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ABSTRACT: Fluorine-containing organic molecules, particularly those that bear (sp*) C—F bonds, are rapidly gaining prominence
in modern chemical synthesis. Although extensive studies have been devoted to the preparation of secondary and tertiary fluorides,
crucial shortcomings remain: for example, lengthy substrate synthesis, contrived installation of difficult-to-remove directing/
activating units, excessive waste generation and/or limited functional group compatibility. Here, we show that readily accessible a-
monofluoro carboxylic acids, which are conventionally difficult substrates for cross-coupling, undergo direct decarboxylative cross-
coupling with sp>- and sp*-hybridized organohalides to afford a wide assortment of fluorinated products. Reactions are typically
promoted by a combination of 1 mol % of an Ir-based photocatalyst and 2—15 mol % of a bipyridine—Ni complex, delivering
products in up to 86% yield under blue LED light irradiation. Concise synthesis of key therapeutic candidates underscores utility,
complementarity, and distinct advantages compared with existing methods. DFT calculations are used to rationalize the distinct
reactivity of a-fluoro carboxylic acid substrates (vs nonfluorinated parent acids) under decarboxylation conditions.

KEYWORDS: fluorine, carboxylic acids, cross-coupling, decarboxylation, metallaphotoredox, dual catalysis

he strategic replacement of a C—H bond of an organic catalyst'' or through photocatalytic'” or electrochemical

molecule with a C—F unit can often impart desirable pathways,'® provides a direct entry to secondary and tertiary
properties,’ an effect that largely arises from the significant fluorides, although chemo- and site selectivity can be
polarization of electron density toward the electronegative challenging in the presence of other similarly reactive
fluorine atom. Over the last few decades, chemists have functional groups and/or C—H bonds. Another common
capitalized on this strategy to access rationally designed strategy to access organofluorides pertains to substitution
organofluorine compounds that bear stereogenic C—F reactions involving carboxylic acids,"* alcohols,”® or their
centers,” contributing profoundly to the discovery of new derivatives'® in the presence of a nucleophilic or electrophilic

therapeutic agents,” agrochemicals,” and materials.” The utility
of organofluorides extends beyond enhancing the properties of
a biologically active molecule or functional material. Owing to
repulsive electronic interactions and the fluorine gauche effect’
(6c_ug = o0*c_p hyperconjugation), C—F entities may induce
conformational rigidity within the carbon skeleton; this has
been exploited to promote enantioselectivite processes, to
determine the active conformation(s) and mode of action of
drug molecules® as well as to develop new catalysts.”

A prominent set of monofluorinated compounds that Received:  February 15, 2020
commonly reside within pharmaceutically important scaffolds Revised:  March 23, 2020
are those that contain (sp’)C—F bonds (Scheme 1a). Published: March 24, 2020
Protocols that deliver secondary and tertiary alkyl fluorides
have been reported. Directed or undirected fluorination of
aliphatic C—H bonds,'® either involving a metal-based

ﬂuorinating reagent. These transformations are sometimes
plagued by undesired elimination side reactions which can lead
to complex mixtures and diminished yields. Hydro- and
carbofluorination of alkenes and allenes'’ provide an
alternative option to access fluoroalkanes, although the scope
is restricted to certain sz systems due to regioselectivity
complications. An attractive approach to aliphatic mono-
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Scheme 1. Significance of Organofluorides Bearing
Stereogenic C—F Bonds and Catalytic Cross-Coupling
Strategies to Access Them
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fluorides that offers a convenient platform to generate
molecular complexity from simpler substrates involves the
union of a nucleophilic organometallic species (e.g, zinc- or
boron-based reagents)18 or an organohalidew with fluorinated
electrophiles to facilitate chemoselective C—C bond formation
through catalytic cross-coupling or Heck-type reactions.”’

