
FPGA-based Low-Batch Training Accelerator for Modern CNNs
Featuring High Bandwidth Memory

Shreyas K. Venkataramanaiah
Arizona State University

skvenka5@asu.edu

Han-Sok Suh
Arizona State University

hsuh6@asu.edu

Shihui Yin
Arizona State University

syin11@asu.edu

Eriko Nurvitadhi
Intel Corporation

eriko.nurvitadhi@intel.com

Aravind Dasu
Intel Corporation

aravind.dasu@intel.com

Yu Cao
Arizona State University

Yu.Cao@asu.edu

Jae-sun Seo
Arizona State University
jaesun.seo@asu.edu

ABSTRACT

Training convolutional neural networks (CNNs) requires intensive

computations as well as a large amount of storage and memory

access. While low bandwidth off-chip memories in prior FPGA

works have hindered the system-level performance, modern FPGAs

offer high bandwidth memory (HBM2) that unlocks opportunities

to improve the throughput/energy of FPGA-based CNN training.

This paper presents a FPGA accelerator for CNN training which

(1) uses HBM2 for efficient off-chip communication, and (2) sup-

ports various training operations (e.g. residual connections, stride-2

convolutions) for modern CNNs. We analyze the impact of HBM2

on CNN training workloads, provide a comprehensive compari-

son with DDR3, and present the strategies to efficiently use HBM2

features for enhanced CNN training performance. For training

ResNet-20/VGG-like CNNs for CIFAR-10 dataset with low batch

size of 2, the proposed CNN training accelerator on Intel Stratix-10

MX FPGA demonstrates 1.4/1.7X energy-efficiency improvement

compared to Stratix-10 GX FPGA with DDR3 memory, and 4.5/9.7

X energy-efficiency improvement compared to Tesla V100 GPU.

CCS CONCEPTS

• Hardware → Hardware accelerators; Application-specific

VLSI designs.

KEYWORDS

Convolutional neural networks, neural network training, back-

propagation, hardware accelerator, FPGA

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICCAD ’20, November 2–5, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8026-3/20/11. . . $15.00
https://doi.org/10.1145/3400302.3415643

ACM Reference Format:

Shreyas K. Venkataramanaiah, Han-Sok Suh, Shihui Yin, Eriko Nurvitadhi,

Aravind Dasu, Yu Cao, and Jae-sun Seo. 2020. FPGA-based Low-Batch Train-

ing Accelerator for Modern CNNs Featuring High Bandwidth Memory. In

IEEE/ACM International Conference on Computer-Aided Design (ICCAD ’20),

November 2–5, 2020, Virtual Event, USA. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3400302.3415643

1 INTRODUCTION

Convolutional neural networks (CNNs) are extensively adopted in

computer vision applications [1–3]. The training tasks of CNNs

are commonly performed with GPUs using a mini-batch stochastic

gradient descent (SGD) optimizer. To improve the CNN accuracy,

higher batch sizes are employed for CNN training with GPUs, but

this demands an excessive amount of memory and limits the ca-

pability to explore large models and tasks with high input resolu-

tion [4]. In addition, although GPUs provide very high throughput

on CNN training with large batch sizes, they suffer from low uti-

lization/throughput for smaller batch sizes [5]. This can be seen

in Fig. 1, which reports the latency and Tesla V100 GPU utiliza-

tion across different batch sizes for the task of training ResNet-20

CNN [6] for CIFAR-10 [7] dataset. Recently, new CNN training

algorithms that efficiently support small batch sizes (e.g. 2, 4) have

been proposed [4, 8, 9], which demonstrate on-par accuracy with

state-of-the-art CNN training using large batch sizes.

Low-batch training greatly reduces memory requirement and

unlocks opportunities for FPGAs, which provide higher configura-

bility for custom architecture and better energy-efficiency than

high-power GPUs. Training on edge FPGA devices also reduces

latency overhead (due to limited data exchange with the cloud

server), prevents privacy/security problems, and is well-suited to

exploit new features such as low precision training, sparse weight

updates, online learning, etc. However, training CNNs on FPGAs is a

challenging task for two reasons: (1) it demands high memory band-

width which is the primary limiting factor in many accelerators

[10, 11], and (2) complexity arises in implementing a generalized

flexible training accelerator supporting new advancements in CNN

training algorithms.

Many prior works presented low-batch CNN inference on FPGAs

and showed large improvements in storage and latency [12–18].

Authorized licensed use limited to: ASU Library. Downloaded on February 20,2021 at 04:26:01 UTC from IEEE Xplore. Restrictions apply.

Figure 1: ResNet-20 CNN training performance for CIFAR-

10 dataset on Tesla V100 GPU for different batch sizes.

While there are new algorithmic approaches to support low-batch

training, FPGA hardware designs for CNN training tasks have been

much less explored. A framework to map DNN training on FPGA

clusters was presented in [19], but an excessive amount of on-chip

memory is required for training on a single FPGA platform. Several

prior works [20–22] attempted to accelerate a part of CNN training

on FPGAs, while the remaining operations were performed by the

host CPU. Training accelerators for non-CNN applications were

proposed in [23–27]. Only a few prior works presented a CNN

training accelerator supporting all three phases of training [28–30],

but these works still did not include back-propagation of either

residual connections or stride-2 convolutions that are necessary

for modern CNNs. Furthermore, none of the aforementioned FPGA

works studied the use of high bandwidth memory, which is critical

for CNN training.

