at micrometer scales: As
these devices already use interferometric measurements, it is rela-
tively straightforward to extend them to additionally incorporate
probing using our technique. By contrast, it is unclear how one
could implement probing in these systems using a projector-camera
technique. In Section 8, we compare in more detail interferometric
and projector-camera systems for probing.

Our paper builds upon the foundation laid down by Gkioulekas
et al. [Gkioulekas et al. 2015], who first showed how interferometry
can be used to implement probing of different light transport com-
ponents. However, the technique by Gkioulekas et al. [Gkioulekas
et al. 2015] is severely constrained in terms of the types of probing
that are practically-implementable, with the paper’s focus being al-
most exclusively on diagonal probing (corresponding to direct-only
imaging). Other probing types require designing and fabricating
complex mirror configurations, and for general probing types it is
unclear whether such configurations even exist. By contrast, our
technique makes it possible to implement arbitrary convolutional
probing types. As we demonstrate in Section 7, our technique en-
ables using interferometric systems to implement probing types
that are particularly relevant for critical applications such as tis-
sue imaging. These include probing with non-binary anisotropic
patterns for descattering (Figure 8), as well as probing off-diagonal
light transport components (Figure 9) that have been shown to be of
great value for tomography (for example, using short-range-indirect
imaging [Kubo et al. 2018], diffuse optical tomography [Liu et al.
2020], or inverse rendering [Gkioulekas et al. 2016]). Additionally,
our technique allows implementing different probing types in a
programmable way, without the need for any hardware changes
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when changing from one probing type to another. This opens up
interesting new possibilities, such as data-driven learning of optimal
probing matrices, optical matched filtering for pattern detection, or
adaptive probing through closed-loop control of the interferometric
system. Overall, our paper makes the full potential of the probing
framework, originally introduced by [Gkioulekas et al. 2015], avail-
able for the first time to a large range of critical applications in
medicine and industry that rely on interferometry.

Last but not least, our paper introduces for the first time the ability
to perform coherent probing of transmission matrices, in addition
to probing incoherent light transport matrices. Transmission ma-
trix formulations have emerged for several applications, including
focusing and imaging through scattering layers [Popof et al. 2010a;
Vellekoop and Mosk 2007], as well as using their memory-effect
structure for fluorescent imaging [Judkewitz et al. 2015; Osnabrugge
et al. 2017]. The ability to probe these transmission matrices opens
up several directions for future investigation: For example, it seems
plausible that probing only the parts of the transmission matrix that
contribute to the memory effect could improve descattering. Alter-
natively, probing may allow for more robust focusing inside tissue.
We hope that, by introducing coherent probing, our paper will mo-
tivate the investigation of different components of the transmission
matrix and the discovery of useful coherent probing patterns.

2 RELATED WORK

Computational light transport. The last two decades have seen the
development of a large number of techniques for acquiring, decom-
posing, and selectively capturing different components of the light
transport in an arbitrary scene. Our focus here will be on techniques
that can achieve this without acquiring the entire light transport
matrix of the scene [O Toole and Kutulakos 2010; Peers et al. 2009;
Sen et al. 2005; Wang et al. 2009]. We can broadly classify these
techniques into three categories, based on the criteria they use to
decompose light transport. First, bounce decomposition techniques
capture only transport due to paths that bounce a specific number
of times in a scene. Typically, this involves separating a direct com-
ponent (single-bounce paths) from an indirect component (paths
that bounce two or more times) [Gupta et al. 2011; Nayar et al. 2006;
Reddy et al. 2012]. In Lambertian scenes, it is also possible to sepa-
rate transport into discrete bounce components (only single-bounce,
only two bounces, and so on) [Seitz et al. 2005]. These techniques
are typically implemented using projector-camera systems.

Second, transient imaging techniques capture only light that has
traveled along paths of a specific length (or equivalently, light
that has a specific time-of-flight) within the scene [Jarabo et al.
2017]. This capability has been demonstrated using various sensing
technologies, including ultrafast photodiodes [Kirmani et al. 2011],
streak cameras [Velten et al. 2013; Wu et al. 2014a,b], continuous-
wave time-of-flight cameras [Heide et al. 2013; Kadambi et al. 2013;
Peters et al. 2015], single-photon avalanche diodes [Gariepy et al.
2015; O’Toole et al. 2017], and interferometry [Abramson 1983].
Third, probing techniques isolate light following paths whose end-
points satisfy specific correspondences between a two-dimensional
source and a two-dimensional sensor [O'Toole et al. 2012]. These
can be epipolar [O’Toole et al. 2014b], disparity [O’Toole et al. 2012;



Wang et al. 2018], or plane-ray [Kubo et al. 2018; Liu et al. 2020]
correspondences, as well as their logical complements [O’Toole et al.
2015]. Finally, there exist techniques that implement hybrids be-
tween different types of decompositions, for example by combining
probing and transient imaging [Achar et al. 2017; Gkioulekas et al.
2015; O’Toole et al. 2014a; Wang et al. 2018].

Optical interferometry. Interferometric techniques broadly op-
erate by exploiting the interference between one or more light
waves [Hariharan 2003]. These techniques have a long history in
optics and other disciplines: for example, optical coherence tomog-
raphy [Huang et al. 1991] is commonly employed for tissue and
retinal imaging. More recently, an increased number of interfero-
metric techiques have been introduced in the computer vision and
graphics literature. For example, interferometric techniques have
been used for refocusing [Cossairt et al. 2014], and high-resolution
depth sensing [Li et al. 2018, 2017; Maeda et al. 2018]. Most closely
related to our paper is the work of Gkioulekas et al. [2015], who use
interferometry to perform transient imaging, optionally combined
with different types of probing. Our technique significantly extends
these capabilities, by using interferometry to implement arbitrary
convolutional forms of probing, either on their own or jointly with
transient imaging, in a programmable and light-efficient manner.

At the core of our technique is the ability to programmatically
control the spatial coherence properties, and in particular the mu-
tual intensity function [Zernike 1938], of the illumination injected
in the two arms of a Michelson interferometer. This relates our
technique to the extensive literature on visualizing, analyzing, and
synthesizing the spatial coherence properties of test beams using
shearing and Sagnac interferometry [Carter 1977; Koivurova et al.
2017; Mendlovic et al. 1999, 1998; Naik et al. 2009; Pan et al. 2019;
Wax and Thomas 1996]. Instead of analyzing test beams, we use
interferometry with illumination of controlled spatial coherence
properties to analyze light transmission in arbitrary scenes.

Coherent imaging. Imaging with coherent effects has received
increased attention within computer vision and graphics in recent
years. In particular, techniques using speckle properties such as
the memory effect [Goodman 2007] have been used for motion
tracking [Jo et al. 2015; Smith et al. 2017], non-line-of-sight of imag-
ing [Smith et al. 2018], and imaging through scattering layers [Chang
and Wetzstein 2018], from just a few images under coherent illumi-
nation. Other techniques use exhaustive or partial measurements
of the complex transmission matrix [Popoff et al. 2010a], in order
to perform tasks such as focusing through scattering [Metzler et al.
2017; Sharma et al. 2019]. Many of these techniques have long prior
history in optics and biomedical imaging [Bertolotti et al. 2012; Katz
et al. 2014; Popoff et al. 2010b; Vellekoop et al. 2012; Vellekoop and
Mosk 2007]. In particular, the structure of the transmission matrix
for different types of scenes has been studied extensively using ana-
lytical approximations to coherent light propagation [Judkewitz et al.
2015; Osnabrugge et al. 2017], physically-accurate simulations [Bar
et al. 2019], as well as measurements that allow directly visualiz-
ing both its spatial-domain and frequency-domain forms [Waller
et al. 2012]. Both the memory effect and the transmission matrix are
highly-relevant to our work: We rely on properties of the former
for some of our derivations, and we show how our technique can
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Fig. 1. The Michelson interferometer. (a) We use two different light
sources to provide illumination to a Michelson interferometer. (b) A beam-
splitter separates the incident illumination into two beams. After reflection
at the reference arm (mirror) and target arm (retroreflector), the two beams
recombine and are measured by the camera. (c) We can use the captured
images to visualize the spatial coherence properties of the two light sources.

be used to perform probing of transmission matrices analogously
to the probing of incoherent light transport matrices.

