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Abstract 10 
Social engagement is a key indicator of an individual’s socio-emotional and cognitive states. For a 11 
child with Autism Spectrum Disorder (ASD), this serves as an important factor in assessing the 12 
quality of the interactions and interventions. So far, qualitative measures of social engagement have 13 
been used extensively in research and in practice, but a reliable, objective, and quantitative measure 14 
is yet to be widely accepted and utilized. In this paper, we present our work on the development of a 15 
framework for the automated measurement of social engagement in children with ASD that can be 16 
utilized in real-world settings for the long-term clinical monitoring of a child’s social behaviors as 17 
well as for the evaluation of the intervention methods being used. We present a computational 18 
modeling approach to derive the social engagement metric based on a user study with children 19 
between the ages of 4 and 12 years. The study was conducted within a child-robot interaction setting 20 
that targets sensory processing skills in children. We collected video, audio and motion-tracking data 21 
from the subjects and used them to generate personalized models of social engagement by training a 22 
multi-channel and multi-layer convolutional neural network. We then evaluated the performance of 23 
this network by comparing it with traditional classifiers and assessed its limitations, followed by 24 
discussions on the next steps towards finding a comprehensive and accurate metric for social 25 
engagement in ASD. 26 

1 Introduction 27 
Social engagement of a child is an indicator of his/her socioemotional and cognitive states. It is the 28 
interaction of a child with the environment in a contextually appropriate manner and reflects a 29 
complex internal state that signifies the occupation of the child with a person or a task. Much of the 30 
research so far has relied on the perceptual evaluation of engagement, utilizing questionnaires and 31 
behavioral assessments administered by trained professionals, which typically attempt to identify key 32 
behavioral traits that serve as important indicators of social engagement. Automatic quantification of 33 
engagement is still limited but can allow not only for an objective interpretation of engagement and 34 
the contributing target behaviors, but also help to identify methods to improve engagement in 35 
different settings, especially when targeting a specific health condition. Therefore, it serves both as 36 
an outcome measure and as an objective measure of the quality of an activity, interaction, or 37 
intervention [1]. 38 
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Social engagement has often been reported to be particularly deficient in children with Autism 39 
Spectrum Disorder (ASD). ASD is a neurodevelopmental disorder that causes significant impairment 40 
in three broad areas of functioning: communication, social interaction, and restricted and repetitive 41 
behaviors [2]. This means that children interact with their peers infrequently, thus preventing the 42 
formation of lasting and meaningful social relationships and resulting in social withdrawal. These 43 
children often feel isolated from or rejected by peers and are more likely to develop behavioral 44 
problems [3] as well as anxiety and depression [4][5]. 45 
 46 
Behavioral and physiological cues can provide insight into the engagement state of a child, with 47 
gestures, subtle body language changes, facial expressions, vocal behaviors, and various 48 
physiological signals, all carrying significant indications of a child’s level of interest and engagement 49 
in an interaction. Eye gaze focus, smiling, vocalizations, joint-attention, imitation, self-initiated 50 
interactions and triadic interactions are among the important behavioral cues that can be utilized to 51 
assess engagement [6-17]. Heart rate, electrodermal activity, electrocardiography, electromyography, 52 
blood pressure etc. are among the key physiological indicators of engagement state [18-20]. A 53 
combination of these multi-modal behavioral and physiological features can present a comprehensive 54 
feature set for effective engagement evaluation. 55 
 56 
A major hurdle in the path toward automated measurement of social engagement is of the 57 
identification and classification of these key behaviors. While it may be a simple task for trained 58 
professionals to identify these high-level behaviors and infer a fairly accurate engagement state from 59 
real-time observations of a child’s interactions, it remains a considerable challenge for the state-of-60 
the-art algorithms and machines. Instead, the current technologies are better equipped to extract 61 
lower-level behaviors that can be used as a rough estimation of the target behaviors. 62 
 63 
This paper presents our first step toward an automated quantifiable measure of social engagement 64 
derived from behavioral data collected from two groups of children, one typically developing (TD) 65 
and one with ASD. Research from our team thus far has focused on child-robot interaction scenarios 66 
that target several ASD symptoms, including sensory processing [21], imitation [22], emotion 67 
recognition and emotion regulation skills [23]. In these studies, we collected multi-modal interaction 68 
data, including video and audio recordings, as well as motion tracking data. The overall goal of our 69 
work is to develop a framework for personalized child-robot interactions for ASD. To this end, our 70 
framework aims to 1) sense important features of a child’s interaction with a robot, 2) interpret and 71 
derive meaningful deductions about a child’s engagement in the interaction, 3) identify target 72 
behaviors that may be lacking in the detected interaction pattern, 4) reassess the current robot 73 
behavior strategy and modulate it to elicit a higher level of engagement from the child. This paper 74 
focuses on step 2 of the above approach by processing the multimodal behavioral data collected from this 75 
study through a deep learning-based multi-label classification model in order to contribute towards 76 
deriving an automated measure of social engagement. 77 
 78 