In this work, we present a programmable FPGA accelerator for

CNN training, which uses HBM2 for efficient off-chip communica-

tion, and supports residual connections and stride-2 convolutions

for modern CNNs. The key contributions of this work are:

• To the best of our knowledge, we present the first FPGA ac-

celerator for CNN training that fully utilizes high bandwidth

memory (HBM2) and executes end-to-end CNN training.

• Our programmable FPGA accelerator reads high-level de-

scriptions of CNNs (similar to TensorFlow/PyTorch) includ-

ing those with residual connections and stride-2 convolu-

tions, and automatically generates RTL for synthesis.

• We analyze the impact of HBM2 on CNN training workloads,

provide a comprehensive comparison with DDR3, and dis-

cuss the strategies to efficiently use the HBM2 features for

enhanced performance.

• Our accelerator using Intel Stratix-10 (S-10) MX FPGA with

HBM2 is evaluated for ResNet-20 and VGG-like CNNs for

CIFAR-10 dataset, achieving up to 14X improvement in energy-

efficiency, compared to Tesla V100 GPU.

The remainder of this paper is organized as follows. Section

2 introduces HBM2 memory on Intel FPGAs and modern CNN

training algorithm. Section 3 presents the proposed training accel-

erator including HBM integration, handling residual and stride-2

convolutions. Section 4 describes experimental results and provides

comparison among FPGA, CPU, and GPU hardware for low-batch

CNN training tasks. The paper is concluded in Section 5.

(a)

AXI­4

3D�DRAM

HBM2�Interface�Intel�FPGA�IP

CH�6

CH�4
CH�2

CH�0

CH�7

CH�5
CH�3

CH�1

CNN�Training�Accelerator

Base�Die

PC�0 PC�1

(b)

Figure 2: (a) Intel S-10 MX device integrated with HBM2 [11].

(b) Eight independent physical channels (CH) and corre-

sponding pseudo channels (PC) of HBM2 connected to CNN

training accelerator on the base die using Intel HBM2 inter-

face FPGA IP.

2 BACKGROUND

Modern FPGAs, such as Intel Stratix-10 (S-10)MX [11], are equipped

with new high-speed memory technologies like high bandwidth

memory (HBM2) [31]. HBM2 uses 3D stacked silicon dies con-

nected through through-silicon vias (TSVs). The main DRAM stack

is placed as a top die and the base die is used for I/O connections

to the host device. Each die in the DRAM stack consists of two

independent physical channels, which are further divided into two

pseudo channels. As shown in Fig. 2(a), HBM2 is integrated with the

Intel S-10 MX device using the system-in-package (SiP) technology.

Fig. 2(b) depicts the interface between the DRAM stack and the base

die. All the physical channels (CH) and corresponding pseudo chan-

nels (PC) are connected to the base die using HBM2 interface Intel

FPGA IP. Dedicated customizable memory controllers are provided

for each physical channel of HBM2. Overall, HBM2 provides higher

bandwidth, I/O and capacity with a small form factor, compared to

traditional off-chip memories such as DDR3.

However, designing an architecture that can fully leverage high

memory parallelism provided by HBM2 is challenging. Large I/O

capacity of HBM2 demands unique data storage (a number of differ-

ent parameters can be read in single access) and complex on-chip

buffer control logic to handle the incoming data from HBM2. Ac-

cessing parallel and independent HBM2 channels requires separate

memory controllers and status monitoring for all channels.

2.1 Modern CNN training

CNNs are majorly trained with SGD optimizer using backpropaga-

tion algorithm, which is an iterative process used to find the best

Authorized licensed use limited to: ASU Library. Downloaded on February 20,2021 at 04:26:01 UTC from IEEE Xplore. Restrictions apply.

C1 C2 C3 C4 FC

C1 C2 C3 C4 FC

C1 C2 C2 C4 FC

Shortcut�
connections

Stride�2

d

Input�
dilation

Kernel�
dilationWeight�gradients

Loss

Flipped�
weights

Normal
weights

Weight
gradient�
compute

WU

BP

FP
C1 C2 C3 C4 FC

C1 C2 C3 C4 FC

C1 C2 C2 C4 FC

Shortcut�

Stride�2

Loss

Normal
weights

FP
C1 C2 C3 C4 FC

connections Input

Kernel�
dilationWeight�gradients

Weight
gradient�
compute

WU
C1 C2 C2 C4 FC

Shortcut�
connections

Stride�2

d

Input�
dilation

Kernel�
dilationWeight�gradients

Loss

Flipped�
weights

Normal
weights

Weight
gradient�
compute

WU

BP

FP

C1 C2 C3 C4 FCd

pp
dilationdilation

FlippedFlipped
weightsweights

BPBP

LossInput

Input

Figure 3: Training dataflow for CNNs involving stride-2 con-

volutions (𝐶4) and shortcut connections. 𝐶𝑖 is 𝑖𝑡ℎ convolu-

tion layer, 𝑑 is the input pixel dilation, and 𝐹𝐶 is the fully-

connected layer.

Forward�Pass������Backward�Pass��������Weight�Update

kernel
Input�

feature�map

Flipped
kernel Dilated�local�

gradients
FP�activationsDilated�local�

gradients

Figure 4: Stride-2 convolutions in different training phases

are shown. Blue cells represent dilated positions of the acti-

vations (beige) or weights (grey).

parameters of a network that minimizes the loss function. SGD-

based training involves three phases, namely forward pass (FP),

backward pass (BP) and weight update (WU). In the FP phase, the

output activations are computed layer by layer in the forward direc-

tion and the FP performance is estimated using a loss function. In

the BP phase, the local gradients are computed at every layer in the

backward direction. During BP, convolution operations use flipped

kernels and the pooling (downsampling) operations are replaced by

upsampling units. In the WU phase, weight gradients are computed

using the local gradients and feed-forward activations, and weight

updates are computed.