However, state-of-the-art advances in catalytic cross-
coupling suffer from a number of critical shortcomings'*"’
(Scheme 1b): (a) laborious multistep synthesis of the
fluorinated electrophile, (b) excessive waste generation, and/
or (c) limited functional group compatibility (e.g., reactions
that afford sterically encumbered tertiary fluorides are scarce,
and reported cases require high catalyst loadings). An efficient
catalytic cross-coupling protocol that enables a readily
accessible fluorine-containing cross-partner to be utilized in
conjunction with a second reagent would be complementary to
existing protocols and particularly advantageous in enhancing
the way with which many high-value organofluorine building
blocks are currently prepared. In light of this deliberation, we
sought to devise a new strategy that leverages a-fluorocarbox-
ylic acids as substrates; these compounds are either
commercial or easily derived from abundant, stable, and
readily available feedstock chemicals such as amino acids,”
carboxylic acids,”* and esters™® by nucleophilic substitution or
a-fluorination of the in situ-generated enolate/enol ether
intermediates (Scheme 1c, inset). Through photoredox
decarboxylative cross-coupling with an appropriate organo-
halide 9 (stable and easily accessible), we envision trans-
forming racemic a-fluoro acids 10 directly to a myriad of
functionalized secondary and tertiary fluorides 1 with
concomitant extrusion of CO, (Scheme 1c).

In designing reactions that furnish fluoroalkanes, we
wondered if metallaphotoredox-catalyzed cross-coupling may
be exploited to promote formation of the desired fluorinated
products.”* As illustrated in the proposed catalytic pathway
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(Scheme 2), our initial concerns were: (i) whether the a-fluoro
acid can undergo efficient single electron transfer (SET) to

Scheme 2. Proposed Pathway to Access Organofluorides by
Metallaphotoredox Decarboxylative Cross-Coupling
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afford the putative a-fluoroalkyl radical species A and its
associated lifetime; (ii) how efficient does A engage with the
nickel-based complex to turn over the catalytic cycle. Adding
to the uncertainty is a recent study suggesting that a-fluoro
acids are reluctant to undergo decarboxylative C—C bond
formation.”

Cyclic voltammetry experiments (Scheme 2, gray box)
revealed that the oxidation potentials of 2-phenylacetate and its
a-fluoro variant (in the form of tetrabutylammonium salts)
were similar (see Supporting Information for details), implying
that these carboxylates should undergo SET in the presence of
a suitable photocatalyst and irradiation to give the correspond-
ing radical intermediates with similar ease. The challenge
remains whether A is sufficiently long-lived to participate in the
Ni-catalyzed cross-coupling cycle and deliver the desired
product after reaction with the organohalide cross-partner.

As shown in Scheme 3, under previously established
conditions for photoredox decarboxylation in the presence of

Scheme 3. Deleterious Effect of Fluorine in
Metallaphotoredox Decarboxylative Cross-Coupling of
Carboxylic Acids
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phenylacetic acid 10a’ undergoes efficient decarboxylative
cross-coupling with aryl bromide 9a to deliver 1a’ in 90% yield.
Unfortunately, the desired analogous conversion of 2-fluoro-2-
phenylacetic acid 10a to fluorinated compound la was in
efficient (25% conv., 15% yield).

To gain some insight into disparate reactivity profiles
observed, we performed a series of unrestricted, dispersion-
corrected density functional theory (DFT) computations using
implicit solvent (Figure 1).>° On the basis of our prior work,”
we deemed it was necessary to consider various spin states
(singlet/triplet and doublet/quartet), potential pathways
including Ni(0)/Ni(II)/Ni(III) and Ni(0)/Ni(I)/Ni(III),
and inner-sphere and outer-sphere C—C bond formation.
For simplicity, only the lowest-energy pathway is shown and
will be discussed in the text (see Supporting Information for

full energy diagrams).
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Figure 1. Comparison between lowest energy Ni-catalyzed cross-coupling between fluorinated benzyl radical (blue) and unsubstituted benzyl
radical (in parentheses). All free energies (kcal/mol) were determined at the UB3LYP-D3/def2-TZVPP-CPCM(DMA)//UB3LYP-D3/def2-SVP-

CPCM(DMA) level of theory.

