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ABSTRACT

In the learning sciences, heterogeneity among students usu-
ally leads to different learning strategies or patterns and
may require different types of instructional interventions.
Therefore, it is important to investigate student subtyp-
ing, which is to group students into subtypes based on their
learning patterns. Subtyping from complex student learn-
ing processes is often challenging because of the informa-
tion heterogeneity and temporal dynamics. Various inverse
reinforcement learning (IRL) algorithms have been success-
fully employed in many domains for inducing policies from
the trajectories and recently has been applied for analyzing
students’ temporal logs to identify their domain knowledge
patterns. IRL was originally designed to model the data by
assuming that all trajectories have a single pattern or strat-
egy. Due to the heterogeneity among students, their strate-
gies can vary greatly and the design of traditional IRL may
lead to suboptimal performance. In this paper, we applied
a novel expectation-maximization IRL (EM-IRL) to extract
heterogeneous learning strategies from sequential data col-
lected from three simulation environments and real-world
longitudinal students’ logs. Experiments on simulation en-
vironments showed that EM-IRL can successfully identify
different policies from the heterogeneous sequences with dif-
ferent strategies. Furthermore, experimental results from
our educational dataset showed that EM-IRL can be used
to obtain different student subtypes: a “learning-oriented”
subtype who learned the material as much as possible re-
gardless of the time in that they spent significantly more
time than the other two subtypes and learned significantly;
an “efficient-oriented” subtype who learned efficiently in that
they not only learned significantly but also spent less time
than the first subtype; a “no learning” subtype who spent
less amount of time than first subtype and failed to learn.
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1. INTRODUCTION

With the rapid development of educational technologies,
longitudinal students’ learning progression trajectories are
readily available. It is often challenging to analyze large-
scale heterogeneous progression trajectories to infer high-
level information embedded in student subgroups. This chal-
lenge motivates the development of student modeling [1, 2,
3, 4] and instructional intervention [5, 6, 7, 8].

Student subtyping, which seeks student groups with sim-
ilar learning progression trajectories, is crucial to address
the heterogeneity in the students, which ultimately leads to
personalized instruction where students are provided with
interventions tailored to their unique learning status. Stu-
dent subtyping facilitates the investigation of different types
of pedagogical strategies. From the data mining perspec-
tive, student subtyping is posed as an unsupervised cluster-
ing task of grouping students according to their historical
records. Since these records are longitudinal and interre-
lated, it is important to capture the dependencies among
the elements of the recorded sequence to learn more effec-
tive and robust representations, which can be utilized in the
clustering stage to obtain the student subgroups.

This work aims at investigating student subtyping based on
their pedagogical strategies, which can be seen as a process
of self-regulated learning [9, 10, 11, 12, 13] by setting one’s
learning goals and ensuring the goals to be attained. Specif-
ically, we focus on students’ pedagogical decision-making
strategies during their interactions with an intelligent tutor-
ing system (ITS) to learn the probability. In this ITS, once a
problem is presented, the students will decide whether they
want the ITS to tell them how to solve the next problem
or complete the next step, by presenting a worked exam-
ple, or they want the ITS to elicit the next problem or
take the next step themselves, by requiring problem solv-
ing. When making pedagogical decisions, the students have
to self-regulate their own learning process which may change
the learning outcomes even though the instructional content
is controlled. We believe that students’ pedagogical strate-
gies are closely related to metacognition, i.e., the processes
involved in thinking about thinking [14].

Reinforcement learning (RL) offers one of the most promis-
ing approaches to induce effective pedagogical strategies di-
rectly from data. A number of researchers have studied ap-
plying RL to improve the effectiveness of ITSs, e.g. [15, 7,
16, 17, 18, 19, 20, 8, 21, 22], and much of the prior work fo-



cused on inducing effective policies that determine the best
action for the ITS to take in any given situation so as to
maximize a cumulative reward, which is often the student
learning gain. On the other hand, in this work, our goal
is to infer students’ pedagogical strategies based on their
behaviors and decisions while interacting with the I'TS.

To do so, we applied inverse reinforcement learning (IRL).
Unlike RL, where the reward function is explicitly given as
input, IRL takes a bunch of trajectories as input and from
which a reward function will be inferred. Given this inferred
reward function, the RL can be further deployed to induce
the decision-making policy. Since the students’ decisions are
generally made based on a trade-off among various complex
factors, e.g., time, learning gain, difficulty of problems, etc.,
merely taking the learning gain as the reward cannot re-
flect the actual decision-making patterns. As a result, we
employed IRL to learn students’ strategies based on their
behavioural data. Recently, IRL has been widely employed
in various domains to understand how decisions are made in
the given trajectories [23, 24]. Specifically, it has been em-
ployed in educational domains to analyze students’ temporal
log data to identify their domain knowledge patterns [25,
26]. However, IRL was originally designed to model the
data by assuming that all trajectories share a single pattern
or strategy. Considering the heterogeneity among students,
their pedagogical strategies can vary greatly and the de-
sign of traditional IRL may lead to suboptimal performance.
Though we can apply IRL individually for each student, it
will forfeit our goal of revealing some general and meaning-
ful patterns from students’ trajectories in consideration of
the heterogeneity among subgroups of students.

We employed a novel expectation-maximization IRL (EM-
IRL) algorithm [27] to model the heterogeneity among stu-
dent subtypes by assuming that different student subtypes
have different pedagogical strategies and students within
each subtype share the same strategy. The EM-IRL would
recursively cluster students into different subgroups and in-
duce a policy for each group by IRL until both clusters and
policies get converged. In the original EM-IRL work, it re-
quires the number of clusters to be pre-defined [27]. How-
ever, when applying it to student subtyping in education, it
is often hard to figure out beforehand how many types of
strategies are involved in students’ trajectories. Therefore,
we embedded the original EM-IRL into a general framework
which can automatically determine the optimal number of
clusters from the data.