Modern CNNs involve residual connections [6, 32], and multi-

stride convolutions to downsample the data and improve the stor-

age/throughput of CNN training. Fig. 3 illustrates the overall train-

ing flow of a CNN with identity residual connections and convolu-

tions with stride of 2. Identity shortcut operations remain the same

during FP and BP, but the flow direction and the accumulation node

are changed. During FP, we accumulate the shortcut connection at

the output of convolution layer C3, but during BP, we accumulate

the output of C2 (Fig. 3). For convolutions with stride larger than 1,

local gradients are computed by performing the convolution of the

horizontally and vertically dilated gradients with flipped kernels.

In the WU phase, the weight gradients are computed by convolving

the FP activations with dilated BP local gradients, which is similar

to dilating the kernels during the convolution. Fig. 4 shows different

dilations used in stride-2 convolutions.

In this work, we benchmark the training tasks of ResNet-20

CNN [6] and VGG-like CNN [28] for CIFAR-10 dataset, using the

proposed FPGA accelerator. ResNet-20 CNN has a convolution

layer, followed by three stacks of 6 convolution layers, 9 residual

HBM2�memory

Compute�modules

Conv
FC

Pooling�&�
Upsampling

Weight�
update

Loss,�ReLU�
Scaling,�Bias

Element
wise

HBM2�interface�Intel�IP

Data�scatter
module

Data�gather�
module

HBM2�
configurator

Weight�&
gradient
buffer

New
weight
�buffer

Global�control�logic

CH�0 CH�1 CH�2 CH�3 CH�4 CH�5 CH�6 CH�7

AXI­4�

Control�signals

HBM�read�data HBM�write�data

Input�
pixel
�buffer

Output
pixel
�buffer

start/done�signals

Figure 5: Top-level block diagram of the proposed CNN

training hardware accelerator using HBM2 memory.

identity connections, a pooling layer, and a fully-connected layer.

The feature maps are downsampled at the output of every stack

using stride-2 convolutions. VGG-like CNN has 6 convolution layers

(C), 3 max-pooling layers (MP) and a fully-connected layer (FC),

with the structure of 16C3-16C3-MP-32C3-32C3-MP-64C3-64C3-

MP-FC.

3 CNN TRAINING ACCELERATOR DESIGN

3.1 Overall architecture and operation

Fig. 5 shows the top-level block diagram of the CNN training ac-

celerator architecture. The architecture can be mainly divided into

five blocks:

(1) Compute block supports various operations required for FP,

BP and WU phases of training.

(2) Buffer block stores input, output, weight and gradient data

in on-chip buffers.

(3) HBM2 configurator block generates signals to access HBM2,

stores it to an on-chip buffer and write the data back to

HBM2.

(4) HBM2 memory stores all CNN training parameters, and

HBM2 interface Intel IP communicates HBM2 memory and

training accelerator.

(5) Global control logic governs all the modules and performs

layer scheduling.

The compute block consists of a systolic MAC array to support

convolution and fully-connected layers. A 8x8x16 MAC array is

used to compute 8x8 pixels of 16 output feature maps in parallel.

MAC array size is chosen to exhibit a high utilization ratio. A

MAC array of higher size, for example 32x32x16, will suffer under

utilization while computing convolution of deeper layers where

the output feature map size is small. Flexibility to choose the MAC

array size also helps map the algorithm on different sized FPGAs.

The MAC array is used to support fully-connected layers, normal

convolutions during FP, transposed convolution during BP, and

intra-tile accumulation in WU phases. A data router module is

Authorized licensed use limited to: ASU Library. Downloaded on February 20,2021 at 04:26:01 UTC from IEEE Xplore. Restrictions apply.

tightly coupled with the MAC array and distributes the parameters

to the MAC array considering the padding and stride values.

Before the computed data is sent to the output buffer, it goes

through a series of secondary layers including loss function, ReLU,

bias and scaling unit. The scaling unit is used during BP where the

derivative of a node is either 1 or 0 (e.g. ReLU, dropout layer). The

secondary layers use outputs of key layers without any HBM access.

In each layer, any of these secondary operations can be enabled or

disabled based on the CNN structure.

Element-wise (Eltwise) module performs the element-wise addi-

tion of two input layers supporting identity shortcut connections

required for ResNet CNNs [6]. If the volume of the input layers is

different, then the smaller input layer is padded with zeros. Eltwise

module is enabled once all the output data of the current layer

are computed. Data from the other branch of the identity shortcut

connection is read from the HBM2 to the input buffers. Finally, the

accumulated data is written back to output buffers.

The pooling module is used during FP, and downsamples the

input feature map by taking the maximum value within a kernel

window (e.g. 2x2). During BP, the gradients will only flow through

the selected pixel positions and non-selected pixel positions are

padded with zeros. This operation is carried out by the upsampling

unit. The compute array sizes of Eltwise, pooling, and upsampling

modules are configurable.

The weight update module performs weight gradient accumula-

tions, following the SGD algorithm. The accumulation of weight

gradients is carried out for all training images in a batch. New

weights are computed using the final weight gradient value and is

written back to HBM2. Data scatter/gather module rearranges the

data for HBM communication.

