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Abstract—Long short-term memory (LSTM) is a type of
recurrent neural networks (RNNs), which is widely used for
time-series data and speech applications, due to its high accuracy
on such tasks. However, LSTMs pose difficulties for efficient
hardware implementation because they require a large amount
of weight storage and exhibit computation complexity. Prior
works have proposed compression techniques to alleviate the
storage/computation requirements of LSTMs but elementwise
sparsity schemes incur sizable index memory overhead and
structured compression techniques report limited compression
ratios. In this article, we present an energy-efficient LSTM
RNN accelerator, featuring an algorithm-hardware co-optimized
memory compression technique called hierarchical coarse-grain
sparsity (HCGS). Aided by the HCGS-based blockwise recur-
sive weight compression, we demonstrate LSTM networks with
up to 16x fewer weights while achieving minimal error rate
degradation. The prototype chip fabricated in 65-nm LP CMOS
achieves up to 8.93 TOPS/W for real-time speech recogni-
tion using compressed LSTMs based on HCGS. HCGS-based
LSTMs have demonstrated energy-efficient speech recognition
with low error rates for TIMIT, TED-LIUM, and LibriSpeech
data sets.

Index Terms— Hardware accelerator, long short-term memory
(LSTM), speech recognition, structured sparsity, weight
compression.

I. INTRODUCTION

HE emergence of the Internet-of-Things (IoT) devices

that require edge computing with severe area/energy
constraints has garnered substantial interest in energy-efficient
ASIC accelerators for deep learning applications. Automatic
speech recognition (ASR) is one of the most prevalent tasks
that allow such edge devices to interact with humans and
have been integrated into many commercial edge devices.
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Recurrent neural networks (RNNs) are very powerful for
speech recognition, combining two properties: 1) distributed
hidden state that allows them to store a lot of information
about the past efficiently and 2) non-linear dynamics that
allow them to update their hidden state in complicated ways.
Long short-term memory (LSTM) is a type of RNN with
internal gates to scale the inputs and outputs within the cell.
LSTM gates avoid vanishing/exploding gradients issue that
plagues RNNs [1], but it requires 8 x weights compared with
a multi-layer perceptron (MLP) that has the same number of
hidden neurons per layer.

Due to the large size of the LSTM RNNs that enable
accurate ASR, most of these speech recognition tasks are
performed in the cloud servers, which requires a constant inter-
net connection, involves privacy concerns, and incurs latency
for speech recognition tasks. The particular challenge of
performing on-device ASR is that state-of-the-art LSTM-based
models for ASR contain tens of millions of weights [2], [3].
Weights can be stored on-chip (e.g., SRAM cache of mobile
processors), which has fast access time (nanoseconds range)
but is limited to a few megabytes (MBs) due to cost [4].
Alternatively, weights can be stored off-chip (e.g., DRAM)
up to a few gigabytes (GBs), but access is slower (tens
of nanoseconds range) and consumes ~100x higher energy
than on-chip counterparts [5]. To improve the energy effi-
ciency of neural network hardware, off-chip memory access
and communication need to be minimized [6]. To that end,
it becomes crucial to store most or all weights on-chip through
sparsity/compression, weight quantization, and network size
reduction.

Recent works presented methods to reduce the complexity
and memory requirements of RNNs for ASR. Load-balance-
aware pruning was proposed for LSTM hardware in [7],
resulting in 20x model size reduction, but elementwise spar-
sity incurs considerable index memory and irregular memory
access, negatively affecting both performance and power.

To overcome such issues, structured sparsity techniques
have been proposed with rowwise/columnwise sparsity for
RNNs [8], with blockwise sparsity for MLPs [9] and with
block-circulant weight matrix for RNNs [10], [11] in speech
applications. However, these works exhibit limited weight
compression of ~4x [8], [9] and high error rate [10], [11]
or have not been implemented in ASIC [7]-[10].

While recent ASIC designs targeting RNNs focus on
improved energy efficiency [11]-[16], they do not incorporate
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compression techniques and do not report RNN accuracy
beyond the simpler TIMIT data set [17], while it is necessary
to benchmark larger data sets (e.g., TED-LIUM [18] and
LibriSpeech [19]) to evaluate enabling practical ASR tasks
on small-form-factor edge devices.

In this article, we present a new hierarchical coarse-grain
sparsity (HCGS) scheme that structurally compresses LSTM
weights by 16x with minimal error rate degradation. We pro-
totyped HCGS-based LSTM accelerator in 65-nm LP CMOS,
which executes two-/three-layer LSTMs for real-time speech
recognition [20], [21]. It consumes 1.85-/3.43-/3.42-mW
power and achieves 8.93/7.22/7.24 TOPS/W for TIMIT/TED-
LIUM/LibriSpeech data sets, respectively. Our main contribu-
tions include the following.

1) A novel hierarchical blockwise sparsity scheme was
proposed and applied to LSTM RNNs, which shows
favorable error rate and memory compression tradeoffs
compared with prior works.

2) Beyond simpler TIMIT data set [17], our LSTM
accelerator is benchmarked against larger-scale TED-
LIUM [18] and LibriSpeech [19] data sets with low error
rates, demonstrating practical feasibility.

3) Aided by 16 x HCGS compression and with 6-bit weight
quantization, all parameters of LSTMs for TIMIT/TED-
LIUM/LibriSpeech are stored on-chip in <300-kB
SRAM.

The remainder of this article is organized as fol-
lows. Section II presents the proposed HCGS algo-
rithm for LSTMs. Section III describes the HCGS-based
LSTM accelerator architecture and chip design optimiza-
tion. In Section IV, the prototype chip measurement results
and comparison are presented. This article is concluded

in Section V.