In this work, we evaluated our general framework on three
simulation environments: Grid World, Highway, and Moun-
tain Car, and on real-world longitudinal students’ logs col-
lected from an ITS. Our results in three simulation envi-
ronments showed that EM-IRL could accurately cluster the
data with different decision-making strategies. In addition,
the experimental results showed that EM-IRL could be eas-
ily employed to obtain the student subtypes. Specifically, we
got three student subtypes: a “learning-oriented” subtype
who try to learn the material as much as possible regardless
of the time spent and they learned significantly from pre-
to post-test; an “efficient-oriented ” subtype who learn effi-
ciently in that they not only learned significantly but also
spent significantly less time than the first subtype; a “no

learning”subtype who spent the less time and failed to learn.
The clustering results suggested the potential of targeting
the students who are not using effective pedagogical strate-
gies, adapting the interventions, and offering the students
effective pedagogical skill training through the ITS.

The remaining parts are organized as follows. In Section 2,
related works are reviewed. Section 3 presents the methods,
including the RL, IRL, and EM-IRL. Section 4 displays pre-
liminary results we got in three simulation environments.
Section 5 details data collected from the ITS. In Section
6, we discuss the experimental setup for EM-IRL and some
other clustering methods. Section 7 presents the experimen-
tal results. Finally, Section 8 summarizes the paper.

2. RELATED WORKS
2.1 Students’ Subtyping

Previous research has widely explored modeling of student
subtyping to assist teachers in providing more targeted in-
terventions at the right time. Generally, student subtyp-
ing was analyzed via unsupervised clustering methods. For
example, Lopez et al. employed an expectation maximisa-
tion clustering method to determine if the students’ partic-
ipation in course Moodle forum could be a good predictor
of the final marks [28]. Durairaj and Vijitha applied K-
means clustering to predict the pass/fail percentage of the
students who appeared for a particular examination [29].
Khalil and Ebner clustered the students into appropriate
categories based on their level of engagement [30], so that
the teachers could increase retention and improve interven-
tions for specific sub-population. All of these methods were
based on the static data, without considering the dynamic
properties during learning.

With the rapid development of e-learning, an increasing
amount of sequential data was collected via I'TSs. In general,
the clustering methods to handle sequential data could be
generalized into three categories: proximity-based, feature-
based, and model-based [31]. More specifically, proximity-
based methods measures the similarity between the pair-
wise data via the distance calculated by the longest com-
mon subsequence, dynamic time warping, etc. For exam-
ple, Shen and Chi proposed a temporal clustering frame-
work which measured pair-wise distance between the stu-
dents by dynamic time warping and then clustered them by
hierarchical clustering [32]. Their method identified some
distinctive patterns among the clusters, which could pro-
vide benefits to the personalized learning. Feature-based
approaches would first compress the sequential data to be
static, then the clustering methods taking static data as in-
put could be further employed. For example, in [33] and [34],
the authors aggregated the students’ activities to a feature
vector and then applied K-means clustering to recognize
learner groups in exploratory learning environments. In the
model-based methods, the similarity of two data could be
calculated based on the likelihood of one of them given the
model derived from the other. For example, Li and Yoo
proposed to use a Markov chain based clustering methodol-
ogy to model the students’ online learning behaviors col-
lected during the learning process for more effective and
adaptive teaching [31]. Additionally, Kock and Paramythis
proposed a method combining K-means clustering with dis-



crete Markov models to identify new, semantically meaning-
ful problem-solving styles of the learners [35].

2.2 Students’ Pedagogical Strategies

A number of researchers have investigated students’ peda-
gogical decision-making [36, 37, 38, 39, 40, 41]. Previous
research has shown that students make pedagogical deci-
sions strategically. For example, Aleven et al. conducted
a study to investigate students’ hint usage behavior [36].
Results showed that students used the easy-to-apply intelli-
gent help more often than the Glossary. However, students
often waited long before asking for a hint. When requesting
hints, they often skipped the intermediate hints to reach the
bottom-out hint which showed the solution directly. The
results suggested that students preferred less effort-taking
help (intelligent help and bottom-out hint), and oftentimes,
they used the help less than they needed.

Additionally, prior research showed that providing students
with pedagogical decision-making assistance could result in
better decision-making skills or learning performance. Roll
et al. [37] examined the relationship between students’ help-
seeking patterns and learning performance. They found
that asking for help on challenging steps was generally pro-
ductive while help abusing behaviors were correlated with
poor learning. Mitrovic et al. [38] compared three types
of decision-making modes: system control, student control,
and faded control. Under the faded control, the system se-
lected the problem for the student at the beginning of the
training and gave explanations of why the problems should
be selected. As the training proceeded, the control was given
to the students. Results showed that the faded control group
demonstrated improved problem selection skill and achieved
better learning gain than the other two groups. Long et
al. [39] compared an assistance condition, where problem se-
lection assistance was provided, with standard condition (no
assistance). Their results showed the assistance condition
achieved significantly better learning performance and bet-
ter declarative knowledge of a key problem-selection strategy
comparing to the standard condition.

2.3 Learning From Demonstrations

Learning from demonstrations [42], also known as imitation
learning [43] or apprenticeship learning [44], is a process to
reproduce the decision-making behaviors in demonstrated
trajectories. Generally, the methods in this area can be cat-
egorized into two groups: 1) directly learning a policy as a
state-action mapping by parroting the demonstrated behav-
iors, which is typically done via supervised learning; and 2)
inferring rewards from the demonstrations and then apply-
ing reinforcement learning (RL) to induce the policy, which
is called inverse reinforcement learning (IRL). The latter is
generally preferred because the reward is a more robust, suc-
cinct, and transferable definition for a task [45]. Specifically,
comparing to supervised learning, IRL has higher general-
ization ability to robustly learn from smaller size trajectories
collected from larger state spaces, and the succinctly repre-
sented reward function can be handily transferred to other
agents in different scenarios.

