FPGA-based Low-Batch Training Accelerator for Modern CNNs
Featuring High Bandwidth Memory

Shreyas K. Venkataramanaiah Han-Sok Suh Shihui Yin
Arizona State University Arizona State University Arizona State University
skvenka5@asu.edu hsuhé6@asu.edu syinll@asu.edu
Eriko Nurvitadhi Aravind Dasu Yu Cao
Intel Corporation Intel Corporation Arizona State University
eriko.nurvitadhi@intel.com aravind.dasu@intel.com Yu.Cao@asu.edu

Jae-sun Seo
Arizona State University
jaesun.seo@asu.edu

ABSTRACT

Training convolutional neural networks (CNNs) requires intensive
computations as well as a large amount of storage and memory
access. While low bandwidth off-chip memories in prior FPGA
works have hindered the system-level performance, modern FPGAs
offer high bandwidth memory (HBM2) that unlocks opportunities
to improve the throughput/energy of FPGA-based CNN training.
This paper presents a FPGA accelerator for CNN training which
(1) uses HBM2 for efficient off-chip communication, and (2) sup-
ports various training operations (e.g. residual connections, stride-2
convolutions) for modern CNNs. We analyze the impact of HBM2
on CNN training workloads, provide a comprehensive compari-
son with DDR3, and present the strategies to efficiently use HBM2
features for enhanced CNN training performance. For training
ResNet-20/VGG-like CNNs for CIFAR-10 dataset with low batch
size of 2, the proposed CNN training accelerator on Intel Stratix-10
MX FPGA demonstrates 1.4/1.7X energy-efficiency improvement
compared to Stratix-10 GX FPGA with DDR3 memory, and 4.5/9.7
X energy-efficiency improvement compared to Tesla V100 GPU.

CCS CONCEPTS

« Hardware — Hardware accelerators; Application-specific
VLSI designs.

KEYWORDS

Convolutional neural networks, neural network training, back-
propagation, hardware accelerator, FPGA

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICCAD °20, November 2-5, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8026-3/20/11...$15.00
https://doi.org/10.1145/3400302.3415643

ACM Reference Format:

Shreyas K. Venkataramanaiah, Han-Sok Suh, Shihui Yin, Eriko Nurvitadhi,
Aravind Dasu, Yu Cao, and Jae-sun Seo. 2020. FPGA-based Low-Batch Train-
ing Accelerator for Modern CNNs Featuring High Bandwidth Memory. In
IEEE/ACM International Conference on Computer-Aided Design (ICCAD °20),
November 2-5, 2020, Virtual Event, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/lo.l145/3400302.3415643

1 INTRODUCTION

Convolutional neural networks (CNNs) are extensively adopted in
computer vision applications [1-3]. The training tasks of CNNs
are commonly performed with GPUs using a mini-batch stochastic
gradient descent (SGD) optimizer. To improve the CNN accuracy,
higher batch sizes are employed for CNN training with GPUs, but
this demands an excessive amount of memory and limits the ca-
pability to explore large models and tasks with high input resolu-
tion [4]. In addition, although GPUs provide very high throughput
on CNN training with large batch sizes, they suffer from low uti-
lization/throughput for smaller batch sizes [5]. This can be seen
in Fig. 1, which reports the latency and Tesla V100 GPU utiliza-
tion across different batch sizes for the task of training ResNet-20
CNN [6] for CIFAR-10 [7] dataset. Recently, new CNN training
algorithms that efficiently support small batch sizes (e.g. 2, 4) have
been proposed [4, 8, 9], which demonstrate on-par accuracy with
state-of-the-art CNN training using large batch sizes.

Low-batch training greatly reduces memory requirement and
unlocks opportunities for FPGAs, which provide higher configura-
bility for custom architecture and better energy-efficiency than
high-power GPUs. Training on edge FPGA devices also reduces
latency overhead (due to limited data exchange with the cloud
server), prevents privacy/security problems, and is well-suited to
exploit new features such as low precision training, sparse weight
updates, online learning, etc. However, training CNNs on FPGAs is a
challenging task for two reasons: (1) it demands high memory band-
width which is the primary limiting factor in many accelerators
[10, 11], and (2) complexity arises in implementing a generalized
flexible training accelerator supporting new advancements in CNN
training algorithms.

Many prior works presented low-batch CNN inference on FPGAs
and showed large improvements in storage and latency [12-18].

Authorized licensed use limited to: ASU Library. Downloaded on February 20,2021 at 04:26:01 UTC from IEEE Xplore. Restrictions apply.

2 200 ———r——r——r—————— 80 —~
< = - [
o I—I—Tralnlng time / epoch (s)| < k3
o L 70

2 150 - == =1 ©
o - c T
5 i 602 2k
o 100 4 © -
[P L 50 N 2
£ ’ E e
= 50+ ==m==Throughput (TFLOPS) 40 S -
> = ® GPU utilization (%) [[*" 2 e
LR L300 [0 ¢
= =
o T T T T T T T

= 0 20 40 60 80 100 120 140

Batch size

Figure 1: ResNet-20 CNN training performance for CIFAR-
10 dataset on Tesla V100 GPU for different batch sizes.

While there are new algorithmic approaches to support low-batch
training, FPGA hardware designs for CNN training tasks have been
much less explored. A framework to map DNN training on FPGA
clusters was presented in [19], but an excessive amount of on-chip
memory is required for training on a single FPGA platform. Several
prior works [20-22] attempted to accelerate a part of CNN training
on FPGAs, while the remaining operations were performed by the
host CPU. Training accelerators for non-CNN applications were
proposed in [23-27]. Only a few prior works presented a CNN
training accelerator supporting all three phases of training [28-30],
but these works still did not include back-propagation of either
residual connections or stride-2 convolutions that are necessary
for modern CNNs. Furthermore, none of the aforementioned FPGA
works studied the use of high bandwidth memory, which is critical
for CNN training.