II. LSTM AND HIERARCHICAL
COARSE-GRAIN SPARSITY

A. LSTM-Based Speech Recognition

LSTM RNNs have shown state-of-the-art accuracy for
speech recognition tasks [2], [3]. Fig. 1 shows the computation
flow for each layer of an LSTM [1], which is a special-
ized recurrent structure. Each layer of an LSTM consists of
neurons, which computes the final output /4, through four
intermediate results called gates. In addition to the hidden state
h, used as a transient representation of state at timestep f,
LSTM introduces a memory cell ¢;, intended for internal
long-term storage. The parameters ¢, and h, are computed
via input, output, and forget gate functions. The forget gate
function f; directly connects ¢, to the memory cell c¢;_;
of the previous timestep via an elementwise multiplication.
Large values of the forget gates cause the cell to remember
most (if not all) of its previous values. Each gate function
has a weight matrix and a bias vector; we use subscripts
i, o, and f to denote parameters for the input, output, and
forget gate functions, respectively. For example, the parame-
ters for the forget gate function are denoted as W.r, Wiy,
and by.
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Fig. 1. LSTM computation flow for each layer. Each of the four gates of
the LSTM layer receives the input sequence x; and the recurrent hidden state
sequence h;_j, along with the corresponding weights and biases.

With the abovementioned notations, an LSTM is defined as

i = 0 (Wyix, + Wyih,—y + b)) (D
fi = 0 (Wesx, + Waghi—1 + by) @)
0, = 0 (Wyox; + Wipohi—1 + by) 3
¢ = tanh(Wyex, + Wichi—y + b,) 4)
¢ =fi0oc1+iOF ®)
h; = o, © tanh(c,) ©)

where o (-) represents the sigmoid function and © is the
elementwise product. From the abovementioned LSTM equa-
tions, we see that the weight memory requirement of LSTMs
is 8 x compared with MLPs with the same number of neurons
per layer.

The LSTM-based speech recognition typically consists of
a pipeline of a pre-processing or feature extraction module,
followed by an LSTM RNN engine and then by a Viterbi
decoder [22]. A commonly used feature for pre-processing
of speech data is feature-space maximum likelihood linear
regression (fMLLR). fMLLR features are extracted from Mel
frequency cepstral coefficients (MFCCs) features, obtained
conventionally from 25-ms windows of audio samples with
a 10-ms overlap between adjacent windows. The features for
the current window are combined with those of past and future
windows to provide the context of input speech data. In our
implementation, we merge five past windows, one current
window, and five future windows to generate an input frame
with 11 windows, leading to a total of 440 fMLLR features
per frame. These merged set of features become inputs to the
ensuing LSTM RNN. The output layer of the LSTM consists
of probability estimates that are conveyed to the subsequent
Viterbi decoder module to determine the best sequence of
phonemes/words.
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Fig. 2.

B. Hierarchical Coarse-Grain Sparsity

The proposed HCGS scheme maintains coarse-grain spar-
sity while further allowing fine-grain weight connectivity, lead-
ing to significant energy and area reduction. Fig. 2 illustrates
two-level HCGS, where the first level compresses weights
(e.g., 4x compression) using a larger block size (e.g., 32 x32),
and the remaining weights in the large blocks go through
the second level of compression (e.g., 4 x) with a smaller block
size (e.g., 8 x 8). Beyond two levels, the HCGS hierarchy
can be expanded to have multiple levels of blockwise sparse
structure, recursively selecting even smaller blocks within
smaller blocks (e.g., three-level and four-level HCGSs).

The hierarchical structure of blockwise weights is randomly
selected before the RNN training process starts, and this
pre-defined structured sparsity is maintained throughout the
training and inference phases. We apply the constraint that
HCGS always selects the same number of random blocks
for every block row (see Fig. 2); hence, the selected blocks
fit efficiently in SRAMs, enhancing regular memory access
and hardware acceleration. The unselected blocks remain at
zero and do not contribute to the physical memory footprint
during both training and inference. While we focus on the
HCGS-based LSTM inference accelerator in this work, due
to the pre-defined and static nature of HCGS-based sparsity,
training hardware acceleration [23], [24] could also become
more efficient with significantly fewer weights and computa-
tion involved for the training process of deep neural networks.

We used three well-known benchmarks for speech recog-
nition applications, TIMIT [17], TED-LIUM [18], and
Libri-Speech [19], to train our proposed HCGS-based LSTMs
and evaluate the corresponding error rates. The baseline three-
layer, 512-cell LSTM RNN that performs speech recognition
for TED-LIUM/LibriSpeech data sets requires 24 MB of

Iustration of LSTM RNN weight compression featuring the proposed HCGS.

weight memory in floating-point precision. Aided by the
proposed HCGS that reduces the number of weights by 16x
and low-precision (6-bit) representation of weights, the com-
pressed parameters of a three-layer, 512-cell LSTM RNN is
reduced to only 288 kB (83 reduction in model size com-
pared with 24 MB). The resultant LSTM network can be fully
stored on-chip, which enables energy-efficient acceleration
without costly DRAM access.

C. HCGS-Based Training

We trained LSTM RNNs by minimizing the cross-entropy
error, as described in the following equation:

N
E = —Zti X hlyi
i=1

where N is the size of the output layer, y; is the ith output
node, and #; is the ith target value or label. The mini-batch
stochastic gradient method [25] is used to train the network.
The change in weight for each iteration is the differential of
the cost function with respect to the weight value, as follows:

AW = oF (8)
A
The weight W;; in the (k + 1)th iteration is updated using

the following equation:

@)

(Wii) e = (W) + {(Avvij)k +mx (AWij)k_l} xIr x Cyj
©)

where m is the momentum, Ir is the learning rate, and C;;
is the binary connection coefficient between two subsequent
neural network layers, which is introduced for the proposed
HCGS, and only the weights in the network corresponding to
Cij = 1 are updated.
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Fig. 3 illustrates an example C;; matrix for two levels of
HCGS. Since existing neural network training frameworks
(e.g., PyTorch and TensorFlow) cannot efficiently support this
type of hierarchical blockwise structure, we simply prevent
updating the non-selected weights from pre-defined sparsity
by setting C;; = 0. However, if such training frameworks
or ASIC accelerators for neural network training can support
this type of blockwise sparsity structure, we anticipate that the
training time and energy will decrease substantially.