3 BACKGROUND ON INTERFEROMETRY AND SPATIAL
COHERENCE

We begin by introducing some concepts from wave optics, neces-
sary for understanding interferometry and spatial coherence. Our
discussion largely follows Goodman [2000], Levin et al. [2013], and
Gkioulekas et al. [2015]. The analysis in this section will serve as a
warm-up for our technical results in Section 4.

Michelson interferometer. Throughout the paper, we use vari-
ants of the classical free-space full-field Michelson interferome-
ter setup, with a two-dimensional illumination source plane and a
two-dimensional sensor. This setup, shown in Figure 1(b), uses a
beamsplitter to separate a light wave emitted from a source into two
parts of (generally) equal intensity. One part propagates towards the
so-called target arm of the interferometer, which contains the scene
to be imaged. The other part propagates towards the reference arm of
the interferometer, which contains some fixed, application-specific,
optical configuration: most commonly, this is a planar mirror, but
we will discuss later more general reference arm configurations.
After reflection, the waves from the two arms are recombined by
the beamsplitter, and finally imaged by a camera.

In this section, we focus on analyzing a simple interferometric
experiment, which we use to provide insights into our main results
in Section 4. We place a retroreflector (in the form of a corner
reflector mirror) in the target arm of the Michelson interferometer.
We inject light into this setup through a light source consisting of a
lens and two types of (approximately) monochromatic emitters: a
laser diode, and a gas-discharge lamp (Figure 1(a)). Both emitters are
placed at the focal length of the lens, which collimates their output
into a beam that propagates towards the beamsplitter. We use a
camera to capture images when the interferometer receives light
from one or the other source, and show the results in Figure 1(c).

We observe that both images show a fringe pattern, which is
the result of interference between the two waves arriving at the
camera, from the reference and target arm. In the laser case, this
fringe pattern is present in the entire frame, whereas in the lamp
case, the pattern is limited to a small area at the center of the image.
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Fig. 2. Notation and coordinate system. We use the same coordinate
system throughout Sections 3 and 4. (a) The parts of the Michelson inter-
ferometer corresponding to the target and reference arms. (b-e) The target
and reference arms, shown unfolded in the same coordinate system. (b) and
(c) show the target arm, with lighting and camera respectively. (d) and (e)
show the reference arm, with lighting and camera respectively.

Qualitatively, the reason for this difference is the area of emission of
the two sources: The laser diode is effectively a point emitter, having
a circular area of emission with diameter approximately 5 pm. By
contrast, the gas-discharge lamp has a circular area of emission that
is 10,000 times larger, with a diameter of approximately 500 pm.
The emission area discrepancy results in illumination of different
spatial coherence properties, as we discuss in detail next.

3.1 Spatial coherence

Problem setup. To simplify notation, we derive our results in
two dimensions, with the extension to the three-dimensional case
being straightforward. We use an (x, z) coordinate system, shown in
Figure 2, where z is the optical axis of the illumination lens and the
camera. We restrict our derivations to the scalar wave theory, which
is sufficient for describing spatial coherence effects. Additionally,
we focus on the case of purely monochromatic light of wavelength
A (though note the discussions of temporal coherence at the end
of this section, and of optical coherence tomography in Section 5).
With these assumptions, we can describe electromagnetic fields as
complex phasors that are independent of time, and arise as solutions
of the Helmholtz equation [Goodman 2005, Section 3.3.1].

Incoherent area emitters. We denote by f the focal length of the
illumination lens, and use s to parameterize its focal plane. When
we place an ideal point emitter at some location s on the focal plane,
as shown in Figure 1(a), the lens produces a plane wave propagating
at an angle 0 relative to the optical axis z. We can express the
corresponding electromagnetic field at every location (x, z) as:

u? (x, z) = exp (—ik (x sin (0) + z cos (0))), (1)
where x = 27/1 is the wavenumber, and the direction 6 satisfies
sin (0) = s/f. We use the paraxial approximation, requiring that 0 is

small, and therefore sin (f) = s/f ~ 0 and cos (6) ~ 1. We can thus
rewrite the plane wave as:
u? (x,2) = exp (—ix (x0 + 2)) . (2)
We now consider an area emitter of a non-zero emission area,
characterized by the complex emission E (s): For every point s on
the focal plane, |E (s)|? and /E (s) are, respectively, the energy and
the phase of the emitter at that point. From Equation (2), |E (s)| and
/E (s) are also the amplitude and phase of the plane wave at direc-
tion 6 = s/f; considering the linear relationship between s and 0, we
abuse notation and write the complex emission E (6) as a function
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of 6, with the scaling by the focal length f being implicit. A laser
diode of practically infinitesimal width and a uniform area emitter
of width W, when centered on the focal plane, have respectively
| Epaser (0)]? o 6 (0) and |Earea (0)]? o rect (%) where & and rect
are the Dirac delta and rectangular functions, respectively. For emit-
ters with non-infinitesimal area, we assume that each point § with
non-zero emission power |E (9)|? is statistically independent with
respect of every other such point. We precisely characterize the
notion of statistical independence later in this section (Equation (7)).
We refer to such emitters as incoherent area emitters.

With these assumptions, we can express the illumination pro-
duced by an incoherent area emitter with complex emission E ()
as a collection of plane waves:!

u(x,z) = /9 E©)u? (x,z) do. 3)

Scattered and reference fields. We use the source described in
Equation (3) as illumination in the Michelson interferometer of Fig-
ure 1(b). The beamsplitter creates two copies of the incident field
u;j (x,z) = u(x, z). After interacting with the target and reference
arms, these produce, respectively, the scattered field us (x, z) and ref-
erence field u, (x, z), which we express analogously to Equation (3):

us (x,2) = / E©)u? (x,2) db, (4)
0

uy (x,2) = / E©)u? (x,z) df. (5)
0

where uf (x,z) is the field that the target arm would produce if
the incident field consisted of a single plane wave u? (x,z); and
likewise for ure (x, z) and the reference arm. We note that uf (x,2)
and uf (x, z) are not necessarily plane waves, and their exact form
depend on the two arms. We analyze a specific example later in this
section, and discuss the general case in Section 4.

Interference. We now consider an intensity sensor focused at
location (x, z). The sensor will capture a measurement I (x, z) due
to the superposition of the scattered and reference fields, combined
by the beamsplitter. We can express this measurement as: >

2
I(x,z) = /9 E®)ul (x.2) + E(0)uf (x.2) db| . (6)

The statistical independence assumption we introduced earlier can
now be concretely defined as follows: When superimposing the
scattered and reference fields, we first coherently sum the complex
scattered and reference fields for each 8 separately, and then we
incoherently integrate the resulting intensities for all 6 values. In
practice, this statistical independence property is satisfied only when
the plane waves u? that make up the incident illumination are the
result of thermal emission from different points on an area emitter
(for example, gas-discharge lamp or LED). However, such waves
are typically not monochromatic. In Section 5, we show how to use

This equation assumes that the lens has an infinite aperture, and we can ignore
diffraction and vignetting artifacts.

2We note that, typically, the intensity of a wave is defined as the temporal average of its
squared amplitude [Goodman 2000, Equation (4.2-5)]. Because we use time-independent
phasors to represent monochromatic waves, we can equivalently express intensity while
omitting temporal averaging. The same holds for our expressions for correlation and
mutual intensity later in this section.



temporal multiplexing to realize monochromatic illumination that
satisfies this statistical independence property.