In this work, we present a programmable FPGA accelerator for
CNN training, which uses HBM2 for efficient off-chip communica-
tion, and supports residual connections and stride-2 convolutions
for modern CNNs. The key contributions of this work are:

o To the best of our knowledge, we present the first FPGA ac-
celerator for CNN training that fully utilizes high bandwidth
memory (HBM2) and executes end-to-end CNN training.

e Our programmable FPGA accelerator reads high-level de-
scriptions of CNNs (similar to TensorFlow/PyTorch) includ-
ing those with residual connections and stride-2 convolu-
tions, and automatically generates RTL for synthesis.

e We analyze the impact of HBM2 on CNN training workloads,
provide a comprehensive comparison with DDR3, and dis-
cuss the strategies to efficiently use the HBM2 features for
enhanced performance.

e Our accelerator using Intel Stratix-10 (S-10) MX FPGA with
HBM?2 is evaluated for ResNet-20 and VGG-like CNNs for
CIFAR-10 dataset, achieving up to 14X improvement in energy-
efficiency, compared to Tesla V100 GPU.

The remainder of this paper is organized as follows. Section
2 introduces HBM2 memory on Intel FPGAs and modern CNN
training algorithm. Section 3 presents the proposed training accel-
erator including HBM integration, handling residual and stride-2
convolutions. Section 4 describes experimental results and provides
comparison among FPGA, CPU, and GPU hardware for low-batch
CNN training tasks. The paper is concluded in Section 5.

Samsung HBM
« Stack
(4 or 8 High)

Heat Spreader

Intel® Stratix” 10 FPGA Core Fabric

()
}rEBBiﬂn 77777777777777777777777777777777 ;
| CHE pcopc1 CH7 |
| cH4 CH5 |
| |
| CH2 CH3 !
! cHo I CH1 11 |
L4 S o] IR, . S Y N I |
e ¥

Base Die

HBM2 Interface Intel FPGA IP

I |
A|XI-4II1I tt Ii tt tt It Iil

CNN Training Accelerator

(b)
Figure 2: (a) Intel S-10 MX device integrated with HBM2 [11].
(b) Eight independent physical channels (CH) and corre-
sponding pseudo channels (PC) of HBM2 connected to CNN

training accelerator on the base die using Intel HBM2 inter-
face FPGA IP.

2 BACKGROUND

Modern FPGAs, such as Intel Stratix-10 (S-10) MX [11], are equipped
with new high-speed memory technologies like high bandwidth
memory (HBM2) [31]. HBM2 uses 3D stacked silicon dies con-
nected through through-silicon vias (TSVs). The main DRAM stack
is placed as a top die and the base die is used for I/O connections
to the host device. Each die in the DRAM stack consists of two
independent physical channels, which are further divided into two
pseudo channels. As shown in Fig. 2(a), HBM2 is integrated with the
Intel S-10 MX device using the system-in-package (SiP) technology.
Fig. 2(b) depicts the interface between the DRAM stack and the base
die. All the physical channels (CH) and corresponding pseudo chan-
nels (PC) are connected to the base die using HBM2 interface Intel
FPGA TP. Dedicated customizable memory controllers are provided
for each physical channel of HBM2. Overall, HBM2 provides higher
bandwidth, I/O and capacity with a small form factor, compared to
traditional off-chip memories such as DDR3.

However, designing an architecture that can fully leverage high
memory parallelism provided by HBM2 is challenging. Large I/O
capacity of HBM2 demands unique data storage (a number of differ-
ent parameters can be read in single access) and complex on-chip
buffer control logic to handle the incoming data from HBM2. Ac-
cessing parallel and independent HBM2 channels requires separate
memory controllers and status monitoring for all channels.

2.1 Modern CNN training

CNNs are majorly trained with SGD optimizer using backpropaga-
tion algorithm, which is an iterative process used to find the best

Authorized licensed use limited to: ASU Library. Downloaded on February 20,2021 at 04:26:01 UTC from IEEE Xplore. Restrictions apply.

FP Stride 2

Normal
weights

“-‘ Shortcut

connections, Loss
BP

Flipped
weights

wu
Weight
gradient

compute

Weight gradients Jiatics
Figure 3: Training dataflow for CNNs involving stride-2 con-
volutions (C4) and shortcut connections. Ci is it" convolu-
tion layer, d is the input pixel dilation, and FC is the fully-
connected layer.

Backward Pass
1

Forward Pass
| |

Weight Update

kernel T T T [[] Flipped I1T11

Input kernel pilated local
feature map gradients

Dilated local FP activations
gradients

Figure 4: Stride-2 convolutions in different training phases
are shown. Blue cells represent dilated positions of the acti-
vations (beige) or weights (grey).

parameters of a network that minimizes the loss function. SGD-
based training involves three phases, namely forward pass (FP),
backward pass (BP) and weight update (WU). In the FP phase, the
output activations are computed layer by layer in the forward direc-
tion and the FP performance is estimated using a loss function. In
the BP phase, the local gradients are computed at every layer in the
backward direction. During BP, convolution operations use flipped
kernels and the pooling (downsampling) operations are replaced by
upsampling units. In the WU phase, weight gradients are computed
using the local gradients and feed-forward activations, and weight
updates are computed.