As shown in Figure 1, assuming presence of the benzyl
radicals in solution, presumably formed from SET with
photocatalyst and concomitant CO, release (Scheme 2),*
we found a barrierless addition to Ni(0) to form a Ni(I)-benzyl
intermediate (*B), downhill by 18.2 and 20.7 kcal/mol for
fluorinated (G = F) and unsubstituted (G = H) radical,
respectively. In turn, this intermediate is poised to undergo
facile oxidative addition (via doublet spin state 2B—C-TS) to
form the corresponding Ni(III) intermediate *C. Closer
inspection at the lowest-energy oxidative addition transition
states (>B—C-TS-F and *B—C-TS-H) reveals an earlier
transition state for the unsubstituted system as evident by
the bond breaking/forming distances in comparison to the
fluorinated benzyl radical. At this stage the exergonicities (from
Ni(0) and corresponding radical) for both fluorinated- and
unsubstituted benzyl radical, G = F and H, respectively, are
nearly identical (i.e., downhill in energy by ca. 34—35 kcal/
mol). Notably, direct C—C bond formation from Ni(III) *C
(e.g., inner sphere reductive elimination) could not be located.
Instead, in agreement with previous calculations,27d this
Ni(III) *C intermediate, with C(sp*) moiety along the z-axis,
is poised to undergo nearly barrierless radical dissociation (i.e.,
relative barrier is only 2 kcal/mol via 2)C—D-TS) to form the
square planar Ni(Il) intermediate 'D, downhill in energy by
~5 kcal/mol.** Further, to undergo effective inner-sphere C—C
bond formation, this Ni(II) intermediate must undergo an
isomerization-intersystem crossing to form the tetrahedral
Ni(II) intermediate *D’, which is nearly isoenergetic to the
square planar Ni(II). Finally, facile radical addition (via 2D’-E-
TS) to the tetrahedral Ni(Il) intermediate D’ will form the
productive Ni(IIT) *E with C(sp®) moiety along the z-axis that is
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poised to undergo inner-sphere reductive elimination (via *E-
P5-TS) leading to the desired cross-coupled product and
Ni(I). Finally, subsequent SET from the reduced form of
photocatalyst could regenerate the Ni(0) catalytic species 'A
and restart the nickel radical cross-coupling cycle, with
concomitant formation of CsBr complex.”

Alternatively, if the radical concentration is low, the Ni(0)
'A could instead engage with the aryl bromide to do an nearly
barrierless SyAr-type addition (barrier only 0.3 kcal/mol via
'A-F-TS) leading to 'F’--Br complex, which can rearrange to
give the square planar Ni(Il) intermediate 'D. Notably, we
found that the commonly proposed direct and concerted
oxidative addition from Ni(0) to Ni(II) (i.e., 3A-E-TS) is
much higher in energy and proceeds via the triplet spin state.
These results underscore the need to consider various spin
states, include dispersion corrections, and solvent effects in the
optimizations because these can change the nature of the
mechanism in nickel radical cross-couplings. Finally, the
persistent nickel(I) intermediate 'D can then engage with
the transient benzylic radical, presumably from generation
from the photocatalytic cycle,”* to undergo inner-sphere C—C
bond formation. Overall, a direct comparison of the lowest
energy pathways between fluoro-substituted (blue) and
unsubstituted benzyl system (in parentheses) revealed similar
mechanistic pictures (see Figure S1 and Figure S2 in
Supporting Information). However, for the unsubstituted
system (G = H), the Ni(III)—Ni(II)—Ni(IIl) isomerization
energy surface is flatter. For example, despite numerous
attempts, the radical addition to the square planar or
tetrahedral Ni(II) intermediates (i.e, 2C—D-TS and ’D’-E-
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TS) could not be located and is likely barrierless. Importantly,
we observe a much larger relative barrier for the C(sp*)—
C(sp®) bond formation (from Ni(II)) for the fluoro-
substituted benzyl radical (13.7 kcal/mol) than for the
unsubstituted system (6.9 kcal/mol). Presumably the higher
barrier is due to greater electrostatic repulsion between the C—
F and Ni—Br bonds in the reductive elimination transition
state (YE-Py-TS) that is absent in the unsubstituted system.*
We hypothesize that the computed higher barrier for inner-
sphere C(sp?)—C(sp®) bond formation could contribute to the
lower efficiency observed for the fluorinated systems and could
open further opportunities for undesired side reactions such as
hydrogen atom abstraction (e.g, with solvent molecules).’’
Given (1) the nearly identical redox potentials for fluorinated
and nonfluorinated radical precursors (Scheme 2, inset), and
(2) lower reactivity for fluorinated systems under identical
conditions and catalytic system (Scheme 3), we favor the
stepwise oxidative addition (via SyAr mechanism) Ni(0)/
Ni(II) pathway followed by rate-limiting C(sp*)—C(sp®) bond
formation. As such, we attribute the distinct reactivity to
relative barriers for inner-sphere C(sp?)—C(sp®) which are
significantly higher for the fluorinated benzylic radicals (G = F)
than unsubstituted benzyl system (13.7 vs 6.9 kcal/mol).
Notably, in both cases the barriers for SET transfer step to
regenerate the catalytic Ni(0) species should be identical.
Taken together, these results highlight that a-fluorocarboxylic
acids are inherently more challenging substrates for cross-
coupling.

