Discrete Applied Mathematics 288 (2021) 74-86

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Two dependent probabilistic chip-collecting games N

Check for
updates

Joshua Harrington ?, Kedar Karhadkar ”, Madeline Kohutka?, Tessa Stevens ¢,
Tony W.H. Wong ¢*

2 Department of Mathematics, Cedar Crest College, United States of America

b Department of Mathematics, The Pennsylvania State University, United States of America

¢ Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, United States of America
d Department of Mathematics, Kutztown University of Pennsylvania, United States of America

ARTICLE INFO ABSTRACT

Article history: Alice and Bob take turns to collect chips in the following manner. In each turn, Alice
Rece?ved 6 Sepgember 2019 tosses a fair coin, which decides whether she collects a or b chips, where a and b are
Received in revised form 1 July 2020 positive integers. If Alice collects a chips, then Bob collects b chips, and vice versa. We

Accepted 5 August 2020

consider two variants of game play that have different rules in determining the winner.
Available online 28 August 2020 & play &

Namely, the winner of Game 1 is the first player to collect at least n chips, while the
winner of Game 2 is the first player to collect a positive number of chips congruent
to 0 modulo n. We fully determine the formula for the winning probabilities of each
player in Game 1, and determine the best and worst case scenarios in terms of winning
probabilities in Game 2.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In a paper from 2018, Wong and Xu [11] investigated a two player probabilistic game that is played according to the
following rules: Alice and Bob take turns to toss a coin, which decides independently whether they collect a or b chips in
that turn, and the first player who accumulates at least n chips is the winner. In the game investigated by Wong and Xu,
it was assumed that a and b are positive integers. This game has since been extended by Leung and Thanatipanonda [6]
to the cases when (a, b) = (—1, 1) and (—1, 2). The games studied in both papers share one important property, namely
that the number of chips collected by Alice and Bob in each turn is independent. Thus, we will refer to these games as
the “independent games" throughout this paper.

Let a, b, and n be positive integers. We consider two variations of the independent games, which we shall call the
“dependent game" and the “modulo dependent game”. In both variations, Alice tosses a fair coin in each turn, which
decides whether she collects a or b chips. If Alice collects a chips, then Bob collects b chips; if Alice collects b chips, then
Bob collects a chips. Let x and y be the number of chips accumulated by Alice and Bob, respectively. Since Alice collects
her chips first on each turn, in the dependent game, Alice wins any time x > n and Bob wins when y > n while x < n. In
the modulo dependent game, Alice wins any time x = 0 (mod n) after the first turn and Bob wins when y = 0 (mod n)
and x # 0 (mod n) after the first turn. In other words, in the modulo dependent game, the number of chips of a player
will reset if they overshoot their goal. In both variations, the game ends once a winner is decided.

Notice that if a = b, then Alice is always the winner in both games. Hence, without loss of generality, we let a < b.
Further note that in the dependent game, Alice is always the winner if n < a, and the winning probability of both Alice
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Fig. 1. All possible first two moves when 2b < n.

and Bob is % if a < n < b. As for the modulo dependent game, Alice is always the winner if a = b = 0 (mod n), and the
winning probability of both Alice and Bob is % if exactly one of a = 0 (mod n) and b = 0 (mod n) holds. Therefore, to
make our games nontrivial, we let a < b < n throughout the rest of this paper.

Our games can be thought of as a random walk on a square grid, where the number of chips accumulated by Alice
and Bob is recorded by the position (x, y) on the grid, and each move is represented by either (+a, +b) or (+b, +a). Such
walks are often referred to as generalized knight moves in the literature. For example, Chia and Ong [3] studied generalized
knight tours on rectangular grids and Watkins and Hoenigman [10] considered knight tours on a torus. The interested
reader is directed to [2,4,5,7] for other examples of random walks and knight tours on various surfaces.

There are two key differences between our random walks and what is studied in the papers mentioned in the previous
paragraph. First, traditional random walks allow movement in all directions: (+a, +b) and (+b, +a). Due to the nature
of our chip-collecting games, we have to restrict our generalized knight moves to (4a, +b) and (+b, +a). Another key
difference is our introduction of absorbing points on our surfaces. An absorbing point in a random walk is a point on the
surface that cannot be left once entered. Random walks with absorbing points are commonly studied in the literature [1,9].
In this article we refer to the set of absorbing points as winning regions. For our games, all random walks start from the
position (0, 0). We define {(x,y) : x > n} and {(0, k) : k € [0, n — 1]} as Alice’s winning region for the dependent game and
for the modulo dependent game, respectively. We similarly define {(x,y) : x <n <y} and {(k,0) : k € [1,n— 1]} as Bob’s
winning region for the dependent game and for the modulo dependent game, respectively. Thus, Alice wins if the random
walk, after leaving its starting position (0, 0), lands in Alice’s winning region before landing in Bob’s winning region, and
vice versa (see Fig. 1).

The main focus of this paper is to study the winning probabilities of Alice and Bob in the dependent game and the
modulo dependent game. For each of these games, we determine the best and worst case scenarios for each player in
terms of their winning probabilities. In fact, for the dependent game, we completely determine the winning probabilities
of the two players for eacha < b < n.