With the assumption of statistical independence, we can exchange
the order of integration and squaring in Equation (6) to obtain:

[(x,2) = /9 ‘E(Q)uf (x,2) + E(0)u? (x,z)‘z d6 @)
- /9 ‘E(G)uf (x,z)|2 d6 + /9 ‘E(e)uf (x,z))2 d6

+2Re{ /9 (E(e)uf (x,z))*-(E(a)uf (x,z)) de} ®)

= I (x,z) + I (x,z) + 2Re {corr (x, z)}, 9)
DC intensity interference
where we have used:
2
I (x,2) = / |E ©)u? (x, z)‘ a6, (10)
0
2
I (x,2) = / |E ©)u? (x, z)‘ a6, (11)
%

corr (x,z) = /9 (E(e)uf (x,z))*-(E(Q)urg (x,z)) 4.  (12)

We observe that the sensor measurement in Equation (9) has two
components: First, the DC intensity component is the sum of the in-
tensity measurements I (x, z) and I, (x, z) the sensor would capture
if it were observing the target and reference arms separately. Second,
the interference component is due to the correlation corr (x, z) of the
scattered and reference fields. Our focus throughout the paper will
be on characterizing this correlation, for different types of incident,
scattered, and reference fields.

Equation (9) additionally suggests a straightforward way for iso-
lating the interference component: We can use the camera to capture
two additional images, one with the reference arm blocked (e.g., us-
ing a neutral density filter of very high optical density), and one with
the target arm blocked. These two images will be equal to I; (x, z)
and I, (x, z), respectively. By subtracting them from the superposi-
tion image I (x, z), we are left with an estimate (up to noise) of the
interference component. In Section 6, we describe in more detail
how we can estimate the interference and correlation components.

Spatial coherence. Finally, we will derive the correlation for the
specific target and reference arm configurations of Figure 1(b). For
this, we first need to determine the fields uf (x,z) and uf (x, z) for
all values of 0. A retroreflector placed at the in-focus plane and
centered at x = 0 has the effect of flipping the x coordinate of an
incoming plane wave with respect to the origin:

”39 (x,2) = u? (—x,2). (13)

A planar mirror, orthogonal to the optical axis and at distance 7
from the in-focus plane (Figure 1(a)), introduces a phase delay:

uf (x,2) = u? (x,z) exp (—ik7) . (14)

Then, we can prove the following proposition.

PROPOSITION 1. Given a light source with complex emission E (0), a
reference arm containing a planar mirror, and a target arm containing
a centered retroreflector, the correlation of Equation (12) equals:

corr (x, z) = exp (—ik7) S€ (2x), (15)
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where the mutual intensity kernel S¢ is defined as:
S¢(x) = Z{IE©O)*} [x], (16)

and F is the Fourier transform.

Proor. Given Equations (13) and (14), we can write:

us (x,z) = /GE (0) exp (—ik (—x60 + z)) db, (17)

ur (x,z) = exp (—ikr) /9 E (0) exp (—ik (x0 + z)) d6. (18)

From the statistical independence property of different 9,

corr (x, z) = exp (—ikr) / |E(0))? exp (ik (2x0)) d9,  (19)
0

=S¢(2x)
which concludes the proof. O

The name mutual intensity kernel is motivated as follows: Given
two points (x, z) and (x’, z) at the in-focus plane, S€ (|x — x’|) equals
the mutual intensity of the incident field at those points,

S (|x = x'|) =ui (x,2) ui (x',2)" = T ((x.2), (x",2)),  (20)
where J is the mutual intensity function of the incident field [Good-
man 2000][Equation (5.2-32)]. Effectively, the mutual intensity ker-
nel describes how the mutual intensity of the incident illumination
varies as a function of the distance between points on the same
plane. The mutual intensity kernel S€ is a function exclusively
of the complex emission, and thus characteristic of the source; it
describes the spatial coherence properties of the illumination gener-
ated by the source [Goodman 2000][Section 5.2.2]. For an ideal laser
diode, Sﬁiser (x) o< 1, and we refer to such illumination as spatially
coherent. By contrast, for a uniform incoherent area emitter of width
W, 8%eq (x) o< sinc (W - x). As the width W of the emitter increases,
the main lobe of the sinc function in the mutual intensity kernel
decreases. Conversely, at the limit W — 0, the mutual intensity
kernel S¢,., becomes identical to that of the ideal laser diode.

Visualizing the mutual intensity kernel. Concluding our analysis
of the experiment in Figure 1, we can use Equation (15) to interpret
the images captured under the two light sources. In particular, the
correlation captured with a retroreflector on the reference arm is
exactly equal to (a scaled version of) the mutual intensity kernel
S¢: In the case of the ideal laser diode, the mutual intensity kernel
is constant everywhere, resulting in a frame that is fully covered
with fringes due to interference. In the case of the incoherent area
emitter, the mutual intensity kernel is constrained primarily within
the main lobe of a sinc function, with a width inversely proportional
to that of the light source. In the corresponding captured image,
we see that the fringes due to interference have a limited spatial
extent, corresponding to the main lobe of the mutual intensity kernel.
We note that the setup of Figure 1 provides us with an alternative
to shearing interferometry techniques for visualizing the spatial
coherence properties of a source [Mendlovic et al. 1998].

A different way to interpret the fringes on the retroreflector is
by adopting a geometric optics viewpoint. We consider light paths
starting at a plane immediately in front of the lens, and propagating
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in the interferometer. From the paraxial approximation, the inten-
sity the sensor measures at location x will be due to two paths, both
traveling parallel to the optical axis, as shown in Figure 1(b). The
first path arrives at x after reflection on the planar mirror of the
reference arm, and from Equation (14) its origin on the lens is also at
x. The second path arrives at x after reflection on the retroreflector
of the target arm, and from Equation (13) its origin on the lens is
at —x. Therefore, the origins of the two paths are separated by a
distance d = 2x. The mutual intensity kernel determines the corre-
lation of the two paths as a function of this separation d: In the case
of the laser diode, two paths will always interfere, independently of
d. In the case of the incoherent area emitter, they will only produce
significant correlation if d < W. In the rest of the paper, we gener-
alize this idea, and show how to selectively decide which paths will
contribute to a sensor measurement based on their origins—that is,
to probe light paths analogously to O’Toole et al. [2012].

Temporal coherence. Before we conclude this section, we dis-
cuss our assumption that the illumination we are using is purely
monochromatic. When this is not the case, we need to consider the
temporal coherence properties of the light source. As discussed by
Gkioulekas et al. [2015], using a non-monochromatic source in the
Michelson interferometer experiment of Figure 1 means that the
correlation we observe in the captured images will additionally be a
function of the difference 7 between the distances of the reference
and target arms from the beamsplitter (Figure 2(e)):

corr (x, z) = exp (—ik7) G° (r) 8¢ (2x), (21)
where the temporal coherence kernel G€ is typically a positive real
function that monotonically decreases as || increases. The prod-
uct G¢ (7) 8¢ (x) characterizes the mutual coherence of the incident
illumination generated by the light source [Goodman 2000][Equa-
tion (5.2-7)], analogously to Equation (20) for mutual intensity. The
exact form of G€ is determined by the spectrum of the light source:
when the light source is monochromatic, G¢ (r) « 1 and the light
source is called temporally coherent; otherwise, the source is tem-
porally incoherent. In practice, light sources are characterized by a
temporal coherence length, which is the maximum separation dis-
tance 7 within which they can be considered temporally coherent.
We assume a temporally coherent source (infinite temporal coher-
ence length) for deriving our theoretical results, and most of our
experiments use a source of temporal coherence length significantly
longer than the size of our test scenes. However, as we discuss in
Section 5, our technique can be combined with temporally incoher-
ent illumination, as the two types of coherence are orthogonal to
each other; we demonstrate this experimentally in Section 7.