Given that barriers for C(sp*)—C(sp®) bond formation with
fluoro-substituted benzyl radicals are not insurmountable (~14
kcal/mol; Figure 1), we hypothesize that further reaction
optimization could to be devised in order to achieve the
desired decarboxylative cross-coupling of a-fluoro acids. The
reaction of 9a and 10a to afford la was used as the model
reaction for optimization studies (Table 1). Gratifyingly, after
an extensive survey of various photocatalysts, nickel salts,
ligands, bases, additives, and solvents (see Supporting
Information for further details), we found that la can be
generated in 86% yield in the presence of 1 mol % of Ir-1a, 2
mol % of a Ni-based complex derived from NiBr,-DME and
dimethoxy-substituted L1, 1,1,3,3-tetramethylguanidine
(TMG) as the base and stoichiometric potassium triflate
(KOTY) additive in DMA at ambient temperature under blue
LED irradiation (entry 1). As expected, no product was
detected in the absence of blue light or any of the required
catalysts (entry 2). Diminished product yields were obtained
when other Ni salts (entries 3 and 4) or more electron-
deficient bipyridine ligands L2 and L3 (entries S and 6) were
used.”

Switching the solvent from DMA to other variants such as
DMF NMP, DMPU, DMSO or toluene also lowered efliciency
(entries 7—11), suggesting that a reasonably polar medium is
necessary to stabilize the intermediate radical and/or organo-
metallic species without affecting their ability to undergo
reaction. What is more, with NMP and DMPU, significant
amounts of byproducts (~30—40%) arising from reaction of
solvent molecules with 9a could be detected.’> Keeping all
other parameters constant, conducting the cross-coupling in
the absence of KOTf resulted in an appreciable drop in
efficiency (entry 12). Although it remains to be determined, we
reasoned that the triflate anion may play a role in ligand
substitution to form a more activated Ni-based complex B (X
= Br — X = OTf; see Scheme 2), consequently reducing the
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Table 1. Evaluation of Reaction Conditions”

- FsC +
PFg 3 ‘\ F 47
? NiBr,- DME (2 mol %) F
Br F LN, | F L1 (2 mol %)
+ PN S -
MeO,C HO,C™ "Ph B~ N F TMG (2 equiv.), KOTf (1 equiv.) "
9 10a ) DMA, RT, 36 h €0,
(2 equiv.) F Blue LED (12 W)

t+Bu

/ \
NMe, N N N N
™G

Me;N

entry deviation from standard conditions yield (%)<
1 none 86
2 no photocatalyst, no nickel catalyst, or no light <2
3 NiCl,-DME instead of NiBr,-DME 70
4 Ni(COD), instead of NiBr,-DME 75
S L2 instead of L1 45
6 L3 instead of L1 38
7 DMF instead of DMA 76
8 NMP instead of DMA 50
9 DMPU instead of DMA 65
10 DMSO instead of DMA 30
11 toluene instead of DMA trace
12 No KOTf 76
13 NaOTf instead of KOTf 65
14 LiOTf instead of KOTf 73
15 DBU instead of TMG 75
16 Cs,CO; instead of TMG S0
17 K,CO; instead of TMG SS
18 KOt-Bu instead of TMG trace

