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Abstract— Deep neural network (DNN) hardware designs
have been bottlenecked by conventional memories, such
as SRAM due to density, leakage, and parallel computing
challenges. Resistive devices can address the density and
volatility issues but have been limited by peripheral cir-
cuit integration. In this work, we present a resistive RAM
(RRAM)-based in-memory computing (IMC) design, which
is fabricated in 90-nm CMOS with monolithic integration of
RRAM devices. We integrated a 128 × 64 RRAM array with
CMOS peripheral circuits, including row/column decoders
and flash analog-to-digital converters (ADCs), which collec-
tively become a core component for scalable RRAM-based
IMC for large DNNs. To maximize IMC parallelism, we assert
all 128 wordlines of the RRAM array simultaneously, per-
form analog computing along the bitlines, and digitize the
bitline voltages using ADCs. The resistance distribution of
low-resistance states is tightened by an iterative write-verify
scheme. Prototype chip measurements demonstrate high
binary DNN accuracy of 98.5% for MNIST and 83.5% for
CIFAR-10 data sets, with 24 TOPS/W and 158 GOPS. This
represents 22.3× and 10.1× improvements in throughput
and energy–delay product (EDP), respectively, compared
with the state-of-the-art literature, which can enable intelli-
gent functionalities for area-/energy-constrained edge com-
puting devices.

Index Terms— Deep neural networks (DNNs), in-memory
computing (IMC), monolithic integration, nonvolatile
memory (NVM), resistive RAM (RRAM).
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I. INTRODUCTION

DEEP neural networks (DNNs) have been very successful
in large-scale recognition and classification tasks [1]–[5],

while state-of-the-art deep learning algorithms tend to present
very deep and large network models [1]–[3]. This poses signif-
icant challenges for embedded hardware implementations [6],
[7] in terms of computation, memory, and communication. To
address this on the algorithm side, recent works aggressively
lowered the precision to the extreme where both the weights
and neuron activations are binarized to +1 or −1 [8], [9]
for inference, such that the multiplication between weights
and activations becomes XNOR operation and accumulation
becomes bitcounting of bitwise XNOR values. Such binarized
neural network (BNN) algorithms largely reduce the compu-
tational complexity and weight memory requirement.

On the hardware side, a number of application-specific
integrated circuit (ASIC) solutions in CMOS [10], [11]
were presented, but data storage and communication became
the bottleneck for energy-efficient computing [10]. Although
SRAM technology followed CMOS scaling well [12], SRAM
density (∼150 F2 per bitcell) and on-chip SRAM capacity
(a few MB) are insufficient to hold a large number of DNN
parameters (even with binary precision), leakage current is
undesirable, and parallelism is limited due to row-by-row
operation [13].

As an alternative hardware platform, emerging resistive
devices have been proposed for dense weight storage and
parallel neural computing for matrix–vector multiplications
[14]–[20]. However, a number of limitations still exist for
resistive RAMs (RRAMs) for practical large-scale neural com-
puting due to (device-level nonidealities (e.g., variability and
endurance), inefficiency in representing/multiplying negative
weights, and monolithic integration of RRAMs and CMOS
peripheral circuits.

Due to these limitations, the literature on RRAM-based
DNN hardware has mostly implemented simpler multilayer
perceptrons (MLPs) [17], [19], with limited implementation
of mainstream convolutional neural networks (CNNs). In addi-
tion, a number of RRAM works were demonstrated without
proper peripheral circuitries monolithically integrated into the
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same technology [17], while peripheral circuits can dominate
the chip area [21]. An RRAM macro with multilevel sense
amplifiers in 55-nm CMOS was recently presented [22], but
a relatively low accuracy of 81.83% for the CIFAR-10 data
set was reported with binary/ternary precision, and only 9
(out of 256) rows are asserted simultaneously, limiting high
parallelism.

In this work, we address such limitations in RRAM-based
in-memory computing (IMC) for DNNs/CNNs. We adhere to
binary RRAM devices (low-/high-resistance states (LRS/HRS)
with high ON/OFF ratio) and one-transistor-one-resistor (1T1R)
structure for robustness against noise/variability and ease for
integration. Using binary RRAM devices, we present new
RRAM bitcell/array designs that can efficiently map XNOR

functionality with binarized (+1 and −1) weights/neurons and
are suitable for IMC of binarized DNNs.