Based on how the rewards are inferred, existing IRL algo-
rithms can be generalized into two categories: maximum
margin-based methods and probabilistic model-based meth-

ods. Specifically, maximum margin-based methods infer re-
wards by finding a model to maximizes the margin between
the demonstrated trajectories and other alternative behav-
iors [44]. However, it is often suffers from the ill-posed issue
with non-uniqueness [45], i.e., there can be multiple reward
functions to explain the demonstrated behaviors. Proba-
bilistic model-based methods, on the other hand, are able
to handle this issue by using probability distributions to in-
troduce preferences over reward functions [46]. In this cat-
egory, Ramachandran and Amir [47] proposed a Bayesian
IRL, which combined prior knowledge and evidence from the
demonstrated trajectories to derive a probability distribu-
tion over the reward functions. Similarly, Ziebart et al. pro-
posed a maximum entropy IRL which results in the least bi-
ased estimation of the reward function [23]. Babes-Vroman
et al. [27] proposed a maximum likelihood IRL (MLIRL),
which finds the reward function that maximize the proba-
bility to observe the demonstrated behaviors. Their experi-
mental results showed that the MLIRL outperformed some
other IRL methods, including the linear programming based
maximum margin IRL and maximum entropy IRL.

All the above methods assume a single reward function for
all demonstrations. Some other approaches have been pro-
posed to handle the multiple reward functions. Dimitrakakis
and Rothkopf [48] proposed a Bayesian multi-task IRL, which
learns a reward function for each individual trajectory us-
ing the same prior distribution. Choi et al. [49] proposed a
method based on nonparametric Bayesian IRL in which the
prior of mixing distribution of different rewards was modeled
by the Dirichlet process. Babes-Vroman et al. [27] proposed
an EM-based framework, which iteratively computes the
probabilities that the demonstrations belong to each clus-
ter and updates the cluster-wise rewards based on MLIRL.
Considering the efficiency and good performance EM-based
method, we adapted it for analysis in this work.

Recently, IRL has been widely applied in various domains.
Ziebart et al. [23] employed it in driver route modeling for
predicting driving behaviors as well as for route recommen-
dation. Asoh et al. [24] applied IRL to medical records and
explored the potential rules in doctors’ diagnosis. Of most
relevance, IRL also showed effectiveness in educational do-
main. Rafferty et al. applied IRL in education applica-
tions to automatically infer learners’ beliefs in an education
game [25]. They demonstrated that IRL could recover the
participant’s beliefs towards how their actions could affect
the environment, which indicated the potential to utilize IRL
to interpret data from interactive educational environments.
Then in another of their work, IRL was further employed to
assess learners’ mastery of some skills in solving algebraic
equations. Based on the learned IRL results, some skills the
learners misunderstood could be detected and personalized
feedback for improving the skills were further rendered [26].

3. METHOD

3.1 Reinforcement Learning

Markov decision process (MDP) was widely utilized to model
the user-system interactions. The central idea behind re-
inforcement learning (RL) is to transform the problem of
inducing effective policies into a computational problem of
finding an optimal policy for choosing actions in MDP. An



MDP describes a stochastic control process using a 5-tuple
< S,A, T, R,~v >. Taking the pedagogical policy induction
as an example, S indicates the learning environment states,
which is often represented by student-system interaction fea-
tures. A denotes the tutor’s possible actions, such as elicit or
tell. The reward function R is generally assigned as students’
learning performance. The transition probability T can be
estimated from training data. y € [0,1) denotes a discount
factor for the future rewards. Given a defined MDP, we can
transform our student-system interaction logs into trajecto-
. al,m71 ag,r2 An Tn a;,Tg

ries as: $1 S2 -+ Sp . Here s; — s;41
indicates that at the i** turn, the learning environment was
in state s;; the tutor executed action a; and received reward
ri; then the environment transferred into the state s;41.

In traditional RL, the reward function R serves as a guidance
to praise or punish the agent’s behaviors to fulfil a certain
task when interacting with the environment. Therefore, it
is essential and needs to be elaborately hand-crafted in ad-
vance to reflect the task. In ITS, the reward is generally for-
mulated as the students’ learning performance, e.g., learn-
ing gains, since the intention of tutor’s decision-making is to
promote students’ learning. However, the reward function in
students’ decision-making is more complex to be determined:
students may have various learning patterns, e.g., finishing
the process as quick as possible or working hard regardless
of the time, which is cumbersome to be manually encoded in
a reward function. The different reward functions reflected
the different strategies students employed during the train-
ing process. Therefore, if student’s reward function can be
learned in a data-driven manner, we can better understand
their pedagogical decision-making strategies.

3.2 Inverse Reinforcement Learning
3.2.1 General IRL

The difficulty of the reward function design triggered the de-
velopment of the inverse reinforcement learning (IRL). IRL
follows a reverse procedure comparing to the traditional RL:
in RL, given the reward function, the agent will learn an op-
timal policy; while in IRL, the trajectories derived from the
optimal policy are given, from which the agent will learn the
reward function. It can be described as a stochastic control
process using a 4-tuple MDP\R =< S, A, T,~ > where the
reward function is missing.