“The reaction was carried out with 9a (0.1 mmol), 10a (0.2 mmol),
NiBr,.DME (2 mol %), L1 (2 mol %), TMG (0.2 mmol), KOTf (0.1
mmol), and Ir-1a (1 mol %) in DMA under blue LED. DME, 1,2-
dimethoxyethane; DMA, N,N-dimethylacetamide; DMF, N, N-
dimethylformamide; NMP, N-methyl-2-pyrrolidone; DMPU, N,N’-
dimethylpropyleneurea; DMSO, dimethyl sulfoxide; DBU, 1,8-
diazabicyclo[5.4.0]undec-7-ene; COD, 1,5-cyclooctadiene; RT,
room temperature. Yields are for isolated and purified products.

barrier to facilitate reductive elimination.”* The triflate additive
might also suppress formation of any inactive Ni—F species.*’
Replacing KOTf with other triflate additives, however, gave
poorer results (entries 13 and 14). Finally, the effect of the
external base was probed. For reasons that are unclear at this
moment, it was discovered that the more basic organic variants
(e.g, TMG and DBU in entries 1 and 1S5) led to better
conversions to la and minimal byproduct formation from
reaction of 9a with DMA (vs less basic inorganic carbonate
bases (~20—30% byproduct) in entries 16 and 17). Use of a
stronger alkoxide base was considerably less efficient (entry
18), owing to decomposition of 10a and other competing side
reactions. Further mechanistic experiments, from theory and
experiment, are ongoing to elucidate the role of KOTY, base,
and the mechanism, likely very different than that discussed
earlier, in this new catalytic system and will be reported in due
course.

With the established conditions in hand, we next assessed
the generality of our protocol with a range of functionalized a-
fluorocarboxylic acids (1b—q, Scheme 4). In general, 2-fluoro-
2-arylacetic acids bearing ortho-, meta-, or para-substituents on
the aryl ring served as effective substrates, furnishing the
desired secondary fluorides 1b—k in 40—76% yield. Reactions
with 2-fluoro-2-alkylacetic acids proceeded to give the
products 1l—n, although vyields were slightly diminished
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Scheme 4. Secondary and Tertiary fluorides Accessible by
Photoredox Decarboxylative Cross-Coupling”
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“Unless otherwise stated, all reactions were conducted using bromides
9 (X = Br) under the optimized conditions. Yields are for isolated and
purified products. For the synthesis of 1l1-n, reactions were
conducted using 10 mol % of NiBr2-DME and 12 mol % of L1.
For the synthesis of 1o—q and laf—ai, reactions were conducted
using 15 mol % of NiCI2-DME and 20 mol % of L2 in the absence of
KOT{. For the synthesis of 1r—t, reactions were conducted using
iodides 9 (X = I) in the absence of KOTf. For the synthesis of lam—
aq, reactions were conducted using chlorides 9 (X = Cl) in the
absence of KOTf.
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presumably because of the comparatively lower stability of the
intermediate a-fluoroalkyl radical involved (see A, G' = alkyl vs
G! = aryl, Scheme 2). Notably, the present catalytic protocol
can be extended to sterically demanding tertiary fluorides
(1o—q) using 15 mol % of a Ni-based catalyst, which is more
practical than previous cross-coupling methods employing
more difficult-to-access fluorinated substrates and higher
catalyst loadings. '8 Additionally, synthesis of lo—q by
alternative procedures involving aryllithium addition to the
corresponding ketone followed by deoxyfluorination is
impractical owing to poor yields*® and susceptibility of the
ester moiety toward strong organometallic nucleophiles.