4 PROBING WITH CODED MUTUAL INTENSITY

In this section, we develop our main technical results, which take the
form of two propositions: In Proposition 2, we show how to relate
interferometric measurements of some arbitrary scene, captured as
correlation measurements from a Michelson interferometer setup, to
measurements of the scene’s transmission matrix combined with a
coherent probing matrix. In Proposition 4, we additionally show that
the squared amplitude of this correlation is approximately equal
to measurements of the same scene’s radiometric light transport
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Fig. 3. Interferometry with coded mutual intensity. (a) We consider a
generalized version of the Michelson interferometer, where the illumination
and reference arm are modified to perform, respectively, amplitude and
phase modulation in the Fourier domain. (b) This allows us to implement
probing of coherent transmission and incoherent light transport matrices.

matrix, combined with an associated incoherent probing matrix. We
use probing in the same way as O’Toole et al. [2012], to refer to
element-wise weights applied on the transmission or light transport
matrix before imaging. Figure 3 summarizes these contributions.
Finally, in the second part of Proposition 2, we show how to imple-
ment arbitrary convolutional probing matrices, by using appropriate
amplitude and phase modulation of an incoherent area emitter.

4.1 Probing the transmission matrix

Throughout this section, we analyze a more general version of the
Michelson interferometer setup, shown in Figure 3. We assume that
we capture images using a camera that is focused at the plane z = z,
(Figure 2). To simplify notation, we omit the z coordinate from fields.
We begin by describing the main properties of the illumination,
reference arm, and target arm of the interferometer.

Illumination. As in the previous section, we assume that the in-
terferometer receives illumination that, after collimation by a lens,
can be expressed as the superposition of purely monochromatic,
independent plane waves, described by a complex emission function
E (). This results in an incident field as in Equation (3):

ui (x) = /9 E©)u? (x) do. (22)

We refer to the squared amplitude of the complex emission function
A(0) = |E (0)]? as the amplitude modulation.

Reference arm. We assume that the reference arm contains an
optical configuration that introduces a, potentially §-dependent,
phase delay to each incident plane wave:

uf (x) = u? (x) exp (-ix® (). (23)

We refer to @ (0) as the phase modulation induced by the reference
arm. Combining Equations (22)-(23) with Equation (5), we can write:

ur (x) = /9 E (0) exp (—ix® (0)) u? (x) do. (24)

Target arm. The target arm consists of a test scene that we are
interested in imaging. In order to express the scattered field result-
ing from this scene, we use the scene’s coherent Green’s function
7€ (x,x’): This is a scalar complex function that describes the field



that is generated at point x on the plane z = z,, by solving the
Helmholtz equation with an impulse boundary condition at point x’
also on the plane z = z,. Adopting a geometric optics perspective,
we can think of the coherent Green’s function as the accumulation
of complex contributions from all valid light paths starting at point
x" and ending at point x on the plane z = z,; the contribution of
each path is the result of free space propagation, and potentially one
or more scattering events on intermediate surfaces and volumes.
We use the symbol 7 ¢ because of the relationship of this function
to the transmission matrix, as we discuss later in this section.
Using the Green’s function, we can express the scattered field as:

us (x) = / T (2, x") uz (x") dx’. (25)
x/
Combining Equations (22), (25) with Equation (4), we can write:

ug (x) = /65(9)/, 7 (x,x") u? (x") dx” dO, (26)

=uf(x)

0

where u” is used as in Equation (2).

Interference of reference and scattered fields. We now describe the
measurement captured by the camera when imaging this optical
setup. As in Equation (9), this image can be decomposed into a DC
intensity component, and an interference component due to the
correlation between the reference and scattered field (Equation (12)).
We can then prove the folowing proposition.

PROPOSITION 2. The correlation of Equation (12) for the generalized
Michelson interferometer of Figure (3) equals:

corr (x; 7€, P€) = '/‘7~C (xx,x + €) PC (€) de, (27)
€

where the coherent probing kernel P°€ is defined as:
P (x) = .7 {A(0) exp (—ix® (0))} [x], (28)

and % is the Fourier transform.

Proor. We use Equation (26) and express the scattered field as:

us (x) = /E(@)/ T (x,x") exp (—ixx’0) dx’ d6. (29)
[% x!
Using Equation (24), we express the reference field as:

ur (x) = / E (6) exp (—ixk® (0)) exp (—ikx0) d@. (30)
0
From the statistical independence property of different 6,
corr (x; 7€, P€)

= / |E(6)|? exp (—ik® (0)) / T (x,x + €) exp (—ikeh) de dd
0 €

= /‘TC (x,x +€) / A(0) exp (—ik® (0) — ikel) dO de, (31)
€ 0

=P<(e)
where we used the fact that A(6) = |E (0) |2. O

Discussion. We discuss the implications of the two parts of Propo-
sition 2, Equations (27) and (28). To understand the first part, it
is helpful to consider discretized versions of the coherent Green’s
function 7°¢ and coherent probing kernel P¢: We discretize the
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focus plane z = z, into N points. Using the same discretization on
the two arguments of the coherent Green’s function 7 ¢ results in
an N x N complex matrix T€ that is often referred to in optics as
the transmission matrix [Judkewitz et al. 2015; Popoff et al. 2010a].
Likewise, using this discretization on the argument of the coherent
probing kernel ¢ and correlation function corr (x; 7 ¢, P°) results
in the N X1 complex coherent probing vector p¢ and correlation vector
¢, respectively. We will additionally introduce the complex coher-
ent probing matrix I1¢ = Toeplitz (p€), which is an N x N Toeplitz
matrix formed using the coherent probing vector as its generator.
Then, Equation (27) can be written in discrete form:

c=(I°oT91, (32)
where 1 is an N X 1 vector of ones, and ® denotes element-wise
multiplication. This is the exact analogue of the transport probing
equation of O’Toole et al. [2012], applied on the transmission matrix
instead of the incoherent light transport matrix, and using a (possibly
complex) convolutional probing matrix.

The second part of Proposition 2, Equation (28), explains how
to implement an arbitrary coherent probing kernel £¢: We can
compute the inverse Fourier transform of ¢, then use the amplitude
A (6) to modulate the amplitude of the plane waves induced into the
interferometer by an incoherent area emitter, and its phase @ () to
modulate the phase of the response of the reference arm to each
such plane wave. We discuss more details about how to implement
arbitrary functions A (0) and @ (6) in Section 5.

Finally, we note that when the phase modulation function @ (6)
is independent of 0, and the amplitude modulation function A ()
is a rectangular function, then the coherent probing kernel exactly
equals the mutual intensity kernel S¢ (Equation (16)) of an inco-
herent area emitter. Likewise, the coherent probing matrix IT¢ is
equivalent to the mutual intensity matrix [Ozaktas et al. 2016, 2002]
of the incident field at the discrete set of locations x on the plane
Z = z,. In this case, Equation (28) corresponds to the case of “spatial
probing with a planar mirror” described by Gkioulekas et al. [2015,
Figure 6(a)]. Proposition 2 generalizes the types of coherent prob-
ing that can be achieved through interferometric measurements:
By appropriately modulating the amplitude of the source and the
phase response of the reference arm, we code the mutual intensity
function of the incident illumination. Then, our analysis shows that
performing interferometry is equivalent to probing the scene’s trans-
mission matrix with a probing matrix equal to the corresponding
coded mutual intensity matrix. We thus refer to imaging based on
Proposition 2 as interferometry with coded mutual intensity.

4.2 Probing the light transport matrix

We now discuss how the coherent probing procedure we derived in
the previous section relates to probing the incoherent light transport
matrix, as introduced by O’Toole et al. [2012]. For this, we first prove
the following proposition.