In addition to studying the dependent game and the modulo dependent game, we also revisit the independent game
presented by Leung and Thanatipanonda. In their paper, the authors presented a theorem that they proved using a
computer algebra system, and they pondered the existence of a combinatorial proof. In Section 4, we present such a
proof.

2. Dependent games

To study the winning probabilities of Alice and Bob in the dependent game, we shall first understand the positions on
the square grid after m turns. Observe that the position after m turns is given by (m —i)(a, b)+i(b, a) for some 0 <i < m.
Hence, we define

Pri = (Xm.i, Ym.i) = (M — D)a + ib, (m — i)b + ia).

Note that pp; lies on the straight line x +y = m(a + b) for all 0 < i < m. Furthermore, observe that the number of paths
on the square grids to reach position py,; is precisely (T) since each path is determined by the order of m — i moves
(+a, +b) and i moves (+b, +a). As a result, the probability that the position of the random walk is pp; after m turns is
1 (m

2m\i):

We now use these observations to find the winning probability of Bob in the dependent game, as presented in the
following theorem. The winning probability of Alice can subsequently be found by subtracting the winning probability of
Bob from 1.
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Theorem 2.1. Given positive integers a < b < n, the winning probability of Bob in the dependent game is given by

1 M . M

M5 <> yn=axh

1< M

2»42( ) if S(a+b)<n=<(M—ja+(+1b, and

i=0 _

1 M4+1\ . . )

2M+1Z( i ) if(M—=ja+(G+1)b <n,
i=0

where M = | 2% |, j = | Mb=n | andj = [n=b=Mar],

Proof. Recall from Section 1 that Bob wins the dependent game if and only if the random walk given by moves (+a, +b)
and (+b, +a) lands in the region {(x,y) : x < n < y}. Hence, the location of (n, n) relative to the set of positions of the
random walk is quintessential. The unique integer M such that (n, n) lies in the region {(x,y) : M(a+b) < x+y <
M+ 1)a+b)}isM = L 2n J Therefore, to find the winning probability of Bob, we will focus on the location of (n, n)
relative to the sets of posmons {Pmi:0<i<M}and {py+1;:0<i<M+ 1}

The point (n, n) lies on the line x +y = M(a + b) if and only if n = %(a + b). In this case, the position py ; is in Bob’s
winning region {(x,y) : x < n <y} if and only if

M
(M —i)a+ib < —(a+b)<(M—ib+ia,

which is equivalent to (% - i) (b—a)>0,0ri< ’g’ Therefore, the set of winning positions of Bob when n = %(a + b)

s {pm.i : 0 <i < %}, and the winning probability of Bob is

FIR FIR

1 /M
Z P(The random walk lands on the position py ;) = ZT”( . )
i=0 i=0

If the point (n, n) lies in the region {(x,y) : M(a+b) < x+y < (M + 1)(a + b)}, then let j be the largest integer such
that yy ; > n. In other words,

Wmjp1 =M —j=1b+(+ Na<n=(M—jb+ja=yu,; (1)

which is equivalent to Mb — (j+ 1)(b —a) < n < Mb — j(b —a), or j < M= < j 4 1. Hence, j = | M= | If the random
walk lands on the position py j;1, then Alice is guaranteed to win if and only if the smallest possible x-coordinate of the
next position, i.e., xyj11 +a = (M —j — 1)a + (j + 1)b + a, is at least n (see Fig. 2). This inequality is equivalent to
n < (M —j)a + (j + 1)b. When this inequality holds, Alice is guaranteed to win from the position py; for all i > j + 1.
Therefore, the set of winning positions of Bob is {py; : 0 < i <j}, and the probability that Bob wins is

J J
1 /M
Z]P(The random walk lands on the position py ;) = Z 2T/1< . )
i=0 i=0

When n satisfies the inequality (M —j)a+ (j+ 1)b < n instead, some positions py ; with i > j+ 1 no longer guarantee
Alice to win. Hence, we will switch our focus to the set of positions {py+1.i: 0 <i <M + 1} instead. Let j be the largest
integer such that x), ;5 < n. In other words,

Xypj=M+1=Pa+jb <n<M+1-7—a+ G+ b= x5,
which is equivalent to (M + 1)a +jb —a) < n < (M + Da+ G+ 1)(b — a), orj < =W < 54 1 Hence,
j= [l _q = [n=b=Ma] if the random walk lands on the position Py, then Alice wins if the largest possible
y-coordinate of the previous position, i.e., yy 151 — @ = (M —])b + 0 + 1)a — a, is less than n. This inequality turns out
to be true, as proved in the following. -

Recall that we are under the assumption xp41j4+1 = (M — j)a + (j + 1)b < n. Hence, by the definition of j, we have
XM+1j+1 < X417 Which implies ¥y, 17 < Ym+1+1. Therefore, yy 15701 — @ = Yy — b < Yms1je1 — b = ymjy1 <,
where the last inequality due to inequality (1) (also see Fig. 3).