Modern CNNs involve residual connections [6, 32], and multi-
stride convolutions to downsample the data and improve the stor-
age/throughput of CNN training. Fig. 3 illustrates the overall train-
ing flow of a CNN with identity residual connections and convolu-
tions with stride of 2. Identity shortcut operations remain the same
during FP and BP, but the flow direction and the accumulation node
are changed. During FP, we accumulate the shortcut connection at
the output of convolution layer C3, but during BP, we accumulate
the output of C2 (Fig. 3). For convolutions with stride larger than 1,
local gradients are computed by performing the convolution of the
horizontally and vertically dilated gradients with flipped kernels.
In the WU phase, the weight gradients are computed by convolving
the FP activations with dilated BP local gradients, which is similar
to dilating the kernels during the convolution. Fig. 4 shows different
dilations used in stride-2 convolutions.

In this work, we benchmark the training tasks of ResNet-20
CNN [6] and VGG-like CNN [28] for CIFAR-10 dataset, using the
proposed FPGA accelerator. ResNet-20 CNN has a convolution
layer, followed by three stacks of 6 convolution layers, 9 residual

HBM2 memory

CHO | CH1 | CH2 | CH3 | CH4 | CH5 | CH6

| S T T T A A

HBM2 interface Intel IP

baead 3 3 3 3 1

Data scatter HBM2 Data gather
module configurator module

| }HBEM read data start/done signals HBM write data T T

Input : - . Output

pixel |_,:| Conv Weight Eler.nent | pixel

buffer ! FC update wise : buffer

: 1| Pooling & Loss, RelLU |: |
Weight & Upsampling Scaling, Bias |- New
gradient [~ | weight

buffer) Compute modules ; buffer

t tControI signals t

I Global control logic I

Figure 5: Top-level block diagram of the proposed CNN
training hardware accelerator using HBM2 memory.

identity connections, a pooling layer, and a fully-connected layer.
The feature maps are downsampled at the output of every stack
using stride-2 convolutions. VGG-like CNN has 6 convolution layers
(C), 3 max-pooling layers (MP) and a fully-connected layer (FC),
with the structure of 16C3-16C3-MP-32C3-32C3-MP-64C3-64C3-
MP-FC.

3 CNN TRAINING ACCELERATOR DESIGN

3.1 Overall architecture and operation

Fig. 5 shows the top-level block diagram of the CNN training ac-
celerator architecture. The architecture can be mainly divided into
five blocks:

(1) Compute block supports various operations required for FP,
BP and WU phases of training.

(2) Buffer block stores input, output, weight and gradient data
in on-chip buffers.

(3) HBM2 configurator block generates signals to access HBM2,
stores it to an on-chip buffer and write the data back to
HBM2.

(4) HBM2 memory stores all CNN training parameters, and
HBM2 interface Intel IP communicates HBM2 memory and
training accelerator.

(5) Global control logic governs all the modules and performs
layer scheduling.

The compute block consists of a systolic MAC array to support
convolution and fully-connected layers. A 8x8x16 MAC array is
used to compute 8x8 pixels of 16 output feature maps in parallel.
MAC array size is chosen to exhibit a high utilization ratio. A
MAC array of higher size, for example 32x32x16, will suffer under
utilization while computing convolution of deeper layers where
the output feature map size is small. Flexibility to choose the MAC
array size also helps map the algorithm on different sized FPGAs.
The MAC array is used to support fully-connected layers, normal
convolutions during FP, transposed convolution during BP, and
intra-tile accumulation in WU phases. A data router module is

Authorized licensed use limited to: ASU Library. Downloaded on February 20,2021 at 04:26:01 UTC from IEEE Xplore. Restrictions apply.

tightly coupled with the MAC array and distributes the parameters
to the MAC array considering the padding and stride values.

Before the computed data is sent to the output buffer, it goes
through a series of secondary layers including loss function, ReLU,
bias and scaling unit. The scaling unit is used during BP where the
derivative of a node is either 1 or 0 (e.g. ReLU, dropout layer). The
secondary layers use outputs of key layers without any HBM access.
In each layer, any of these secondary operations can be enabled or
disabled based on the CNN structure.

Element-wise (Eltwise) module performs the element-wise addi-
tion of two input layers supporting identity shortcut connections
required for ResNet CNNs [6]. If the volume of the input layers is
different, then the smaller input layer is padded with zeros. Eltwise
module is enabled once all the output data of the current layer
are computed. Data from the other branch of the identity shortcut
connection is read from the HBM2 to the input buffers. Finally, the
accumulated data is written back to output buffers.

The pooling module is used during FP, and downsamples the
input feature map by taking the maximum value within a kernel
window (e.g. 2x2). During BP, the gradients will only flow through
the selected pixel positions and non-selected pixel positions are
padded with zeros. This operation is carried out by the upsampling
unit. The compute array sizes of Eltwise, pooling, and upsampling
modules are configurable.

The weight update module performs weight gradient accumula-
tions, following the SGD algorithm. The accumulation of weight
gradients is carried out for all training images in a batch. New
weights are computed using the final weight gradient value and is
written back to HBM2. Data scatter/gather module rearranges the
data for HBM communication.

The global control logic governs the layer scheduling, enabling
the secondary operations and configures the modules as required
for the given network. The global control logic reads the detailed
CNN structure through configuration registers. An RTL compiler is
developed to generate these configurations, where the CNN struc-
ture, MAC array sizes and other control parameters are inputs to
the compiler framework. The compiler framework reads the high-
level inputs and translates the layer by layer execution schedule
as parameters for the configuration registers, which is read by the
global control logic in run-time. The RTL compiler consists of a
highly parameterized hand-written RTL library which is optimized
for CNN training. The overall accelerator consisting of configurable
modules is shown in Fig. 5. The RTL compiler only compiles the
required modules based on each CNN structure, without including
any unused modules.