The global control logic governs the layer scheduling, enabling

the secondary operations and configures the modules as required

for the given network. The global control logic reads the detailed

CNN structure through configuration registers. An RTL compiler is

developed to generate these configurations, where the CNN struc-

ture, MAC array sizes and other control parameters are inputs to

the compiler framework. The compiler framework reads the high-

level inputs and translates the layer by layer execution schedule

as parameters for the configuration registers, which is read by the

global control logic in run-time. The RTL compiler consists of a

highly parameterized hand-written RTL library which is optimized

for CNN training. The overall accelerator consisting of configurable

modules is shown in Fig. 5. The RTL compiler only compiles the

required modules based on each CNN structure, without including

any unused modules.

CNN training involves various parameters such as activations,

weights, weight gradients, local gradients, momentum gradients,

etc. The parameters required for a given layer is read from the

HBM2 and stored in on-chip buffers (Fig. 5). Input/output pixel

buffers are used to store the inputs/outputs of the compute blocks.

Weight buffer is designed to support efficient weight access in

both non-transpose and transpose directions (for FP and BP phases,

respectively), following the schemes proposed in [28, 33]. Weight

gradient buffers are used during the WU phase to read the old

gradients and momentum gradients. All the parameters required

for the entire CNN training are stored in HBM2 memory.

Weight�router

Data
scatter

Weight�buffer

CNN�control

HBM�
rdata

Dilate�row�
control

D
ilate�row

�
control

Dilated�weights

0

Non�
dilated�
weights

Column�dilated�
weights

k11 k12 k13
k21 k22 k23
k31 k32 k33

k11 0 k12 0 k13
x x x x x
k21 0 k22 0 k23
x x x x x
k31 0 k32 0 k33

k11 0 k12 0 k13
0 0 0 0 0
k21 0 k22 0 k23
0 0 0 0 0
k31 0 k32 0 k33

MAC�array
(supports�
FP,BP,�WU)

O
utput�
buffer

Pixel�router

Input�buffer

D
ilated�
pixels

0

MAC�array
(supports�
FP,BP,�WU)

O
utput�
buffer

Pixel�router

Input�buffer

D
ilated�
pixels

0

(a)

(b)

(c)

Figure 6: Flexible MAC unit with a dilation control

block for both weights and activations. The non-dilated

weights/activations from the HBM2 is rearranged by the di-

lation control block and the data scatter unit.

Pixel�channels�
group1/group2

Weights�and�
gradient
channels

Channel�assignment�block

Address�
controller

Layer�
decoder

Access�config�memory Read/write�
access�
done

HBM�configuartion�memory

Conv�
layers

Pool�
layers

Weight�
update�
layers

Element
­wise�
layers

HBM�configurator

CNN�
compute

HBM

Layer�
#

Tile�
#

#�
reads

Read
start�
addr

#
writes

Write
start�
addr

conv�1
T�1 256 0 256 1024
T�2� 256 64 256 1088

conv�2
T�1 512 1024 512 2048
T�N�

..

conv�N .. HBM�configuration�of�
conv�N

Control�signals

Start�HBM�access
Layer�type

Num�reads/writes
Start�address
Done�transaction

Figure 7: HBM2 configurator module generates HBM2 read

and write configuration signals based on the layer type.

3.2 Dilated convolutions

The BP and WU phases of stride-2 convolutions require dilations

in both weights and input feature maps, (Fig. 4). Fig. 6 shows the

design of control logic to support BP and WU of stride-2 convo-

lutions. The non-dilated data (a) is loaded from HBM2 to on-chip

buffers. Storage of dilated images/kernels in HBM2 is avoided to re-

duce latency. The non-dilated data is rearranged by the scatter unit

according to the on-chip buffer storage pattern requirement. Dur-

ing this data rearrangement, the data scatter unit dilates the data

(pixels or weights) in the 𝑥-dimension (b). Dilations in 𝑦-dimension

is performed by the address control logic by skipping the writes

of every dilated row. While reading the data to the convolution

engine, every dilated row is detected and padded with zeros (c).

This dataflow is replicated for both weights and input feature maps,

and can be configured as needed using global control logic.

3.3 HBM2 configurator module

Fig. 7 shows the HBM2 configurator, which generates HBM2 read/

write transaction details. The HBM2 configurator consists of a con-

figuration memory that is preloaded with the information of every

Authorized licensed use limited to: ASU Library. Downloaded on February 20,2021 at 04:26:01 UTC from IEEE Xplore. Restrictions apply.

Table 1: HBM channel allocation for training parameters. 16

pseudo channels of the HBM2 is divided into four groups,

for which input/output activations (in./out act), local gradi-

ents (LG), transposable weights and weight gradients (Wt

gradients) are assigned.

Phase Layer
Activations�&�local�gradients Weights Wt�gradients

channel�0­3 channel�4­7 channel�8­11 channel�12­15

FP

C in./out.�act in./out.�act transposable�weights NA

P,EW in./out.�act in./out.�act NA NA

FC NA NA transposable�weights NA

BP

C in./out.�LG in./out.�LG transposable�weights NA

P,EW in./out.�LG in./out.�LG NA NA

FC NA NA transposable�weights NA

WU
C in.�act in.�LG

old/new�weights
old,�new�
moment�
gradientsFC NA NA

transaction. The information in the configuration memory includes

the number of read/write transactions, and the read/write start ad-

dresses. Each layer has its own configuration memory as depicted

in Fig. 7. Given the current layer details and tile count, the address

controller generates the read address for configuration memory

selected by the layer decoder. Once the transaction information is

read from the memory, it is assigned to channels in the channel

assignment block.

