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Abstract— We present XNOR-SRAM, a mixed-signal in-
memory computing (IMC) SRAM macro that computes ternary-
XNOR-and-accumulate (XAC) operations in binary/ternary deep
neural networks (DNNs) without row-by-row data access. The
XNOR-SRAM bitcell embeds circuits for ternary XNOR oper-
ations, which are accumulated on the read bitline (RBL) by
simultaneously turning on all 256 rows, essentially forming a
resistive voltage divider. The analog RBL voltage is digitized
with a column-multiplexed 11-level flash analog-to-digital con-
verter (ADC) at the XNOR-SRAM periphery. XNOR-SRAM is
prototyped in a 65-nm CMOS and achieves the energy efficiency
of 403 TOPS/W for ternary-XAC operations with 88.8% test
accuracy for the CIFAR-10 data set at 0.6-V supply. This marks
33× better energy efficiency and 300× better energy–delay
product than conventional digital hardware and also represents
among the best tradeoff in energy efficiency and DNN accuracy.

Index Terms— Binary weights, deep neural networks (DNNs),
ensemble learning, in-memory computing (IMC), SRAM, ternary
activations.

I. INTRODUCTION

DEEP neural networks (DNNs) and convolutional neural
networks (CNNs) have unprecedentedly improved the

accuracies in large-scale recognition tasks [1]–[6]. However,
the arithmetic complexity and memory access have limited the
energy efficiency and acceleration of DNN hardware [7]–[11].
To address this, in recent algorithms, weights and neuron

activations are binarized to +1 or −1 [12], [13] such that the
multiplication between an weight and an activation becomes
an XNOR operation and the accumulation of the XNOR oper-
ations becomes bitcount of those XNOR results. Although the
initial XNOR-Net [12] showed a relatively large test accuracy
degradation (∼10%–20%) for the ImageNet data set, recent
works that employ 2-bit precision [14] have shown 1%–3%
accuracy degradation for ImageNet, and this is an active
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research area in the machine learning community. Taking
advantage of the reduced computation complexity, dedicated
hardware accelerators [15], [16] for the CIFAR-10 data set [17]
have been proposed with digital or mixed-signal neuron array,
achieving ∼86% test accuracy with all weights stored on
a chip. It should also be noted that ternary precision has
demonstrated better performance to binary precision [18],
especially for large-scale data sets. To that end, implementing
DNNs with ternary activation precision and binary weight
precision is of a particular interest.
The arithmetic complexity reduction from the binary and

ternary algorithms, however, makes row-by-row memory
access dominating the speed and energy efficiency of DNN
hardware [7]. Conventional on-chip static random-access
memory, SRAM, requires row-by-row accesses, and fetching
a very large number of weights in this manner consumes
substantial energy and delay.
To reduce the delay and energy associated with on-chip

SRAM accesses, recent works have proposed an SRAM-based
in-memory computing (IMC) scheme, which performs com-
putation on the bitline without reading out each row of
bitcells [19]–[25], demonstrating large improvement in energy
efficiency and throughput.
For example, CONV-SRAM [20] integrates digital-to-

analog converters (DACs) for analog wordlines, binary weights
stored in SRAM, and analog-to-digital converters (ADCs) to
convert the in-memory computation results back to digital
values. In-memory computation in [20] targets the convolution
operation, which is accomplished by row-wise charge sharing
of the SRAM bitcells in the same row. This design integrates
the local analog multiply-and-average circuits every 16 rows
(out of the 256-row bitcell array). It reported 98.3% accuracy
for the MNIST data set [26].
IMC with on-chip training capability was presented in [21],

where the weights were fine-tuned based on chip’s variability.
This article reported 96% accuracy on the MIT-CBCL data
set [27]. This hardware reads out 8-bit weights across four
rows in the analog domain and performs the analog voltage
signed multiplication and accumulation in the peripheral ana-
log processor.
A binarized CNN accelerator was presented in [23].