PropoOSITION 3. When using sufficiently incoherent illumination,

the intensity image Is of Equation (10) of target arm of the generalized
Michelson interferometer in Figure 3 is approximately equal to:

Is (x) ~ / , |77¢ (x,x)* dx". (33)
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Proor. We use Equation (26) and express the scattered field as:

us (x) = /E(G)/ T (x,x") exp (—ixx'6) dx’ do. (34)
0 x’
From the statistical independence property of different 9,

I (x) = Jus (0) |* =

/ T (o, x")T*(x, x")'ﬁE(Q)|Zexp(—iK(x'—x”)G)d@dx'dx”. (35)
x (2

i
s X

=8¢(x"-x")
Imaging in the radiometric light transport regime requires that the
illumination is sufficient incoherent, or equivalently that the width
W of the area of the source with non-zero emission |E(8)|? is large.
Then, Equation (16) suggests that:

S (x” —x") o sinc (W - (x" = x")) = 8(x" = x"), (36)

resulting in:
I (x) / |77 (s, x")|” dx. (37)
xl
This concludes the proof. O

Equation (33) suggests that the squared amplitude of the coherent
Green’s function |77 (x, x’)|? is approximately equal to the inco-
herent Green’s function 7 (x,x’): This is a scalar positive-valued
function that radiometrically models light transport through the
scene from a point source at y to a point sensor at x, by solving the ra-
diative transfer and rendering equations with appropriate boundary
conditions [Case and Zweifel 1967; Gkioulekas et al. 2016]. By dis-
cretizing this function in the same way we discretized the coherent
Green’s function, we obtain the N X N positive-valued light trans-
port matrix T! used by O’Toole et al. [2012]. We note that, in more
precise terms, Equation (35) suggests that the equivalence between
the incoherent Green’s function 7 (x,x”) and |7°¢ (x, x”)|? requires
first spatially-blurring the coherent Green’s function 7 ¢ (x, y) with
a blur kernel corresponding to the sinc spatial coherence function
in Equation (36). The width of the main lobe of this blur kernel
represents an inherent resolution limit when working with spatially
incoherent light [Levin et al. 2013; Zhang and Levoy 2009]. We refer
to Levin et al. [2013] for a detailed discussion of this resolution limit.

The above discussion motivates the question: Can we relate the
coherent probing Equation (27) and coherent probing kernel ¢, to
probing of the incoherent Green’s function? For scenes with highly-
diffuse transport, we can answer this question affirmatively.

PROPOSITION 4. In scenes with sufficiently randomizing transmis-
sion, the squared amplitude of the correlation corr of Equation (10)
captured from the target arm the generalized Michelson interferometer
of Figure 3 is approximately equal to:

’corr (x;‘TC,PC)|2 ~ /\’Tc (2, x + e)|2 |PC (e)l2 de. (38)

Proor. Using Equation (27), we can write:

|c0rr (x; T°, PC)|2 =

—‘//g(Tc(x,x+e))*‘Tc(x,x+§) (Pc(e))*Pc(gV) ded?, (39)

=Cx x(x+€,x+{)
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where the function C . (x + €, x + {) is the correlation between the
scattered fields that would be observed at point x when exciting the
target arm with point sources at points x+€ and x+{ . For scenes with
highly-randomizing transmission, this function is approximately
band-diagonal, with a very thin non-zero band region [Judkewitz
et al. 2015]. Then, we can write:

Crx(x+ex+)=8( -, (40)

and we can reduce Equation (39) to:
|corr (x; TC,SDC)|2 ~ /\‘TC (x,x + e)|Z |Pe (e)l2 de. (41)
€

This concludes the proof. o

The condition of highly-randomizing transmission is typically
satisfied by scenes with near-Lambertian surfaces, very rough re-
flection and transmission, or subsurface multiple scattering. In such
scenes, and together with Proposition 3, Equation (38) shows that
the squared amplitude of the correlation is equal to probing the in-
coherent Green’s function 7 with an incoherent probing kernel that
equals the squared amplitude of the coherent one, P’ (x) = |P¢ x))?.
Using discretization, we can define the N X 1 positive-valued inco-
herent probing vector p’, and the N x N positive-valued incoherent
probing matrix TI! = Toeplitz (p), exactly analogously to their
coherent counterparts. Then, Equation (38) can be rewritten as:

i~ (Hi ® T") 1, (42)

where we use i to denote the discretization of |corr (x; 7°¢, P€)|?, to
emphasize its relation to intensity. Equation (42) is exactly the light
transport probing equation of O’Toole et al. [2012].

Before we conclude this section, it is worth revisiting Equa-
tion (39): Analogously to Proposition 3, this equation suggests that
the equivalence with incoherence probing requires first spatially-
blurring the coherent Green’s function 7 ¢ (x, x”) with a blur ker-
nel corresponding to the diagonal band of the correlation function
Cy x (x + €,x + {) in Equation (40). This diagonal band corresponds
to the memory effect of speckle [Goodman 2007, Section 5]; therefore,
the extent of the memory effect introduces a limit on the resolution
at which we can perform incoherent probing. The memory effect of
speckle has recently been used in computer vision and graphics for
motion tracking and non-line-of-sight imaging [Smith et al. 2017,
2018], and has been extensively modeled using Monte Carlo ren-
dering algorithms [Bar et al. 2019]. We note that these works focus
on far-field speckle correlations (directional sources and sensors),
whereas the correlation and memory effect relevant for Proposition 4
are for the near-field case (point sources and sensors) [Judkewitz
et al. 2015; Osnabrugge et al. 2017].

5 IMPLEMENTATION

In this section, we discuss how to design and optimize an imaging
system for interferometry with coded mutual intensity as in Figure 3.
Figure 4(a) shows a schematic of our design, which we use through-
out this section for reference. Figure 4(b) shows a photograph of
a physical prototype. In the supplement we provide details about
constructing, aligning, and operating the setup.
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(b) photograph of physical prototype

Fig. 4. Setup for interferometry with coded mutual intensity. (a) Schematic of the setup. The setup is a modified Michelson interferometer that includes
an illumination component with amplitude modulation (green), and a reference arm with phase modulation (blue). The dotted thick lines indicate the Fourier
planes where amplitude and phase modulation take place. (b) Photograph of implemented physical prototype. Colors indicate the implementations of the

corresponding components in the schematic in (a).

Amplitude modulation. We first design an optical configuration
for creating monochromatic illumination with complex emission
E such that its squared amplitude matches the desired amplitude
illumination, |E ()| = A(8). Theoretically, a straightforward way
to generate such illumination would be as follows: first, we to use a
monochromatic area emitter whose emission area is larger than the
support of A; second, we image this emission area on an amplitude
spatial light modulator (SLM) applying amplitude modulation VA;
finally, we collimate the output with a lens. Unfortunately, such
an implementation is challenging to realize for two reasons: First,
area emitters are typically not sufficiently monochromatic. Second,
for sparse amplitude modulation functions A, this implementation
would be very light-inefficient, as most of the source’s power would
be blocked by the amplitude SLM.

We overcome both challenges by using the setup of Figure 4(a):
We use a two-dimensional MEMS miirror to steer a collimated co-
herent laser beam, which is then focused by a scan lens at the focal
plane of the main illumination lens. As the direction of the beam in-
cident on the scan lens changes, the focus spot scans the focal plane
in a programmable manner, and this scan can take place within ex-
posure. Effectively, this scanning scheme corresponds to using time-
multiplexing to implement the integration over 6 in Equation (7).
To ensure temporal coherence, we use a single-longitudinal-mode
laser, with an estimated temporal coherence length of 20 m. Theo-
retically, this optical configuration achieves optimal light efficiency,
redirecting all of the laser source’s power towards the scene: The
steering mirror can be programmed so that the focused point scans
only locations 0 of the focal plane where A (6) is non-zero, and stays
at each location for an amount of time proportional to A ().

In practice, not all scanning patterns are realizable, both because
of acceleration and speed limits imposed by the MEMS mirror, and
because the function A (6) can be spatially discontinuous, requiring
the focused point to instantaneously “jump” from one location 6 to
another. To address this issue, we place an amplitude electro-optic
modulator (EOM) between the laser source and the steering mirror,
which we synchronize with the mirror: Mirror steering is used to
scan only locations 6 within the support of A () (or some superset

of this support, as dictated by speed and acceleration limits), and
the EOM is used to attenuate the beam at each such location so that
the effective overall modulation matches A (6). As both the EOM
and mirror support MHz operation, this scanning process can take
place within exposure. Even though it does not achieve theoretical
optimality, the resulting configuration remains significantly more
light efficient than the alternative based on an amplitude SLM, and
at the same time ensures temporal coherence.