16 pseudo channels of HBM2 provide a high number of I/O

data pins. To effectively utilize this parallelism provided by HBM2,

proper channel allocation and organized parameter storage become

a necessity. For our application, 16 pseudo channels of HBM2 are

divided into four groups of four channels. Each CNN training param-

eter that is stored in HBM2 is assigned with one of the four-channel

groups. Table 1 provides the details of channel group allocation

and the channel groups used in each phase of training. Channels

0-3 (group 1) and channels 4-7 (group 2) are used to store the local

gradients and activations, channels 8-11 (group 3) are used to store

the weights, and channels 12-15 (group 4) are used to store the

weight gradients (both current weight gradients and momentum

gradients). This channel allocation is done to reduce the off-chip

latency of the WU phase.

In the WU phase, we need to read both activations and the lo-

cal gradients to compute the weight gradients. To maximize the

channel utilization, the local gradients and activations are stored

in the two channel groups in a ping-pong manner. For example,

if convolution layer 1 outputs are stored in channel group 2, then

its corresponding local gradients are stored in channel group 1,

and during the WU phase, we read channel groups 1 and 2 simul-

taneously. Using this channel allocation, all 16 channels will be

active during the WU phase. The channel assignment block assigns

the transaction information read from the configuration memory

to one of the channel groups based on the request from the CNN

compute module. The done logic module monitors transactions

of every channel and HBM2 status signals, and generates a ‘done’

signal when the transaction is complete.

3.4 HBM2 integration

HBM2 communication uses the Intel HBM2 controller (HBMC) fol-

lowing the AMBA AXI-4 protocol. HBMC provides independent

CNN�training�accelerator

HBM2�
transaction�
controller

Intel�HBMC�+�HBM2�IP

Read/write�
address�
generator

Transaction�
ID��generator

Ready�
logic�

AXI�signal�generator�Intel�IP�
Address ID Request HBM�

ready

Ready Rvalid
Rdata

Read/write�transaction�
details

AXI�signals

Figure 8: CNN training accelerator integrated with HBM2,

following AMBA AXI4 protocol.

AXI ports for each channel. The read/write transaction informa-

tion obtained from the HBM2 configurator is sent to the HBM

transaction controller (HTC). Fig. 8 shows the integration of HTC

and other modules with Intel HBM IPs, enabling successful HBM2

communication. HTC monitors the request from the CNN train-

ing accelerator and the status of HBM2 memory. Based on the

read/write request from the training accelerator, HTC enables cor-

responding address/transaction ID tag generators. The generated

address and transaction IDs are converted to AXI signals using

the AXI signal generator. Ready logic monitors the status of HTC,

address generators, and HBM2 and indicates whether the HBM is

ready to accept the next transaction.

3.5 Data scatter/gather unit

HBM2 demands complex and flexible data collection/gathering

units as more data is streamed in one cycle. To achieve this, cus-

tomized data scatter/gather units were designed which can col-

lect/send the data based on the channel allocation. The storage

pattern of the parameters on on-chip buffers depends on the layer

and parameter types. The continuous data stream from the HBM2

channels are collected by the data scatter unit where the data is

rearranged and distributed to the on-chip buffers. The scatter unit

also separates channels based on the parameter channel allocation

and processes all channel groups in parallel. The data gather unit

collects the data from output buffers (or new weight and weight

gradient buffers in WU phase) and reorganizes the data before send-

ing it to HBM2 channels. Data scatter/gather unit considers the

channel allocations of different parameters, data precision, unroll

factors and layer type.

3.6 HBM2 initialization

The HBM initialization module loads the HBM with training data

and other initial parameters. To initialize HBM with the training

data, the data is loaded from the host PC to the on-chip memory

(M20K) of the FPGA. The on-chip memory (M20K) works as an

intermediate buffer for each pseudo-channel. Due to the limited

on-chip memory resources, we used small buffers, and these buffers

will be used multiple times to load a large amount of data to HBM.

Authorized licensed use limited to: ASU Library. Downloaded on February 20,2021 at 04:26:01 UTC from IEEE Xplore. Restrictions apply.

(a)

(b)

Figure 9: Training latency breakdown of ResNet-20 CNN for

(a) S-10 GX device with DDR3 and (b) S-10 MX device with

HBM2, both running at 185 MHz.

(a)

(b)

Figure 10: Training latency breakdown of VGG-like CNN for

(a) S-10 GX device with DDR3 and (b) S-10 MX device with

HBM2, both running at 185 MHz.

(a) (b) (c) (d)

Figure 11: Throughput and power comparison of training tasks using Intel i7-9800X CPU, Tesla V100 GPU, Jetson Nano, S-

10 GX FPGA with DDR3, and S-10 MX FPGA with HBM2. (a) Throughput and (b) power for ResNet-20 CNN training and (c)

throughput and (d) power of VGG-like CNN training are shown.

The HBM configurator and HBM control modules of the CNN train-

ing accelerator is reused to perform the HBM initialization. After

loading all required training data, the CNN training accelerator is

enabled. The HBM initialization is controlled by the host system.