In general framework of IRL, the input is a M DP\R to-
gether with some demonstrated trajectories 7. The reward
function R parameterized by 6 can be modeled as either a
linearly weighted sum of feature values or belonging to a cer-
tain distribution. Most of the existing IRL methods follow 3
steps: in step 1, the parameter 0 is randomly initialized; in
step 2, given the Ry, general RL methods can be applied to
induce the policy; In step 3, the divergence of the behaviors
regarding to the learned policy and the given trajectories
is minimized to update the #. The step 2 and step 3 are
repeated until the divergence is reduced to a desired level.

To investigate students’ pedagogical strategy, we can feed
their decision-making trajectories into the IRL model. Once
the reward function is learned, the strategy can be fur-
ther induced via traditional RL methods. Herein, we com-
pared some most commonly utilized IRL methods including:
quadratic programming based maximum margin IRL [44],

General Process of IRL

Input MDP\R =< S, A,T,~v > and trajectories T
Output Ry

step 1 Initialize the parameter 6 in reward function
step 2 Solve the MDP to learn the policy m

step 3 Update the optimization 6 to minimize the diver-
gence between 7 and behaviors following the m
Repeat step 2 and step 3 until convergence

maximum entropy IRL [23], Bayesian IRL [47], and maxi-
mum likelihood IRL (MLIRL) [27] over three online simula-
tion environments (i.e., Grid World, Highway, and Mountain
Car). We found MLIRL always outperformed others and it
is also most time-efficient. As a result, we take MLIRL for
the IRL-based analysis hereinafter.

3.2.2 Maximum Likelihood IRL

To formally define the maximum likelihood IRL, we denote
the input N demonstrated trajectories as 7 = {&1,...,&n}
and each trajectory is composed of a set of state-action pairs:
& = {(s1,a1), (s2,a2),...}. The reward function is defined
as the linear function of feature vector for state-action pairs:
ro(s,a) = 0T ¢(s,a). Then the Q-value can be calculated as:

Q9(37 a’) = 9T¢(57 a) + WZT(& a, S/)®Q9(S/’ a’,)7 (1)
2. Qe(s,a) exp(BQo(s,a))

where (?QB(& a) = D ar eXp(BQo(s,a’)) ®

Eq. 2 shows the Boltzmann exploration. Comparing to stan-
dard Bellman equation, it enables the likelihood to be differ-
entiable, thus the objective function can be easier optimized.
[ represents the degree of confidence and it is set as 0.5 in
our experiments. The Boltzmann exploration policy param-
eterized by 0 is:

exp(8Qo (s, a))
> exp(BQo(s,a’))

Then the log-likelihood of trajectories T is calculated as:

L(T10) = log H H mo(s,a)t = Z Z wilogmy (s, a)

i=1(s,a)E€E; i=1 (s,a)€&;
(4)

3)

mo(s,a) =

Herein, w; denote the weight for &;, which can be estimated
by its frequency of the occurrence. By maximizing the Eq. 4,
the parameter 6 enables the trajectories 7 to have highest
probability to be observed given the reward function Ry.
Once the reward function is learned, the strategy followed
by 7 can be further induced by any RL method, e.g., policy
iteration that we employed in this work.

In general, IRL methods assume the reward function to be
unique for all input trajectories. However, it is often the
case that the trajectories are heterogeneous and have various
reward functions. For example, in ITS, students’ decision-
making behaviors can have different patterns which cannot
be easily captured by a single IRL model. As a result, a
model suitable for multiple reward functions is favored.



Algorithm: MLIRL

Algorithm: EM-IRL

Input M DP\R, trajectories T, trajectories’ weights w;,
i=1,..., N, learning rate «
Initialize reward parameter # randomly
Repeat
Learn the policy mg
Compute L =37, 3" . ce, wilog(mo(s, a))
Update 0 =0+ a</ L
Until target number of iterations completed

3.3 Expectation—-maximization IRL

To deal with trajectories with multiple reward functions,
i.e., multiple strategies, Babes-Vroman et al. [27] proposed a
straight-forward expectation—maximization IRL (EM-IRL).
Herein, we adapted the original EM-IRL to automatically
determine the optimal number of clusters. Instead of di-
rectly assigning the cluster number, we considered a possi-
bly maximal number of clusters, i.e., Kmaz, and a variable
k initialized as 2 indicating the current cluster number.

Specifically, to determine the optimal number of clusters,
starting from the cluster number k = 2, we iteratively imple-
mented the EM procedure, until a pre-defined stop_criteria
was met. The stop_criteria was defined as: either there were
some empty clusters generated or the log-likelihood (LL) of
the clustering results defined in Eq. 5 varied smaller than a
pre-defined threshold comparing to the last iteration, which
we set as 10. The LL reflected the clustering performance by
measuring the accordance of learned clusters with the cor-
respondingly induced cluster-wise strategies. In Eq. 5, N;
stands for the number of trajectories in cluster j.

k Nj
LL = ZZlOg(Zij) (5)

j=1li=1
B _ 7o, (5, a)p;
zij = Pr(&l0;) = [] — (6)
(s,a)€€;

Before the EM loop, parameters p; and 65, j = 1, .., k, which
denoted the estimated prior probability and reward param-
eter for the j*" cluster were randomly initialized.

In the FE step, the probability that trajectory ¢ belongs to
cluster j was calculated by Eq.6, in which Z is a normaliza-
tion factor; In the M step, the prior probability of cluster is
updated by Eq. 7. Meanwhile, the reward parameter 6; can
be learned by any IRL and herein we employed the MLIRL
with weights of trajectories being z;;.

=y (7)
The E step and M step will be iteratively executed until a
target number of iterations is completed, which was set as 80
in this work to ensure the convergence. Finally, we found k
clusters when LL got converged, with each cluster standing
for a group of trajectories with an unique reward function.

Based on these reward functions, we could further induce
the cluster-wise strategies.