We conclude this discussion with two remarks. First, the configu-
ration we use for amplitude modulation is equivalent to using a laser
projector coupled with a scan lens. Unfortunately, the laser diodes
in commercial laser projectors have temporal coherence lengths of a
few millimeters, making it necessary for us to implement a custom
system incorporating a single-longitudinal-mode laser. Second, we
can place the above light efficiency considerations within the frame-
work of O’'Toole et al. [2015]: Using their terminology, when A (6)
can be realized without an EOM through scanning patterns of the
MEMS mirror, the amplitude modulation configuration of Figure 4(a)
is equivalent to an impulse projector. When the EOM is necessary,
the configuration is a redistributive projector. In both cases, the pro-
jector is used to project not directly the probing pattern, but instead
its inverse Fourier transform (Equation (28)).

Phase modulation. We additionally need to design an optical con-
figuration for implementing the phase modulation ®. Unlike with
amplitude modulation, which can be applied directly on the illu-
mination incident on both arms of the interferometer, the phase
modulation needs to be applied only on the reference arm. We
achieve this using the optical configuration shown in Figure 4(a): A
phase SLM is placed at the focal plane of a lens in the reference arm,
and projects a phase modulation pattern equal to ®. Unlike with
amplitude modulation, the use of the phase SLM does not result in
light loss, as phase SLMs reflect (most of) the energy incident on
them. We note that the combination of the collimating lens with
the phase SLM acts as a retroreflector, introducing a reflection of
the x coordinate of the beam (Equation (13)). We use two additional
lenses to cancel this flip (“flip compensation”).
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(a) calibration stage: programming a probing pattern

(b) phase-shifting interferometry: acquiring probing measurements

Fig. 5. Calibration and acquisition pipeline. (a) To implement a Toeplitz probing matrix, we first compute the inverse Fourier transform of the probing
kernel generating the matrix (Equation (28)). We then use the resulting amplitude and phase to program the amplitude and phase modulation components of
our system. (b) To capture probing measurements of a scene, we first capture images at multiple sub-wavelength phase shifts, implemented using phase
modulation. We then process these measurements to estimate the phase and amplitude of the interference component (Equations (44)-(45)).

Using temporally incoherent light. As we discussed in Section 3,
our technique can be used with temporally incoherent light, to
combine probing with transient imaging. This requires making two
modifications to the setup of Figure 4: First, we replace the single-
longitudinal-mode laser with a broadband spatially-coherent source.
For this, we use a supercontinuum laser, though we could also use
a superluminescent diode. Second, we mount the phase SLM and its
lens on a translation stage, to be able to scan it at long distances. With
these modifications, we capture transient sequences by applying,
for each position of the translation stage, the acquisition pipeline
described in Section 6 for the temporally-coherent case.

6 ACQUISITION PIPELINE

We use this section to provide details about how to use the optical
setup of Section 5, in order to capture coherent and incoherent prob-
ing measurements. Figure 5 summarizes our acquisition pipeline,
including both programming the modulation components of the
setup and post-processing captured measurements. All of our code
for this section is available at the project website [Kotwal et al. 2020].

Implementing a probing pattern. Before capturing measurements
with our setup, we need to program it with the desired probing
kernel P€. For this, we compute the inverse Fourier transform of
¢ to obtain the required amplitude modulation A () and phase
modulation ® () functions, as in Equation (28). We note that it is
possible that the amplitude modulation function A () will have
negative values, which are not physically realizable. We address this
by using A(0) = |A(0)] and D (0) = @ (0) + %; from Euler’s formula,
this results in the same probing kernel. The amplitude and phase
modulation functions are loaded programmatically on the EOM and
MEMS mirror (amplitude) and phase SLM (phase). This calibration
process only needs to be performed once per probing kernel.

Capturing probing measurements. Acquiring probing measure-
ments is equivalent to measuring either the complex correlation
corr (x; 7€, P€) (Equation (27)) for coherent probing; or its squared
amplitude |corr (x; 7€, POy (Equation (38)) for incoherent probing.
From Equation (9), we note that an intensity measurement captured
at a camera pixel focused at location x on the plane z = z, equals:

I(x) = I (x) + Ir (x) + Re {corr (x; 7, P€) } . (43)
—————
=Ipc(x)
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Analogously to continuous-wave time-of-flight cameras [Gupta et al.
2015] and phase-shifting interferometry [Creath 1985], we estimate
the correlation term in a two-step procedure: First, we capture
N > 3 intensity measurements, where for each of them we use
the phase SLM to shift the phase modulation by a sub-wavelength
amount, ® (0) + n27/N, n = 0,..., N. Second, at each pixel, we fit a
sinusoid to these N measurements, to obtain the per-pixel amplitude
and phase of the correlation term corr (x; 7 ¢, P€). For incoherent
probing, we found empirically that it is more robust to directly
estimate the squared amplitude |corr (x; 7°¢, P)|? as:

N
(Ibe () = 1= > In (), (44)
n=1

<|corr (o5 TC,PC)|2> = %% Z (In (x,2) = Upc ()))? . (45)

In practice, we found that we can reliably estimate the correlation
term or its squared amplitude using measurements at N = 10 sub-
wavelength phase shifts. We note that, as phase shifting is performed
by the phase SLM and no mechanical parts are involved, these
measurements can be captured at a frame rate of 6 Hz. This is limited
by the maximum refresh rate of the phase SLM (60 Hz).

Dealing with speckle. In real scenes, the correlation measurements
(corr (x; T¢,P€)) will contain significant pseudo-random speckle
noise. When doing incoherent probing, to eliminate these speckle
artifacts, we blur our estimates with a small blur kernel B (x). There-
fore, our final estimate for incoherent probing is:

<|corr (s TC,PC)|Z> * B (x). (46)

For a detailed analysis of speckle in interferometry, we refer to
Gkioulekas et al. [2015]. We follow their suggestions on how to set
magnification and aperture size to maximize interference contrast.
We also use a neutral density filter in the reference arm of our setup
(Figure 4), to equalize the intensity of the reference and target arms.

7 EXPERIMENTS

In this section, we show results of experiments performed using the
prototype described in Section 5. Our experiments emphasize prob-
ing types that cannot be implemented using previous interferometric
techniques [Gkioulekas et al. 2015], or do not have light-efficient
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Fig. 6. Coherent probing of a retroreflector scene. The images show the
real part of transmission matrices probed using the amplitude modulation
functions A shown in the inset. From Proposition 1, each image equals
the real part of the corresponding probing kernel, and the support of the
kernel corresponds to the part of the image where fringes are present. (a)
Probing with horizontal line amplitude modulation functions of different
widths. As we increase the size of A, the extent of the corresponding probing
kernel decreases. (b) Probing with line amplitude modulation functions of
different orientations. As we rotate A, the probing kernel rotates as well. (c)
Probing with horizontal line amplitude modulation functions of different
profiles. As we change the profile of A, the profile of the probing kernel also
changes. The absolute values of the profiles of A and the probing kernel
are shown in (d) and (e), respectively. We use functions A to implement
probing kernels shaped (from left to right) as sinc, Laplacian-of-Gaussian,
and Gaussian functions. Please see the project website [Kotwal et al. 2020]
for the complete visualizations of the captured fields.

implementations using projector-camera techniques [O’Toole et al.
2012]. The project website [Kotwal et al. 2020] shows additional
results, including full video sequences for the experiments combin-
ing probing with transient imaging. To facilitate reproducibility, we
provide all of our data at the project website.

Coherent probing. In Figure 6, we perform experiments to coher-
ently probe the transmission matrix of a retroreflector scene, similar
to Figure 1. As we showed in Proposition 1, the resulting correla-
tion will equal the probing kernel, which we can then visualize by
plotting, for instance, its real part. To demonstrate this, we show
experiments using a variety of one-dimensional probing kernels cor-
responding to amplitude modulation functions A of different sizes
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regular image direct-only global-only

Fig. 7. Direct-only and global-only images. We use three scenes: cup
(top), bead (middle), and gummy bear (bottom). For all scenes, the left
column shows a regular photograph of the scene, and the middle and
right columns show direct-only and global-only images captured using our
incoherent probing technique. The cup and gummy bear appear metallic in
the direct-only images, as the subsurface scattering effects dominating their
appearance are only measured in the global-only images. The direct-only
image of the bead is missing the strong specular reflections on the bead’s

faces and the on the wall, which are prominent in the global-only image.