CNN training involves various parameters such as activations,
weights, weight gradients, local gradients, momentum gradients,
etc. The parameters required for a given layer is read from the
HBM2 and stored in on-chip buffers (Fig. 5). Input/output pixel
buffers are used to store the inputs/outputs of the compute blocks.
Weight buffer is designed to support efficient weight access in
both non-transpose and transpose directions (for FP and BP phases,
respectively), following the schemes proposed in [28, 33]. Weight
gradient buffers are used during the WU phase to read the old
gradients and momentum gradients. All the parameters required
for the entire CNN training are stored in HBM2 memory.

k11|k12|k13 Non Column dilated
k21|k22|k23((a) dilated weights k: : klz : kla
k31|k32|k33| weights) (b)[k21]0]k22]0] k23
HBM Weight buffer x |x] x |x] x
rdata=>| Data «31[0]k32[0[k33
scatter
T o) k11[0]k12[0[k13|
0 [o[o fo[0
CNN control | Dilate row (c) [k21]0] k22]0] k23
control 0Jojojol o
o - k31]0[k32[0[k33
E' Weight router Dilated weights
\4 @
— 3
3 I
c % MAC array g O
o 3 (supports B
S £ S| FP,BP,WU) = E
) gl52
= @
Qo

Figure 6: Flexible MAC unit with a dilation control
block for both weights and activations. The non-dilated
weights/activations from the HBM2 is rearranged by the di-
lation control block and the data scatter unit.

HBM configurator ,/ Layer |Tile| # Zte:: M \2!!2(:
HBM configuartion memory ’ # # [reads| Jqar |W1teS| agdr
Pool Weight || Element Conv S T1|256| 0 | 256 | 1024
layers || UPdate || -wise || o T2|256 | 64 | 256 | 1088
layers || layers T1[512 [1024 | 512 [2048
Y conv 2
[} w \ TN
Access config memory Read/write| \
Address Layer access \ lconv N HBM configuration of
controller | | decoder done \ - conv N
i| —» Control si
t CNN
F compute Etar‘t I-:BM access
Channel assignment block ayer type
. Weights and Num reads/writes
Pixel channels gradient —> Start address
group1/group2 channels Done transaction

Figure 7: HBM2 configurator module generates HBM2 read
and write configuration signals based on the layer type.

3.2 Dilated convolutions

The BP and WU phases of stride-2 convolutions require dilations
in both weights and input feature maps, (Fig. 4). Fig. 6 shows the
design of control logic to support BP and WU of stride-2 convo-
lutions. The non-dilated data (a) is loaded from HBM2 to on-chip
buffers. Storage of dilated images/kernels in HBM2 is avoided to re-
duce latency. The non-dilated data is rearranged by the scatter unit
according to the on-chip buffer storage pattern requirement. Dur-
ing this data rearrangement, the data scatter unit dilates the data
(pixels or weights) in the x-dimension (b). Dilations in y-dimension
is performed by the address control logic by skipping the writes
of every dilated row. While reading the data to the convolution
engine, every dilated row is detected and padded with zeros (c).
This dataflow is replicated for both weights and input feature maps,
and can be configured as needed using global control logic.

3.3 HBM2 configurator module

Fig. 7 shows the HBM2 configurator, which generates HBM2 read/
write transaction details. The HBM2 configurator consists of a con-
figuration memory that is preloaded with the information of every

Authorized licensed use limited to: ASU Library. Downloaded on February 20,2021 at 04:26:01 UTC from IEEE Xplore. Restrictions apply.

Table 1: HBM channel allocation for training parameters. 16
pseudo channels of the HBM2 is divided into four groups,
for which input/output activations (in./out act), local gradi-
ents (LG), transposable weights and weight gradients (Wt
gradients) are assigned.

Activations & local gradients Weights Wt gradients
Phase |Layer
channel 0-3 channel 4-7 channel 8-11 channel 12-15|
C in/out. act in/out. act | transposable weights NA
FP |PEW/| inJ/out. act in./out. act NA NA
FC NA NA transposable weights NA
C in/out. LG in/out. LG | transposable weights NA
BP |PEW]| in/out. LG in/out. LG NA NA
FC NA NA transposable weights NA
C in. act in. LG old, new
Wu old/new weights moment
FC NA NA gradients

transaction. The information in the configuration memory includes
the number of read/write transactions, and the read/write start ad-
dresses. Each layer has its own configuration memory as depicted
in Fig. 7. Given the current layer details and tile count, the address
controller generates the read address for configuration memory
selected by the layer decoder. Once the transaction information is
read from the memory, it is assigned to channels in the channel
assignment block.

16 pseudo channels of HBM2 provide a high number of I/O
data pins. To effectively utilize this parallelism provided by HBM2,
proper channel allocation and organized parameter storage become
a necessity. For our application, 16 pseudo channels of HBM2 are
divided into four groups of four channels. Each CNN training param-
eter that is stored in HBM2 is assigned with one of the four-channel
groups. Table 1 provides the details of channel group allocation
and the channel groups used in each phase of training. Channels
0-3 (group 1) and channels 4-7 (group 2) are used to store the local
gradients and activations, channels 8-11 (group 3) are used to store
the weights, and channels 12-15 (group 4) are used to store the
weight gradients (both current weight gradients and momentum
gradients). This channel allocation is done to reduce the off-chip
latency of the WU phase.

In the WU phase, we need to read both activations and the lo-
cal gradients to compute the weight gradients. To maximize the
channel utilization, the local gradients and activations are stored
in the two channel groups in a ping-pong manner. For example,
if convolution layer 1 outputs are stored in channel group 2, then
its corresponding local gradients are stored in channel group 1,
and during the WU phase, we read channel groups 1 and 2 simul-
taneously. Using this channel allocation, all 16 channels will be
active during the WU phase. The channel assignment block assigns
the transaction information read from the configuration memory
to one of the channel groups based on the request from the CNN
compute module. The done logic module monitors transactions
of every channel and HBM2 status signals, and generates a ‘done’
signal when the transaction is complete.