It performs both multiply-and-accumulate and modified batch
normalization in the analog domain. It reported 83.27% test
accuracy for the CIFAR-10 data set. In this design, each col-
umn end is binarized with a single sense amplifier. Therefore,
it cannot directly support the operations that require more than
binary precision, such as max pooling.
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Twin-8T [25] employed two of the conventional 8T SRAM
structures [28]. Supporting multi-bit CNNs, it achieves the
accuracy of up to 90.42% for CIFAR-10. This design can
simultaneously turn on 9/18 rows in single-/dual-channel
mode, achieving the energy efficiency of 37.5/72.1 TOPS/W.
Compute SRAM [29] employs transposable SRAM [30] and

implements bit-serial digital operations near the peripherals.
The proposed “digital” computing scheme avoids less robust
analog computation but allows to turn on only two rows of
bitcells in one clock cycle, resulting in limited throughput and
energy efficiency.
While prior in-SRAM computing works have made different

design decisions, we focus on robust and scalable IMC with
the goal to further advance the tradeoff between the DNN
accuracy and energy efficiency. Unlike some of the prior
works [22], [23] that connect the drain/source of additional
transistors directly to the SRAM storage nodes, we only
connect the gate of additional transistors. This is critical to
eliminate any write disturb when all rows are asserted. Also,
unlike [22] and [23] that prematurely binarize the analog
bitline voltage with a single sense amplifier, we employ
a multi-bit ADC. This enables scalability to arbitrary-sized
DNNs.
In this article, we propose an in-memory mixed-signal

SRAM macro titled “XNOR-SRAM” that not only energy
efficiently computes ternary-XNOR-and-accumulate (XAC) in
binary/ternary DNNs but also supports the DNNs/CNNs of
arbitrary size with high accuracy. Our XNOR-SRAM per-
forms a 256-input XAC without explicit memory readout,
via analog accumulation of bitwise ternary-XNOR results
on the read bitline (RBL) voltage of the SRAM array, and
digitizes the RBL voltage (VRBL) using a flash ADC embed-
ded in the periphery. XNOR-SRAM supports binary weights
(+1, −1) and binary inputs (+1, −1) as well as ternary
inputs (+1, 0, −1).
Our 65-nm prototype chip achieves 300× better

energy–delay product (EDP) than a digital baseline in
computing XAC. DNN classification using our XNOR-SRAM
achieves 98.3%/98.8% accuracy for MNIST and 87.3%/88.8%
accuracy for CIFAR-10 using binary/ternary precision. This
article is an extended version of [24], providing the detailed
design space exploration, optimizations to compensate
variability, and additional measurement results with five
chips.

II. XNOR-SRAM MACRO DESIGN AND OPTIMIZATION

A. XNOR-SRAM Bitcell Design

Fig. 1 shows the proposed XNOR-SRAM architecture,
which can map convolutional and fully connected (FC) layers
of CNNs and multi-layer perceptrons (MLPs). It consists of
a 256-by-64 custom bitcell array, a row decoder, an XNOR-
mode WL driver, and a column periphery, including a 3.46-bit
flash ADC. The XNOR-SRAM operates in either of two
modes: memory mode and XNOR mode. In the memory mode,
it performs row-by-row digital read/write as regular SRAM.
In the XNOR mode, it performs in-memory XAC computation
with all rows asserted simultaneously.

Fig. 1. (a) XAC operation illustration. (b) Proposed XNOR-SRAM macro
architecture.

Fig. 2. XNOR-SRAM bitcell design and XNOR-ACC operation with ternary
inputs/activations and binary weights. Bitwise ternary-XNOR output from
each bitcell forms pull-up (PU)/pull-down (PD) paths on the RBL voltage,
which represents the XNOR-ACC value.

Fig. 2(a) shows the proposed 12T bitcell for XNOR-SRAM.
T1–T6 form a 6T cell, T7–T10 form complimentary PU and
PD circuits for XNOR mode (and memory mode read), and
T11 and T12 power-gate the PU/PD circuits when the cor-
responding column is disabled. Fig. 2(b) shows the layout of
the bitcell drawn in logic ground rules. The area is 3.915 μm2

(2.7 times- 1.45 μm). Except T7, T8, and T11, all transistors
in the bitcell use the minimum size. We slightly sized up the
PMOS transistors T7, T8, and T11 to match its strength to
their NMOS counterparts.
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In the XNOR mode, the read wordline (RWL) driver trans-
lates each ternary/binary input activation to four RWLs accord-
ing to Fig. 2(c). In the second half of a clock cycle, T11 and
T12 in a selected column are turned on, and T7–T10 perform
the ternary-XNOR operation between the RWLs (activations
of +1, 0, or −1) and the binary weight (+1 or −1) stored in
the bitcell. The RBL voltage finally settles and is read by the
flash ADC.