In conclusion, Alice wins from the position py41,; for all i > ] + 1. As a result, the set of winning positions of Bob is
{Pu+1i:0<i< ]} and the probability that Bob wins is

7 7 M+1
ZIP’(The random walk lands on the position py41.i) Z M ( )
i=0



J. Harrington, K. Karhadkar, M. Kohutka et al. / Discrete Applied Mathematics 288 (2021) 74-86 77

(Tpji1 + @, Yarjor +0) = Parri1,j+1

° +b
Prrje (n,n)
P j+1 @——
+a
[ ]
Fig. 2. n < (M — jla+(j + 1)b.

Puy1,5+1

° +b
Pusje

P j+1 "T" (n,n)

Fig. 3. M —jla+(+ 1)b <n.

Since Alice always collects her chips first on each turn, it is obvious that the winning probability of Bob will never
exceed % Consequently, the following corollary establishes the best case scenario for Bob in terms of winning probability.

Corollary 2.2. Let r be the smallest nonnegative integer such that n = r (mod a + b). The winning probability of Bob is % if
and only ifa <r <b.

Proof. We begin by writing n = q(a + b) + r, where q is an integer. Since 0 <r <a+ b,

M= 2n | | 2(qa+b)+r1) — 2+ 2r | |2q if 2r <a+b,
“la+b | a+b =T o | T 2q+1 if2r>a+b.

In view of this, let

_ {0 if2r <a+b,

1 if2r>a+b.
Then
. Mb —n (2g+¢&)b —(gla+ b)+71) qgb—a)+eb—r eb—r
]: = = :q+ N
| b—a b—a b—a b—a
S0

q—’r r if 2r <a+b,

1= b—r
q+L if 2r >a+b.
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Similarly, we find that

b—r
- if2r <a+b>b,
7_[(Q(a+b)+r)—b—(2q+8)a"‘_ 1 Lb—aJ sat
= — - o
b-a q—L—WJ if2r >a+b.
b—a
Ifa < r <b, then when 2r < a+ b, we have M = 2g and ] = q =% = | ™+ |. Furthermore,

(M—ja+(G+1)b=QR2q—jla+ G+ 1)b
=2qa+jlb—a)+b
<2qa+(q—1)b—a)+b
=qla+b)+a<gqla+b)+r=n,

where the first inequality holds since a < b and j = q— [ ;= | < q— 1. Therefore, by Theorem 2.1, the winning probability
of Bob is

~ LMJ

j 2
1 M+1) 1 3 M+1) 1
ML) M i ) 2

When 2r > a+b, wehave M =2+ 1,j=q=|¥ ] and

M—jla+(G+1b=02q+1-qa+(q+1)b=qla+b)+a+b>qgla+b)+r=n.

Therefore, by Theorem 2.1, the winning probability of Bob is
1{%}]1\/1 1 < (M 1%1\/1
> <1> or TMZ(z) :TMZ<1>
i=0 i=0 i=0
which are both equal to 1.
Conversely, if the winning probability of Bob is 1, then when 2r < a + b, we have M = 2gq is an even number.

This implies ziM o (%) is never equal to I regardless of the value of j. Hence, from Theorem 2.1, we deduce that

(M —j)a+(+ 1)b < n, and in order for s (M) tobe 1, we havej = | M| = || = g As a result,
=1 | =0, which implies0 <b—r <b—g,ora<r <b.

When 2r > a+b, we have M = 29 + 1 is an odd number. This implies ST Z o ("F1) is never equal to 2 regardless
of the value of] Hence, from Theorem 2.1 again, we deduce that n < (M — j)a + (j + 1)b, and either n = M(a + b)

orj=|¥%].1fn = ¥(a+b), then qla + b) + r = 2L (a + b). In other words, r = %2, which implies a < r < b. If
j=1[¥%]=gq, then | &=L | = 0, which again impliesa <r <b. O

Next, we present a corollary that gives that worst case scenario for Bob in terms of winning probability.

Corollary 2.3. The winning probability of Bob is 0 if and only if Mb < n < (M + 1)a, where M = La+b

Proof. Letj = | M1 | andj = [2=2=Ma1] To prove the “if" direction, we assume that Mb < n < (M + 1)a. If n = %(a+b),
then

M M
0> Mb—n=Mb——(a+b)=—(b—a).

which implies M < 0.Asa result, n <0, leading to a contradiction. Following from Theorem 2.1, the probability that Bob
wins is either 5z >1_o () or st Y1 (M). Note that both sums are empty and equal to 0 since j < 0 and j < 0.
To prove the “only if" direction, we assume that the winning probability of Bob is 0. If n = %(a + b), then in order for

4]

ST 2o (™) to be 0, we must have [4] — 1 < 0. This happens if and only if M < 0, which implies n < 0, leading to

a contradiction. If %(a+b) < n < (M — j)a+ (j+ 1)b, then in order for 5 S, (™) to be 0, we must have j < 0. In this
case,

7:

[n—b—Ma—‘ ”(M—j)a—i—(i—i—l)b—b—Ma“ .
< =j<0.
b—a b—a
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If (M — j)a+ (j+ 1)b < n, then in order for s >7_o (™) to be 0, we must have j < 0. In this case,

1

07— "n—b—Ma-‘ - "(M—j)a—i—(i—i—l)b—b—Ma" _;

b—a b—a

Therefore, the winning probability of Bob is 0 implies that j < 0 and j < 0. Equivalently, M- < 0and =M < 1,
Since b — a > 0, combining these two inequalities gives Mb <n<b+Ma—(b—a)=(M + 1)a. O

3. Modulo dependent game

Now, we will focus our attention on the modulo dependent game. Recall that in this game, all positions are considered
modulo n. Hence, in this section, we view the positions of the game as elements of Z, x Z,, where Z, denotes the ring
Z/nZ. Also recall that the sets {(0, k) : k € [0, n — 1]} and {(k,0) : k € [1,n — 1]} are Alice’s and Bob’s winning region,
respectively. For this game, a random walk terminates when it lands on one of the winning regions for the first time after
the first move. Similar to the dependent game, we observe that the position after m turns is given by (m —i)(a, b)+i(b, a)
in Z, x Z, for some 0 < i < m. Without loss of generality, we assume throughout this section that gcd(a, b, n) = 1.

Unlike the dependent game, there exist modulo dependent games with walks that never land in a winning region. For
instance, when a = 1, b = 2, and n = 6, the walk

(0,0) = (1,2)— (2,4)—> (4,5) > (5,1) = (1,2) > (2,4) > ---

forms an infinite loop so that a winner is never decided. However, the following lemma implies the probability that a
random walk terminates after finitely many moves is 1.

Lemma 3.1. In every modulo dependent game, the sum of the winning probabilities of Alice and Bob is 1.

Proof. At any point in the game, the position of the game is given by (ia + jb, ja + ib) for some positive integers i and j.
If a winner has not yet been decided, then the probability that a winner is decided within the next 2n moves is at least
p= 2% This is because any path from (ia+jb, ja+ib) that consists of n —i moves of (+a, +b) and n—j moves of (+b, +a)
must land on a winning region, since this path ends at (0, 0).

For each positive integer k, let E, be the event that a winner is not determined on the mth turn for any 1 < m < 2nk.
Then for k > 2, P(Ex|Ex—1) < 1 — p. Therefore, the probability of a winner being decided after finitely many moves is

1_P<éEk)

=1-P(E) - [ [ P(ElEc)

k=2
o0
>1-PE)-[[(1-p)
k=2
=1 0

From Lemma 3.1, since the sum of the winning probabilities of Alice and Bob is 1, determining the winning probability
of one player yields the winning probability of the other. The following theorem extends this idea by showing that the
winning probability of each player is completely determined by the probability that a random walk terminates at the
position (0, 0).

Theorem 3.2. In a modulo dependent game, let q be the probability that a random walk terminates at the position (0, 0).
Then the winning probability of Alice is %(1 + q) and the winning probability of Bob is %(1 —q).

Proof. Recall that Alice’s and Bob’s winning regions are {(0, k) : k € [0, n — 1]} and {(k, 0) : k € [1, n — 1]}, respectively.
Moreover, since the set of moves {(+a, +b), (+b, +a)} and Z, x Z, are both symmetric about the diagonal y = x, we have
P(A random walk terminates at (0, k)) = P(A random walk terminates at (k, 0)).

Thus,

—_

n—
P(Alice wins) = P(A random walk terminates at (0, k))
0
n—1
=q+ Z P(A random walk terminates at (0, k))
k=1

=
Il
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n—1

=q+ Z P(A random walk terminates at (k, 0))
k=1

= q + P(Bob wins).

Combining with P(Alice wins) + P(Bob wins) = 1 from Lemma 3.1 yields our desired results. O

The following corollary is an immediate consequence of Theorem 3.2.

Corollary 3.3. The winning probability of Bob in every modulo dependent game is less than or equal to % Further, the winning
probability of Bob is % if and only if no random walk terminates at the position (0, 0).

A position (x,y) € Z, X Z, is called reachable if there exists a random walk that lands on (x, y) after leaving the
starting position (0, 0) until terminating. In view of Corollary 3.3, to identify when Bob has a fair chance of winning, we
wish to determine in which modulo dependent games that (0, 0) is not reachable. We will first establish some sufficient
conditions on a, b, and n under which (0, 0) is not reachable.

Theorem 3.4. Let a, b, and n be such that 2a = 2b (mod n) and a + b is odd. Then the position (0, 0) is not reachable.

Proof. Since a < b < n and 2a = 2b (mod n), we deduce that 2b = n + 2a, which implies that n is even and b = % + a.
Moreover, since 2(a, b) = 2(b, a) in Z, x Z,, the position after m turns is given by either (m — 1)(a, b) + (b, a) or m(a, b),
where m is a positive integer.