This paper is organized as follows. Section 2 discusses the previous studies that have designed 79 
methods to formulate an automated measure of social engagement. Section 3 describes the child-80 
robot interaction scenario we used in this study. Sections 4 and 5 present the modalities of the data 81 
we collected during our experiments and the methods we employed to label these data. Sections 6 82 
and 7 discuss our feature extraction methods and design of our convolutional neural network for 83 
multi-label classification. Sections 8, 9 and 10 describe the user study, its results and a comparison of 84 
the proposed network with other classical algorithms. Section 11 presents a discussion on these 85 
findings while Section 12 concludes this paper with comments on the future work. 86 
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2 Related work 87 
Several studies in the past have contributed to this area of research with each method typically 88 
varying in terms of the feature set, number of engagement classes and computational model that were 89 
used, as well as the demographics of the participants from whom the data were collected. Rajgopalan 90 
et al. [24] showed the feasibility of utilizing low-level behavioral features in the absence of accurate 91 
high-level features, and used a two-stage approach to first find hidden structures in the data (using 92 
Hidden Conditional Random Fields) and then learn them through a Support Vector Machine (SVM). 93 
Only head pose orientation estimates were used to assess engagement and the approach was 94 
evaluated by conducting experiments on labeled child interaction data from the Multimodal Dyadic 95 
Behavior Dataset [25], obtaining an accuracy of around 70%. 96 
 97 
Gupta et. al. [26] designed an engagement prediction system that utilized only the prosodic features 98 
of a child’s speech as observed during a structured interaction between a child and a psychologist 99 
involving several tasks from the Rapid ABC database. Three engagement classes and two levels of 100 
prosodic features (local for short-term and global for task-wide patterns) were defined. The system 101 
achieved an unweighted average recall of 55.8%, where the best classification results were obtained 102 
by using an SVM that utilized both categories of the prosodic features. Another study by Lala et. al. 103 
[27] used several verbal and non-verbal behavioral features, including nodding, eye gaze, laughing 104 
and verbal backchannels. The authors collected their own dataset comprising audio and video 105 
recordings based on conversational scenarios between a human user and a humanoid robot, while 106 
human annotators provided labels to establish ground truth. A Bayesian binary classifier was used to 107 
classify the user as engaged or not engaged and obtained an AUC (area under the precision-recall 108 
curve) score of 0.62. 109 
 110 
A study from Castellano et.al. [28] used both behavioral features from the user (gaze focus and 111 
smiling) and contextual information from the activity in order to train a Bayesian classifier to detect 112 
engagement in users for a child-robot interaction scenario. The labels generated from human coding 113 
were based only on the two user behaviors. The authors reported only a slight improvement in the 114 
classifier recognition rate when using both behavioral and contextual features (94.79%) versus when 115 
only behavioral features were utilized (93.75%), highlighting the key importance of the behavioral 116 
information. 117 
 118 
Kim et. al. [29] investigated the use of vocal/acoustic features in determining child engagement in 119 
group interaction scenarios. The annotation scheme involves the giving and receiving of attention 120 
from other group members. They used a combination of ordinal regression and ranking with SVM to 121 
detect engagement in children and found this technique to outperform classification, simple 122 
regression and rule-based approaches. Such a system may be acceptable to use with typically-123 
developing children, but since children with ASD may often be non-verbal and/or shy or unwilling to 124 
communicate using speech/vocalizations, the exclusive use of acoustic features may not be suited to 125 
research involving the ASD population. 126 
 127 
Another study from Parekh et. al. [30] developed a video system for measuring engagement in 128 
patients with dementia, which uses deep-learning based computer vision algorithms to evaluate their 129 
engagement in an activity to provide behavior analytics based on facial expression and gaze analysis. 130 
Ground truth was extracted through scoring performed by human annotators by classifying 131 
engagement states in terms of attention and attitude. The video system presented in this study was 132 
exclusively tested with elderly patients with dementia who were required to participate in a digital 133 
interaction while seated directly in front of the camera. Additionally, since only facial expressions 134 
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and gaze features were utilized, the proximity of the participants to the camera was important, hence, 135 
limiting their physical movements. 136 
 137 
Oertel et. al. [31] studied the relation between group involvement and individual engagement using 138 
several features of eye gaze patterns defined as presence, entropy, symmetry and maxgaze. They 139 
utilized the Stockholm Werewolf Corpus, which is a video dataset of participants engaging in a game 140 
that involved the use of speech and eye gaze. Once again, since only eye gaze patterns were used as 141 
features to train a classifier, participants were required to remain seated in front of the cameras. 142 
 143 
A study that specifically tested their system on the ASD population was from Anzalone et. al. [32] 144 
that used a combination of static (focus of attention, head stability and body posture stability) and 145 
dynamic (joint attention, synchrony, and imitation) metrics within two distinct use cases including 146 
one where the robot attempts to learn the colors in its environment with the help of a human, and 147 
another that elicits joint attention from participating children with ASD. The features were extracted 148 
using histogram heatmaps and clustered using the K-means algorithm. 149 