B. Proposed IMC Operation and Analysis

1) Binary Activations and Binary Weights: For binary acti-
vations, the bitcell produces the XNOR output of “+1” with
one strong PU by PMOS and one weak PU by NMOS.
It produces the XNOR output of “−1” with one strong PD
by NMOS and one weak PU by PMOS. This operation is
summarized in the first two rows of Fig. 2(d). The 256 bitcells
in a column contribute such XNOR-output-controlled PU and
PD circuits and essentially form a resistive voltage divider
from the supply voltage to the ground, where RBL is the
output. If PU and PD resistances are identical, the RBL voltage
(VRBL) will be a symmetric and monotonic function of the
XAC value. In practice, they are different due to process
variations. Our design is capable of correcting this non-ideality
by tuning the PMOS body bias of the bitcell array, which is
made as a separate pin in our prototype chip (see more details
in Fig. 14).
The first-order analysis on the relationship between XAC

value and RBL voltage is as follows. If the number of rows
is N , the range of XAC is from −N to +N . Suppose that
u is the number of PU cells among N cells in a column
and d is the number of PD cells. As shown in (1), we can
represent N as the sum of u and d . Given that each PU and
PD cell represents the bitwise XNOR output of “+1” and “−1,”
respectively, the XAC result that accumulates all cells’ XNOR
outputs is formulated as (2). As shown in Fig. 2(c), the bitwise
XNOR output of “+1” and “−1” results in two PU and two
PD paths, respectively. This is shown in Fig. 3, and VRBL
can be represented as (3) with the resistive divider. Using
(1) and (2), VRBL can be formulated as (4), showing a linear
relationship with XAC value. Note that VRBL is not affected
by the activation/weight patterns as long as they result in the
same the XAC bitcount

N = u + d (1)

X AC = u−d (2)

VRBL = 2u

2u + 2d
(3)

VRBL = X AC + N

2N
(4)

2) Ternary Activations and Binary Weights: To support
ternary activations, we have additionally considered the acti-
vation value of “0” and have derived the equations that are
similar to (4). Suppose that the number of cells that exhibit
the bitwise ternary-XNOR output of “0” as z, N would be
the sum of u, d , and z ((5)). Since those z bitcells do not
contribute to the XAC output, the equations for the XAC
value are identical for the binary and ternary activation case

Fig. 3. PU/PD paths for VRBL with binary activations.

Fig. 4. PU/PD paths for VRBL with ternary activations.

[see (2) and (6)]. To maintain the same linear relationship
between VRBL and N as in (4), the z bitcells should contribute
z PU and z PD circuits. This is shown in Fig. 4

N = u + d + z (5)

X AC = u−d (6)

VRBL = 2u + z

2u + 2d + 2z
(7)

VRBL = X AC + N

2N
. (8)

Since each u and d cell leads to 2u PU paths and 2d PD
paths (one strong plus one weak), each z cell should ideally
yield the average strength of the u and d cells or 0.5 strong
PU+ 0.5 strong PD+ 0.5 weak PU+ 0.5 weak PD. However,
since T9 and T10 (T7 and T8) use (close to) minimum size,
splitting T7–T10 transistors to support such half/full strengths
will complicate and enlarge the XNOR-SRAM bitcell design
by about 50% and double the current consumption. The
bitcell-embedded ternary XNOR computation and operation are
summarized in Fig. 2(c). Note that having z cells to exhibit no
PU and PD paths (i.e., turning off “0” activation rows) will
make (8) deviate from (4) and introduce further difference
in VRBL depending on the number of “0” activation rows.
Without changing the bitcell design that implements binary
activations and weights, we propose to drive even “0” rows
with weak PU/PD and odd “0” rows with strong PU/PD
[see Fig. 2(e)], to effectively support ternary activations. This
design is based on the assumption that “0” activations are
evenly distributed on even and odd rows. Deviation from this
assumption, i.e., the number of even-row zeros and odd-row
zeros are not equal, would cause VRBL deviation. According to
our post-layout simulation with parasitics annotated, the VRBL
variance caused by the mismatch in these two numbers in
the ternary VGG-like and ResNet CNNs (for CIFAR-10)
and MLPs (for MNIST) that we benchmarked is negligible
compared to other variability sources, such as transistor mis-
match in the XNOR-SRAM cells.
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Fig. 5. XAC is mapped to VRBL. The confined linear quantization scheme
is shown, along with the corresponding ten reference voltages (Vref ) for the
11-level flash ADC.