This work builds upon our preliminary work [23], where the
bitcell design is common. However, [23] is a simulation-only
work in 65-nm CMOS using ideal resistor models for the
RRAM devices. In this work, we report the implementation
results of the prototype chip we fabricated in monolithically
integrated 90-nm CMOS and RRAM technology, with full
peripheral circuits for the 128 × 64 RRAM macro, includ-
ing analog-to-digital converters (ADCs) with more robust
quantization scheme, row/column decoder, wordline (WL)
drivers, column multiplexers, level shifters, and scan circuits.
The 128 × 64 RRAM array that we integrated with CMOS
peripheral circuits, including row/column decoders and flash
ADCs, could collectively be a core component for large-scale
RRAM-based IMC.

In another preliminary work [24], we presented high-level
architecture exploration together with RRAM design space,
algorithm techniques, and NeuroSim [25] tool evaluation. On
the other hand, this work focuses more on the device optimiza-
tion and device-circuit codesign, where we present the RRAM
device programming optimization and results, prototype chip
design, IMC measurements, power/energy characterizations,
and DNN accuracy. Based on chip measurement results,
we demonstrate deep CNNs for CIFAR-10 [26] and MLPs
for MNIST [27] data sets with high classification accuracy
and energy efficiency.

II. XNOR-RRAM MACRO DESIGN AND OPTIMIZATION

A. XNOR-RRAM Bitcell Design

Conventional binary RRAMs cannot effectively represent
the positive and negative weight values (+1 and −1) in recent
BNNs [8], [9] because the LRS and HRS values of binary
RRAM devices are both positive. In addition, the activa-
tion/weight value combinations of +1/+1 and −1/−1 should
result in the same effective resistance [see Fig. 1(c)]. To that
end, for XNOR-Net [8] type of BNNs, we proposed to use
the “XNOR-RRAM” bitcell design in [23], which was a
preliminary simulation study with ideal RRAM device mod-
els and variability-prone current-mode sense amplifiers [28].
In this work, we implemented the XNOR-RRAM proto-
type chip in Winbond’s 90 nm nonvolatile memory (NVM)
technology [29], employed more robust voltage-mode sense

Fig. 1. (a) Column schematic with XNOR-RRAM cells. (b) VSA
schematic for the flash ADC. (c) XNOR-RRAM cell operation. (d) Resis-
tive divider between pMOS header and 64 parallel XNOR-RRAM cells.
(e) Column measurements with different pMOS strengths.

amplifiers (VSAs) for the flash ADC, and integrated all periph-
eral circuits necessary for IMC (row/column decoders and
multiplexers) as well as device programming (level shifters).
As shown in Fig. 1(a), the XNOR-RRAM cell involves dif-
ferential RRAM cells and differential WLs. Fig. 1(a) shows
the XNOR-RRAM cell that consists of two 1T1R cells. The
binary activations are mapped onto the differential WLs,
and the binary weights are mapped onto the HRS/LRS val-
ues of XNOR-RRAM cells. By asserting all WLs of the
RRAM array simultaneously, all cells in the same column
are computed in parallel, implementing binary multiply-and-
accumulate (bMAC) computations. The 128 × 64.1T1R array
effectively represents 64 × 64 XNOR-RRAM cells. The area
of the 1T1R bitcell that we used is ∼0.5 μm × 0.5 μm
(∼31 F2), and hence, one XNOR-RRAM cell area is ∼62 F2.

B. Proposed In-RRAM Computing and Read Disturb

The proposed IMC with XNOR-RRAM array [see Fig. 1(a)]
features a static pMOS header and parallel XNOR-RRAM
cells that perform bitwise XNOR operations [see Fig. 1(d)].
A static pMOS header, the strength of which is digitally
configurable, pulls up the read bitline (RBL) voltage. The
RRAM cells in the same column pull down the RBL voltage
in parallel. Depending on how many cells with high WL
voltage are in LRS or HRS, a static resistive divider is formed
between the pMOS head and the pull-down path based on
the parallel RRAM cells. As more RRAM cells are in LRS
(higher bitcount value from the algorithm), RBL voltage will
be lower.