In [33] Rudovic et. al. also targeted the automated measurement of engagement for ASD children 150 
with multimodal data collection including features from video (facial expressions, head movements, 151 
body movements, poses, and gestures), audio, and physiological (heart rate, electrodermal activity 152 
and heart rate) data. The child-robot interaction setting involved an emotion recognition activity with 153 
a humanoid robot that required children to be seated in front of the robot [34]. Participating children 154 
belonged to one of two cultures (Eatsern European and Asian) and the cultural differences were also 155 
taken into account during engagement estimation. The authors generated ground truth through expert 156 
human labelers who marked changes in engagement on a 0-5 Likert scale that is based on the 157 
different levels of prompting required from the therapist during the interaction with the robot. In fact, 158 
in this work, child engagement is considered to be a function of task-driven behavioral engagement 159 
and affective engagement. 160 
 161 
Despite the overlap, this approach is significantly different from the one proposed in this paper in 162 
several ways. Firstly, we define engagement as a function of several key behavioral indicators that 163 
provide an insight into an individual’s internal engagement state [21], which generates a novel 164 
measure to estimate social engagement state i.e. the engagement index. Additionally, our methods do 165 
not restrict the movement of the subjects by requiring them to be seated in front of a camera or a 166 
robot, and the interaction design allows for free, naturalistic movement in order to closely resemble 167 
real-world social settings as opposed to other restrictive experimental approaches. Importantly, this 168 

Figure 1. Station set up for the sensory maze game (the child’s photo rights reserved). 
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approach toward engagement estimation can be easily generalized to any child, with or without ASD, 169 
and to a variety of different, interactive experimental settings that may or may not involve a robot. 170 
 171 
The work described in this paper presents a social engagement prediction system for children. It 172 
utilizes a combination of features extracted from facial expressions and upper body motion tracking 173 
data to train a deep convolutional neural network that can then classify the engagement state of a 174 
child. We intentionally designed the experiments to not be strictly structured in order to encourage 175 
naturalistic and unguided child-robot interactions during data collection that impose no restrictions 176 
on the movement of a child. The nature of the features used in our approach allow for independence 177 
of interaction context and can easily be extended to a variety of scenarios within laboratory or home 178 
settings. In addition, a unique engagement model is obtained for every individual participant to 179 
ensure personalized interaction with the robot, giving it potential to be used as an intervention tool 180 
for ASD. 181 

3 Interaction Scenario Design 182 
For this work, we used socially assistive robots to design a child-robot interaction that targeted the 183 
sensory processing difficulties in ASD, as detailed in our previous work [21]. In this pedagogical 184 
setting, two different mobile robots were used to model socially acceptable responses to potentially 185 
overwhelming sensory stimulation that a child is likely to encounter in everyday experiences. The 186 
humanoid robot, Robotis Mini (from Robotis) and the iPod-based robot, Romo (from Romotive) both 187 
had their unique set of capabilities. While Mini used gestures and speech to communicate, Romo relied 188 
mostly on its large set of emotional expressions and some movements. 189 

 190 
A maze-like setup consisting of a station for each of the visual, auditory, olfactory, gustatory, tactile 191 
and vestibular senses was used, as shown in Figure 1. Though one of the goals of the interaction was 192 
to leverage the relationship between a robot and a child with ASD, as established by a plethora of 193 
previous research [35-38], the focus of this work [21] was to assess the potential of this setup as a 194 
tool to socially engage children with ASD and to use the collected data to contribute towards deriving 195 
an automated measure of social engagement. Each sensory station simulated an everyday experience, 196 
such as encountering bright lights at the Seeing station, loud music at the Hearing station, scented 197 
flowers at the Smelling station, different food items at the Tasting station, materials with different 198 
textures at the Touching station and summersaulting to celebrate at the vestibular station (Figure 2). 199 
These scenarios were chosen to incorporate everyday stimulation that all children experience in 200 

Romo at the stations.  
Top (L-R): Seeing station, Hearing station 

Bottom (L-R): Smelling station, Tasting station, 
Touching station 

Mini at the stations.  
Top (L-R): Seeing station, Hearing station, Smelling 

station 
Bottom (L-R): Tasting station, Touching station, 

Celebration station 
Figure 2. The two robots at each sensory station. 
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uncontrolled environments like malls, playgrounds, cinemas etc. and in the activities of daily living 201 
such as eating meals and dressing. This interaction was designed to be highly interactive and 202 
engaging, and required the child to participate actively by answering questions from the robots, 203 
following their instructions, and ‘helping’ them complete the maze. Details of this study, including 204 
the nature of interaction between the children and the robots, can be found in [21]. 205 