Proposed LSTM training has been performed using the
PyTorch framework, and the code for this work is available at
https://github.com/razor1179/pytorch-kaldi-CGS.

D. Design Space Exploration

There are several important design parameters for
HCGS-based LSTM hardware design, including activa-
tion/weight precision, HCGS compression ratio, the number
of CGS levels, and width of LSTM RNN (i.e., the number of
LSTM cells in each layer). For this design space exploration,
we investigated a number of different LSTM RNNs and the
corresponding simulation results are shown in Fig. 4. Starting
from the LSTM trained with 32-bit floating-point precision
(phoneme error rate or PER = 16.6% for uncompressed
512-cell LSTM), we first reduced the weight precision down
to 6 bit to keep all weights on-chip with minor PER loss.
With 6-bit weights, we subsequently reduced the activation
precision to 13-bit, which overall resulted in small PER degra-
dation of 2.1% (PER = 18.7% for uncompressed fixed-point
precision 512-cell LSTM). As illustrated in the precision study
shown in Fig. 5, reducing the weight precision below 6 bits
(e.g., 3-bit precision) aggravated the error rate degradation for
HCGS-based LSTMs compressed by 16x.

Compared with single-level CGS [9], the two-level HCGS
scheme shows a favorable tradeoff between weight compres-
sion and PER of two-layer LSTM RNN for TIMIT data
set (see Fig. 4), aided by capability to balance coarse and
fine connection granularity for high levels of compression.
A similar trend has been found for the three-layer LSTM
RNNs for TED-LIUM and LibriSpeech data sets.
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Fig. 4. HCGS design space exploration of two-layer LSTM RNNs across
different RNN widths and number of CGS levels. The 6-bit weight precision
and 13-bit activation precision are used for all data points.

25+
=y 32-bit floating-point

24 4 —4— 6-bit fixed-point
ﬁ 23 . —&— 3-bit fixed-point
7] ) Li6x
© .

16X

% 22 compression
(a]
E 214
=

18 4 Uncompressed
32-bit FP
17 4 baseline
v
16 T T T
0.1 1 10

RNN Weight Memory (MB)

Fig. 5. Weight precision investigation with HCGS-based compression for
512-cell two-layer LSTM RNNs.

We have also experimented with three- and four-level
HCGS schemes. As shown in Fig. 4, the three-level HCGS
scheme resulted in 0.5%/0.2% worse PER for LSTMs with
256/512 cells and obtained marginal 0.2% PER improvement
over two-level HCGS for LSTMs with 1024 cells. Four-level
HCGS resulted in even worse PER results compared with
three-level HCGS; hence, the four-level HCGS results were
not included in Fig. 4. On the hardware side, even if three-level
HCGS had shown marginally better error rate than two-level
HCGS, given the additional hardware overhead of the selector
and logic for additional levels of HCGS, two levels would be
the optimal choice of levels for HCGS implementation.

Overall, 512-cell LSTMs show a good balance between
error rate (compared with 256-cell LSTMs) and memory
(compared with 1024-cell LSTMs) for various HCGS experi-
ments. Based on these results, we selected the 512-cell LSTM
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Fig. 7. Further reduction of index memory aided by using the same random
block selection for four gates in each LSTM layer.

and two-level HCGS with 16x compression as the hardware
design point (see Fig. 4), for speech recognition tasks using
TIMIT, TED-LIUM, and LibriSpeech data sets.

E. Robustness Across Random Block Selection and Further
Minimization of Index Memory

It is important to note that the block sizes chosen in both
levels may affect the final accuracy of the trained network.
Therefore, LSTM networks with varying block sizes in both
levels must be evaluated to obtain the optimal compression
and accuracy. These results are reported in Fig. 6, which
shows similar PER and WER values for the cases of using the
same and different random block assignments for four LSTM
gates. Compared with cases of using different random block
selection, sharing the same random block selection for four
gates did not affect PER or WER by more than 0.2% across
all our LSTM experiments.

Based on this result, to further increase the compression
efficiency, we employed the same random block selection
for weights associated with the four gates in each LSTM
layer. As shown in Fig. 7, sharing the same random block
selection results in 4x reduction of the index memory and
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reduces the computations for decompression by 4x as well.
As a result, only 1.17% index memory overhead exists for our
HCGS-based LSTM accelerator design. If the weight precision
were to be reduced to 3-bit, the index memory overhead would
double to 3.34%.

III. ARCHITECTURE AND DESIGN OPTIMIZATIONS
A. Hardware Architecture

Fig. 8 shows the overall architecture of the proposed
LSTM accelerator. Our LSTM accelerator consists of the
input and output buffers, MAC unit, HCGS selector, H-buffer,
C-buffer, two memory banks (144 kB each) for weight stor-
age, bias/index memory bank (8.5 kB), and the global finite
state machine (FSM). The proposed architecture facilitates
the computation of one LSTM cell output per cycle after an
initial latency period and reuses the MAC unit, as outputs are
computed in a layer-by-layer manner. The reuse of the MAC
unit leads to a compact design, allowing for storing weights,
LSTM states, and configuration bits in densely packed memory
structures without the need for complicated routing architec-
tures, as shown in [6].

1) HCGS Selector: The HCGS selector (see Fig. 8, top left)
has two levels, where the first level of selector only enables
the propagation of activations associated with larger non-zero
weights blocks and the second level further filters through
the activations associated with smaller non-zero blocks. The
selection of relevant blocks is done through the implementa-
tion of block multiplexers, which allows the propagation of
the set of inputs that correspond to non-zero weights stored.
With 16x HCGS compression, only 32 activation outputs
are required from a total of 512 activations, and only the
activations corresponding to non-zero weights propagate to the
MAC unit, largely improving energy efficiency.