Fig. 6. (a) Accuracy of the MLP trained for MNIST and (b) accuracy of the
CNN for CIFAR-10 as a function of ADC levels.

C. Transfer Function and ADC Optimization

The ADC plays an important role in the computing through-
put and accuracy. It digitizes the analog RBL voltage to the
digital output. We chose to use the flash ADC using strong-arm
comparators for the high-speed advantages. We shared the
ADC among 64 columns via a 64-to-1 analog multiplexer for
two reasons. First, the RWL drivers could be considerably
large to support the column-parallel operation as the drivers
need to supply the current flowing in the resistor dividers. Sec-
ond, the 64 ADCs would incur a large overhead for the ADC
area. As pointed out in [31], the column multiplexing scheme
would not degrade the energy efficiency in the first order,
since the amount of voltage switching on all the wordlines
and bitlines is roughly the same for both column multiplexing
and column-parallel schemes. Nonetheless, the column multi-
plexing in our design hurts the throughput by roughly 64 times
compared to a fully column-parallel design.
We investigate the distribution of XAC values. As the

data distribution from MLP for MNIST shows (see Fig. 5),

Fig. 7. Comparison of non-linear quantization [24] and confined linear
quantization (this work). (a) Comparison of Vref s for ADC. (b) CIFAR-
10 accuracy improvement.

the XAC value is highly concentrated around zero. Exploiting
such statistics, we confined the quantization range to the region
that covers most data (−60 to +60), within which we linearly
divided the quantization levels with reference values. Each
quantization reference in the XAC value maps to a particular
reference voltage (Vref ) for the flash ADC (see Fig. 5). Note
that the non-linearity of the PD and PU resistance makes the
VRBL transfer function non-linear, placing Vref s non-uniformly,
as shown in Fig. 5.
We investigated the required ADC precision based on the

MLP for MNIST (784-512-512-512-10) and the VGG-like
CNN for CIFAR-10 (128C3-128C3-MP2-256C3-256C3-MP2-
512C3-512C3-MP2-1024FC-1024FC-10FC). Fig. 6 shows the
simulation results across the different numbers of ADC levels.
This simulation ignores analog non-ideality, such as offset
voltage and transistor variability. We have found that employ-
ing 11 quantization levels (i.e., 3.46 bits) results in satisfactory
accuracy. In addition, the accuracy saturates for the ADC
levels beyond 11. Based on these results, we have designed
the 11-level flash ADC, which consists of ten strong-arm
comparators.
Note that in [24], we employed a non-linear quantization

scheme based on the Llyod–Max algorithm [32]. This scheme
produces finer grain reference levels where more data exist
(i.e., XAC � 0). However, we have found that this made
the difference between two adjacent Vref s to be very small,
increasing the error associated with ADC. In addition, the non-
linear quantization scheme does not consider the difference
of RBL voltage variance for different XAC values. We have
found that near-zero XAC values have larger RBL voltage
variance and ideally require wider ADC quantization intervals.
As shown in Fig. 7, the difference of two adjacent Vref s near
the XAC value of zero with the confined linear quantization
scheme increases from 21 mV [24] to 49 mV in this article
(at 0.6-V supply). As shown later, this helps to improve the
CIFAR-10 accuracy from 85.7% in [24] to 88.8%.

III. MEASUREMENT RESULTS

We prototyped the proposed XNOR-SRAM macro in a
65-nm CMOS [see Fig. 8(a)]. The area and power breakdowns
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Fig. 8. (a) 65-nm XNOR-SRAM prototype chip micrograph. (b) Power and
area breakdown.

Fig. 9. Data-dependent XNOR-SRAM power.

Fig. 10. Energy and frequency scaling with supply voltage.

are presented in Fig. 8(b). The area of XNOR-SRAM is
majorly consumed by the bitcell array, where the array effi-
ciency is 70.75%. On the other hand, the XNOR-mode driver
dominates the total power as it needs to supplies the current
of the restive voltage divider formed for XAC evaluation.

A. Energy Consumption and Performance Measurements

We have measured the power and energy dissipation of the
XNOR-SRAM macro under a range of conditions. First of
all, the power consumption depends on the XAC result (see
Fig. 9). This is because most of the power is consumed in the
form of the crowbar current in the resistive voltage divider.
The input data that correspond to XAC value near 0 pose the
worst case for energy efficiency. The post-layout simulation
shows that the worst case crowbar current is 1 mA and lasts
for 1.26 ns in the second half of a clock cycle at 0.6 V. Under
this worst case, we measured that XNOR-SRAM consumes
235.5 pJ and takes 54.21 ns for 64 operations of 256-input
XAC at 1.0 V. Fig. 10 shows the energy and the maximum

Fig. 11. Digital baseline design for XAC accelerator. (a) Block diagram.
(b) Layout in 65-nm CMOS.