Note that (m — 1)(a, b) + (b, a) is never equal to (0, 0). This is because a + b is odd, so exactly one of a and b is even,
which forces at least one coordinate in (m — 1)(a, b) + (b, a) = ((m — 2)a + (a + b), (m — 2)b + (a + b)) to be odd. Since
gcd(a, b, n) = 1, the only way for m(a, b) to be (0,0)is When m is a positive multiple of n.

Suppose that there is a random walk that terminates at (0, 0) on the mth turn. Then m > n. Consider the J-th turn of
this walk. Substituting b = § + a, the position after § turns is either

(g—l><a,g+a)+(g+a,a):(g(a+1),g<g—1+a)> (2)
Lot (2 300)

Note that % is odd since b = % + a and a and b have opposite parity. Consequently, if a is odd, then the first coordinate
in Eq. (2) and the second coordinate in Eq. (3) are multiples of n; if a is even, then the second coordinate in Eq. (2) and
the first coordinate in Eq. (3) are multiples of n. This contradicts the assumption that the random walk does not terminate
until the mth turn. As a result, no random walk terminates at (0,0). O

or

Remarkably, with the exception of a = 1, b = 2, and n = 4, the converse of Theorem 3.4 also holds. To prove this
claim, we first expand our investigation of reachable positions to general (x, y) € Z, X Z,. It is important to note that not
all positions in Z, x Z, are reachable. For example, for a random walk to land on (a, a), it must first land on (0, a — b)
or (a — b, 0). Thus, the walk will have terminated before reaching (a, a), which makes (a, a) not reachable. A similar
observation shows that (b, b) is also not reachable.

The following lemma allows us to search for reachable positions inductively.

Lemma 3.5. Let (X,y) € Zy X Zy \ {(—a, —a), (—b, —b)} such that (x, y) is a reachable position. If x # 0 and y # O, then
the position (x +a+ b,y + a + b) is reachable.
Proof. If x %= —a (mod n) and y # —b (mod n), then each position on the path

*y)—> (x+a,y+b)—> (x+a+by+a+b)

is reachable. Now suppose that x = —a (mod n). Since (x,y) # (—a, —a), it follows that y # —a (mod n), and each
position on the path

(x,y)> (x+b,y+a)— (x+a+b,y+a+b)

is reachable. Similarly, if y = —b (mod n), then x % —b (mod n) and each position on the path
(x,y) > (x+b,y+a)—> (x+a+b,y+a+b)

is reachable. O

With this lemma, we can provide some sufficient conditions under which the position (x,x) ¢ {(a,a), (b, b)} is
reachable.
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Theorem 3.6. Let a, b, and n be such that 2a # 2b (mod n), a # 2b (mod n), 2a # b (mod n), and a + b is relatively prime
to n. Then every position (x, x) € Z, x Zn \ {(a, a), (b, b)} is reachable.

Proof. Let p; = (i(a+b), i(a+ b)) € Z, x Z,. Since a+ b is relatively prime to n, {p; : i € [1,n]} = {(x,x) : x € [0, n — 1]}.
Hence, it suffices to prove that p; is reachable for all 1 <i < n except p; € {(a, a), (b, b)}. Notice that p; = (a+ b, a + b)
is reachable via the walk

(0,0)— (a,b) — (a+b,a+b).

We now proceed with a proof by induction on i.
Let 1 <i < n. If p; is reachable and p;1 ¢ {(a, a), (b, b)}, then

pi ¢ {(a,a)—(a+ b,a+b), (b,b)— (a+b,a+ b)} = {(—b, —b), (—a, —a)}.

Therefore, by Lemma 3.5, p;y; is reachable. It remains to tackle the case when p;; € {(a, a), (b, b)}. We will only show
the proof for pi.1 = (a, a), since the proof for p;;1 = (b, b) is similar.

Assume that p;y1 = (a, a). Since p; = (a — (a + b), a — (a + b)) = (—b, —b) is reachable, it can only be reached from
positions (—a—b, —2b) and (—2b, —a—b). By the symmetry about the diagonal y = x, both (—a—b, —2b) and (—2b, —a—b)
are reachable or are the starting position (0, 0). Notice also that p;., = (b, b) if and only if a+ (a+ b) = b (mod n), which
is equivalent to 2a = 0 (mod n). Hence, if p;1, = (b, b), then 2b # 2a = 0 (mod n), and pi;3 = (b+(a+b),b+(a+b)) =
(a + 2b, a + 2b) is reachable via the walk

(—a—b,—-2b) - (—a,a — 2b) -» (—a+ b, 2a — 2b) = (—a+ b, —2b) — (b, —b) — (2b,a — b)
— (a+2b,a) — (2a+ 2b,a+ b) = (2b,a + b) — (a + 2b, a + 2b).

This walk does not terminate before reaching p;, 3 because a # 2b (mod n), a # b, 2b # 0 (mod n), —a = a # 2b (mod n),
and a + b is relatively prime to n.
Finally, if pi12 # (b, b), then p;y» = (a+ (a + b), a+ (a + b)) = (2a + b, 2a + b) is reachable via the walk

(—a—b,—-2b) - (—a,a—2b) - (b —a,2a — 2b) — (b, 2a — b) - (a+ b, 2a) — (2a+ b, 2a + b).