The selection input for the HCGS selector is a 48-bit vector,
where 16 bits correspond to the first level of selection and the
remaining 32 bits are used for the second level. The selector
supports block sizes ranging from 128 x 128 to 32 x 32 for the
first level and from 16 x 16 to 4 x 4 for the second level. This
wide range of block sizes allows for flexibility to map arbitrary
LSTM networks trained with HCGS onto our accelerator chip
using different configurations.

2) Input and Output Buffers: An input frame consists of
fMLLR features, as described in Section II-A. The input buffer
is used to store the fMLLR features of an input frame, which
streams in 13 bits each cycle over 512 cycles. The input
buffer is essential for the continuous computation of the LSTM
output as it enables the subsequent input frame to be ready for
use as soon as the current frame computation is complete. This
buffer ensures that there is no stall required to stream in the
consecutive frames of the real-time speech input. The serial-
in/parallel-out input buffer takes in 13-bit inputs sequentially
and outputs all 6656 bits in parallel.

The output buffer consists of two identical buffers for double
buffering, which enables continuous computation of the LSTM
accelerator in conjunction with the input buffer while stream-
ing out the final layer outputs. Each output buffer employs an
HCGS selector and a 6656:416 multiplexer to feedback the
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Fig. 8. Overall architecture of the proposed LSTM RNN accelerator.

current layer output to the next layer. The feedback path from
the output buffer to the input of the MAC facilitates the reuse
of the MAC unit. Each output buffer takes in a 13-bit LSTM
cell output, and the correct buffer is chosen by the FSM by
keeping track of whether the buffer is full or ready to stream
data out of the chip.

Finally, a multiplexer is used to decide whether the x, input
should be from the input or the output buffer, and this is done
through the FSM that uses the frame complete flag to switch
between the two buffers.

3) H-Buffer and C-Buffer: The H-buffer and C-buffer are
rolling buffers and store the outputs of the previous frame
(h;—1) and cell state (c;—;) for each LSTM layer, respectively.
Each buffer has three internal registers corresponding to the
maximum number of layers supported by the hardware. The
C-buffer registers behave as shift registers, while the H-buffer
registers operate similar to the input buffer where inputs are
streamed in serially and outputs are streamed out in parallel.

4) MAC Unit: The MAC unit consists of 64 parallel MACs
(computing vector-matrix multiplications) and the LSTM gate
computation module (computing intermediate LSTM gate and
final output values), which can perform 129 (=64 x 2.1)
compressed operations equivalent to 2064 (=129 x 16) uncom-
pressed operations effectively in each cycle, aided by the pro-
posed HCGS compression by 16x. The non-linear activation
functions of sigmoid and hyperbolic tangent (tanh) are imple-
mented with piecewise linear (PWL) modules using 20 linear
segments that exhibit maximum relative error [(PWL_output —
ideal_output)/ideal_output] of 1.67 x 1073 and average relative
error of 3.30 x 107+

Memory Bank 1 h, = o, tanh(c,)

5) Weight/Bias Memory: As described in Section III-B,
weights are stored in the interleaved fashion, where each
memory sub-bank (W1-W3) stores weights corresponding
to a single layer. Since all weights of the two-/three-layer
RNNSs can be loaded on-chip initially, write operations are not
needed for our LSTM accelerator during inference operations.
The required read bandwidth of our LSTM accelerator is
192 bits/cycle from memory bank 0 and 192 bits/cycle from
memory bank 1 (see Fig. 8). If there are more parallel MAC
units, the required read bandwidth will proportionally increase.

The memory sub-banks that store weights of layers not cur-
rently being computed are put into “selective precharge” mode,
which clamps the wordlines to a low value (0 V) and floats the
bitlines for leakage power reduction. Getting into and out of
this selective precharge mode each adds a small overhead of
one extra cycle. Moreover, due to the nature of the LSTM,
each weight in the memory and sub-banks are used only
once, which makes the number of transitions between selective
precharge mode and normal mode for each sub-bank to be
minimal. Overall, adding the selective precharge mode resulted
in 19% energy-efficiency improvement at the system-level for
the LSTM accelerator.

B. Interleaved Memory Storage

Fig. 9 shows the timing diagram of LSTM computation and
the necessary interleaved storage pattern of weights in on-chip
SRAMs. The LSTM cell stores the intermediate products to
compute the cell state (c;) and output (4,). Conventionally,
the cell states and outputs of an entire layer are computed
only after every intermediate gate output for the corresponding

Authorized licensed use limited to: ASU Library. Downloaded on February 22,2021 at 04:29:31 UTC from IEEE Xplore. Restrictions apply.



KADETOTAD et al.: 8.93 TOPS/W LSTM RNN ACCELERATOR FEATURING HCGS FOR ON-DEVICE SPEECH RECOGNITION

Timing Diagram

1 clock cycle
—
MAC

Yoo _Xinput Xforget X cand. Xoutput)input
Input >< X2 X X3

Weights>< W, X Wi¢ X W, on W,

State 1 X e
LSTM
Output he X b1
SRAM Bank Interleaved Storage

row 0 W, row 0 Wi

row 1 Wy row 1 Wi

row2 W, row2 W

row3  W,, row3d W,

row 4 W, row 4 Wi

Fig. 9. Timing diagram of LSTM computation (top) and interleaved storage
of weights in SRAM (bottom).

layer is completed. However, this leads to additional memory
requirements to store the intermediate gate outputs for all
the LSTM cells in the layer. To alleviate this issue, we take
advantage of the structure of the LSTM cell. The proposed
architecture cycles between the four states computing internal
gates of the LSTM cell, namely, input gate (i;), forget gate
(f;), output gate (o;), and candidate memory (¢;). In addition,
the vector-matrix multiplications of x, W,, and h,_; Wy, can
be computed in independent streams, effectively increasing
throughput via parallel computing.