The measured transfer function with different pMOS header
strengths [see Fig. 1(e)] shows that a stronger pMOS increases
the RBL voltage for the same bitcount value. We achieved
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Fig. 2. Based on the bitcount distribution from DNN workload, linear
quantization within a confined range is performed.

better DNN accuracies with transfer curves that have the
steepest slope around the bitcount value of 0 since the flash
ADC reference voltages could be separated further compared
with the cases where the transfer curves have more gradual
slope. Therefore, we chose to use the medium-strength pMOS
configuration of 4 or 5 [in Fig. 1(e)] for our DNN workloads.

Although it has been reported that high RBL voltage
can cause read disturb issues in RRAMs [30], read disturb
is largely prevented in our XNOR-RRAM design for two
reasons. First, Fig. 1(e) shows that a relatively high RBL
voltage of >0.6 V only occurs for bitcount values smaller than
−32. In this range, there is only <0.046% data according to
the bitcount distribution in Fig. 2. Second, we experimentally
observed that RRAM cells whose HRS resistance is larger
than 1 M� are stable and are not susceptible to read disturb
issues even with high RBL voltages of >0.6 V. On the other
hand, we did observe that the outlier HRS cells with <1 M�
resistance can experience read disturb with high RBL voltages.
However, our RRAM device programming results (see Fig. 6)
show that only <1% of the programmed HRS cells exhibit
less than 1-M� resistance. Considering these two reasons,
the probability that read disturb will occur becomes extremely
low (e.g., <0.00046*0.01) in our XNOR-RRAM array.

C. ADC Design and Optimization

Each VSA compares the RBL voltage of the selected
column with a reference voltage (Vref ). Seven Vref ’s of an ADC
are calibrated for the eight columns that the ADC is connected
to. By running the 784-512-512-512-10 MLP for MNIST,
we first characterized the distribution of ideal bitcount values
that should be obtained from XNOR-RRAM arrays. As shown
in Fig. 2, the bitcount data distributions are highly centered
around 0. Based on this data distribution, out of the possible
bitcount range between −64 and +64, the reference bitcount
values are chosen in a confined range between −15 and
13, where most data resides. After experimenting different
candidates, the optimal seven reference bitcount values we
chose are: −13, −9, −5, −1, 3, 7, and 11 (red dashed lines
in Fig. 2).

In comparison, we performed software simulation with ideal
quantization (no ADC offset) by using linear quantization
for the full range of bitcount values from −64 to +64. For
3-, 4-, and 5-bit ADCs with “full-range” linear quantization,
we obtained the CNN accuracies of 45.56%, 85.84%, and

Fig. 3. ADC reference voltage calibration flow.

Fig. 4. Top-level block diagram of the prototype chip.

88.59% for CIFAR-10. For 3-bit ADC with the “confined-
range” linear quantization, we achieved 86.70% accuracy,
which is even higher than that of 4-bit ADC with full-range
quantization.

On the other hand, compared with nonlinear quantization
schemes [23], [31], the proposed confined/linear quantization
scheme simplifies the ensuing accumulation of ADC outputs
(partial sums) and also increases the smallest Vref difference
for the adjacent sense amplifiers in the flash ADC.

An automatic algorithm (see Fig. 3) is employed to deter-
mine the optimal set of Vref ’s for the flash ADCs, to com-
pensate for circuit nonideal factors, such as RRAM resistance
variation and comparator offset/noise. For each reference bit-
count value, we randomly generate 1000 input vectors for the
adjacent bitcount1 values. Vref is increased (or decreased if the
correction amount is negative) by αβn ×(Qi − Qa), where Qa

is the actual ADC output, Qi is the ideal ADC output, α is
initial correction step size (e.g., 5 mV), β is a scaling factor
(e.g., 0.995) that is less than 1, and n is the iteration index.

D. XNOR-RRAM Macro Design and Operation

As shown in Fig. 4, the XNOR-RRAM prototype chip
includes a 128 × 64.1T1R array, row decoder, level shifter,
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Fig. 5. As we repeatedly program the RRAM array with write-verify
iterations, LRS distribution becomes further tightened.

eight 8-to-1 column multiplexers, eight 3-bit flash ADCs,
and two 64-to-1 column decoders for RRAM cell-level pro-
gramming. To make a balance between area and through-
put, we share one flash ADC by eight columns. Since
XNOR-RRAM array has 64 columns, there are a total of eight
flash ADCs.