Once again, this walk does not terminate before reaching p;;, because a # 2b (mod n), a # b, 2a # 2b (mod n),
2a # b (mod n), a + b is relatively prime to n, and 2a # 0 (mod n). The proof follows by induction oni. O

For the purpose of determining the winning probabilities of Alice and Bob, Theorem 3.6 provides sufficient conditions
on a, b, and n that give Alice an advantage. More specifically, the theorem provides sufficient conditions under which
(0, 0) is a reachable position. In the following, we provide another sufficient condition.

Lemma 3.7. Let a, b, and n be such that a + b is not relatively prime to n. Then the position (0, 0) is reachable.

Proof. Let d = gcd(a + b, n) > 1. If there exists i € [0,n — 1] such that (i + 1)a + ib = 0 (mod n), then d divides
(i4+ 1)a + ib — i(a + b) = a, which further implies that d divides (a + b) — a = b. This contradicts the assumption that
gcd(a, b, n) = 1. As a result, we have (i + 1)a + ib # 0 (mod n). Similarly, ia + (i + 1)b # 0 (mod n). In conclusion, for
all i € [0, n — 1], the position ((i + 1)a + ib, ia 4 (i + 1)b) is never in a winning region. Therefore, the position (0, 0) is
reachable via the walk

(0,0) — (a,b) — (a+ b, a+b) — (2a+ b, a + 2b) — (2(a+ b), 2(a+ b)) — - --
S ((i+ Da+ib,ia+(i+1)b) = ((i+1)a+b), i+ 1) a+b) = - — (g(a +b), g(a n b)) =(0,0),
which alternates the moves (+a, +b) and (+b, +a). O

Now, we are ready to state and prove the necessary and sufficient conditions under which the position (0, 0) is not
reachable.

Theorem 3.8. The position (0, 0) is not reachable if and only if one of the following holds:

ea=1b=2andn=4 or
e 2a =2b (mod n) and a + b is odd.

Proof. If a = 1, b = 2, and n = 4, then we may easily see that (0, 0) is not reachable by exhausting all reachable positions
in this modulo dependent game. If 2a = 2b (mod n) and a + b is odd, then the conclusion that (0, 0) is not reachable is
provided by Theorem 3.4.

To prove the converse, let a, b, and n be such that the respective values of a, b, and n are not simultaneously 1, 2, and
4. 1If 2a = 2b (mod n) and a + b is even, then 2b = n + 2a, so we deduce that n is also even. This implies that a + b is
not relatively prime to n, thus by Lemma 3.7, the position (0, 0) is reachable. For the rest of the proof, we assume that
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2a = 2b (mod n). Due to Lemma 3.7, we may further assume that a + b is relatively prime to n, or else the position (0, 0)
is guaranteed to be reachable.

If a # 2b (mod n) and 2a # b (mod n), then the position (0, 0) is reachable by Theorem 3.6. Otherwise, we have either
a = 2b (mod n) or 2a = b (mod n). We will only show the proof for 2a = b (mod n), since the proof for a = 2b (mod n)
is similar.

Since 0 < a < b < n,2a = b (mod n) implies b = 2a, so the two moves in the modulo dependent game are (+a, +2a)
and (42a, +a). Furthermore, since a+b is relatively prime to n, we have gcd(3a, n) = 1.1f n is odd, then (0, 0) is reachable
via the walk

(0,0) — (a, 2a) — (2a,4a) - --- — (ia, 2ia) — --- — (na, 2na) = (0, 0).

This walk does not terminate before reaching (0, 0) because a is relatively prime to n, 1 <i < n, and n is odd. If n is even,
then n > 6; otherwise, a < b < n and gcd(3a, n) = 1 together imply a = 1, b = 2, and n = 4. With n > 6 established,
the position (0, 0) is reachable via the walk that starts from (0, 0), takes the move (+a, +2a) to (a, 2a), followed by n — 3
moves of (+2a, +a) to ((2n — 5)a, (n — 1)a) = (—5a, —a), followed by the move (+a, +2a) twice to (—3a, 3a), followed
by the move (+2a, +a) twice to (a, 5a), followed by n — 3 moves of (+a, +2a) to ((n — 2)a, (2n — 1)a), and finishes with
the move (42a, +a) to (0, 0). Symbolically, the walk is

0,0) £22% (q, 2q)

— (3a, 3a) — (5a,4a) —» --- — ((2i+ 1)a,(i+2)a) > --- — ((2n — 5)a, (n — 1)a)

n—3 times (+2a,+a)

= (—5a, —a) M (—4a, a) M (—3a, 3a) M (—a, 4a) w) (a, 5a)

— (2a,7a) — (3a,9a) > --- — (G+ 1a, (2j +5)a) > --- — ((n—2)a, (2n — 1)a)

n—3 times (+a,+2a)
2a,
w (na, 2na) = (0, 0).

This walk does not terminate before reaching (0, 0) because a is relatively prime ton, 2i + 1isodd,3 <i+2 <n-—1,
n>6,2<j+1<n-—2, and 2j+ 5 is odd. This completes the proof of the converse. O

Combining Corollary 3.3 and Theorem 3.8, we have the following.