To enable this efficiently, we store each row of four matrices
Wiis Wir, Wy, and Wy, in a staggered manner (same for Wj,.)
in on-chip SRAM arrays (see Fig. 9, right bottom). This way,
the computation of new ¢, and &, values can be completed after
every four cycles, hence eliminating the requirement to store
all intermediate gate outputs of the layer. Also, as described
in Section II-E, since we used the same random hierarchical
block selection for HCGS for all four matrices of W,;, W,y,
W0, and W, (same for Wj,), the selector logic does not need
to change through the interleaving process.

C. End-to-End Operation and Latency

Since all weights of target LSTM networks with HCGS
compression are stored on-chip, there is no need to off-chip
DRAM communication, and our chip performs the end-to-end
operation of the entire LSTM in a pipelined fashion.

The initial delay of 512 cycles is consumed to load the
input buffer. Once the input buffer is filled, each LSTM state
computation takes three cycles, one for MAC, one for addition,
and one for activation, which is all pipelined. The first neuron
output takes a total of nine cycles, after which we obtain a
new neuron output every cycle. The outputs of the current
layer are stored in the output buffer. Once the output buffer
is full, if the current layer is an intermediate layer, the output
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Fig. 10. Prototype chip micrograph and performance summary.

Example Speech Recognition Results (TED-LIUM Dataset)
Golden Output  Chip Output Transcribed text

1b49 TomWujec: if you have ten teams
:gg that typically perform you'll get
maybe six or so that have standing

006b
00ef - structures

1fe5
poisd [ LSTM chip + Kaldi prediction |
1d49 TomWoujec: if you have th hen teams
that typically perform you'll get
maybe six or so that have standing
structures

Fig. 11. Example speech recognition results for the TED-LIUM data set.

directly is conveyed to the input of the next layer, or if the
current layer is the last layer of the LSTM, the output data is
streamed out of the chip over 512 cycles.

IV. MEASUREMENT RESULTS

The proposed LSTM RNN accelerator is fabricated
in 65-nm LP CMOS. Fig. 10 shows the chip micrograph and
performance summary. For chip testing, we initially load the
weights, biases, and configuration bits to on-chip memory.
To verify real-time operation, 13-bit input fMLLR features are
streamed into the input buffer every cycle (see Section III-A),
while LSTM outputs from the chip are streamed out and
stored.

A. Pre-/Post-Processing Operations

The pre-processing steps are performed in Kaldi frame-
work [26] using audio files from TIMIT, TED-LIUM, and
LibriSpeech data sets. The same extracted input features
were used for LSTM training and real-time inference based
on HCGS compression. With LSTM outputs streamed out
of the chip, we perform post-processing also using Kaldi
framework [26] to obtain the final error rates for speech
recognition. When 512 outputs (13-bit each) per frame are
received from chip output, the hidden Markov model (HMM)
states are calculated using a weighted finite-state trans-
ducer (WFST) that performs Viterbi beam search, finally
obtaining phoneme error rate (for TIMIT data set) or WER (for
TED-LIUM/LibriSpeech data sets). Example speech recogni-
tion results and the transcribed text for the TED-LIUM data
set are shown in Fig. 11.
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Fig. 12. Power and frequency measurement results with voltage scaling for (a) two-layer LSTM for the TIMIT data set, (b) three-layer LSTM for the

TED-LIUM data set, and (c) three-layer LSTM for the LibriSpeech data set.
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Fig. 13.  Measurement results of energy efficiency (TOPS/W) and leakage
power of two-layer LSTM for TIMIT data set.

While our chip did not integrate pre-/post-processing
engines, we can deduce the relative power consumption
of them from other prior works. Regarding pre-processing,
a recent work [27] proposed serial FFT computation and
frame computation re-use for MFCC and reported the MFCC
pre-processing power from 28-nm prototype chip as 340 nW
at 0.41 V at 40 kHz. Even if we consider CMOS scaling from
different technologies, supply voltage, and frequency, still,
the MFCC pre-processing power will be a fraction of 1 mW
for real-time speech recognition. Regarding post-processing,
Price er al. [22] implemented both the deep neural network
(only supported MLPs) and post-processing engine (Viterbi
search) for speech recognition. For large MLPs (e.g., six layers
of 512 neurons each), it has been reported that the MLP
module consumes >4x more power than the WFST/Viterbi
search module. As aforementioned, an LSTM RNN requires
8x weights compared with an MLP with the same number
of neurons per layer. Therefore, we anticipate that both the
pre-processing and post-processing engines will consume rel-
atively much smaller power than the LSTM RNN engine, and
thus, power/energy reduction of the LSTM RNN would remain
as a large benefit for the overall ASR system.

B. Performance, Energy, and Error Rate Measurements

Fig. 12 shows the chip measurement results for two-
/three-layer LSTM RNNs for TIMIT/TED-LIUM/LibriSpeech

Input Buffer C-
SRAM Mux. Buffer

Output

MAC Buffer

Logic E:IicY

Memory RN RS

08 12 16 20 24 28
Power (mW)

0.0 04

Fig. 14. Power breakdown of three-layer LSTM for TED-LIUM data set at
0.75-V supply. As logic supply and memory supply were separated, the logic
power and memory power themselves are directly from chip measurement.
The percentage of module-level breakdown within logic/memory power was
obtained from post-layout simulation.

data sets. With voltage scaling, the power consumption at
0.68 V for the two-layer RNN for TIMIT is 1.85 mW at
8 MHz [see Fig. 12(a)] and, at 0.75 V for the three-layer RNNs
for TED-LIUM/LibriSpeech, is 3.43/3.42 mW at 12 MHz
[see Fig. 12(b) and (c)]. In all cases, the accelerator satisfies
the real-time speech recognition requirement of 100 frames/s
(10 ms/frame).