3.4 HBM2 integration

HBM2 communication uses the Intel HBM2 controller (HBMC) fol-
lowing the AMBA AXI-4 protocol. HBMC provides independent

| Intel HBMC + HBM2 IP |
t AXl signals

I AXI signal generator Intel IP |
Address t |D“ t Request HBM

Read/write 'eady"

address . .
generator | | = HBM2
transaction Ready

- controller ’ logic
Transaction |—

ID generator

»
»

A

Read /write transaction Ready| Rvalid
details v Rdata"

CNN training accelerator

Figure 8: CNN training accelerator integrated with HBMz2,
following AMBA AXI4 protocol.

AXI ports for each channel. The read/write transaction informa-
tion obtained from the HBM2 configurator is sent to the HBM
transaction controller (HTC). Fig. 8 shows the integration of HTC
and other modules with Intel HBM IPs, enabling successful HBM2
communication. HTC monitors the request from the CNN train-
ing accelerator and the status of HBM2 memory. Based on the
read/write request from the training accelerator, HTC enables cor-
responding address/transaction ID tag generators. The generated
address and transaction IDs are converted to AXI signals using
the AXI signal generator. Ready logic monitors the status of HTC,
address generators, and HBM2 and indicates whether the HBM is
ready to accept the next transaction.

3.5 Data scatter/gather unit

HBM2 demands complex and flexible data collection/gathering
units as more data is streamed in one cycle. To achieve this, cus-
tomized data scatter/gather units were designed which can col-
lect/send the data based on the channel allocation. The storage
pattern of the parameters on on-chip buffers depends on the layer
and parameter types. The continuous data stream from the HBM2
channels are collected by the data scatter unit where the data is
rearranged and distributed to the on-chip buffers. The scatter unit
also separates channels based on the parameter channel allocation
and processes all channel groups in parallel. The data gather unit
collects the data from output buffers (or new weight and weight
gradient buffers in WU phase) and reorganizes the data before send-
ing it to HBM2 channels. Data scatter/gather unit considers the
channel allocations of different parameters, data precision, unroll
factors and layer type.

3.6 HBM2 initialization

The HBM initialization module loads the HBM with training data
and other initial parameters. To initialize HBM with the training
data, the data is loaded from the host PC to the on-chip memory
(M20K) of the FPGA. The on-chip memory (M20K) works as an
intermediate buffer for each pseudo-channel. Due to the limited
on-chip memory resources, we used small buffers, and these buffers
will be used multiple times to load a large amount of data to HBM.

Authorized licensed use limited to: ASU Library. Downloaded on February 20,2021 at 04:26:01 UTC from IEEE Xplore. Restrictions apply.

ResNet-ZQ
$-10 GX (DDR3)

Training Phase
®
v

l wtgirads |wts |

wu
; T T T T
0 250 500 750 1000 1250
Latency (us)
(a)
o i i
] ResNet-20;
T $-10 MX (HBM)
o i i
= H H
= wtigd wts
ﬁ i
= |
T T T T T
0 250 500 750 1000 1250
Latency (us)

(b)
Figure 9: Training latency breakdown of ResNet-20 CNN for
(a) S-10 GX device with DDR3 and (b) S-10 MX device with
HBM2, both running at 185 MHz.

700 80
Batch Size (BS)
600, ResNet-20 24816
- ResNet-20
500+ 1
@ —
Q 400 £
[040
G z
3001 Batch Size g
- 24816
1 20
100

0- 0
Intel i7 Nano V100 S10-GX S10-MX Intel i7 Nano V100 S10-GX S10-MX

(This work)

(@) (b)

(This work)

. VGG-like CNN
| 510 GX (DDR3)

Inpx/wt rd oupx wr

Training Phase
o
)

MAC | | wtgra(;sl weight;|

T T T T
100 150 200 250

0 50
Latency (us)
(a)

Inpx/wtrd ., oupx wr : : :
® —T1 ; | :
g re [wac | voeikeonN
£ ' OUPX Wr $-10 MX (HBM)
o BP 5
€ [Inpxiwt rd wt g;rads i
[T i %
Z wu wAC | | |wts|

50 100 150 200 250
Latency (us)
(b)

Figure 10: Training latency breakdown of VGG-like CNN for
(a) S-10 GX device with DDR3 and (b) S-10 MX device with
HBM2, both running at 185 MHz.

20 % Batch Size (BS
VGG-like CNN Batch Size (BS)
200 0. VGG-like CNN|
¥ 150 s
g Batch Size §4o
B 100|248 16 3

N
o

50

0-
Intel i7 Nano V100 S$10-GX S10-MX
(This work)

0
Intel i7 Nano V100 S10-GX S10-MX
(This work)

(© (d)

Figure 11: Throughput and power comparison of training tasks using Intel i7-9800X CPU, Tesla V100 GPU, Jetson Nano, S-
10 GX FPGA with DDR3, and S-10 MX FPGA with HBM2. (a) Throughput and (b) power for ResNet-20 CNN training and (c)
throughput and (d) power of VGG-like CNN training are shown.

The HBM configurator and HBM control modules of the CNN train-
ing accelerator is reused to perform the HBM initialization. After
loading all required training data, the CNN training accelerator is
enabled. The HBM initialization is controlled by the host system.