4. SIMULATION ENVIRONMENTS

Input M DP\R, trajectories T, maximal number of clus-
ters Kmax
Initialize k = 2
While k < Kinaax
Initialize p; and 0;, j =1, ..., k, randomly
Repeat
E Step: Compute the z;;, i =1,..., N
M Step: Update the prior probability p;; and
Learn reward parameter 6; via MLIRL
Until target number of iterations completed
If stop_criteria is True: Break; Else: k =k + 1

Since the ground-truth of students’ subtypes were unknown
in advance, it is difficult to directly evaluate the EM-IRL
learned clusters from the students’ data. Thus, we first car-
ried out EM-IRL in three simulation environments which
had decided ground-truth. If different strategies could be ac-
curately distinguished by EM-IRL in simulations, we would
be more confident to further deploy it in ITS environment.

4.1 Environment Settings
We explored three simulation environments including Grid
World, Highway, and Mountain Car, as shown in Figure 1.

Grid World: adapted from [27], in which three grids were
randomly chosen as puddles indicated by bricks in Figure 1(a).

e States (25) 5x5 grid-size.
e Actions (4) Moving to up, down, left, or right.

e Strategies (3) Moving to the 1) upper-right corner; 2)
lower-left corner; or 3) lower-right corner.

The rewards are designed for the three strategies: 1) Upper-
right corner has the reward of 10; 2) Lower-left corner has
the reward of 10; 3) Lower-right corner has the reward of
10. Otherwise, each state was punished -1.

Highway: adapted from a three-lane highway scenario in-
troduced in [50], in which the agent controlled a blue car
with three speed levels, which could switch between the
three lanes or go off-road on either side. At all timestamps,
there would be a red car in one of the three lanes.

e States (729) the blue car’s speed had 3 levels and could
move horizontally in 9 locations; the red car could move
vertically in 9 locations and horizontally in 3 locations.

e Actions (5) Staying at the current state, speeding up,
slowing down, moving left, or moving right.

e Strategies (2) 1) Keeping off the left lane (suppose it is
under construction); 2) Driving at the fastest speed.

The rewards are designed for the two strategies: 1) Driving
on the left lane has the reward of -10; 2) Driving with the
lowest level of speed has the reward of -10. In both strate-
gies, off-road is punished -0.5, collision is punished -5, and
maintaining the state has no reward.

Mountain Car: adapted from the MountainCar-v0 in Ope-
nAlI Gym [51], in which a car was on a one-dimensional track
and moves between two mountains.

e States (80) 10 horizontal positions with 8 levels of speed.
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Figure 1: Three simulation environments: (a) Grid World; (b) Highway; (c) Mountain Car.

Table 1: Cluster-wise and overall purities by EM-
IRL clustering in three simulation environments.

Environment Cluster-wise Overall
Strategy Idx | Purity (%) | Purity (%)
1 100
Grid World 2 100 100
3 100
. 1 100
Highway 9 100 100
. 1 100
Mountain Car 5 93.9 96.4

e Actions (3) Pushing left, no pushing, or pushing right.

e Strategies (2) 1) Reaching to the right mountain top
(the car needs to drive back and forth to build up enough
momentum to push up); 2) Parking at the valley bottom.

The rewards are generated for the two strategies: 1) Right
mountaintop has the reward of +10; 2) Valley bottom has
the reward of +10. Otherwise, each state is punished -1.

In each environment, the initial states were randomly as-
signed, the transitions between states were stochastic and
estimated from the data. For each strategy, we induced a
policy via policy iteration and employed it to collect trajec-
tories. Specifically, the number of collected trajectories for
each strategy was 500, 1000, and 1000 in three environments,
respectively. In each environment, trajectories with various
strategies were mixed together and fed into the EM-IRL.

Given the ground-truth of cluster-belongings in simulation
environments, the results of EM-IRL were evaluated by the
purity of each cluster and across overall clusters. Denote the
size of i*" cluster as N; with ground-truth labels L;, then the
cluster-wise purity is calculated as the number of majority
labels divided by the cluster size, i.e., purity; = %ﬁy([‘l),
and the overall purity is calculated by the mean of i)urity
among all clusters, i.e., purity = % D i pUrity;.

4.2 EM-IRL Results in Three Simulations

The EM-IRL clustering results for the three simulation envi-
ronments are shown in Table 1, in which the first column is
the environment; second and third columns show the index

of strategy and the corresponding cluster-wise purity; the
last column show the overall purity among all clusters.

In Grid World, all strategies could be accurately clustered by
EM-IRL. Specifically, both cluster-wise purities and overall
purity were 100%. Likewise, in Highway, the two strate-
gies were accurately clustered with the purity of 100%. In
Mountain Car, a few trajectories of driving to right moun-
taintop (Strategy 0) were mis-clustered to the parking at
valley (Strategy 1). This is because the mis-clustered tra-
jectories tried to move to left to collect enough momentum,
which showed very similar behaviors to reaching the valley.
Overall, the results suggested the effectiveness of EM-IRL in
accurately distinguishing subtypes of trajectories with dif-
ferent strategies in all three simulation environments.

S. ITS LEARNING ENVIRONMENT

Our data was collected by letting students work on a web-
based ITS, which taught college students probability, e.g.,
Addition Theorem and Bayes’ Theorem. The instruction
was conducted by guiding students go through training prob-
lems. For each problem, the tutor provided step-by-step in-
struction, immediate feedback, and on-demand help. The
help was provided via a sequence of increasingly specific
hints. The last hint in the sequence, i.e., the bottom-out
hint, told the student exactly what to do. During training,
the students could make pedagogical decisions on whether
to solve the next step by themselves or observe the tutor to
solve it. If they choose to solve by themselves, the tutor will
elicit the solution from them by asking questions; otherwise,
the tutor will show or tell them the solution directly.