4 Multimodal Data Collection 206 
A high-quality measure for social engagement estimation must take into account all behavioral and 207 
physiological cues that can serve as quantifiers of social motivation and social interaction. As 208 
discussed in Section 1, a number of behavioral traits and physiological signals can be used effectively 209 
to this end. However, when designing an interaction for autistic children, their unique needs and 210 
sensitivities must be taken into account. For this study, this meant that only non-contact sensors 211 
could be used in order to limit tactile disturbances to the children and enable free movement to allow 212 
for naturalistic interaction. The combination of sensors also needed to provide a wholistic and 213 
accurate representation of a child’s engagement changes over the length of the interaction. 214 
 215 
We collected video recordings of the child-robot interactions with a camcorder placed in one corner 216 
of the room, which was repositioned by an instructor as the child moved during the interaction. From 217 
these recordings, we were able to extract audio data as well as 2-D motion tracking data with the 218 
OpenPose library [39]. While OpenPose provides full body motion tracking (Figure 3), we were only 219 
able to utilize upper body data since the chosen experimental setting meant that children were often 220 
standing in front of the table that hosted the maze setup, preventing a full-body view from being 221 
captured. In addition, OpenPose also allowed for the extraction of facial expression datapoints from 222 
the same video data. 223 

5 Extracting Ground Truth 224 
Unlike some of the previous studies described in Section 2, we did not use any existing video 225 
datasets to test our methods. Since our goal was to derive an engagement measure specific to the 226 
interactions that we designed for children with ASD, we opted to test our methods on the relatively 227 
limited data available from our user study. To extract ground truth for a child’s engagement in the 228 
interaction with the robots, we defined six target behaviors that have been found to be key behavioral 229 
indicators of social engagement [40-51]. These included eye gaze focus, vocalizations, smiling, self-230 
initiated interactions, triadic interactions and imitation.  231 
 232 
Three raters then coded these videos using the Behavioral Observation Research Interactive Software 233 
(BORIS) [52] to annotate the start and stop times of each target behavior as it was identified in the 234 

Figure 3. Upper body and facial keypoints generated by OpenPose. 
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video recordings. An inter-coder correlation (ICC) score of 0.8752 ± 0.145 was achieved for the 18 235 
participants, which was used to evaluate the quality of the annotations. Details of the evaluation 236 
criteria are reported in [21]. 237 
 238 
An eye gaze event was tagged each time the child’s gaze moved to the robots or the setup and 239 
stopped when the gaze focus was lost. Vocalizations comprised of any verbal expression from the 240 
child, including but not limited to a shriek of excitement while interacting with the robots or the 241 
utterance of words to communicate sentiments or queries regarding the robots. Smiling recorded all 242 
events where a child was observed to visibly express joy in the form of a smile or laugh. Self-243 
initiated interactions involved all interactions with the robots or setup that are initiated by the child. 244 
Triadic interactions comprised of an interaction where a child voluntarily involved a third entity in 245 
the interaction with the robot, such as sharing their excitement with the parent. Lastly, imitations 246 
included all events of voluntary imitation the robot’s actions by the child. An in-depth report on the 247 
inclusion criteria of the target behaviors, their significance and annotations in video data can be 248 
found in [21]. 249 
 250 
Based on these annotations, multiple analytics were derived to quantify the social engagement with 251 
respect to each robot and target behavior, and across stations to obtain a fine-grained analysis of the 252 
child’s interaction preferences [21]. However, for the current work, we have only used the raw time 253 
series data of every child’s changing engagement state as determined by the chosen target behaviors. 254 
These overall engagement changes are shown in Figure 4, along with the subplots of each 255 
contributing key behavior. 256 
 257 
Therefore, each instance of time was mapped to an engagement state. Every behavior contributed a 258 
factor of 1/6 to the engagement value, thus resulting in a metric with seven distinct values that ranged 259 
from 0 (no target behavior observed) to 1 (all target behaviors observed). 260 

6 Feature Extraction 261 
An ideal automated engagement measure in this case would incorporate all of the above behaviors, 262 
but also necessitates the automated classification of these behaviors. This is no trivial task, and 263 
involves contributions from multiple disciplines including computer vision, speech analysis and 264 
machine learning. As a part of a more practical approach that is fitting of a first step toward the 265 
derivation of an automated measure of social engagement in ASD, we decided to extract low-level 266 
behavioral components from our video data as indicators of engagement in the interactions with the 267 
robots. For this purpose, we utilized the 2D body tracking and facial expression data generated by 268 
OpenPose [39]. 269 
 270 
Using the body tracking data, we derived three new features based on Laban Movement Analysis 271 
(LMA), a method for describing and interpreting all types of human movement [53] used frequently 272 
in a variety of fields including dance, acting, music, and physical therapy etc. LMA categorizes all 273 
body movements into the categories of body effort, space and shape. Out of the four categories, effort 274 
represents the dynamics of human movement and provides an insight into the subtle characteristics of 275 
movements with respect to inner intention. This makes it an important feature to use in studies 276 
involving the estimation of affect, intention and engagement states. Effort itself is classified into 277 
space, weight and time, which are the three features that we incorporated in our current work. Space 278 
represents the area taken up over the course of a movement, weight indicates the power or impact of 279 
movement, and time conveys the speed of an action, including a sense of urgency or a lack thereof in 280 
a movement. The equations [55,56] for each of these features are as shown in Table 1. 281 
 282 