With the proposed HCGS scheme, our LSTM accelerator
achieves an average energy efficiency of 8.93 TOPS/W for
running end-to-end two-layer LSTM RNN for TIMIT data
set (see Fig. 13) and 7.22/7.24 TOPS/W for running end-
to-end three-layer LSTM RNNs for TED-LIUM/LibriSpeech
data sets while meeting the real-time speech recognition
requirement. If we relax the real-time performance constraint,
higher energy efficiency can be achieved. The total leakage
power at 0.68-V supply is less than 10 W (see Fig. 13).

The memory and logic power breakdown for the three-layer
RNN at 0.75-V supply is shown in Fig. 14. It can be seen that
the logic power is dominant due to the highly compressed
weight memory despite a large number of RNN weight matri-
ces. Pipelined with the LSTM gate computation unit, the MAC
engines exhibit a very high utilization ratio of 99.66%.

This high MAC efficiency is obtained because each of the
layers in the two-/three-layer RNNs that we target has a regular
structure to start with, and also HCGS compression still main-
tains a regular structure because we have the same number of
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TABLE I

COMPARISON OF RNN PERFORMANCE WITH PRIOR WORKS
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[7] [10] [12] [13] [11] This Work
65nm 65nm 65nm 65nm
Technology FPGA FPGA CMOS CMOS CMOS CMOS
Area (mm?) - - 1.57 19.36 7.5 7.74
On-Chip Memory
(KB) 4.2 MB 280 82 348 100 297
Number of MACs - - 96 - 256 65
Bit-Precision 4/4
Weights / Activations 12/16 16/16 8/16 16716 (FFT: 8-bit) 6/13
Core Voltage (V) - - 1.24/0.75 1.2/0.67 1.15/0.54 1.1/0.68
Frequency (MHz) ' 200 200 168/20 200/10 200/25 80/8
Power (mW) ' 41w 22W 29/1.2 447/4 339.2/13.3 67.3/1.85
Peak Performance
(GOPS) ! 2500 - - - 14.9 164.95/24.60
Energy-Efficiency
(TOPS/W) ' 0.061 2.08 1.11/3.08 1.06/5.09 14.4 q 2.45/8.93
worse by 1.93% 20.6%
PER (TIMIT) 20.7% 253% - compared to :
baseline (measured)
21.3%
WER (TED-LIUM) - - - (measured)
P 11.4%
WER (LibriSpeech) - - - (measured)

! Performance, power, and energy-efficiency values all correspond for RNNs for TIMIT dataset.

26 -
16x16
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24 4 8x8
@ 234 =i— ESE [7] (FPGA)
— pibe— C-LSTM (Small LSTM) [10] (FPGA)
14 9= TrueNorth (HGMM) [28]* (28nm)
g_J 224 —@—This Work (65nm)
2.95X
214 & v
204 16X
8X
19 4¢ v T T
100 1k 10k 100k
FPS/W
* [28] classification error from HGMM.
Fig. 15. Comparison of PER for TIMIT data set and energy efficiency

(FPS/W) with prior LSTM implementations.

blocks pruned/kept in the same block row (see Fig. 2). As
long as the number of compressed LSTM operations for each
RNN layer is an integer multiple of 64, all 64 MAC units in our
chip will continuously perform operations without idle periods.
In addition, the input and output buffers (see Fig. 8) are
designed specifically to enable continuous operations without
idle periods between layers.

We achieve measured accuracy results of 20.6% PER for
TIMIT, 21.3% WER for TED-LIUM, and 11.4% WER for
LibriSpeech data sets.

C. Comparison to Prior LSTM/RNN Works

Since most LSTM or RNN ASIC works only reported error
rate results with the simpler TIMIT database, we compared

the TIMIT PER and frames/second/power (FPS/W) in Fig. 15
of the proposed HCGS and prior works [7], [10], [28] that
perform speech/phoneme recognition.

The RNN accelerator [29] reports low power consumption
but can only support limited keyword spotting tasks and is
not considered. Compared with 28-nm ASIC design supporting
speech recognition [28], this work shows 2.95x higher energy
efficiency (FPS/W) with slightly better PER. Although FPS/W
in [10] is comparable to our work, we achieve considerably
lower PER. Conversely, [7] has comparable PER to our
work but poor FPS/W. The recent ASIC work based on
block-circulant matrices [11] has neither reported the absolute
PER for TIMIT nor the results necessary to calculate cor-
responding FPS/W. Overall, this demonstrates the effective-
ness of our proposed design due to the algorithm-hardware
co-optimization.

Table I shows a detailed comparison with prior ASIC and
FPGA hardware designs for RNNs. Compared with the RNN
ASIC works of [12] and [13], this work shows 2.90x and
1.75x higher energy efficiency (TOPS/W), respectively. Ref-
erence [11] presented higher TOPS/W than our work, but the
end-to-end latency or FPS has not been reported. Moreover,
only a simpler TIMIT data set has been benchmarked (while
we also benchmarked against more complex TED-LIUM and
LibriSpeech data sets), and the absolute TIMIT PER has been
not shown.

V. CONCLUSION

This article presents an energy-efficient LSTM accelerator
featuring hierarchical/recursive blockwise sparsity for ASR.
HCGS enables large compression (16x) of LSTM weights
with graceful error rate degradation while minimizing the
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index memory cost (~1%). Exploiting the hierarchical block-
wise sparsity and low-precision quantization, our LSTM accel-
erator stores the entire compressed weights of three-layer,
512-cell LSTMs in 288 kB of on-chip SRAM and reduces the
required computation by up to 16 x. Experiments conducted on
TIMIT, TED-LIUM, and LibriSpeech data sets demonstrated
the effectiveness and applicability of HCGS across various
LSTM RNNs.