Corollary 3.9. In a modulo dependent game, Alice and Bob have equal winning probabilities if and only if one of the following
holds:

ea=1,b=2andn=4, or
e 2a = 2b (mod n) and a + b is odd.

While the above corollary gives the best case scenario for Bob in terms of his winning probability, the following
theorem and its corollary give his worst case scenario.

Theorem 3.10. The position (0, 0) is the only reachable position in the union of Alice’s and Bob’s winning regions, i.e., a
random walk only terminates at the position (0, 0), if and only if n | (b*> — a?).

Proof. Suppose n | (b?> — a?). Then there exist integers k and k' such that n = kk/, k | (b — a), and k' | (b + a). Let £ be an
integer such that b = ¢k + a. The position after m turns is given by

Pmi = (Xmi, Ym,i) = (m — i)(a, £k + a) + i(¢k + a, a)
= (ma + ilk, m€k + ma — ilk).

Since gcd(a, b,n) = 1, b = ¢k 4+ a implies that gcd(k,a) = 1. As a result, if xp; is a multiple of n, then ma =
tin — ilk = k(t;k' — i¢) for some integer t;, which implies that m is a multiple of k; if y,, ; is a multiple of n instead, then
ma = tyn — mek + itk = k(t,k' — me + if) for some integer t,, which again implies that m is a multiple of k. Note that
Xm.i+Ymi = mek+2ma = m(€k + 2a) = m(a + b). If either X, ; or y,,; is a multiple of n, then X, ; +ym.; is also a multiple
of n since k | m and k' | (a + b). Therefore, x,,; = 0 (mod n) if and only if y,,; = 0 (mod n). In other words, a random
walk will only terminate at the position (0, 0).

Suppose n { (b*> — a*) and a random walk only terminates at the position (0, 0). Let m and i be positive integers such
that m >i,m=b —a (mod n), and i = —a (mod n). Then m — i = b (mod n), and

((m —i)a +ib, (m — )b + ia) = (0, b* — a*) # (0, 0).
Consider the sequence of positions

(0, 0), (b, a), (2b, 2a), ..., (ib,ia), (a +ib, b + ia), (2a + ib, 2b + ia), ..., ((m — i)a + ib, (m — i)b + ia).



J. Harrington, K. Karhadkar, M. Kohutka et al. / Discrete Applied Mathematics 288 (2021) 74-86 83

Fig. 4. The graphical representation of a player’s moves in the independent game.

In this sequence, let (éa + ¢b, b + ¢a) be the last position that equals (0, 0). Then the subsequence of positions from
(¢a+¢b, Eb+a) to (m—i)a+ib, (m—i)b+ia) forms a random walk that starts from (0, 0) and terminates at (0, b*> —a?),
contradicting that (0, 0) is the only position at which a random walk may terminate. O

Combining Theorem 3.2 and Theorem 3.10, we have the following.
Corollary 3.11. In a modulo dependent game, the winning probability of Bob is 0 if and only if n | (b*> — a?).
4. Back to independent games

In this section, we come back to study an independent game established by Leung and Thanatipanonda. In this game,
Alice and Bob independently toss a fair coin to decide whether they collect —1 or 1 chip in that turn, and the first player
who accumulates at least n chips is the winner. Their paper defined the notation q(n, k) to represent the probability that
a player does not win on their kth move, i.e., they never accumulate at least n chips on or before their kth move. Leung
and Thanatipanonda used Maple to find that

2m
q(1,2m) = (2’;,,1)

, (4)

but they are interested in a combinatorial proof of this result. We note that Rényi provided a proof in 1970 [8]. However,
Rényi's proof is by establishing a recurrence relation for g(n, k), which is not combinatorial. In this section, we are going
to provide an outline of a combinatorial proof by using André’s reflection method, and further provide a new and detailed
combinatorial proof by using a different path transformation.

As a player may collect —1 or 1 chip in each turn, there are 22™ scenarios after a player has made 2m moves, which
explains the denominator in the formula given by Eq. (4). To explain the numerator combinatorially, we establish a new
graphical representation of the game, which is different from our standard notation in the rest of the paper. The player
starts from the position (0, 0), and the moves —1 and +1 are represented by the rightward step (41, +0) and the upward
step (40, +1), respectively. For example, if the player’s first 5 moves are —1, +1, +1, —1, —1 in that sequence, then the
graphical representation is given by the lattice path as shown in Fig. 4.

In this graphical representation, the position (x, y) records the following information: x and y represent the cumulative
number of —1 and +1 moves of the player, respectively; x + y represents the total number of moves of the player; and
y — x represents the number of chips the player accumulates. Since we are interested in the value of q(1, 2m), the player
never accumulates at least 1 chip on or before their 2m-th move. Hence, if we consider the graphical representation of
the player’s first 2m moves, the lattice path will never go above the straight line y = x, and it will end on the line segment
{(x,y) : x+y =2mand m < x < 2mj}. Define X as the set of all such lattice paths (see Fig. 5). It remains to prove that
the cardinality of X is (*7).