Automated Social Engagement Measure in ASD 

OpenPose generates 50 keypoints for skeletal tracking as described in [39]. In addition to the skeletal 283 
data, we also recorded facial keypoints to incorporate the changes in a child’s facial expressions in 284 
our feature set. Figure 5 (taken from [54]) depicts these datapoints. While a total of 69 facial 285 
keypoints is available, we only used the lip and eye keypoints shown on the right. Including the x and 286 
y coordinates for each of the 34 facial keypoints and and the three Laban features derived from the 287 
upper body skeletal keypoints created a total of 71 features in the dataset. A moving window of 1 288 
second, i.e. 30 frames, was used to compute the Laban features in order to incorporate the sequential 289 
nature of the movement data. A 1 second interval was chosen to capture meaningful, yet rapidly 290 
changing movement patterns in response to the actions of the robot during the child-robot interaction. 291 
The number of available datapoints per participant depended on the length of interaction of each 292 
participant and ranged between 9300 and 30508 datapoints. Further details are listed in Table 3. 293 
 294 
We initially attempted to use some derived features from the raw skeletal keypoints based on Laban 295 
Movement Analysis (LMA), which is a method for describing and interpreting all types of human 296 
movement [53], mainly used to represent the dynamics of human movement and provide an insight 297 
into the subtle characteristics of movements with respect to inner intention. However, with some 298 
preliminary tests, we found that the classifier trained on raw keypoints outperformed one trained on 299 
derived features, and hence dropped the Laban features from the dataset. We also used Principal 300 
Component Analysis (PCA) to reduce the dimensionality of the dataset. 301 
 302 

Table 1. Equations for the derived Laban features adopted from [55,56]. 303 

 304 
 305 

Feature Equation 
Space 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �0.5|𝑎⃑𝑎|�𝑑𝑑� sin(𝜃𝜃1)� + �0.5|𝑐𝑐|�𝑏𝑏�⃑ � sin(𝜃𝜃2)� 

where 
𝑎⃑𝑎 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ℎ𝑎𝑎𝑎𝑎𝑎𝑎 

𝑏𝑏�⃑ = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 
𝑐𝑐 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 ℎ𝑎𝑎𝑛𝑛𝑑𝑑 𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 
𝑑𝑑 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑔𝑔ℎ𝑡𝑡 ℎ𝑎𝑎𝑎𝑎𝑎𝑎 

𝜃𝜃1 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑎⃑𝑎 & 𝑑𝑑 
𝜃𝜃2 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐 & 𝑏𝑏�⃑  

Weight 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡 =  �𝜏𝜏𝑖𝑖𝜔𝜔𝑖𝑖(𝑡𝑡)
𝑖𝑖

 

where 
𝜏𝜏𝑖𝑖 =  𝐿𝐿2𝜔𝜔𝑖𝑖

2sin(𝜃𝜃) ∗ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

𝜔𝜔𝑖𝑖 =  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

𝐿𝐿 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 
𝑖𝑖 = 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 

𝜔̇𝜔𝑖𝑖 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑓𝑓𝑓𝑓𝑓𝑓 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 𝑖𝑖 
Time 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 = �𝜔̇𝜔𝑖𝑖(𝑡𝑡)

𝑖𝑖

 

where  
𝑖𝑖 = 𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 

𝜔̇𝜔𝑖𝑖 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑓𝑓𝑓𝑓𝑓𝑓 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 𝑖𝑖 

  



Automated Social Engagement Measure in ASD 

 306 

7 Network Architecture 307 
We used a multi-channel and multi-layer convolutional neural network (CNN) for this temporal 308 
multi-label classification problem. The network was composed of two Conv1D layers to identify 309 

Figure 4. Plots depicting changes in the overall engagement level of a child during an 
interaction, along with subplots of the target behaviors contributing to this engagement [20]. 

Figure 5. Illustrations of the skeletal and facial keypoints extracted by OpenPose [54] 
(permission acquired from the author for using these image with citation). 
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temporal data patterns (with 5 channels with 64 and128 filters respectively and a kernel size of 3 with 310 
20% dropout) and three dense layers for classification (kernel sizes 256, 256, and 7 (number of 311 
output labels: value ranges of engagement level)). This is illustrated in more detail in Figure 6. A 10-312 
fold cross-validation (train/test split of 0.8/0.2) was used for every subject’s individual dataset and 313 
optimization was performed using the Adam optimizer. 314 
 315 
The two Conv1D layers are meant to extract high-level features from the temporal data since the 316 
dataset being used has a high input dimension and a relatively small number of datapoints. Since the 317 
data have a non-linear structure, the first two dense layers are used to spread the feature dimension, 318 
whereas the last one generates the output dimension. The dropout layers are used to avoid overfitting. 319 
 320 