5.1 Data Collection

All students participating in our data collection went through
four phases: textbook, pre-test, training, and post-test. Dur-
ing textbook, all students studied the domain principles from
a probability textbook. They read a general description of
each principle, reviewed some examples of it, and solved
some single- and multiple-principle problems. Then the stu-
dents took a pre-test which contained 14 problems. During
this phase, they would not be given feedback on their an-
swers, nor be allowed to go back to earlier questions (this
was also true for the post-test). During the ITS training
procedure, students received 12 problems in the same order.
Each main domain principle was applied at least twice. The
minimal number of steps needed to solve each training prob-
lem ranged from 20 to 50. Such steps included variable def-
initions, principle applications, and equation solving. The



number of domain principles required to solve each problem
ranged from 3 to 11. Finally, all students took the post-test
which contained 20 problems in total. 14 of the problems
were isomorphic to the problems given in the pre-test phase,
while the remaining 6 were harder non-isomorphic multiple-
principle problems.

The pre- and post-tests required students to derive an an-
swer by writing and solving one or more equations. We used
three scoring rubrics: binary, partial credit, and one-point-
per-principle. Under the binary rubric, a solution was worth
1 point if it was completely correct or 0 if not. Under the
partial credit rubric, each problem score was defined by the
proportion of correct principle applications evident in the so-
lution. A student who correctly applied 4 of 5 possible prin-
ciples would get a score of 0.8. The one-point-per-principle
rubric in turn gave a point for each correct principle applica-
tion. All of the tests were graded in a double-blind manner
by a single experienced grader. The results we presented
were based upon the partial-credit rubric but the same re-
sults hold for the other two. For comparison purposes, all
test scores were normalized to the range of [0, 100].

We measure students’ learning performance using normal-
ized learning gain (NLG), which measured their gain irre-
spective of their incoming competence. It is calculated as:
NLG = %, where pre and post refer to the students’
test scores before and after the ITS training respectively and
100 is the maximum score. Herein, for the post-test, we con-
sidered all 20 problems that are either isomorphic and non-
isomorphic. In addition, an isomorphic NLG (Iso_NLG) was
also measured. Unlike NLG, the Iso_NLG was calculated
based on the pre- and isomorphic post-test scores, which
contained only 14 isomorphic multiple-principle problems.

5.2 States & Actions

Our dataset contains 127 students. Each student spent ~ 2
hours on the system and completed around 400 steps.

States 142 state features were extracted from the student-
system interaction log data. Specifically, the features can be
grouped into five categories:

e Autonomy (10 features): the amount of work done by a
student, such as the number of elicits since the last tell;

e Temporal (29): time related information about the stu-
dent’s behavior, such as the average time per step;

e Problem Solving (35): information about the current
problem solving context, such as problem difficulty;

e Performance (57): information about the student’s per-
formance so far, such as the percentage of correct entries;

e Hints (11): information about the student’s hint usage,
such as the total number of hints requested.

For each category, we employed K-means clustering to get
the discretized states. By selecting an elbow of errors when
the clustering results got converged, the number of states
for each category of features was determined as follows: Au-
tonomy (3 states), Temporal (4), Problem Solving (3), Per-
formance (4), and Hints (3). As a result, we got 432 discrete
states totally. Based on the discretized states, we estimated
the transition probabilities from all available data.

Actions The students can take two action of elicit/tell, i.e.,
to elicit the solution by themselves through asking questions,
or to let the tutor tell them the solution directly.

6. EXPERIMENTAL SETTINGS
6.1 Student Subtyping by EM-IRL

Based on the EM-IRL learned clusters, we conducted anal-
yses by checking the statistical significance among different
clusters’ learning performance, including the pre-test scores,
isomorphic NLG (Iso_NLG), NLG, students’ learning time
on the training task (Time), and the percentage of elicit in
students’ decisions (Elicit_Perc).

6.2 Student Subtyping by Other Methods
6.2.1 Clustering by Traditional Methods

To evaluate the clustering performance of EM-IRL, we com-
pared it with three other clustering methods: two K-means
based approaches that took the pre-test scores and the learn-
ing state in the final step as the input respectively and a
K-medoids based approach that took dynamic time warping
(DTW) [52] distance between trajectories as the input. The
K-means based approaches were static-information-based clus-
tering while the K-medoids based DTW considered dynamic
state transitions in the trajectories. In our experiments, each
of these methods generated three clusters and for each clus-
ter, the MLIRL was employed to learn a strategy. Based on
the learned strategies, we calculated the log-likelihood (LL,
referring to Eq. 5) of observing such clustering results.

6.2.2 Clustering by Matching RL / IRL Policies

We further explored whether RL or IRL policies could model
the heterogeneity in student decision-makings. The inducing
of these two policies are detailed as follows.

Inducing the RL policy: To investigate whether students’
learning strategies could be distinguished from the tutor’s
perspective, we compared students’ decisions to a RL in-
duced pedagogical policy and clustered the students based
on the matching rate. Since the RL policy was induced with
the goal of improving students’ learning performance, it is
expected that the group with a higher matching rate with
the RL policy would have better learning performance.

Specifically, we applied RL to learn a pedagogical policy
that determines whether the next step should be elicit or tell
(the same decisions students made in our ITS). The training
data set contained 1,118 students’ interaction logs collected
from a series of seven prior studies which followed the identi-
cal procedure and learning materials as the students in this
study described in Section 5. The same 142 features used
by EM-IRL were extracted from the logs and used to in-
duce the policy. In an empirical classroom study, the policy
was compared with a deep Q-network (DQN) induced pol-
icy and a random policy. Results showed that the RL policy
significantly outperformed both of them [21].