4 EXPERIMENTAL RESULTS

4.1 Experimental Setup

We evaluate our FPGA accelerator on two CNNs (ResNet-20 and
VGG-like CNN) with CIFAR-10 as the training dataset. The con-
trol logic is also configurable to support large dataset (ImageNet)
training, but consumes more FPGA resources to store and pro-
cess larger input images. The initial weight parameters and con-
figuration register values of benchmark CNNs are generated from
our RTL compiler framework developed in Matlab. Intel S-10 MX

(1SM21BHU2F53E2VGS1) [34] and S-10 GX(1SG280LU3F50E3VGS1)
[35] were used as the target FPGA hardware. S-10 MX is equipped
with 133 Mbits of M20K, 3,960 DSP blocks, 702K ALMs and 8GB
HBM2 memory providing peak memory bandwidth of up to 512
GBps and S-10 GX includes 5,760 DSP blocks, 933K ALMs and 240
Mbits of M20K and 4GB DDR3 with 16.9GB/s bandwidth. Identical
design optimizations has been performed on both S-10 MX and
S-10 GX design for fair comparison.

All parameters use 16-bit floating-point precision to reduce the
memory footprint compared to 32-bit floating-point precision. Since
the DSP units of Intel S-10 GX/MX FPGAs only support 32-bit
floating-point precision, 16-bit (32-bit) to 32-bit (16-bit) floating-
point precision converters are used before (after) DSP computation
to utilize the existing DSP blocks in S-10 FPGAs. The latency was

Authorized licensed use limited to: ASU Library. Downloaded on February 20,2021 at 04:26:01 UTC from IEEE Xplore. Restrictions apply.

-
N

s - d - - L4 .- - Ld - - - -

‘% e | | ?. | 90

D 104 s
(@) P AL A A -
| A a
(I.B 8. ResNet-20 |80 ®
> 3
: g
2 61 R R L70 o
L2 == & O =
= —p—Tesla V100 -
= 44 —p— Jetson Nano | 60 &
2 —0—S510 GX O
B 2] —A=1S510 MX (This work)

w - m- Accuracy £0

0 2 4 6 8 10 12 14 16 18
Batch size (BS)

Figure 12: Energy and accuracy comparison of low-batch
CNN training on Tesla V100 GPU, Jetson Nano, S-10 MX and
GX devices.

measured using the functional simulation of the training accelera-
tor. Using Intel Quartus 19.4 FPGA software, the accelerator was
synthesized, placed/routed and the bitstream was uploaded to the
FPGA board. Intel(R) Core (TM) i7-9800X CPU is used as the host
system. For comprehensive comparison among FPGA, CPU, and
GPU hardware for the same training tasks, we measured the power
of each actual hardware system. FPGA board power consumption
is measured using the Intel board test system (BTS) power monitor.
The Intel BTS power monitor reported junction temperature of 47°C.
Intel(R) Core (TM) i7-9800X CPU power is measured with the pow-
erstat command using RAPL domains. To evaluate the performance
of GPUs, we developed a floating point CIFAR-10 training model
using PyTorch [36]. Tesla V100 GPU power measurements are done
using CUDA nvidia-smi API and Jetson Nano power measurements
are done using Nvidia tegrastat utility. To minimize measurement
inaccuracy, 20 samples of power measurements are averaged over
the duration of one epoch training.

4.2 Results and analysis

Table 2 shows the resource utilization of two CNN benchmarks
(ResNet-20 and VGG-like CNN) for the CIFAR-10 dataset. All the
training images in a given batch are processed sequentially. This

Table 2: Resource utilization for training tasks
of ResNet-20 and VGG-like CNNs on Intel
S-10 MX (1SM21BHU2F53E2VGS1) and S-10
GX(1SG280LU3F50E3VGS1) FPGA.
CNN FPGA DSP ALM M20Ks |Registers| Freq.
1040 239k 2558
ResNet-20 | S10-MX (26%) (34%) (13.9M) 390k 185 MHz
" 1046 221k 2998
VGG-ike [S10-MX (26%) (31%) (11.4M) 353k 185 MHz
1043 148k 1779
ResNet-20 | S10-GX (18%) (16%) (14M) 385k 185 MHz
. 1044 97k 1297
VGG-like | S10-GX (18%) (10.4%) (11M) 167k 185 MHz

greatly reduces the on-chip memory requirements as we only read
the data required to process one training image at a time from
HBM2. We achieved maximum operation frequency of 185 MHz
for S-10 MX and GX implementations.

For S-10 GX (with DDR3) implementation, Fig. 9(a) and Fig. 10(a)
show the latency breakdown of the proposed accelerator for three
training phases (FP, BP, and WU) of the last training image of a
batch (involving actual weight updates) for ResNet-20 CNN and
VGG-like CNN, respectively. The latency breakdown includes the
reading of input pixels and weights from off-chip memory (Inpx/wt
rd), computing the convolution outputs (MAC), writing the out-
put pixels (oupx wr), wt gradients (wt grads) and new weights
(wts) back to HBM. In the overall training time, the off-chip DDR3
memory consumes 47% of latency and logic consumes 53%. For
memory-bound CNNs, even with high hardware parallelism, the
low bandwidth of DDR3 memory will limit the performance [28].
This critical memory bandwidth bottleneck can be addressed using
HBM2.

Fig. 9(b) and Fig. 10(b) provide the latency breakdown of the
proposed FPGA accelerator implemented on the S-10 MX device us-
ing HBM2. WU phase consumes longer latency than FP/BP phases,
as it involves weight gradient computation, gradient accumula-
tion and computation of new weights. The high off-chip memory
bandwidth provided by HBM2 significantly reduces the latency
consumed to read/write the activations and weights from/to the
off-chip memory. As a result, the logic latency dominates the total
latency, compared to S-10 GX implementation with DDR3 in all
three phases of training. Further latency improvement could be
achieved by increasing the number of parallel MAC arrays or by
increasing the operating frequency. Using the proposed channel
allocation scheme and HBM2 for the S-10 MX implementation, we
achieved ~4X reduction in off-chip memory latency and ~1.5X re-
duction in system-level CNN training time, compared to those of
the S-10 GX implementation with DDR3.