For the functionality test, a 64-bit input vector is fed through
a scan chain and the ADC outputs can be read out through
the scan chain. For power measurement, random 64-bit input
vectors are generated by linear-feedback shift register (LFSR)
every eight cycles. The row decoder has two modes of oper-
ation: 1) it asserts all differential WL signals simultaneously
for bMAC operations or 2) it generates one-hot WL signals
for cell-level programming.

E. LRS and HRS Programming

For our application of mapping BNNs onto the
XNOR-RRAM array, tightening LRS distribution is very
important because the column current will be dominated by
current through LRS cells. To that end, we set the target LRS
resistance to be in a tight range of 5.9–6.1 k�. To achieve
this, we apply an aggressive write-verify scheme. First, we set
the initial gate voltage to 2.3 V and apply a 100-ns SET
pulse with an amplitude of 2.1 V. If the resistance after SET
is lower than the lower bound, i.e., 5.9 k�, a 200-ns RESET
pulse with an amplitude of 3.8 V and a gate voltage of 4.0 V
is applied to the RRAM cell followed with a SET pulse with
a 0.05-V lower gate voltage; if the resistance after SET is
higher than the upper bound, i.e., 6.1 k�, a RESET pulse is
applied to the RRAM cell followed with a SET pulse with a
0.05-V higher gate voltage. We repeated the previous steps
for up to ten times until the LRS resistance falls in the target
range. In Fig. 5, we show how the LRS distributions changed
after iterative write-verify operations.

For HRS, we set the target HRS resistance value to be above
1 M�. To achieve this, we apply a 200-ns RESET pulse with
an amplitude of 3.8 V and a gate voltage of 4 V to the RRAM

Fig. 6. Programming results and distributions of RRAM devices for
XNOR-RRAM array.

Fig. 7. (a) Pad-limited prototype chip micrograph. (b) Core area
consisting of RRAM array and CMOS peripheral circuits. (c) Layout and
dimensions of RRAM array, multiplexers, and flash ADC.

cell and repeat applying the same RESET pulse up to ten times
until the resistance value is greater than 1 M�.

Fig. 6 shows the final RRAM device programming results
of LRS and HRS distribution for the 128 × 64 array, where
4096 RRAM cells are programmed in LRS and 4096 RRAM
cells in HRS. Less than 1% of HRS resistance values are lower
than 1 M�, and more than 99% of LRS resistance values are
in the range of 5.7–6.3 k�.

The resistance values are read at 0.2 V by a source mea-
surement unit (SMU). Although we go through up to ten
times of SET/RESET operations for the initial programming,
since we will not reprogram the weights often for DNN
inference applications, the endurance of >105 cycles reported
by Winbond [29] is sufficient.

III. MEASUREMENT RESULTS

We designed and fabricated a prototype chip with Win-
bond’s embedded RRAM technology [29], which mono-
lithically integrates 90-nm CMOS and RRAM between
M1 and M2. The pad-limited prototype chip micrograph
is shown in Fig. 7(a), and Fig. 7(b) shows the core area.
Eight ADCs (shared among 64 columns) and eight column
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Fig. 8. Measured ADC results are compared with ideal bMAC results
and ideal ADC outputs. (a) and (b) Single set of Vref’s calibrated
for all eight ADCs. (c) and (d) Vref’s of each ADC are calibrated.
(e) and (f) Vref’s for each column are calibrated.

multiplexers occupy 20% and 12% area of the XNOR-RRAM
core, respectively [see Fig. 7(c)].

A. In-Memory Computing Measurements

In Fig. 1(e), the measurement results of a single column
were shown for RBL voltage against ideal bitcount values.
This RBL voltage needs to be digitized with the ADC. We
investigated three different Vref schemes for the flash ADC:
1) one set of Vref ’s for the entire eight ADCs of the testchip;
2) eight sets of Vref ’s for eight ADCs (one set per ADC); and
3) 64 sets of Vref ’s for 64 columns (one set per column).