 321 
Figure 4. Architecture of the CNN used for multi-label classification. 322 

8 User Study 323 
We conducted a user study with a total of 18 children, 13 TD and 5 with ASD between the ages of 4 324 
and 12 years who participated in a one-time interaction with our robots within the setting of a sensory 325 
maze game. The average age of the TD group was 7.07±2.56 years and that of the ASD group was 326 
8.2±1.10 years. The TD group consisted of 5 females and 8 males, whereas the ASD group was 327 
composed of all male participants. These details are presented in Table 2.  328 
 329 
The participants were allowed to participate for the entire course of the interaction as designed with 330 
the two robots, one after another. The data presented in this study is for one-time interactions 331 
between each subject and the robots. The length of the interaction for each participant is listed in 332 
Table 2. The average TD interaction length was 464.92 seconds whereas that of the ASD group was 333 
620 seconds. Individual engagement prediction models were generated for each participant and their 334 
performances were evaluated. 335 
 336 

Table 2. Demographic details of the subjects 337 
 338 
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 340 
 341 
 342 
 343 
 344 
 345 
 346 
 347 
 348 
 349 
 350 
 351 
 352 
 353 
 354 
 355 

9 Results 356 
Table 3 presents the detailed results produced by training, validation and testing our network for 357 
every subject in the study. The length of interaction is important and provides an insight into the 358 
number of video frames, and hence, the datapoints that would be available to the network. The 359 
datapoint count is also affected by the processing performed by OpenPose, which can drop some 360 
frames where processing could not be completed. This is particularly evident in the case of 361 
participant 6 and 12, where the number of available datapoints are far fewer than expected. 362 
 363 
Before presenting the results, it must be highlighted that the metrics shown in this work are all 364 
weighted metrics, so as to address the impact of the imbalance in engagement level samples within 365 
the dataset. The network has an average accuracy of 0.7985 for the TD group and 0.8061for the ASD 366 
group in the training stage. For the test data, the performance remains steady with an average 367 
accuracy of 0.7767 for the ASD group and 0.7918 for the TD group.  368 
 369 
Figure 7 depicts the accuracy and loss plots for training and validation data for a participant from 370 
each group illustrating the changes in accuracy with respect to the number of epochs. Figure 8 shows 371 
the timeseries plots of the changing engagement states for the participants. The red line shows the 372 
true engagement as determined by the annotations [21]. Predictions made by the network are marked 373 
in blue. Since the dataset was randomly partitioned into test and training data, the predictions on the 374 
test set appear as a scatter plot.   375 
 376 
Table 3. Performance metrics for the individual classifiers (TD Group: ID1 – ID13, ASD Group: ID14 – ID18) 377 

ID Interaction 
length (s) 

No. of 
datapoints 
(frames) 

Train Validation 
 

Test 

Accuracy Loss Accuracy Loss Accuracy 
1 315 9444 0.8101 0.5028 0.7790 0.6681 0.7946 
2 519 15357 0.6499 0.7278 0.6398 0.7797 0.6393 
3 540 16412 0.6703 0.8723 0.6407 1.0095 0.6526 
4 658 10933 0.8302 0.4189 0.8131 0.4923 0.8240 
5 797 22996 0.9255 0.1903 0.9198 0.2484 0.9159 
6 696 9300 0.9200 0.2850 0.8925 0.3856 0.9124 

ID Age Gender Group 
1 10 M TD 
2 4 F TD 
3 5 F TD 
4 11 F TD 
5 9 M TD 
6 10 F TD 
7 9 M TD 
8 5 M TD 
9 5 F TD 
10 5 M TD 
11 5 M TD 
12 5 M TD 
13 9 M TD 
14 7 M ASD 
15 8 M ASD 
16 10 M ASD 
17 8 M ASD 
18 8 M ASD 
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7 316 9388 0.7821 0.5423 0.7417 0.7946 0.7338 
8 457 13725 0.7561 0.6065 0.7418 0.6796 0.7483 
9 574 10463 0.6671 0.8486 0.6535 0.9333 0.6364 

10 780 16627 0.9104 0.2253 0.8831 0.3907 0.8698 
11 726 12726 0.8390 0.3843 0.8303 0.4039 0.8283 
12 685 9723 0.8118 0.5162 0.7715 0.6980 0.7720 
13 540 12879 0.8084 0.4296 0.7812 0.5858 0.7702 
14 517 15502 0.8163 0.4417 0.7952 0.5621 0.7907 
15 578 14624 0.9204 0.2276 0.8923 0.3390 0.9108 
16 679 15950 0.6810 0.7582 0.6501 0.9095 0.6398 
17 610 16401 0.8306 0.3946 0.8232 0.4923 0.8366 
18 1058 30508 0.7822 0.5467 0.7759 0.6323 0.7812 

 378 

Table 4. Average metrics to compare classifier performance 379 

ID 
Average 

interaction 
length (s) 

Train Validation 
 

Test 

Accuracy Loss Accuracy Loss Accuracy 
TD 584.8 0.7985 0.5038 0.7760 0.6207 0.7767 