Fig. 11a and Fig. 11c provide the low-batch training throughput
of two CNN benchmarks (ResNet-20 and VGG-like CNN) on Intel
17-9800X CPU, Jetson Nano embedded platform, Tesla V100 GPU,
S-10 GX FPGA and S-10 MX FPGA. The overall training time of
GPUs significantly increases with lower batch sizes. The proposed
FPGA training accelerator achieves better throughput compared all
other hardware platforms on both the benchmarks for small batch
sizes of 2 and 4. Tesla V100 provides better throughput for higher
batch sizes (8 and 16) but at the cost of high power consumption.
The power consumption of all hardware platforms for different
batch sizes are shown in Fig. 11b and Fig. 11d. The FPGA power
consumption is low because of less utilization (~30%) of FPGA re-
sources, operating frequency of 185MHz and junction temperature
of 47°C reported by Intel BTS tool. Compared to S-10 MX FPGA,
Jetson Nano consumes less power (~5W) but suffers from long
training latency. For ResNet-20/VGG-like CNNs, our FPGA imple-
mentation of CNN training using S-10 MX with HBM2 is ~4.5-9.7X
more energy-efficient compared to Tesla V100 GPU, ~3-7X more
energy-efficient compared to low-power Jetson Nano embedded
platform, and ~1.7X more energy-efficient compared to implemen-
tation on S-10 GX with DDR3. Our proposed S-10 MX design with
HBM2 addresses the critical memory bottleneck problem for CNN

Authorized licensed use limited to: ASU Library. Downloaded on February 20,2021 at 04:26:01 UTC from IEEE Xplore. Restrictions apply.

training and the custom architecture enables efficient low-batch
training.

Fig. 12 shows the overall energy-efficiency and accuracy com-
parison of Tesla V100 GPU, Jetson Nano, S-10 MX, S-10 GX devices
for ResNet-20 training across different batch sizes. It can be seen
that the low-batch training accuracy has minimal degradation com-
pared to high-batch training accuracy [8]. At the same frequency
and MAC array size, S-10 MX design provides 1.7X improvement in
energy-efficiency compared to S-10 GX design by greatly reducing
the off-chip communication latency.

5 CONCLUSION

This paper presents a flexible CNN training accelerator on FPGA
using HBM2, which performs end-to-end training of modern CNNs
involving residual connections and stride-2 convolutions. The FPGA
accelerator is implemented on Intel S-10 MX (with HBM2) and S-10
GX (with DDR3) devices, demonstrating system-level benefits of
HBM2 over conventional DDR3 off-chip memory. The proposed
accelerator achieves 4.5-9.7X energy-efficiency improvement com-
pared to Tesla V100 GPU and 7-11X improvement in throughput
compared to that of Intel i7-9800X CPU for low-batch training tasks
of ResNet-20/VGG-like CNNs.

REFERENCES

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification
with deep convolutional neural networks. Commun. ACM, 60(6):84-90, May 2017.

[2] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional net-
works for semantic segmentation. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3431-3440, 2015.

[3] Keisuke Tateno, Federico Tombari, Iro Laina, and Nassir Navab. CNN-SLAM: Real-

time dense monocular SLAM with learned depth prediction. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages 6243-6252, 2017.

Yuxin Wu and Kaiming He. Group normalization. In European Conference on

Computer Vision (ECCV), pages 3-19, 2018.

[5] Pavan Kumar Chundi, Peiye Liu, Sangsu Park, Seho Lee, and Mingoo Seok. FPGA-
based Acceleration of Binary Neural Network Training with Minimized Off-Chip
Memory Access. In IEEE/ACM International Symposium on Low Power Electronics
and Design (ISLPED), pages 1-6, 2019.

[6] Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770~778, 2016.

[7] A Krizhevsky. Learning multiple layers of features from tiny images. Master’s
thesis, University of Tront, 2009.

[8] Dominic Masters and Carlo Luschi. Revisiting small batch training for deep
neural networks. arXiv preprint arXiv:1804.07612, 2019.

[9] Sergey Ioffe. Batch renormalization: Towards reducing minibatch dependence in
batch-normalized models. In Advances in neural information processing systems,
pages 1945-1953, 2017.

[10] Mike Wissolik, Darren Zacher, Anthony Torza, and Brandon Da. Virtex Ultra-
Scale+ HBM FPGA: A revolutionary increase in memory performance. Xilinx
Whitepaper, 2017.

[11] Manish Deo, Jeffrey Schulz, and Lance Brown. Intel Stratix 10 MX Devices Solve

the Memory Bandwidth Challenge. Intel Whitepaper, 2017.

Yufei Ma, Yu Cao, Sarma Vrudhula, and Jaesun Seo. An automatic RTL compiler

for high-throughput FPGA implementation of diverse deep convolutional neural

networks. In IEEE International Conference on Field Programmable Logic and

Applications (FPL), pages 1-8, 2017.

Stylianos I Venieris and Christos-Savvas Bouganis. fpgaConvNet: A framework

for mapping convolutional neural networks on FPGAs. In IEEE International

Symposium on Field-Programmable Custom Computing Machines (FCCM), pages

40-47, 2016.

[14] Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin Wang, Han Hu,
Yun Liang, and Jason Cong. Automated systolic array architecture synthesis for
high throughput CNN inference on FPGAs. In IEEE/ACM Design Automation
Conference (DAC), pages 1-6, 2017.