Fig. 12. Energy and delay comparison with digital baseline.

frequency with the voltage scaling from 1.0 to 0. 5 V. At 0.6 V,
XNOR-SRAM achieves 2.48 fJ per operation. Considering that
one operation is either ternary multiplication or accumulation,
this marks the energy efficiency of 403 TOPS/W.

B. Comparison to a Digital Baseline Design

As a comparison, we designed a well-crafted digital base-
line in the same technology. It performs the exact same
function of the XNOR-SRAM but uses digital XNOR gates,
digital adders, and conventional SRAM (see Fig. 11). This
baseline hardware reads 64 binary weights row by row,
receives 256 binary/ternary inputs also one by one, and finally
accumulates 64 XAC values over 256 cycles. The SRAM
for weight memory was generated by a commercial memory
compiler. The digital design was synthesized and automatically
placed/routed using commercial EDA tools [see Fig. 11(b)].
The digital baseline achieves 500-MHz clock frequency. The
post-layout simulation based on parasitic-annotated netlists
at 1.0-V supply (typical corner, 25◦C) shows that the dig-
ital baseline consumes 7.81 nJ and 514 ns for the same
64 256-input XAC operations, which represents 33× worse
energy and ∼300× worse EDP than the XNOR-SRAM macro
also operating at 1.0 V (see Fig. 12). A similar EDP gain of
∼300× is achieved for XNOR-SRAM down to 0.6-V supply.
Note that the XNOR-SRAM prototype chips were functional
down to 0.5-V supply, and however, additional energy/EDP
savings were not achieved below 0.6 V, because the circuit
delay increases rapidly as the supply voltage gets closer to
the near-threshold voltage. During this increased cycle time,
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Fig. 13. Measured transfer function and variability.

Fig. 14. Body bias tuning for PMOS/NMOS mismatch.

the XNOR-SRAM consumes more energy from leakage and
crowbar current.

C. Variability and Compensation

Fig. 13 shows the measured VRBL variability resulting
from process variation and parasitics across different columns
and data patterns, where the top and bottom bars represent
+3σ and −3σ points, respectively. The highest variation (20-
mV standard deviation) occurred at the lowest XAC value
of 0. The systematic strength imbalance between NMOS and
PMOS can skew the transfer function. We addressed this by
providing a knob to tune the body bias for PMOS transistors in
the XNOR-SRAM array at marginal area/power penalty (see
Fig. 14).
To compensate for the local variability or offset of the

ADC, ten external Vref s for the 11-level (3.46-bit) flash ADC
were first calibrated for the corresponding ten reference XAC
values. For each reference XAC value X f , 2000 combinations
of random input vectors, columns, and weight matrix that yield
XAC values that fall in the range of [X f − 5, X f + 5] were
used to optimize each comparator’s Vref . Vref was initialized
at 0.5× VDD. After each combination, the actual comparator
output was compared to the ideal output. If it was correct,
no change was made to the reference voltage; otherwise,
a small and exponentially decayed correction amount will be
added to or subtracted from the current reference voltage,
depending on whether the ideal output is low or high. Each
chip undergoes this type of reference voltage calibration
process before performing the IMC operation.

TABLE I

VRBL VARIANCE OF A SINGLE COLUMN AT 1.0- AND 0.6-V SUPPLY
EXTRACTED FROM POST-LAYOUT MONTE CARLO SIMULATIONS

After compensation of the ADC offset, there are two
remaining major variability sources: 1) the transistor mismatch
in the XNOR-SRAM cells and 2) the IR drop on RBL wires.
The transistor mismatch causes the bitcells in the different
rows but in the same column have different PU/PD strength
(after the array-wide body bias calibration), making RBL
voltage depend on the input/weight pattern even for the same
XAC value. On the other hand, the RBL IR drop is a function
of input/weight patterns.
We performed the Monte Carlo simulations for the

parasitic-annotated netlist of a single column of bitcells to
characterize these two variability sources. We used 1000 ran-
dom combinations of input/weight vectors that result in the
XAC value of 0. To isolate the impact of each variability
source, in our extracted simulations, we included only the mis-
match for the cell transistors, only the extracted resistance of
the RBL, and both two variability sources. Table I summarizes
the results of the post-layout simulations. We can see that at
1 V, as the current is very large, the IR drop along the RBL
contributes most to the overall variation of VRBL. At 0.6 V,
variation due to IR drop significantly decreases as the current
decreases, reducing the overall amount of variation to just a
quarter of that at 1 V.