For these three schemes, Fig. 8 shows the comparison of
measured ADC output against the bitcount values from the
BNN algorithm as well as the ideal ADC output. We first pro-
grammed the XNOR-RRAM with a 64×64 weight submatrix
from the trained BNN for MNIST using the aforementioned
write-verify scheme; 2000 64-bit binary test vectors were then
presented to XNOR-RRAM, to perform bMAC computations
and obtain the 2000 ×64 ADC outputs. In total, 128 000 pairs
of measured ADC outputs and target bitcount values are used
to estimate the joint distribution.

The 2-D histograms in Fig. 8 shows how accurately the
XNOR-RRAM array computes and quantizes the bMAC val-
ues. It can be seen that the bitcount values and the ADC output
show an expected linear relationship. Fig. 8(a) and (b) shows
that using only one set of Vref ’s without offset calibration can

result in large variations in the ADC output. However, if each
ADC has its own Vref ’s [see Fig. 8(c) and (d)] or exhibits offset
cancellation capability, the ADC output resides in a tight range
for each bMAC value. If each column has its own Vref ’s [see
Fig. 8(e) and (f)], there is only a minor difference compared
with the results in Fig. 8(c) and (d).

As an initial prototype chip design, please note that our VSA
and ADC design did not include offset compensation circuits.
If our VSA/ADC had employed offset cancellation circuits
typically accompanied in sense amplifier designs [32], then all
ADCs in our XNOR-RRAM macro would be able to use the
same Vref ’s, enabling the IMC design with higher practicality.

In Section III-B, we first present a “direct mapping” method
where we map a small MLP directly onto our XNOR-RRAM
chip by programming the RRAM chip multiple times for
each MLP layer and measuring IMC results. In Section III-C,
we present the large BNN accuracy characterization results,
where we employ a “sampling” method that leverages the
aforementioned 128 000 measurement results, samples the
ADC output for each 64-input bMAC of the large BNN, and
digitally simulates the accumulation of partial sums (ADC
outputs) and non-MAC operations.

B. DNN Accuracy Measurement With Direct Mapping

For the “direct mapping” experiment, we use a simple
MLP of 784-64-64-10 for the MNIST data set. If we include
batch normalization (BN), we achieve 95% accuracy, but
to perform direct measurement without additional non-MAC
operations, we trained the 784-64-64-10 MLP without BN,
whose software accuracy is 90.8%. Similar to how the original
BNN algorithms [8], [9] still use multibit precision for the
primary input, note that the 784 input neurons in this simple
MLP also exhibit 8-bit precision. To that end, we used digital
simulation until the first hidden layer of 64 neurons, and then,
we mapped the second layer of 64-64 and the third layer
of 64-10 directly with our XNOR-RRAM chip. Since these
second/third layers are small and can fit in our XNOR-RRAM
chip, we programmed our chip two times for the second
and third layers, and the outputs of the chip measurement
from the second-layer programming are directly conveyed as
the input activations applied for the vector–matrix multipli-
cation (VMM) for the third-layer chip measurement. Using
the aforementioned direct mapping method, the actual chip’s
measured accuracy is 90.05%.

If we use the “sampling” method described in Section III-C,
the estimated hardware accuracy for the same 784-64-64-
10 MLP is 90.01%, which is close to the actual hardware accu-
racy obtained by direct mapping. This shows that our hardware
accuracy characterized by measurement-based sampling (see
Section III-C) well represents the actual hardware accuracy.

C. DNN Accuracy Characterization With
Measurement-Based Sampling

With these three schemes, we benchmarked the accuracy
for deep BNNs for MNIST and CIFAR-10 data sets [see
Fig. 9(a)]. For MNIST, we used an MLP with a structure
of 784-512-512-512-10. For CIFAR-10, we employed a CNN
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Fig. 9. Evaluation of deep BNNs. (a) BNN weights are mapped onto
parallel XNOR-RRAM arrays. Test errors are evaluated on (b) MLP for
MNIST and (c) CNN for CIFAR-10.

with six convolution layers and three fully connected lay-
ers [9]. Fully connected and convolution layers of MLP and
CNN are mapped onto multiple XNOR-RRAM instances,
where the convolution kernels and weight matrices of deep
BNNs are divided into 64 × 64 weight submatrices, where
VMMs of 64 input activations and 64×64 weights are mapped
with IMC operations of our XNOR-RRAM array. As shown
in Fig. 9(a), one fully connected layer of the MLP for MNIST
with 512 input activations and 512 output activations will be
mapped onto 64 XNOR-RRAM arrays, and one convolution
layer of the CNN for CIFAR-10 that has 128 input channels
and 128 output channels with 3 × 3 kernels will be mapped
onto 36 XNOR-RRAM arrays. Weights for different input
channels are stored on different rows, weights for different
output channels are stored on different columns, and weights
within each convolution kernel (e.g., 9 = 3 × 3) are stored in
different XNOR-RRAM macros [see Fig. 9(a)].