Once the RL policy was induced, we applied it on the student
decision-making data (127 students) to see what decision the
RL policy would make on each step. Then, we calculated
the matching rate between students’ decisions and the RL
policy individually for each student. Based on the matching



rates, the students were split into three groups via K-means
clustering, denoted as High, Medium, or Low based on the
average matching rate of the group.

Inducing the IRL Policy: Similarly, to investigate whether
students’ learning strategies could be distinguished from their
own perspective, we applied IRL to induce a policy from stu-
dent decision-making data and compared students’ decisions
with the IRL policy. Given that our data analysis showed
that most of students learned significantly from ITS training,
herein, we assumed that a majority of students completed
the training with the goal to learn. Thus, we expected that
the group with a higher matching rate with the the IRL
policy would have better learning performance.

The IRL policy was induced from the 127 students who were
given the opportunities to make pedagogical decision during
training. Herein, the MLIRL algorithm [27] was utilized for
policy induction. Similar to the RL based method, the IRL
policy was applied back to students’ data to calculate the
matching rate between students’ decisions and the IRL pol-
icy. Then, K-means clustering was applied on the matching
rate to cluster students into High, Medium, or Low groups.

7. RESULTS

7.1 Student Subtyping by EM-IRL

Fitting students’ data to the EM-IRL framework in Sec-
tion 3.3, when stop_criteria was met, we got three clusters.
Table 2 shows the EM-IRL subtyping results. From left to
right, it shows the students’ subtypes, number of students
(# Stu), pre-test score (Pre), isomorphic NLG (Iso_NLG),
NLG, time on the training task (Time), and percentage of
elicit in students’ decisions (Elicit_Perc). Based on sta-
tistical analysis, we named the three resulting clusters as:
learning-oriented, efficient-oriented, and no learning.

A one-way ANOVA analysis on pre-test scores showed no
significant difference among the three clusters: F(2,124) =
1.36, p = 0.260, n = 0.022. This suggested that students
in the three clusters were balanced in incoming competence.
To measure students’ learning gain in training, we conduced
analyses on their Iso_NLG and NLG. A one-way ANOVA
analysis on Iso_NLG showed a significant difference among
the three clusters: F(2,124) = 3.24, p = 0.042, n = 0.050.
Subsequent contrast analysis revealed that learning-oriented
> no learning: t(124) = 2.54, p = 0.012, d = 0.75 and
efficient-oriented > no learning: t(124) = 2.19, p = 0.030,
d = 0.54. Similar results were found for NLG in that a one-
way ANOVA analysis showed a significant difference among
the three clusters: F(2,124) = 3.73, p = 0.027, n = 0.057.
Subsequent contrast analysis revealed that learning-oriented
and efficient-oriented significantly outperformed no learn-
ing: t(124) = 2.73, p = 0.007, d = 0.77 and t(124) = 2.15,
p = 0.033, d = 0.52 respectively.

In terms of time on task, a one-way ANOVA analysis showed
a significant difference among the three clusters: F(2,124) =
5.81, p = 0.004, n = 0.086. Subsequent contrast analysis
indicated that learning-oriented took longer time on task
than the other two clusters: ¢(124) = —3.11, p = 0.002,
d = 0.58 for efficient-oriented and ¢(124) = 2.37, p = 0.019,
d = 0.63 for no learning. A contrast analysis on the per-
centage of elicit in students’ decisions revealed that learning-

oriented took significantly more elicit actions than no learn-
ing: t(124) = 2.24, p = 0.027, d = 0.70.

To summarize, the learning-oriented subtype spent signifi-
cantly more time than the other two groups on the training
task and achieved the best performance on both Iso_NLG
and NLG (signifiantly higher than no learning). This sug-
gested that learning-oriented students mainly focused on
learning the materials, regardless of the time they may spend.
The efficient-oriented subtype significantly outperformed no
learning on learning performance and at the same time spent
significantly less time than learning-oriented. This suggested
that efficient-oriented students could balance learning gain
and time on task. Finally, the no learning subtype achieved
the lowest learning outcomes.

7.2 Student Subtyping by Other Methods

7.2.1  Clustering by Traditional Methods

We compared our EM-IRL with three traditional baseline
clustering methods, namely K-means on the pre-test score
(K-means on Pre); K-means on the learning state (142 fea-
tures) in the final step (K-means on Final Step); K-medoids
on the DTW distance among trajectories [52], which is calcu-
lated based on the 142 features (K-medoids on DTW). The
results are shown in Table 3, with the two columns being
clustering method and the resulting log-likelihood (LL).

Overall, results showed that the dynamic-information-based
clustering approaches (K-medoids on DTW and EM-IRL)
performed better than static-information-based approaches
(K-means on Pre and K-means on Final Step). Between the
two static-information-based approaches, K-means on final
Step performed better than K-means on pre-test. This is not
surprising because the state in the final step included infor-
mation generated during training while the pre-test score
only included information till the end of pre-test. Between
the two dynamic-information-based approaches, EM-IRL out-
performed K-medoids on DTW. A possible reason is that
EM-IRL took both states and actions into account while K-
medoids on DTW considered only the states in trajectories.

7.2.2  Clustering by Matching RL / IRL Policies
Results of Matching with the RL Policy: Based on
the matching rate with the RL policy, we got three clus-
ters by K-means: High (M = .84,SD = .05), Medium
(M =.70,SD = .05), and Low (M = .52,SD = .07). A one-
way ANOVA analysis over the matching rate showed a signif-
icant difference: F(2,124) = 339.87, p < 0.0001, n = 0.846.
Subsequent contrast analysis showed that: High > Medium:
t(124) = 4.38, p < 0.0001, d = 0.99 and Medium > Low:
£(124) = 8.01, p < 0.0001, d = 1.70.