D. Statistical Model of XNOR-SRAM and Voltage Scaling

We developed the statistical model of XNOR-SRAM as
a function of the XAC value. To do so, we measured the
ADC output for 1600 times for each XAC value, 25 times
per column. Each time a random test vector that will result
in the target XAC value for a given column is generated.
Based on 1600 measured ADC outputs for each XAC value,
we estimated the probability distribution of the ADC output
as function of the XAC value (see Fig. 15). We iterated this
experiment at four different supply voltages of 1.0, 0.8, 0.6,
and 0.5 V.
Counter-intuitively, Fig. 15 shows that, as supply voltage

lowers, the ADC output distribution becomes tighter. To see
it clearly, we can model the RBL voltage VRBL as a function
of XAC value X and VDD as

VRBL(X, VDD) = V̄RBL(X, VDD) ± �VRBL(X, VDD) (9)

where V̄RBL(X, VDD) represents the average VRBL for given
XAC value X under supply voltage VDD over all possible
combinations of input and weight vector and �VRBL(X, VDD)
represents the standard deviation of the actual VRBL over
all possible combinations of input and weight vector for
given XAC value X . ADC’s Vref s are calibrated against
V̄RBL(X, VDD) as aforementioned. ADC quantization error is
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Fig. 15. Measured ADC output probability distribution as a function of XAC
value at VDD of 1.0, 0.8, 0.6, and 0.5 V.

Fig. 16. Normalized transfer function at different values of VDD.

then governed by the distribution of �VRBL(X, VDD) and
quantization scheme. The reduced ADC quantization error
at lower VDD can be explained from two aspects: reduced
�VRBL(X, VDD)/VDD and enhanced normalized slope of
transfer function.

1) Voltage Scaling of RBL Voltage Variance: As shown
in Table I, according to our post-layout simulation on a single
column of XNOR-SRAM array, RBL voltage variance at
X = 0 reduces from 36.8 to 9.33 mV when we scale VDD from
1.0 to 0.6 V. This reduction in RBL voltage variance majorly
comes from the reduction of variance contribution from IR
drop along the RBL, which is a result of reduction in current.

2) Normalized Slope of Transfer Function: As VDD
decreases, the transfer function slope in the near-zero region
increases when normalized to VDD, as shown in Fig. 16. As a
result, two adjacent XAC values will be more separated in
terms of VRBL/VDD, tolerating larger variance in VRBL/VDD.
Combining the above-mentioned two aspects, as VDD

decreases, the enhanced normalized slope of VRBL transfer
function and the reduced variance of VRBL lead to the reduced
ADC quantization error, as shown in Fig. 15.

E. Strategy for Mapping DNNs onto XNOR-SRAM Arrays

Mapping convolution layers of deep CNNs onto
XNOR-SRAM arrays is shown in Fig. 17(a). We propose

Fig. 17. Mapping (a) convolution layers and (b) FC layers of deep CNNs
onto XNOR-SRAM arrays.

to use a mapping strategy where kernels for separate input
channels are stored on separate rows, kernels for separate
output channels are stored on separate columns, and weights
within each kernel (e.g., nine weights for 3 × 3 kernel) are
stored in separate XNOR-SRAM macros. The XAC results
(partial sums) obtained from separate macros are accumulated
digitally, to generate the final sum results for each neuron.
This scheme extensively re-uses the input activations, with
stationary weights in the XNOR-SRAM arrays.
As shown in Fig. 17(b), it is straightforward to map FC

layers of DNNs, where activations are in vectors and weights
are in matrices. This nicely maps to the row drivers for
activations and weights stored in the XNOR-SRAM. For the
FC layers whose size is larger than 256 × 64, we break the
large weight matrix into a number of small sub-matrices (that
fit XNOR-SRAM macros) and accumulate the matrix-vector
multiplication results accordingly.