In addition to varying the a-fluoro acid cross-partner, we
also examined a wide assortment of aryl and heteroaryl halides
(1r—al, Scheme 4). Under our standard conditions, the
corresponding secondary or tertiary fluorides can be obtained
in 43—77% yield. These include products that contain a
cyanide (1u), an aldehyde (1v, 1w, lag), a ketone (1x, 1af), an
ester (1aj, 1al), a lactone (1y), an amide (1ak), an acetal (1aj,
lak) as well as heterocyclic units (1z, laa—ae, lah, lai).
Besides sp*-hybridized carbon electrophiles, the method is also
amenable to sp’-hybridized organohalides, delivering alkyl
fluorides lam—aq in 50—60% yield albeit as inseparable
diastereomeric mixtures.

The first application that showcases utility of our protocol
relates to the preparation of MMP-mitochondrial complex 1
inhibitor 2, which was discovered to be more potent than its
nonfluorinated derivative’” (Scheme Sa). Etherification of 11

Scheme 5. Application to Concise Synthesis of Fluorinated
Bioactive Molecules”

Synthesis of Bioactive Molecules

N | Decarboxylative

N> _cross-coupling _
THF, RT d
12

92% yleld

F
S
©/ko

(mitochondrial complex 1 inhibitor)
52% yield

Me
(comm.available) OH

E
M

NG e Et
Br

Ref. 35b
———

NC :
F
NH
(lipid symhesls modulator

17
60% overall yield
“All catalytic decarboxylative reactions were conducted under the
optimized conditions from Scheme 4. Yields are for isolated and
purified products. See Supporting Information for details.

R COzH 1. Decarboxylative
. )ﬁ cross-coupling
_closswoued .
SN 2. TFA, CH,Cl,, RT
Boc

—

CN
15 16
(comm.available)

with 12 (both commercially available) afforded iodide 13,
which was subjected to photoredox decarboxylative cross-
coupling with a-fluoro acid 14 (synthesized from valeric acid)
to furnish the desired secondary fluoride 2 in 47% overall yield
over two steps. It merits mention that the alternative benzylic
C—H fluorination™® route to access 2 could pose regioselec-
tivity complications (two benzylic sites available), whereas
synthesis of 2 through alcohol formation followed by
deoxyfluorination® is less convergent.

In another instance (Scheme Sb), the catalytic union of
bromide 15 with a-fluoro acid 16 (both commercially
available) followed by Boc deprotection conveniently
generated tertiary fluoride 17, an intermediate used to access
lipid synthesis modulator 3, in 60% overall yield. The present
two-step formal synthesis is more concise than a previous
procedure in which 17 was obtained in four steps with 22%
overall yield.**® Both applications highlight the distinct
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advantages of decarboxylative transformations for the efficient
synthesis of functionalized monofluorinated compounds under
mild reaction conditions.

The synthesis of secondary and tertiary fluorides was
successfully accomplished by merging stable and readily
accessible a-fluorocarboxylic acids with organohalides through
catalytic photoredox decarboxylation. Contrary to nonfluori-
nated carboxylic acids, the corresponding a-fluoro analogues
were found to be much less effective for decarboxylative cross-
coupling. These observations were rationalized by the
inherently higher barrier for C—C bond formation with a-
fluoroalkyl radicals as supported by DFT calculations.
Development of new reaction conditions enabled a-fluoro
acids to serve as effective substrates for cross-coupling,
providing access to a diverse range of functionalized organo-
fluorine building blocks and pharmaceuticals. The method is
expected to advance fluorochemical synthesis, unravel new
avenues toward the design of novel fluorine-containing drug
candidates and aid efforts toward the development of new
cross-coupling transformations involving fluorine-containing
radical species. Ongoing mechanistic studies are geared toward
understanding the mechanism of this system including
elucidating the role of KOTf and TMG.
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