4 EXPERIMENTAL RESULTS

4.1 Experimental Setup

We evaluate our FPGA accelerator on two CNNs (ResNet-20 and

VGG-like CNN) with CIFAR-10 as the training dataset. The con-

trol logic is also configurable to support large dataset (ImageNet)

training, but consumes more FPGA resources to store and pro-

cess larger input images. The initial weight parameters and con-

figuration register values of benchmark CNNs are generated from

our RTL compiler framework developed in Matlab. Intel S-10 MX

(1SM21BHU2F53E2VGS1) [34] and S-10 GX(1SG280LU3F50E3VGS1)

[35] were used as the target FPGA hardware. S-10 MX is equipped

with 133 Mbits of M20K, 3,960 DSP blocks, 702K ALMs and 8GB

HBM2 memory providing peak memory bandwidth of up to 512

GBps and S-10 GX includes 5,760 DSP blocks, 933K ALMs and 240

Mbits of M20K and 4GB DDR3 with 16.9GB/s bandwidth. Identical

design optimizations has been performed on both S-10 MX and

S-10 GX design for fair comparison.

All parameters use 16-bit floating-point precision to reduce the

memory footprint compared to 32-bit floating-point precision. Since

the DSP units of Intel S-10 GX/MX FPGAs only support 32-bit

floating-point precision, 16-bit (32-bit) to 32-bit (16-bit) floating-

point precision converters are used before (after) DSP computation

to utilize the existing DSP blocks in S-10 FPGAs. The latency was

Authorized licensed use limited to: ASU Library. Downloaded on February 20,2021 at 04:26:01 UTC from IEEE Xplore. Restrictions apply.

Figure 12: Energy and accuracy comparison of low-batch

CNN training on Tesla V100 GPU, Jetson Nano, S-10 MX and

GX devices.

measured using the functional simulation of the training accelera-

tor. Using Intel Quartus 19.4 FPGA software, the accelerator was

synthesized, placed/routed and the bitstream was uploaded to the

FPGA board. Intel(R) Core (TM) i7-9800X CPU is used as the host

system. For comprehensive comparison among FPGA, CPU, and

GPU hardware for the same training tasks, we measured the power

of each actual hardware system. FPGA board power consumption

is measured using the Intel board test system (BTS) power monitor.

The Intel BTS power monitor reported junction temperature of 47°C.

Intel(R) Core (TM) i7-9800X CPU power is measured with the pow-

erstat command using RAPL domains. To evaluate the performance

of GPUs, we developed a floating point CIFAR-10 training model

using PyTorch [36]. Tesla V100 GPU power measurements are done

using CUDA nvidia-smi API and Jetson Nano power measurements

are done using Nvidia tegrastat utility. To minimize measurement

inaccuracy, 20 samples of power measurements are averaged over

the duration of one epoch training.

4.2 Results and analysis

Table 2 shows the resource utilization of two CNN benchmarks

(ResNet-20 and VGG-like CNN) for the CIFAR-10 dataset. All the

training images in a given batch are processed sequentially. This

Table 2: Resource utilization for training tasks

of ResNet-20 and VGG-like CNNs on Intel

S-10 MX (1SM21BHU2F53E2VGS1) and S-10

GX(1SG280LU3F50E3VGS1) FPGA.

CNN FPGA DSP ALM M20Ks Registers Freq.

ResNet­20 S10­MX 1040�
(26%)

239k�
(34%)

2558
(13.9M) 390k 185�MHz

VGG­like S10­MX 1046�
(26%)

221k�
(31%)

2998�
(11.4M) 353k 185�MHz

ResNet­20 S10­GX 1043�
(18%)�

148k�
(16%)��

1779
(14M) 385k 185�MHz

VGG­like S10­GX 1044�
(18%)

97k�
(10.4%)

1297�
(11M) 167k 185�MHz

greatly reduces the on-chip memory requirements as we only read

the data required to process one training image at a time from

HBM2. We achieved maximum operation frequency of 185 MHz

for S-10 MX and GX implementations.

For S-10 GX (with DDR3) implementation, Fig. 9(a) and Fig. 10(a)

show the latency breakdown of the proposed accelerator for three

training phases (FP, BP, and WU) of the last training image of a

batch (involving actual weight updates) for ResNet-20 CNN and

VGG-like CNN, respectively. The latency breakdown includes the

reading of input pixels and weights from off-chip memory (Inpx/wt

rd), computing the convolution outputs (MAC), writing the out-

put pixels (oupx wr), wt gradients (wt grads) and new weights

(wts) back to HBM. In the overall training time, the off-chip DDR3

memory consumes 47% of latency and logic consumes 53%. For

memory-bound CNNs, even with high hardware parallelism, the

low bandwidth of DDR3 memory will limit the performance [28].

This critical memory bandwidth bottleneck can be addressed using

HBM2.

Fig. 9(b) and Fig. 10(b) provide the latency breakdown of the

proposed FPGA accelerator implemented on the S-10 MX device us-

ing HBM2. WU phase consumes longer latency than FP/BP phases,

as it involves weight gradient computation, gradient accumula-

tion and computation of new weights. The high off-chip memory

bandwidth provided by HBM2 significantly reduces the latency

consumed to read/write the activations and weights from/to the

off-chip memory. As a result, the logic latency dominates the total

latency, compared to S-10 GX implementation with DDR3 in all

three phases of training. Further latency improvement could be

achieved by increasing the number of parallel MAC arrays or by

increasing the operating frequency. Using the proposed channel

allocation scheme and HBM2 for the S-10 MX implementation, we

achieved ∼4X reduction in off-chip memory latency and ∼1.5X re-

duction in system-level CNN training time, compared to those of

the S-10 GX implementation with DDR3.