F. DNN Accuracy Characterization

Using the XNOR-SRAM macro, we evaluated the accu-
racy of DNNs for MNIST and CIFAR-10 data sets. For
MNIST, an MLP with three hidden layers, each with
512 neurons, is used (784-512-512-512-10). For CIFAR-
10, we evaluated two deep CNNs: VGG-like CNN and
ResNet-14. VGG-like CNN [13] has six convolutional layers
and three FC layers: 128C3-128C3-MP2-256C3-256C3-MP2-
512C3-512C3-MP2-1024FC-1024FC-10FC, where nC3 repre-
sents a convolutional layer with n 3 × 3 filters, mFC is an
FC layer with m neurons, and MP2 is a max-pooling layer
with 2×2 pooling size. ResNet-14 [13], [33] consists of three
basic residual blocks (block widths of 80, 160, and 320), with
a total of 13 3× 3 convolution layers, two 1× 1 convolution
layers in short-cut paths (not counted for the number of
layers), and one FC layer. Starting from the first hidden layer
of the MLP/CNN, XNOR-SRAM computes 256-input XACs
for MAC/convolution operations in all convolution/FC layers
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Fig. 18. Measurement-based simulation framework for CIFAR-10 accuracy
evaluation using XNOR-SRAM macros.

TABLE II

MEASURED MLP (FOR MNIST) AND CNN (FOR CIFAR-10) ACCURACY
SUMMARY AT 0.6-V SUPPLY

(e.g., all yellow-colored layers in Fig. 17). Accumulation of
XAC outputs, pooling, and batch normalization is performed
in digital simulation with the bit precisions of 12, 12, and 10,
respectively. Note that the digital hardware that executes these
functions would degrade the overall energy efficiency to some
extent. Recently, several works have tried to shed a light on
this matter [34].
The MNIST accuracy results were obtained entirely from

measurements, while the CIFAR-10 accuracy results were
obtained from our measurement-based simulation framework
(shown in Fig. 18) due to the limited scan chain throughput
of the prototype chip. Employing the same methodology used
to generate the probability distribution in Fig. 15, ADC output
distributions for each possible XAC value were estimated from
the measured samples from 10k MNIST test images MLP
inference. Each column was sampled from the probability
table, obtaining an ADC output for each bitcount, and then,
this mapping was kept for all the 10k CIFAR-10 test images.
The measured distributions were then used to draw random
samples in a GPU-accelerated Python program that simulates
XNOR-SRAM XAC and quantization operations for inference
of 10k CIFAR-10 test images using trained binary CNN [13].
Our Python simulation program repeated 20 runs with different
random seeds, and the average accuracy values are reported.
Table II summarizes the measured accuracy results of MLP

for MNIST and VGG/ResNet-14 CNNs for CIFAR-10 data

Fig. 19. Accuracy characterization of binary CNN for CIFAR-10. (a) Accu-
racy for chip #1 across different supply voltages. (b) Accuracy distribution
for five different chips at 0.6 V.

sets with binary/ternary activations at 0.6-V chip #2. It is
hypothesized that ResNet-14 CNN has more accuracy degra-
dation than VGG CNN compared to the software baselines,
because ResNet-14 CNN is deeper and requires higher partial
sum precision to maintain high accuracy. It can be seen that
DNNs with ternary activations demonstrate a relatively higher
accuracy than those with binary activations for both MNIST
and CIFAR-10 data sets, and our XNOR-SRAM can execute
both ternary and binary activations in a single cycle with the
same design change (see Section II-B).
Fig. 19 shows the accurate characterization of CNN for

CIFAR-10 with binary activations/weights across different
supply voltages and different chips, where top and bottom bars
represent +σ and −σ points, respectively. With tighter ADC
output distribution for XAC values at lower VDD (see Fig. 15),
the CNN accuracy improves as we lower VDD, down to 0.6 V
[see Fig. 19(a)]. Fig. 19(b) shows the accuracy distribution of
five different chips at 0.6-V supply, where most chips exhibit
a relatively constant mean accuracy of >87%. Note that chip
5 achieves lower accuracy compared to the other four chips
we measured. While we are in lack of sufficient access to the
internal signals of the prototype chip, we still found that chip
5 behaves similarly to other chips except that the ADC outputs
exhibit larger errors compared to those of other chips.