A one-way ANOVA analysis on pre-test showed there was no
significant difference among the three groups: F(2,124) =
0.26, p = 0.771, n = 0.004. Analyses on Iso_NLG (calcu-
lated based on pre-test and isomorphic post-test) and NLG
(calculated based on pre-test and full post-test, which con-
tains six additional hard problems) also showed no signifi-
cant difference among the three groups. In terms of time on
the training task, there was a significant difference among
the three groups: High (M = 2.40,SD = .50), Medium
(M = 242,SD = .66), and Low (M = 1.88,SD = .40).



Table 2: EM-IRL clustering results in ITS environment.

Subtype #Stu | Pre Iso.NLG NLG | Time Elicit_Perc (%)
learning-oriented 50 73.9(16.8) 55.9(45.3) 23.4(53.6) 2.52(.70) 87.53(13.40)
efficient-oriented 64 76.2(14.5) 43.9(92.4) -4.4(127.2) 2.18(.45) 84.93(15.02)

no learning 13 81.9(17.4) 21.1(212.1) -98.4(340.4) 2.10(.50) 77.06(20.04)

Table 3: Comparison of the log-likelihood (LL) for
different clustering methods

Method | LL (x10%)
K-means on Pre -10.68
K-means on Final Step -9.60
K-medoids on DTW -8.83
EM-IRL -6.36

A one-way AVONA on time shows: F(2,124) = 9.21, p =
0.0002, n = 0.129. Subsequent contrast analysis revealed
that the High and Medium groups spent significantly more
time than the Low group: ¢(124) = 3.85, p = 0.0002,
d = 1.11 and ¢(124) = 3.99, p = 0.0001, d = 0.92, re-
spectively. An analysis on the percentage of elicit in stu-
dents’ decisions showed a significant difference among the
three groups: F(2,124) = 66.97, p < 0.0001, n = 0.519.
Subsequent contrast analysis revealed that High > Medium:
t(124) = 4.38, p < 0.0001, d = 0.99 and Medium > Low:
t(124) = 8.01, p < 0.0001, d = 1.70.

The results showed that by matching with the RL strategy,
we could differentiate students’ time-consuming strategies
from time-efficient strategies. However, it was not able to
identify the student subtypes that made a difference in the
learning performance. This suggested the presence of a gap
between tutor’s and students’ strategies. Specifically, com-
paring to taking actions following the tutor’s decisions pas-
sively, the students might prefer actively direct their own
learning process. Therefore, when deploying the tutor’s
strategy to students, it might not promote the learning per-
formance as expected.

Results of Matching with the IRL Policy: Based on
the matching rate with the IRL policy, we got three clusters
by K-means: High (M = .86,SD = .05), Medium (M =
.71,8D = .05), and Low (M = .54,5D = .06). A one-way
ANOVA analysis over the matching rate showed a significant
difference among the three groups: F(2,124) = 360.99, p <
0.0001, n = 0.853. Subsequent contrast analysis showed
that: High > Medium: ¢(124) = 15.92, p < 0.0001, d = 3.37
and Medium > Low: ¢(124) = 13.52, p < 0.0001, d = 3.23.

A one-way ANOVA analysis on pre-test showed there was no
significant difference among the three groups: F(2,124) =
1.17, p = 0.314, n = 0.019. Analyses on the Iso.NLG
and NLG also showed no significant difference among the
three groups. In terms of time on the training task, there
was a significant difference among the three groups: High
(M = 2.44,5D = .54), Medium (M = 2.27,5D = .68),
and Low (M = 2.08,SD = .42). A one-way AVONA on
time shows: F(2,124) = 3.11, p = 0.048, n = 0.048. Sub-

sequent contrast analysis showed that the High group spent
significantly more time than the Low group: ¢(124) = 2.43,
p =0.017, d = 0.70. An analysis on the percentage of elicit
in students’ decisions showed a significant difference among
the three groups: F(2,124) = 93.92, p < 0.0001, n = 0.602.
Subsequent contrast analysis revealed that High > Medium:
t(124) = 7.95, p < 0.0001, d = 1.83 and Medium > Low:
t(124) = 7.08, p < 0.0001, d = 1.43.

The results showed that IRL based policy matching was able
to cluster the students’ strategies different in time. However,
it was unable to learn specific subtype of students whose
strategy will lead to better learning outcomes. One possible
reason that the IRL-based analyses could not identify the
learning-performance-impactful strategies is that a single
policy was insufficient to effectively generalize the decision-
making patterns for the overall students. Different students
might follow heterogeneous decision-making strategies.

In summary, the results suggested that EM-IRL could effec-
tively conduct student subtyping reflecting different decision-
making strategies. As a contrast, clustering by traditional
methods or by matching RL/IRL policies could not find de-
sired student subtypes.

8. CONCLUSIONS

In this paper, we investigated students’ subtyping via EM-
IRL. By analyzing students’ subtyping, we aimed at putting
ourselves in the shoes of students to better understand their
decision-making. To evaluate the performance of EM-IRL,
we first applied it to three simulation environments, where
the EM-IRL displayed robust performance to accurately clus-
ter the trajectories with different strategies. Given the ac-
curate clustering results in simulators, we were more confi-
dent to further apply EM-IRL to real world longitudinal stu-
dents’ logs collected from an ITS. The results suggested that
the EM-IRL could effectively group students with different
subtypes, e.g., learning-oriented, efficient-oriented, and no-
learning. As a contrast, clustering by traditional methods
or by matching RL/IRL policies could not find desired sub-
types. The subtyping results showed the potential of provid-
ing tutors evidence to give more customized interventions to
better assist students’ learning. In the future, we will con-
duct early clustering to detect students’ strategies as early
as possible. Besides, empirical studies will be carried out to
evaluate the effectiveness of subtyping-based interventions
to improve the targeted group of students.
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