The prototype chip fabricated in 65-nm LP CMOS achieves
average energy efficiency of 8.93 TOPS/W for two-layer
LSTM for TIMIT data set and 7.22/7.24 TOPS/W for
three-layer LSTM for TED-LIUM/LibriSpeech data sets
while meeting the real-time speech recognition perfor-
mance constraint. Algorithm/hardware techniques demon-
strated by HCGS and our prototype chip can help enable
on-device ASR on edge devices with severe area and energy
constraints.

REFERENCES

[1] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

W. Xiong, L. Wu, F. Alleva, J. Droppo, X. Huang, and A. Stolcke,

“The microsoft 2017 conversational speech recognition system,” in Proc.

IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2018,

pp. 5934-5938.

[3] K. J. Han, A. Chandrashekaran, J. Kim, and I. Lane, “The CAPIO 2017
conversational speech recognition system,” 2017, arXiv:1801.00059.
[Online]. Available: http://arxiv.org/abs/1801.00059

[4] M. Halpern, Y. Zhu, and V. J. Reddi, “Mobile CPU’s rise to power:
Quantifying the impact of generational mobile CPU design trends on
performance, energy, and user satisfaction,” in Proc. IEEE Int. Symp.
High Perform. Comput. Archit. (HPCA), Mar. 2016, pp. 64-76.

[5]1 S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 1135-1143.

[6] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127-138,
Jan. 2017.

[71 S. Han et al., “ESE: Efficient speech recognition engine with sparse
LSTM on FPGA,” in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate
Arrays (FPGA), 2017, pp. 75-84.

[8] W. Wen et al., “Learning intrinsic sparse structures within long short-

term memory,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2018,

pp. 1-14.

D. Kadetotad, S. Arunachalam, C. Chakrabarti, and J.-S. Seo, “Efficient

memory compression in deep neural networks using coarse-grain sparsi-

fication for speech applications,” in Proc. 35th Int. Conf. Comput.-Aided

Design, Nov. 2016, pp. 1-8.

S. Wang et al., “C-LSTM: Enabling efficient LSTM using structured

compression techniques on FPGAS,” in Proc. ACM/SIGDA Int. Symp.

Field-Program. Gate Arrays, Feb. 2018, pp. 11-20.

[11] J. Yue et al., “A 65 nm 0.39-to-140.3 TOPS/W 1-to-12b unified
neural network processor using block-circulant-enabled transpose-
domain acceleration with 8.1x higher TOPS/mm? and 6T HBST-
TRAM-based 2D data-reuse architecture,” in [EEE ISSCC Dig. Tech.
Papers, Feb. 2019, pp. 138-140.

[12] F. Conti, L. Cavigelli, G. Paulin, I. Susmelj, and L. Benini, “Chipmunk:

A systolically scalable 0.9 mm?2, 3.08Gop/s/mW 1.2 mW accelerator for

near-sensor recurrent neural network inference,” in Proc. IEEE Custom

Integr. Circuits Conf. (CICC), Apr. 2018, pp. 1-4.

S. Yin et al., “A 1.06-t0-5.09 TOPS/W reconfigurable hybrid-neural-

network processor for deep learning applications,” in Proc. Symp. VLSI

Circuits, Jun. 2017, pp. 26-27.

C. Gao, D. Neil, E. Ceolini, S.-C. Liu, and T. Delbruck, “DeltaRNN:

A power-efficient recurrent neural network accelerator,” in Proc.

ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, Feb. 2018,

pp- 21-30.

[2

—

[9

—

[10]

[13]

[14]

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 55, NO. 7, JULY 2020

[15] C. Gao, S. Braun, I. Kiselev, J. Anumula, T. Delbruck, and S.-C. Liu,

“Real-time speech recognition for IoT purpose using a delta recurrent

neural network accelerator,” in Proc. IEEE Int. Symp. Circuits Syst.

(ISCAS), May 2019, pp. 1-5.

S. Dey and P. D. Franzon, “An application specific processor architecture

with 3D integration for recurrent neural networks,” in Proc. 20th Int.

Symp. Qual. Electron. Design (ISOED), Mar. 2019, pp. 183-190.

[17] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, and
N. L. Dahlgrenm “DARPA TIMIT acoustic-phonetic continous speech
corpus CD-ROM,” NISTIR, Gaithersburg, MD, USA, Tech. Rep. 4930,
Feb. 1993.

[18] A. Rousseau, P. Deléglise, and Y. Esteve, “TED-LIUM: An auto-

matic speech recognition dedicated corpus,” in Proc. Int. Conf. Lang.

Resources Eval. (LREC), 2012, pp. 125-129.

V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech:

An ASR corpus based on public domain audio books,” in Proc.

IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2015,

pp. 5206-5210.

D. Kadetotad, V. Berisha, C. Chakrabarti, and J. Seo, “A 8.93-

TOPS/W LSTM recurrent neural network accelerator featuring hier-

archical coarse-grain sparsity with all parameters stored on-chip,” in

Proc. IEEE Eur. Solid-State Circuits Conf. (ESSCIRC), Sep. 2019,

pp. 119-122.

D. Kadetotad, V. Berisha, C. Chakrabarti, and J.-S. Seo, “A 8.93-

TOPS/W LSTM recurrent neural network accelerator featuring hierar-

chical coarse-grain sparsity with all parameters stored on-chip,” IEEE

Solid-State Circuits Lett., vol. 2, no. 9, pp. 119-122, Sep. 2019.

[22] M. Price, J. Glass, and A. P. Chandrakasan, “A low-power speech

recognizer and voice activity detector using deep neural networks,” IEEE

J. Solid-State Circuits, vol. 53, no. 1, pp. 6675, Jan. 2018.

S. Yin and J.-S. Seo, “A 2.6 TOPS/W 16-bit fixed-point convolutional

neural network learning processor in 65-nm CMOS,” IEEE Solid-State

Circuits Lett., vol. 3, no. 1, pp. 13-16, Jan. 2020.