G. Ensemble Networks for Accuracy Improvement

In the deep learning literature, ensemble neural networks
have been commonly used to improve classification accuracy
[1], [2], [35]–[37], where a collection of networks (typically
less than 10) are trained separately with different initial
random weights or training data, and the final prediction is
calculated as the average of the predictions of all networks
models. The reason that ensemble methods improve accuracy
is that different models will usually not make the same errors
on the test set [38].
Inspired by such ensemble algorithms, we investigated

combining multiple XNOR-SRAM arrays from the same
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TABLE III

COMPARISONWITH THE RECENT IN-SRAM COMPUTING WORKS

Fig. 20. Binary DNN accuracy improves with ensemble hardware exploiting
intra-die variation.

chip or different chips, in order to possibly improve the
XNOR-SRAM hardware accuracy. Compared to the soft-
ware baseline, the mixed-signal XNOR-SRAM-based DNN
accuracy was degraded due to intra-/inter-column transistor
mismatch, RBL resistance difference, and ADC offsets. Com-
pared to the ensemble algorithms, the main difference in our
proposed ensemble hardware for XNOR-SRAM is that we do
not train different DNNs; instead, we use identical DNNs but
exploit the hardware variability as the source of the difference
in prediction errors.
First, we used the measurement data from a single

chip (chip #1) and randomly sampled the probability table
in Fig. 18 and evaluated the CNN accuracy for CIFAR-10.
To test the ensemble hardware exploiting intra-die variation,
we iterated this procedure for 2, 5, and 10 times (ensemble
size) with different random sampling and averaged the values
of ten neurons of the last output layer from ensemble hardware
for classification. This intra-chip ensemble hardware accuracy
results are shown in Fig. 20, where considerable accuracy

Fig. 21. Binary DNN accuracy improves with ensemble hardware exploiting
intra-die variation from five different chips.

Fig. 22. Energy efficiency (TOPS/W) and CIFAR-10 accuracy comparison
against in-/near-memory computing literature.

improvement is achieved while trading off area and energy.
For ensemble sizes of 5 or larger, the CNN hardware accuracy
values are even higher than the software baseline accuracy.
Next, we used the measurement data from five different

chips and experimented to ensemble a different number of
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chips to exploit inter-die variation. Even though chip #5
exhibits somewhat lower CNN accuracy than other chips
[see Fig. 19(b)], Fig. 21 shows that the CNN accuracy for
CIFAR-10 continuously improved when we increasingly used
more chips. In Figs. 20 and 21, top/bottom bars represent
+σ /−σ points.

H. Comparison

Fig. 22 shows the comparison of energy efficiency
(TOPS/W) and CIFAR-10 accuracy against prior IMC works.
The neural network architecture of ours (XNOR-SRAM),
digital baseline, and [23] is the same. Reference [16] uses
a simplified version (2 × 2 convolution filters and so on)
of the same network. Reference [25] uses a different resid-
ual CNN (ResNet) for the same data set of CIFAR-10.
Compared to [23], energy efficiency is ∼38% lower, but
CIFAR-10 accuracy is significantly higher by 4.7%. Compared
to [25], the CIFAR-10 accuracy is 1.4% lower, but the energy
efficiency is >10× higher. Table III shows a more detailed
comparison to recent in-SRAM computing works [20], [23],
[25] and the digital baseline. Our XNOR-SRAM macro
improves energy/EDP by ∼100×/300× over digital baseline
performing the same XAC operations. Compared to other
in-SRAM computing works in the literature, XNOR-SRAM
also demonstrates the best tradeoff in high energy efficiency
and high CIFAR-10 classification accuracy.

IV. CONCLUSION

In this article, we present an IMC SRAM macro titled
“XNOR-SRAM” that computes ternary-XAC operations in
binary/ternary MLP and CNNs with high energy efficiency
and high accuracy. Our 256 × 64 XNOR-SRAM asserts all
256 rows simultaneously, performing a 256-input ternary XAC
in a single cycle, via analog accumulation of bitwise XNOR
results on the RBL voltage, which is digitized using an
optimized 11-level flash ADC embedded in the periphery. Our
65-nm XNOR-SRAM prototype achieves energy efficiency
of 403 TOPS/W for XAC operations and 88.8% test accuracy
for CIFAR-10 data set, achieving 33× better energy and
300× better EDP than digital ASIC baseline with off-the-shelf
SRAM. Compared to non-linear quantization, the proposed
confined linear quantization scheme improves the CIFAR-
10 accuracy from 85.7% to 88.8% due to wider reference
voltage intervals. Further accuracy improvement has been
shown by employing an ensemble hardware of XNOR-SRAM
arrays/chips implementing the same DNNs, exploiting intra-
/inter-die variation.
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