[15] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong.
Optimizing fpga-based accelerator design for deep convolutional neural networks.
In ACM/SIGDA International Symposium on Field-Programmable Gate Arrays

[4

o

[12

[13

[16]

=
]

[18

[19]

[20

[21

[22

[23

[24

[25]

™
2

[27

[28

[29

&
=)

@
2

[36

(FPGA), pages 161-170, 2015.

Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng
Yu, Tiangi Tang, Ningyi Xu, Sen Song, et al. Going deeper with embedded
fpga platform for convolutional neural network. In ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA), pages 26-35, 2016.
Kamel Abdelouahab, Maxime Pelcat, Jocelyn Serot, and Francois Berry. Ac-
celerating cnn inference on fpgas: A survey. arXiv preprint arXiv:1806.01683,
2018.

Kaiyuan Guo, Shulin Zeng, Jincheng Yu, Yu Wang, and Huazhong Yang. A survey
of fpga-based neural network accelerator. arXiv preprint arXiv:1712.08934, 2017.
Tong Geng, Tianqi Wang, Ang Li, Xi Jin, and Martin Herbordt. A Scalable
Framework for Acceleration of CNN Training on Deeply-Pipelined FPGA Clusters
with Weight and Workload Balancing. arXiv preprint arXiv:1901.01007, 2019.
Afzal Ahmad and Muhammad Adeel Pasha. Optimizing hardware accelerated
general matrix-matrix multiplication for cnns on fpgas. IEEE Transactions on
Circuits and Systems II: Express Briefs, 2020.

Wenlai Zhao, Haohuan Fu, Wayne Luk, Teng Yu, Shaojun Wang, Bo Feng, Yuchun
Ma, and Guangwen Yang. F-CNN: An FPGA-based framework for training
convolutional neural networks. In IEEE International Conference on Application-
specific Systems, Architectures and Processors (ASAP), pages 107-114, 2016.
Seungkyu Choi, Jachyeong Sim, Myeonggu Kang, and Lee-Sup Kim. TrainWare:
A memory optimized weight update architecture for on-device convolutional
neural network training. In IEEE/ACM International Symposium on Low Power
Electronics and Design (ISLPED), 2018.

Hanging Zeng and Viktor Prasanna. GraphACT: Accelerating GCN Training on
CPU-FPGA Heterogeneous Platforms. In ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (FPGA), pages 255-265, 2020.

Qiang Liu, Jia Liu, Ruoyu Sang, Jiajun Li, Tao Zhang, and Qijun Zhang. Fast
neural network training on FPGA using quasi-newton optimization method. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 26(8):1575-1579, 2018.
Alexander Gomperts, Abhisek Ukil, and Franz Zurfluh. Development and imple-
mentation of parameterized FPGA-based general purpose neural networks for
online applications. IEEE Transactions on Industrial Informatics, 7(1):78-89, 2011.
Rafael Gadea Gironés, Rafael Gadea Gironés, Ricardo Colom Palero, Joaquin Cerda
Boluda, Joaquin Cerdéa Boluda, and Angel Sebastia Cortés. Fpga implementation
of a pipelined on-line backpropagation. j. VLSI Signal Process. Syst., 40(2):189-213,
June 2005.

Shijie Zhou, Rajgopal Kannan, and Viktor K Prasanna. Accelerating Stochastic
Gradient Descent Based Matrix Factorization on FPGA. IEEE Transactions on
Parallel and Distributed Systems, 31(8):1897 — 1911, 2020.

Shreyas Kolala Venkataramanaiah, Yufei Ma, Shihui Yin, Eriko Nurvithadhi,
Aravind Dasu, Yu Cao, and Jaesun Seo. Automatic Compiler Based FPGA Accel-
erator for CNN Training. In IEEE International Conference on Field Programmable
Logic and Applications (FPL), pages 166172, 2019.

Hiroki Nakahara, Youki Sada, Masayuki Shimoda, Kouki Sayama, Akira Jinguji,
and Shimpei Sato. FPGA-Based Training Accelerator Utilizing Sparseness of
Convolutional Neural Network. In IEEE International Conference on Field Pro-
grammable Logic and Applications (FPL), pages 180-186, 2019.

Cheng Luo, Man-Kit Sit, Hongxiang Fan, Shuanglong Liu, Wayne Luk, and
Ce Guo. Towards efficient deep neural network training by fpga-based batch-
level parallelism. Journal of Semiconductors, 41(2):022403, 2020.

JEDEC Standard. High bandwidth memory (HBM) DRAM. JESD235, 2013.
Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. MobileNetV2: Inverted residuals and linear bottlenecks. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 4510-4520,
2018.

Shihui Yin and Jaesun Seo. A 2.6 TOPS/W 16-bit Fixed-Point Convolutional
Neural Network Learning Processor in 65nm CMOS. IEEE Solid-State Circuits
Letters, 3:13-16, 2020.

Intel. Intel Stratix 10 MX FPGA Development Kit. https://www.intel.com/content/
www/us/en/programmable/products/boards_and_kits/dev-kits/altera/kit-s10-
mx.html. Accessed: 2020-04-02.

Intel. Intel Stratix 10 GX FPGA Development Kit. https://www.intel.com/content/
www/us/en/programmable/products/boards_and_kits/dev-kits/altera/kit-s10-
fpga.html. Accessed: 2020-04-02.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in PyTorch. In NIPS 2017 Autodiff Workshop, 2017.

Authorized licensed use limited to: ASU Library. Downloaded on February 20,2021 at 04:26:01 UTC from IEEE Xplore. Restrictions apply.