ASD 688.4 0.8061 0.4738 0.7873 0.5870 0.7918 
 380 
 381 
 382 
In addition to the individual models described above, we also trained a group model for each of the 383 
two groups by using all the datapoints collected from the participants from each group. The ASD 384 
classifier was able to achieve a training accuracy of 0.6389 and a test accuracy of 0.6524, while the 385 
TD classifier achieved a slightly higher training accuracy of 0.6733 and a test accuracy of 0.6803. 386 
The slightly superior performance of the classifiers on the test data as opposed to the training data 387 
can be attributed to the use of regularization techniques used when constructing the classifier 388 
structure, in this case, the Dropout layers, which are only applied during the training phase. 389 
 390 
We also trained a combined classifier on the data collected from all the participants. This model 391 
underperformed slightly compared to the group-specific classifiers, indicating that a group-specific 392 
classifier may be better suited for generalization to all participants within the group rather than a 393 
single classifier for all participants (Table 5). Accuracy and loss plots for the training and validating 394 
processes for all three grouped conditions are shown in Figure 9. 395 
 396 

Table 5. Performance metrics for group classifiers. 397 

Classifier Train Validation Test 
Accuracy Loss Accuracy Loss Accuracy 

TD 0.6733 0.8472 0.6800 0.8263 0.6803 
ASD 0.6389 0.9320 0.6512 0.8858 0.6524 

Combined 0.6733 0.8472 0.6800 0.8263 0.6803 

10 Comparison with Other Machine Learning Classifiers 398 
A number of standard Machine Learning (ML) classifiers were also trained for all the scenarios  399 
described above as a way to situate the performance of the CNN, which included Support Vector 400 
Classification (SVC), Random Forest (RF), Decision Trees (DT) and K-Nearest Neighbors (KNN). 401 
The reported metrics were also averaged across all participants to compare the overall performance 402 
of the classifiers. As before, each classifier was trained and tested on entire group datasets to 403 
compare performance as a generalized group classifier. These results are shown in Table 6. 404 
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 405 
Table 6. Performance metrics for all classifiers under individual and group conditions. 406 

 Classifier 
 CNN SVC RF DT KNN 
ID Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 
1 0.79 0.77 0.77 0.72 0.80 0.78 0.77 0.75 0.81 0.79 
2 0.64 0.62 0.58 0.55 0.75 0.75 0.65 0.64 0.72 0.71 
3 0.65 0.59 0.66 0.55 0.67 0.61 0.65 0.58 0.67 0.61 
4 0.82 0.79 0.82 0.76 0.83 0.81 0.82 0.79 0.83 0.81 
5 0.92 0.91 0.89 0.87 0.93 0.92 0.90 0.89 0.93 0.93 
6 0.91 0.89 0.92 0.90 0.90 0.89 0.91 0.89 0.92 0.90 
7 0.73 0.73 0.61 0.59 0.80 0.80 0.72 0.71 0.80 0.80 
8 0.75 0.74 0.51 0.47 0.82 0.82 0.66 0.66 0.82 0.81 
9 0.64 0.57 0.63 0.56 0.65 0.60 0.63 0.57 0.67 0.61 
10 0.87 0.87 0.79 0.77 0.88 0.87 0.82 0.82 0.85 0.85 
11 0.77 0.76 0.69 0.65 0.78 0.77 0.72 0.71 0.76 0.74 
12 0.83 0.78 0.81 0.74 0.84 0.81 0.82 0.79 0.84 0.80 
13 0.77 0.77 0.73 0.69 0.79 0.80 0.77 0.77 0.79 0.80 
14 0.79 0.79 0.70 0.69 0.82 0.81 0.73 0.73 0.81 0.81 
15 0.91 0.90 0.87 0.83 0.92 0.90 0.90 0.88 0.92 0.91 
16 0.64 0.62 0.61 0.57 0.67 0.65 0.62 0.60 0.68 0.66 
17 0.84 0.84 0.70 0.69 0.88 0.88 0.76 0.75 0.84 0.84 
18 0.78 0.78 0.63 0.60 0.79 0.78 0.61 0.58 0.78 0.78 
Average 0.78 0.76 0.72 0.68 0.81 0.79 0.75 0.73 0.80 0.79 
TD 0.68 0.65 0.63 0.58 0.74 0.74 0.64 0.61 0.74 0.73 
ASD 0.72 0.71 0.60 0.58 0.77 0.76 0.61 0.60 0.76 0.76 
Combined 0.65 0.62 0.59 0.54 0.74 0.71 0.60 0.56 0.71 0.71 

 407 
After averaging over the metrics for all participants, RF is seen to have the best performance 408 
followed by KNN and CNN respectively. A similar trend is seen for grouped classifiers, where RF 409 
once again outperforms all other classifiers in terms of both the accuracy and the F1 score, followed 410 
again by KNN and CNN respectively. All classifier performances drop slightly when data from the 411 
two groups are combined, suggesting that a single classifier may not be as useful for generalization 412 
as a group-specific classifier. 413 
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 414 

11 Discussion 415 

Figure 7. Classifier accuracy and loss with respect to the number of epochs for two different participants. 