(Figure 6(a)), orientations (Figure 6(b)), and profiles (Figure 6(c)). In
the latter case, we implement one-dimensional sources with horizon-
tal emission profiles corresponding to amplitude modulation that is:
approximately constant, A(8) o« 1; Gaussian, A(f) o exp(—62/c?)
for some standard deviation o; and the inverse Fourier transform
of the Laplacian-of-Gaussian function, A(6) « 62 exp(—6%/5?). In
all cases, the resulting probing kernel is constant along the direc-
tion that is orthogonal to the orientation of A—for example, when
A is horizontal, the probing kernel is constant along the vertical
direction. In Figure 6(a), we observe that as we make A narrower,
the support of the probing kernel becomes wider. In Figure 6(b),
we observe that as we rotate A, the probing kernel rotates as well.
Both of these observations correspond to standard properties of the
Fourier transform. Finally, in Figure 6(c), we observe that the profile
of the probing kernel matches the Fourier transform of A. These
results are consistent with Proposition 1, which predicts that A and
the probing kernel are related through a Fourier transform.

Direct-global separation. From the Fourier transform relationship
of Proposition 2, the probing kernel due to a two-dimensional square
amplitude modulation function A is a two-dimensional sinc. As the
size of A increases, the central lobe of the probing kernel shrinks and
the secondary lobes become negligible—that is, the probing kernel
approximates a Dirac delta function. From Propositions 2 and 4,
we see that this is equivalent to probing just the diagonal of the
transmission and transport matrices, respectively. As explained by
O’Toole et al. [2012], this is approximately equivalent to measuring
only the direct and retroreflecting components of light propagation
in a scene. Conversely, we can measure only the global component
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by using both amplitude modulation A and phase modulation ® to
create a probing kernel that is constant everywhere, except for a
small area around x = 0 where it is zero.

Figure 7 shows three example scenes where we use the two prob-
ing kernels described above to separately measure the direct and
global components of the incoherent light transport matrix. The
first scene (top row) uses a small toy cup, resulting in three types of
light paths: direct reflections; retroreflective specular, which show
up as the strong specularities at the upper and lower parts of the cup;
and indirect paths due to diffuse interreflections and sub-surface
scattering. The direct-only measurement removes the last two types
of paths, making the cup appear metallic. The global-only measure-
ment, on the other hand, includes the caustics, interreflections, and
translucent effects due to the indirect paths.

The second scene consists of a plastic transparent bead placed
between two diffuse walls. The bead faces reflect light and create
strong specularities on the walls. Additionally, some of the light from
the walls reflects specularly on the bead and towards the camera,
resulting in specular reflections on some of the bead faces. All these
specular effects are removed from the direct-only measurement,
and are prominent in the global-only measurement. The global-only
component additionally shows effects due to the interreflections
between the diffuse walls and inside the bead.

The third scene is a gummy bear placed between two diffuse
walls. The majority of the light received from the gummy bear is
due to subsurface scattering inside it. This light is removed from
the direct-only component, resulting in the gummy bear appearing
metallic due to surface-only reflections. By contrast, the global-only
component is dominated by this scattered light.

We note that most previous techniques estimate the global com-
ponent by first capturing a direct-only image, and then subtracting
it from a regular image. By contrast, our technique allows us to di-
rectly measure the global-only image. For all scenes in Figure 7, we
have confirmed that the global-only image we capture using probing
matches the image we obtain using the subtraction procedure.

Anisotropic descattering. As noted in O’Toole et al. [2012], when
imaging a target through a scatterer, it is possible to suppress the
effect of scattering by probing with a pattern that emphasizes the
diagonal of the light transport matrix, and subtracts the first few
off-diagonals. Using coherent probing, we can perform this type of
descattering with a probing kernel that is shaped like a Laplacian-of-
Gaussian function—the positive central lobe emphasizes the main
diagonal of the transmission matrix, and the off-center negative
values subtract the off-diagonals. We can additionally selectively
perform descattering along only certain directions by using prob-
ing kernels that are shaped like anisotropic Laplacian-of-Gaussian
functions. This is equivalent to a form of optical matched filtering
that emphasizes features similar to the probing kernel.

Figure 8 shows an example of this optical matched filtering pro-
cedure. We use a template consisting of two vertical white stripes
(width 100 pm) against a black background (Figure 8(a)). We place
this template behind a semi-transparent scatterer of thickness 50 mm,
created by immersing titanium-dioxide microspheres in silicone rub-
ber. In a regular image of this scene (Figure 8(b)), the two stripe
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(b) regular image

(a) template

,‘ .

(c) horizontal probing (d) vertical probing

Fig. 8. Anisotropic descattering. (a) We place a pattern consisting of two
vertical stripes behind a thick semi-transparent scatterer. (b) In a regular
image of the scene, the stripe features cannot be resolved because of the
scattering. (c) Probing the scene with a horizontal Laplacian-of-Gaussian
kernel that matches the orientation of the two stripes enhances their con-
trast and makes them clearly visible. (d) By contrast, probing the scene with
a vertical kernel results in the two stripes remaining obscured.

features are obscured by the scattering and are not discernible. Prob-
ing with a horizontal Laplacian-of-Gaussian kernel enhances verti-
cal features, making it possible to resolve the stripe patterns (Fig-
ure 8(c)). By contrast, the stripes remain obscured when we probe
with a vertical kernel (Figure 8(d)). We note that, in contrast to our
technique, these anisotropic probing kernels cannot be implemented
in a light-efficient way using primal-dual coding.

Measuring the entire light transport matrix. We create a two-
dimensional scene consising of a diffuse surface and a mirror form-
ing a right-angle corner (Figure 9(a)). The two-dimensional light
transport matrix of this scene is dominated by the main diagonal
and anti-diagonal (Figure 9(c)): The diagonal of the light transport
matrix corresponds to contributions from direct and retroreflecting
paths, whereas the anti-diagonal corresponds to contributions from
two-bounce reflection paths (Figure 9(b)).

We use our technique to capture the two-dimensional light trans-
port matrix of this scene (Figure 9(d)). We achieve this by succes-
sively probing with shifted diagonal kernels (Figure 9(e)), imple-
mented using phase modulation ® equal to ramp functions of vary-
ing slopes. The correlation measurements captured for different
slopes (Figure 9(f)) are equal to different diagonals of the light
transport matrix, and stacking them together forms the entire light
transport matrix. We provide a video visualization of this procedure
at the project website [Kotwal et al. 2020]. We note that the probing
kernels in this experiment correspond to the short-range-indirect
probing patterns that have recently been successfully used for tissue
imaging [Gkioulekas et al. 2016; Kubo et al. 2018; Liu et al. 2020].

Combining probing and transient imaging. We perform experi-
ments where we use temporally coherent light to combine our prob-
ing technique with transient imaging. We use our system to capture



diffuser

mirror

(b) light paths and regular image

(a) scene

(c) ideal light transport matrix

(d) measured light transport matrix

(e) example probing patterns

(f) images using probing patterns in (e)

Fig. 9. Measuring the light transport matrix of a mirror-diffuser cor-
ner scene. (a) Photograph of the scene for visualization. (b) Light paths in
the scene: blue are direct paths, purple and yellow are two-bounce reflec-
tion paths, and green are retroreflecting paths. Below the schematic is a
regular image of the scene. (c) The two-dimensional light transport matrix
for this scene: direct and retroreflecting paths show up on the diagonal,
and the two-bounce reflection paths show up on the antidiagonal. (d) Mea-
sured light transport matrix, with regions corresponding to different matrix
parts in (c) marked in color. () Example probing patterns used to measure
the light transport matrix. (f) Measurements using the probing patterns
in (e), where the top and bottom images are due to two-bounce reflection
paths, and the middle image is due to direct and retroreflecting paths. The
dashed lines in (b) and (f) indicate the corner location. Please see the project
website [Kotwal et al. 2020] for the complete set of probing measurements.

transient sequences without any probing, as well as sequences com-
bined with anisotropic probing at different orientations. Figure 10
shows examples for two scenes, where we isolate the same frame in
three transient sequences captured with different probing patterns.
We observe that, when using anisotropic probing, only features that
match the probing kernel are preserved, while other features are
suppressed relative to their intensity when no probing is used. We
provide video visualizations of the entire transient sequences at the
project website [Kotwal et al. 2020].
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8 DISCUSSION AND LIMITATIONS

We discuss limitations and directions for future exploration relating
to interferometry with coded mutual intensity.