Subsequently, the partial MAC results from different
XNOR-RRAM macros are accumulated via digital simulation.
For each 64-input bMAC value (partial sum) of a deep BNN,
we randomly sample the ADC output distribution from the
128 000 measurement results (see Section III-A). It should be
noted that analog IMC occurs only inside the XNOR-RRAM
array, and the inputs (activations) and outputs (partial sums)
of the XNOR-RRAM array are all digital. Since the partial
sum accumulation for the final sum is all done in digital

fashion, there will not be any accuracy degradation outside
of the XNOR-RRAM array for the entire DNN.

To evaluate deep BNNs with a single array in the pro-
totype chip, we ran software emulation based on the con-
ditional probability distribution of measured ADC outputs
from 2000 random test vectors (see Fig. 8). The partial sums
of 64-bit inputs and 64 × 64 weight submatrices are first
stochastically quantized to 3-bit according to the measured
conditional probability distribution (see Fig. 8). Subsequently,
the accumulation of partial sums and non-MAC operations,
such as BN, max-pooling, and activation, is performed in
digital simulation with high fixed-point precision.

The test error values obtained from 20 runs with different
random seeds are summarized in box plots in Fig. 9(b) and (c),
with the three different Vref schemes for MNIST MLP and
CIFAR-10 CNN, respectively. The redline, box top edge, box
bottom edge, top bar, and bottom bar represent the mean, 75th
percentile, 25th percentile, maximum, and minimum of the
20 data points.

Compared to the scheme with a single set of Vref ’s for
the ADC (without offset calibration), using eight sets of
Vref ’s for eight ADCs show considerable improvement in both
MNIST and CIFAR-10 accuracies. This would be largely due
to the local mismatch of the ADC, which can be compensated
by offset cancellation schemes typically employed in ADC
designs [32]. On the other hand, the accuracy values for the
scheme using 64 sets of Vref ’s are hardly different to those
using eight sets of Vref ’s. This means that column-by-column
variation is small and does not affect the accuracy noticeably.

Using eight sets of Vref ’s, XNOR-RRAM achieves 98.5%
classification accuracy for MNIST (software baseline: 98.7%)
and achieves 83.5% accuracy for CIFAR-10 (software base-
line: 88.6%) data sets. The accuracy degradation of CNN
for CIFAR-10 occurs due to limited ADC precision (CNN
baseline with ideal quantization leads to 86.70% in simulation)
and small separation in adjacent Vref ’s of ADC (caused by the
gradual slope of RBL transfer curve). These could be improved
by employing an ADC with higher precision [33] (trading off
ADC area and power) or asserting a less number of rows [22]
in parallel to reduce the dynamic range (trading off latency or
energy efficiency).

D. Performance and Energy Characterization

We measured the power of the prototype chip under dif-
ferent power supply voltages (1.2 down to 0.9 V) for the
pMOS pull-up and ADC. As we lower the pMOS pull-up
power supply voltage, the current of the voltage dividers
decreases, reducing the total power and improving the energy
efficiency, as shown in Fig. 10. However, as we reduce the
power supply voltage, the ADC sensing margin reduces,
degrading the accuracy on BNN benchmarks. For example,
for MNIST MLP, the accuracy degrades to 97.28% when
the power supply voltage is 0.9 V, and for CIFAR-10 CNN,
the accuracy degrades to 80.65% when the power supply volt-
age is 1.1 V. With all 128 rows and 8 columns (8 ADCs shared
among 64 columns) asserted and computed simultaneously
in each cycle, the 128 × 64 XNOR-RRAM array achieves
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Fig. 10. Power and energy measurement results with voltage/frequency
scaling.

a high throughput of 157.6 GOPS and an energy efficiency
of 24.1 TOPS/W at 1.2-V supply.