Figure 8. Plots showing the ground truth labels in red and the classifier predictions in blue. 
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In this work, we propose the use of a Deep Learning Convolutional Neural Network to model and 416 
predict child social engagement as a part of our larger goal to personalize child-robot interactions. 417 
We utilized key social behaviors as indicators of engagement in an interaction, which formed the 418 
criterion for the human-generated labels that serves as the ground truth for this engagement 419 
classification approach. 420 
 421 
We found that the proposed CNN was able to achieve a performance that was comparable to the 422 
highest performing classical ML approaches in this work. The RF and KNN classifiers only slightly 423 
outperform the CNN in the case of both individual classifiers and grouped classifiers. The individual 424 
classifiers serve as personalized engagement prediction networks for the unique behavioral 425 
expressions of each individual participant, whereas the grouped classifiers were used to evaluate the 426 
potential for a single classifier to generalize the learnt patterns to all the participants within a group.  427 
 428 
On the individual level, the CNN was able to attain a best case accuracy of 0.92 (participant 5) and a 429 
worst case accuracy of 0.64 (participant 2). On the other hand, the RF classifier reached a highest 430 
accuracy of 0.93 (participant 5) and lowest accuracy of 0.65 (participant 9). For the averaged metrics 431 
as well as the grouped metrics, the RF accuracy is no more than 2% higher than that of the CNN. 432 
The individual ASD and TD classifiers were generally found to achieve a higher accuracy than the 433 
single classifier trained on data from all the participants. This points the possibility of a generalized 434 
group classifier that can be used effectively to classify social engagement for all the children in each 435 
group while providing a high level of personalization in the interaction. 436 
 437 
The CNN is a complex structure with a large number of tunable parameters that generally requires 438 
much larger datasets to fully exploit the potential of deep networks. Given the number of input 439 
features, the number of output classes and the size of the dataset (generated by single session child-440 
robot interactions only) used in this study, the CNN was able to achieve a performance comparable to 441 
simpler ML classifiers but not exceed them. We anticipate that as we continue to collect interaction 442 
data from additional participants for a long-term study involving multiple sessions, the proposed deep 443 
learning network will likely become a more suitable choice for social engagement classification. 444 
It must also be pointed out that in terms of deployment to a robotic platform, a CNN may also be a 445 
more suitable option since the traditional algorithms require expensive resources when deployed to 446 
mobile platform in real-world applications, whereas deep learning algorithms can fully take 447 
advantage of the scalable computing platforms with GPUs that have low-cost modules (like the 448 
NVidia Jetson Nano) while retaining the capacity to handle much larger datasets. 449 
 450 
The current work is limited in that it only utilizes single session data for each participant based on 451 
which the classifiers are trained. Classifier performance is likely to improve as subsequent sessions 452 
are conducted and larger datasets are collected. Another limitation of this work is that the datasets for 453 
the two groups are unbalanced, with 13 participants in the TD group and only 5 in the ASD group 454 
generating much larger training dataset for the TD classifier than ASD. Conducting long-term studies 455 
with a population such as ASD remains a considerable challenge for all researchers in the field and 456 
explains the lack of open multi-modal datasets to benefit the ASD research community. 457 
 458 
Since our focus in this work was to evaluate social engagement in a naturalistic interaction setting, 459 
the video recordings of the sessions mainly focused on the participant but also included other 460 
members of the research team and/or parent in several segments of the videos as the child moved 461 
around the room to interact with the robots. OpenPose was chosen to process the movements of the 462 
participants particularly because it offers a feature to track multiple persons by assigning each a fixed 463 
ID. In practice, however, this ID assignment was found to lack reliability, which we discovered by 464 
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visualizing the participant’s skeletal tracking data. In addition, we also found that the number of 465 
frames in the input video and the number of frames generated as output by OpenPose were often 466 
inconsistent, contributing to the loss of data. 467 
 468 
It would be interesting to see how the classifier performance changes over long-term interactions 469 
between the children and robots. Child engagement is likely to vary with continued exposure to the 470 
robots and inclusion of additional temporal features in the dataset may become important. We also 471 
aim to incorporate additional modalities to our dataset, including physiological signals like heart rate, 472 
electrodermal activity, body temperature and blood pressure, as well as audio features. For this 473 
complex feature set, we foresee a deep learning network to be a more suitable classifier choice 474 
capable of identifying patterns relating to different levels of social engagement in children. 475 

12 Conclusion 476 
In this paper, we presented a multi-label convolutional neural network classifier to formulate an 477 
automated measure of social engagement for children. To provide a personalized metric that is the 478 
best representation of the unique expression of emotion, interest and intention of each individual, we 479 
trained a separate classifier for each subject and then evaluated its performance. We designed the 480 
study to ensure the participants were not restricted in their movements at all in order to closely mimic 481 
naturalistic interactions in the real world. The use of this setting increases the complexity of data 482 
collection and analysis but enables the generalization of the presented analysis techniques to other 483 
interaction scenarios and populations, which sets this work apart from other research studies in this 484 
domain. 485 

 486 
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 487 
 488 

Figure 9. Classifier accuracy and loss for training and test datasets for three grouped conditions. 
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