S. K. Venkataramanaiah et al., “Automatic compiler based FPGA

accelerator for CNN training,” in Proc. 29th Int. Conf. Field Program.

Log. Appl. (FPL), Sep. 2019, pp. 166-172.

[25] W. A. Gardner, “Learning characteristics of stochastic-gradient-descent
algorithms: A general study, analysis, and critique,” Signal Process.,
vol. 6, no. 2, pp. 113-133, Apr. 1984.

[26] M. Ravanelli, T. Parcollet, and Y. Bengio, “The pytorch-kaldi speech
recognition toolkit,” in Proc. ICASSP-IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), May 2019, pp. 6465-6469.

[27] W. Shan et al., “A 510 nW 0.41 V low-memory low-computation

keyword-spotting chip using serial FFT-based MFCC and binarized

depthwise separable convolutional neural network in 28 nm CMOS,”

in IEEE ISSCC Dig. Tech. Papers, Feb. 2020, pp. 230-232.

S. K. Esser et al., “Convolutional networks for fast, energy-efficient

neuromorphic computing,” Proc. Nat. Acad. Sci. USA, vol. 113, no. 41,

pp. 11441-11446, Oct. 2016.

[29] J. S. P. Giraldo and M. Verhelst, “Laika: A 5 uW programmable
LSTM accelerator for always-on keyword spotting in 65 nm CMOS,”
in Proc. IEEE Eur. Solid-State Circuits Conf. (ESSCIRC), Sep. 2018,
pp. 166-169.

[16]

[19]

[20]

[21]

(23]

[24]

[28]

Deepak Kadetotad (Member, IEEE) received the
B.E. degree in electronics and communication engi-
neering from the M. S. Ramaiah Institute of Tech-
nology, Bengaluru, India, in 2013, and the Ph.D.
degree in electrical engineering from Arizona State
University, Tempe, AZ, USA, in 2019.

In 2019, he joined Starkey Hearing Technologies,
Eden Prairie, MN, USA, where he is working on
speech enhancement using machine learning. His
current research interests include the application of
machine learning and neuromorphic algorithms on
energy-constrained hardware.

Dr. Kadetotad was a recipient of the LSI Chairman’s International Scholar-
ship from 2009 to 2013.

Authorized licensed use limited to: ASU Library. Downloaded on February 22,2021 at 04:29:31 UTC from IEEE Xplore. Restrictions apply.



KADETOTAD et al.: 8.93 TOPS/W LSTM RNN ACCELERATOR FEATURING HCGS FOR ON-DEVICE SPEECH RECOGNITION

Shihui Yin (Student Member, TEEE) received the
B.S. degree in microelectronics from Peking Univer-
sity, Beijing, China, in 2013, and the M.S. degree in
electrical engineering from Carnegie Mellon Univer-
sity, Pittsburgh, PA, USA, in 2015.

He is currently pursuing the Ph.D. degree in
electrical engineering with Arizona State University,
Tempe, AZ, USA. His research interests include
low-power biomedical circuit and system design,
and energy-efficient hardware design for machine
learning and neuromorphic computing.

Mr. Yin was a recipient of the University Graduate Fellowship from Arizona
State University in 2015 and the IEEE Phoenix Section Student Scholarship
for the year 2016.

Visar Berisha (Member, IEEE) received the Ph.D.
degree from Arizona State University (ASU),
Tempe, AZ, USA, in 2007.

From 2007 to 2009, he was a Member of the
Technical Staff with the Lincoln Laboratory, Massa-
chusetts Institute of Technology, Cambridge, MA,
USA. He is currently an Associate Professor with the
School of Electrical Computer and Energy Engineer-
ing, College of Health Solutions and Fulton Entre-
preneurial Professor, ASU. His research interests
include computational models of speech production
and perception, clinical speech analytics, and statistical signal processing.

1887

Chaitali Chakrabarti (Fellow, IEEE) received
the B.Tech. degree in electronics and electrical
communication engineering from IIT Kharagpur,
Kharagpur, India, in 1984, and the Ph.D. degree
in electrical engineering from the University of
Maryland, College Park, MD, USA, in 1990.

She is currently a Professor with the School
of Electrical, Computer and Energy Engineer-
ing, Arizona State University, Tempe, AZ, USA.
Her research interests include VLSI algorithm-
architecture co-design of signal processing and com-
munication systems and all aspects of low-power embedded systems’ design.

Jae-sun Seo (Senior Member, IEEE) received
the B.S. degree in electrical engineering from
Seoul National University, Seoul, South Korea,
in 2001, and the M.S. and Ph.D. degrees in elec-
trical engineering from the University of Michi-
gan, Ann Arbor, MI, USA, in 2006 and 2010,
respectively.

From 2010 to 2013, he was with the IBM T. J.
Watson Research Center, Yorktown Heights, NY,
USA, where he worked on cognitive computing
chips under the DARPA SyNAPSE Project and
energy-efficient integrated circuits for high-performance processors. In 2014,
he joined the School of Electrical, Computer and Energy Engineering, Arizona
State University, Tempe, AZ, USA, as an Assistant Professor. In 2015,
he was with the Intel Circuits Research Lab, Hillsboro, OR, USA, as a
Visiting Faculty. His current research interests include efficient hardware
design of machine learning and neuromorphic algorithms and integrated power
management.

Dr. Seo was a recipient of the Samsung Scholarship from 2004 to 2009,
the IBM Outstanding Technical Achievement Award in 2012, and the NSF
CAREER Award in 2017.

Authorized licensed use limited to: ASU Library. Downloaded on February 22,2021 at 04:29:31 UTC from IEEE Xplore. Restrictions apply.