Fig. 11a and Fig. 11c provide the low-batch training throughput

of two CNN benchmarks (ResNet-20 and VGG-like CNN) on Intel

i7-9800X CPU, Jetson Nano embedded platform, Tesla V100 GPU,

S-10 GX FPGA and S-10 MX FPGA. The overall training time of

GPUs significantly increases with lower batch sizes. The proposed

FPGA training accelerator achieves better throughput compared all

other hardware platforms on both the benchmarks for small batch

sizes of 2 and 4. Tesla V100 provides better throughput for higher

batch sizes (8 and 16) but at the cost of high power consumption.

The power consumption of all hardware platforms for different

batch sizes are shown in Fig. 11b and Fig. 11d. The FPGA power

consumption is low because of less utilization (∼30%) of FPGA re-

sources, operating frequency of 185MHz and junction temperature

of 47°C reported by Intel BTS tool. Compared to S-10 MX FPGA,

Jetson Nano consumes less power (∼5W) but suffers from long

training latency. For ResNet-20/VGG-like CNNs, our FPGA imple-

mentation of CNN training using S-10 MX with HBM2 is ∼4.5-9.7X

more energy-efficient compared to Tesla V100 GPU, ∼3-7X more

energy-efficient compared to low-power Jetson Nano embedded

platform, and ∼1.7X more energy-efficient compared to implemen-

tation on S-10 GX with DDR3. Our proposed S-10 MX design with

HBM2 addresses the critical memory bottleneck problem for CNN

Authorized licensed use limited to: ASU Library. Downloaded on February 20,2021 at 04:26:01 UTC from IEEE Xplore. Restrictions apply.

training and the custom architecture enables efficient low-batch

training.

Fig. 12 shows the overall energy-efficiency and accuracy com-

parison of Tesla V100 GPU, Jetson Nano, S-10 MX, S-10 GX devices

for ResNet-20 training across different batch sizes. It can be seen

that the low-batch training accuracy has minimal degradation com-

pared to high-batch training accuracy [8]. At the same frequency

and MAC array size, S-10 MX design provides 1.7X improvement in

energy-efficiency compared to S-10 GX design by greatly reducing

the off-chip communication latency.

5 CONCLUSION

This paper presents a flexible CNN training accelerator on FPGA

using HBM2, which performs end-to-end training of modern CNNs

involving residual connections and stride-2 convolutions. The FPGA

accelerator is implemented on Intel S-10 MX (with HBM2) and S-10

GX (with DDR3) devices, demonstrating system-level benefits of

HBM2 over conventional DDR3 off-chip memory. The proposed

accelerator achieves 4.5-9.7X energy-efficiency improvement com-

pared to Tesla V100 GPU and 7-11X improvement in throughput

compared to that of Intel i7-9800X CPU for low-batch training tasks

of ResNet-20/VGG-like CNNs.

REFERENCES
[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification

with deep convolutional neural networks. Commun. ACM, 60(6):84–90, May 2017.
[2] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional net-

works for semantic segmentation. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3431–3440, 2015.

[3] Keisuke Tateno, Federico Tombari, Iro Laina, and Nassir Navab. CNN-SLAM: Real-
time dense monocular SLAM with learned depth prediction. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 6243–6252, 2017.

[4] Yuxin Wu and Kaiming He. Group normalization. In European Conference on
Computer Vision (ECCV), pages 3–19, 2018.

[5] Pavan Kumar Chundi, Peiye Liu, Sangsu Park, Seho Lee, and Mingoo Seok. FPGA-
based Acceleration of Binary Neural Network Training with Minimized Off-Chip
Memory Access. In IEEE/ACM International Symposium on Low Power Electronics
and Design (ISLPED), pages 1–6, 2019.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016.

[7] A Krizhevsky. Learning multiple layers of features from tiny images. Master’s
thesis, University of Tront, 2009.

[8] Dominic Masters and Carlo Luschi. Revisiting small batch training for deep
neural networks. arXiv preprint arXiv:1804.07612, 2019.

[9] Sergey Ioffe. Batch renormalization: Towards reducing minibatch dependence in
batch-normalized models. In Advances in neural information processing systems,
pages 1945–1953, 2017.

[10] Mike Wissolik, Darren Zacher, Anthony Torza, and Brandon Da. Virtex Ultra-
Scale+ HBM FPGA: A revolutionary increase in memory performance. Xilinx
Whitepaper, 2017.

[11] Manish Deo, Jeffrey Schulz, and Lance Brown. Intel Stratix 10 MX Devices Solve
the Memory Bandwidth Challenge. Intel Whitepaper, 2017.

[12] Yufei Ma, Yu Cao, Sarma Vrudhula, and Jaesun Seo. An automatic RTL compiler
for high-throughput FPGA implementation of diverse deep convolutional neural
networks. In IEEE International Conference on Field Programmable Logic and
Applications (FPL), pages 1–8, 2017.

[13] Stylianos I Venieris and Christos-Savvas Bouganis. fpgaConvNet: A framework
for mapping convolutional neural networks on FPGAs. In IEEE International
Symposium on Field-Programmable Custom Computing Machines (FCCM), pages
40–47, 2016.

[14] Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin Wang, Han Hu,
Yun Liang, and Jason Cong. Automated systolic array architecture synthesis for
high throughput CNN inference on FPGAs. In IEEE/ACM Design Automation
Conference (DAC), pages 1–6, 2017.