Comparison with primal-dual coding. Interferometry with coded
mutual intensity and primal-dual coding [O Toole et al. 2012] both
implement probing of incoherent light transport, albeit using very
different optical configurations and operating principles. Therefore,
it is worthwhile discussing their relative strengths and weaknesses.

For this, we first contrast how the two methodologies imple-
ment different probing matrices. Given a desired probing matrix,
primal-dual coding decomposes it into a sequence of illumination
and sensing masks, which are then applied respectively on a pro-
jector source and sensor, successively within a single exposure. As
discussed by O’Toole et al. [2015], this procedure is light-efficient
only when the probing matrix decomposition is homogeneous; for
arbitrary probing matrices, a homogeneous decomposition may not
exist or may require a very large number of mask patterns. On the
other hand, interferometry with coded mutual intensity uses an in-
verse Fourier transform to convert to a probing matrix to individual
amplitude and phase modulation functions, which are then applied
to the Fourier-domain of the illumination and reference arm, respec-
tively, of an interferometer. From a hardware complexity perspective,
the two techniques introduce a trade-off between sensor masking
(primal-dual coding) versus interferometry with phase modulation
(interferometry with coded mutual intensity). In terms of the types
of probing that can be realized, by using a Fourier-domain redistribu-
tive projector for amplitude modulation (Section 5), interferometry
with coded mutual intensity enables light-efficient implementations
of probing matrices that would be challenging to implement with
primal-dual coding (e.g., the anisotropic probing patterns shown
in Section 7). However, this comes at the cost of only being able
to implement Toeplitz probing matrices, a limitation not shared
by primal-dual coding. Additionally, the advantage of better light
efficiency can be outweighed by other noise performance issues
typical in interferometry, as we discuss later in this section.

As probing the spatial dimensions of light transport is orthogonal
to probing its temporal dimension, both primal-dual coding and
interferometry with coded mutual intensity can be combined with
transient imaging techniques. Primal-dual coding is better suited
for macroscopic transient imaging, as the optical components it
requires can be readily combined with continuous-wave time-of-
flight cameras [Achar et al. 2017; O’Toole et al. 2014a]. By contrast,
interferometry with coded mutual intensity is more readily com-
bined with microscopic transient imaging, as both techniques rely
on interferometric setups [Gkioulekas et al. 2015].

Finally, there are capabilities that have been demonstrated using
only one or the other methodology: Primal-dual coding has been
used in non-confocal setups to implement epipolar and disparity
probing patterns [O’Toole et al. 2014b]. By contrast, we have only
used interferometry with coded mutual intensity in a confocal set-
ting, though our theory can also be applied to non-confocal settings
(for example, by incorporating our amplitude and phase modulation
systems within a Mach-Zehnder interferometer). Conversely, we
have shown that interferometry with coded mutual intensity can
be used to perform coherent probing of transmission matrices. This
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regular image
Fig. 10. Combining probing and transient imaging. We use two scenes: cup (top), and bead (bottom). From left to right: regular image, and isolated frames
of the transient sequence at the same time instance when using no probing, anisotropic probing at +45°, and anisotropic probing at —45°. In the cup scene,
when using probing, only the parts of the caustic that match the probing kernel are maintained, and the rest of the caustic is suppresed. Likewise, in the
bead scene, different reflections on wall and on the bead faces are maintained and suppressed, depending on the probing kernel used. Please see the project
website [Kotwal et al. 2020] for the complete transient sequences and additional probing patterns.

no probing

capability has not been demonstrated using primal-dual coding,
though O’Toole [2016] discusses possible extensions to this end.

Noise and speckle. The signal-to-noise ratio of measurements cap-
tured using interferometry with coded mutual intensity can signifi-
cantly deteriorate because of two factors inherent in interferometric
systems. The first factor relates to the fact that the measurements
captured by cameras in interferometric systems include not only the
interference component, but additionally the DC intensity images of
the reference and scattered arms (Equation (43)). The Poisson noise
in these measurements is proportional to the total intensity [Hasi-
noff et al. 2010], and thus it can potentially dominate the interference
component when that is significantly weaker than the DC compo-
nent. We refer to Takada [1998] for a detailed analysis of the noise
characteristics of interferometric measurements.

The second factor relates to the presence of speckle due to the use
of (partially-)coherent illumination. As Gkioulekas et al. [2015] have
shown, speckle can negatively impact interference contrast, and
careful optical design is needed to minimize its effect. The impact
speckle has on the quality of interferometric measurements can be
assessed from the effect speckle has on an image of the target arm
under the same illumination as that used for interferometry.

In practice, we note that both of these issues are counteracted
to a significant extent by the fact that we estimate the phase and
amplitude of the interference component using multiple image mea-
surements, captured with sub-wavelength phase shifts (Section 6).
However, as we discuss immediately below, this comes at the cost
of slower operation of the imaging system.

Towards real-time operation. Our current implementation cap-
tures images at a relatively low frame rate of 6 Hz. The primary
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anisotropic probing at +45° anisotropic probing at —45°

factor preventing us from achieving higher frame rates is our use
of a phase SLM to implement not only phase modulation (which re-
mains constant throughout capture), but also sub-wavelength phase
shifts for estimating the interference component. Consequently, the
maximum refresh rate of the phase SLM (60 Hz for commercially-
available units) creates an upper bound on the maximum frame rate
that can be achieved by our system.

To overcome this constraint, we can draw inspiration from other
applications of phase-shifting interferometric. For example, we
could potentially use the phase SLM to implement space-division
multiplexing [Kakue et al. 2011], allowing us to capture multiple
phase shifts in a single measurement, at the cost of reduced spa-
tial resolution. Alternatively, we could apply phase retrieval algo-
rithms [Fienup 1982], in order to recover the phase and amplitude of
the interference component from measurements at just one or two
phase shifts. A potential downside of these approaches is that, by
reducing the number of measurements, they can result in significant
deterioration of signal-to-noise ratio, as discussed above.

A different approach would be to accelerate measurements at
multiple phase-shifts, by replacing the phase SLM with a different
optical component. In particular, we could potentially use a combi-
nation of a phase EOM with a MEMS mirror at the reference arm of
our interferometer to implement phase modulation at MHz rates,
analogously to our implementation of amplitude modulation.

9 CONCLUSION

We introduced a new imaging methodology, interferometry with
coded mutual intensity, that uses illumination with coded spatial
coherence properties, in order to perform both coherent probing of



transmission matrices, and incoherent probing of light transport ma-
trices. Our theory and optical design allow us to programmatically
implement arbitrary convolutional probing patterns, by applying
appropriate amplitude and phase modulation at the Fourier do-
main (i.e., the focal plane of the illumination lens) of a Michelson
interferometer, without the need for hardware changes. These ca-
pabilities can additionally be incorporated into systems that use
temporally-incoherent illumination for optical coherence tomogra-
phy. We have developed a physical prototype, and demonstrated the
validity of our theory and utility of our designs in experiments such
as visualizing complex fields, capturing direct and global transport
components, acquiring light transport matrices, and performing
anisotropic descattering, both in steady-state and transient imaging.
We hope that, by significantly expanding the types of probing that
can be achieved using interferometric techniques, and by providing
the design and engineering details for developing physical proto-
types implementing these techniques, our paper will enable further
research on interferometric light transport techniques.
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