E. Comparison to Prior In-RRAM Computing Work

Table I shows the comparison with the closest prior work
implemented in 55-nm CMOS with embedded RRAM [22].
We defined throughput as “(number of operations)/(read IMC
delay) × (number of parallel computing columns among
64 columns).” Since [22] only turns on nine rows in one cycle
and each ADC connects from positive weight column and
negative weight column, there are 18 (=9×2) MAC operations
per ADC evaluation. In our design, we turn on all 128 rows,
and since two 1T1R cells represent one weight, 64 MAC
operations are performed per ADC evaluation. The read IMC
delay is reported as 10.2 ns for [22] and ours is 6.5 ns. The
column multiplexing ratio mentioned in [22] was 32:1, while
our work’s column multiplexing ratio is 8:1. In other words,
our work computes 4× more columns in parallel, for a given
array size. Therefore, our throughput per 128 × 64 array is
22.3× better than that of [22].

For IMC, turning on more rows typically requires ADCs
with higher precision due to a higher dynamic range of
the MAC results. However, we turn on all 128 rows and
achieve better binary DNN accuracy than [22] even with lower
precision ADC (3-bit ADC in our work versus 4-bit ADC in
[22]), aided by both the confined-range linear quantization (see
Fig. 2) and the ADC Vref optimization (see Fig. 3).

In Table I, we reported a figure of merit (FoM) that is
the product of energy efficiency (TOPS/W) and throughput
per 128 × 64 array (GOPS), which effectively represents the
inverse of energy–delay product (EDP). EDP is a well-known
metric that reflects a balance between energy and performance
for computer systems. Our work achieves 10.1× higher FoM
compared with that of [22]. These improvements will be even
higher if we normalize the CMOS technology (55 nm [22]
versus 90 nm for our work).

Exhibiting high throughput and low EDP is essen-
tial for performance-critical or real-time embedded systems
(e.g., autonomous driving, natural language processing,

TABLE I
COMPARISON WITH RECENT IN-RRAM COMPUTING WORK

and real-time machine translation), and our IMC tech-
nique becomes very suitable for such latency-/energy-/area-
constrained artificial intelligence systems.

IV. CONCLUSION AND DISCUSSION

We demonstrated an energy-efficient IMC XNOR-RRAM
array, which turns on all differential WLs simultaneously
and performs analog MAC computation along the bit-
lines. By monolithically integrating flash ADCs and 90-nm
CMOS peripheral circuits with RRAM arrays, we demon-
strate the scalability of XNOR-RRAM toward large-scale
DNNs. XNOR-RRAM prototype chip measurements and
extracted simulations demonstrate a high energy efficiency
of 24 TOPS/W, a high throughput of 157.6 GOPS, and a
high classification accuracy of 98.5% and 83.5% for the
MNIST and CIFAR-10 data sets, respectively. Our work
achieves 22.3× and 10.1× improvements in throughput and
EDP, respectively, compared with those of the state-of-the-art
literature.

ADCs generally incur a large overhead for IMC especially
with dense NVMs, as also reported by prior works [34],
[35]. Unlike SRAM, the RRAM column pitch is less, which
makes the core even more dominated by the peripheral circuits.
We used flash ADC where area will exponentially increase
with bit precision; therefore, a possible tradeoff is to use more
compact successive-approximation-register (SAR) ADC [22],
[36], while allowing longer latency, in order to reduce the area
overhead.

In our XNOR-RRAM design, further energy-efficiency
improvement is largely governed by the LRS resistance of
the RRAM technology. Higher energy efficiency could be
achieved by RRAM technologies with higher LRS resistance
values [24], while this consequently will reduce the ON/OFF

ratio. Our current XNOR-RRAM only supports binarized
DNNs (both activations and weights have +1 or −1 values),

Authorized licensed use limited to: ASU Library. Downloaded on February 20,2021 at 04:23:01 UTC from IEEE Xplore.  Restrictions apply. 



4192 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 67, NO. 10, OCTOBER 2020

but multibit precision DNNs that lead to higher accuracy
could be supported by bit-serial operation and additional
digital peripheral circuits [37] and/or digital-to-analog (DAC)
converters [33] while sacrificing energy efficiency. However,
the core IMC technology with the proposed 2T2R cell design
and peripheral ADC can be applied generally to any given
RRAM technology and RRAM arrays.
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