[15] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong.
Optimizing fpga-based accelerator design for deep convolutional neural networks.
In ACM/SIGDA International Symposium on Field-Programmable Gate Arrays

(FPGA), pages 161–170, 2015.
[16] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng

Yu, Tianqi Tang, Ningyi Xu, Sen Song, et al. Going deeper with embedded
fpga platform for convolutional neural network. In ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA), pages 26–35, 2016.

[17] Kamel Abdelouahab, Maxime Pelcat, Jocelyn Serot, and François Berry. Ac-
celerating cnn inference on fpgas: A survey. arXiv preprint arXiv:1806.01683,
2018.

[18] Kaiyuan Guo, Shulin Zeng, Jincheng Yu, YuWang, and Huazhong Yang. A survey
of fpga-based neural network accelerator. arXiv preprint arXiv:1712.08934, 2017.

[19] Tong Geng, Tianqi Wang, Ang Li, Xi Jin, and Martin Herbordt. A Scalable
Framework for Acceleration of CNNTraining onDeeply-Pipelined FPGAClusters
with Weight and Workload Balancing. arXiv preprint arXiv:1901.01007, 2019.

[20] Afzal Ahmad and Muhammad Adeel Pasha. Optimizing hardware accelerated
general matrix-matrix multiplication for cnns on fpgas. IEEE Transactions on
Circuits and Systems II: Express Briefs, 2020.

[21] Wenlai Zhao, Haohuan Fu, Wayne Luk, Teng Yu, ShaojunWang, Bo Feng, Yuchun
Ma, and Guangwen Yang. F-CNN: An FPGA-based framework for training
convolutional neural networks. In IEEE International Conference on Application-
specific Systems, Architectures and Processors (ASAP), pages 107–114, 2016.

[22] Seungkyu Choi, Jaehyeong Sim, Myeonggu Kang, and Lee-Sup Kim. TrainWare:
A memory optimized weight update architecture for on-device convolutional
neural network training. In IEEE/ACM International Symposium on Low Power
Electronics and Design (ISLPED), 2018.

[23] Hanqing Zeng and Viktor Prasanna. GraphACT: Accelerating GCN Training on
CPU-FPGA Heterogeneous Platforms. In ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (FPGA), pages 255–265, 2020.

[24] Qiang Liu, Jia Liu, Ruoyu Sang, Jiajun Li, Tao Zhang, and Qijun Zhang. Fast
neural network training on FPGA using quasi-newton optimization method. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 26(8):1575–1579, 2018.

[25] Alexander Gomperts, Abhisek Ukil, and Franz Zurfluh. Development and imple-
mentation of parameterized FPGA-based general purpose neural networks for
online applications. IEEE Transactions on Industrial Informatics, 7(1):78–89, 2011.

[26] Rafael Gadea Gironés, Rafael Gadea Gironés, Ricardo ColomPalero, Joaquín Cerdá
Boluda, Joaquín Cerdá Boluda, and Angel Sebastia Cortés. Fpga implementation
of a pipelined on-line backpropagation. J. VLSI Signal Process. Syst., 40(2):189–213,
June 2005.

[27] Shijie Zhou, Rajgopal Kannan, and Viktor K Prasanna. Accelerating Stochastic
Gradient Descent Based Matrix Factorization on FPGA. IEEE Transactions on
Parallel and Distributed Systems, 31(8):1897 – 1911, 2020.

[28] Shreyas Kolala Venkataramanaiah, Yufei Ma, Shihui Yin, Eriko Nurvithadhi,
Aravind Dasu, Yu Cao, and Jaesun Seo. Automatic Compiler Based FPGA Accel-
erator for CNN Training. In IEEE International Conference on Field Programmable
Logic and Applications (FPL), pages 166–172, 2019.

[29] Hiroki Nakahara, Youki Sada, Masayuki Shimoda, Kouki Sayama, Akira Jinguji,
and Shimpei Sato. FPGA-Based Training Accelerator Utilizing Sparseness of
Convolutional Neural Network. In IEEE International Conference on Field Pro-
grammable Logic and Applications (FPL), pages 180–186, 2019.

[30] Cheng Luo, Man-Kit Sit, Hongxiang Fan, Shuanglong Liu, Wayne Luk, and
Ce Guo. Towards efficient deep neural network training by fpga-based batch-
level parallelism. Journal of Semiconductors, 41(2):022403, 2020.

[31] JEDEC Standard. High bandwidth memory (HBM) DRAM. JESD235, 2013.
[32] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-

Chieh Chen. MobileNetV2: Inverted residuals and linear bottlenecks. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 4510–4520,
2018.

[33] Shihui Yin and Jaesun Seo. A 2.6 TOPS/W 16-bit Fixed-Point Convolutional
Neural Network Learning Processor in 65nm CMOS. IEEE Solid-State Circuits
Letters, 3:13–16, 2020.

[34] Intel. Intel Stratix 10MX FPGADevelopment Kit. https://www.intel.com/content/
www/us/en/programmable/products/boards_and_kits/dev-kits/altera/kit-s10-
mx.html. Accessed: 2020-04-02.

[35] Intel. Intel Stratix 10 GX FPGA Development Kit. https://www.intel.com/content/
www/us/en/programmable/products/boards_and_kits/dev-kits/altera/kit-s10-
fpga.html. Accessed: 2020-04-02.

[36] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in PyTorch. In NIPS 2017 Autodiff Workshop, 2017.

Authorized licensed use limited to: ASU Library. Downloaded on February 20,2021 at 04:26:01 UTC from IEEE Xplore. Restrictions apply.