During the reviewing process of this paper, we were made aware by a referee of a neat proof. This proof involves
recurrent application of André’s reflection method, a technique commonly used in proving Bertrand’s ballot theorem and
counting the number of Dyck paths. In particular, for all integers x' > y’, André’s reflection method establishes a bijection
between the set of lattice paths from (0, 0) to (x’, y’) that touches the line y = x + 1 and the set of lattice paths from
(=1, 1) to (¥, y). Hence, the number of lattice paths from (0, 0) to (x’, y') that never go above the straight line y = x is

() = (51). The set of integers

X/ / / /
Yy (K Y X +y =2m, m<x <2m
b'd x +1

forms a telescoping sum and yields |X| = (2,;") Nevertheless, we would like to present a different bijective proof, which
involves a new path transformation technique.

Let Y be the set of lattice paths of length 2m starting from (0, 0) and ending at (m, m), which travels only in the upward
or rightward directions (see Fig. 6). It is well known that the cardinality of Y is (ZnT) In fact, we may biject Y to a set of
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Y
Y

Fig. 5. A path of length 10 in X.

Fig. 6. A path of length 10 in Y.

“commands”, where each command is a sequence of length 2m that contains m “upward" and m “rightward" steps. We
are going to finish our combinatorial proof of the formula in Eq. (4) by constructing a bijection from Y and X.

Let (0,0) = (x0,¥0) — (X1,y1) = (X2,¥2) = -+ = (Xom, Yom) = (m, m) be a lattice path in Y. We will perform a
sequence of transformations on this path according to the following algorithm.

If the lattice path (xo,y0) — (x1,y1) = (X2,¥2) — -+ — (Xam, Y2m) Never goes above the straight line
y = x, then we have completed the transformation. Otherwise, let i be the smallest positive integer such
that y; — x; = max{y; —x; : 1 < j < 2m}. Note then that the step (xi_1,yi—1) — (x;,¥:) is an upward step
(0, 1). Update (xo, yo) = (X1,¥1) — (X2,¥2) = - -+ — (Xam, Y2m) as the new lattice path (xq, yo) = (X1,¥1) —
(%2,¥2) = -+ = (X1, Yim1) > K+ Lyi— 1) = (Xip1 + Ly — 1) = -+ = (Xom + 1,¥2m — 1), and
reiterate this process.

Fig. 7 illustrates the above algorithm on the lattice path in Fig. 6.

The resultant lattice path of this algorithm has 2m steps, only travels rightward or upward, and never goes above the
line y = x. Hence, it is a lattice path in X. In other words, this algorithm produces a well-defined function from Y to X. To
see that this function is bijective, we will define a function from X to Y, and verify that these two functions are inverses
to each other.

Given a lattice path (0, 0) = (Xg, Yo) — (X1,¥1) = (X2, ¥2) = -+ — (Xam, Yam) in X, let i be the unique integer obtained
in algorithm (5) above. Define the vertex (x;, y;) as the pinnacle of the lattice path. The idea is to imagine that when a
strong wind blows from bottom left to top right with slope 1, (x;, y;) is the vertex that is the most susceptible. A vertex
(x;, y;) is a pinnacle-elect if (x;_1, yj—1) — (x;, y;) is a rightward step (41, +0), and the vertex (x; — 1, y;+ 1) is the pinnacle
of the new lattice path (Xo,yo) —> (X],y]) —> (Xz,yz) — s —> (Xj,],yj;l) — (Xj — 1,y]‘ + 1) — (Xj+] — 1,y]'+] + 1) —
> (XZm - ],yZm + ])-

Lemma 4.1. Let P € X \ 'Y be the lattice path (0, 0) = (xo, yo) = (X1,¥1) = (X2,¥2) = - -+ — (Xom, Yam). Then there exists
a unique integer 1 < j < 2m such that (x;, y;) is a pinnacle-elect.

Proof. Let (x;, y;) be the pinnacle of the lattice path in X\ Y, and let i’ be the largest integer such that yy —xy = y;—x; > 0.
Note then that i’ < 2m. This is because (Xom, Yam) € {(X,y) : X +y = 2m and m < x < 2m}, which implies that X, > Yon.
Thus, we may let j = i' 4+ 1. We will prove that (x;, y;) is the unique pinnacle-elect.

First, note that (xj_1, ¥j—1) — (¥;, y;) is a rightward step (41, +0). Otherwise, if (x;_1, ¥j—1) = (;, y;) is an upward step
(+0, +1), then y; — xj = (¥j—1 + 1) — Xj—1 =yv — Xy + 1 > y; — x;, which contradicts that (x;, y;) is the pinnacle.

Next, consider the new lattice path Py given by (Xo, yo) — (X1,y1) = (X2,¥2) = -+ = (Xj—1,¥j-1) = Xj—1,y;+1) —
(X1 — 1, ¥j41 +1) = -+ — (Xam — 1, Yo + 1). In this lattice path Py,

Gi+D)-&-D=Fa1+D—((X%1+1)-1D=y1—x1+1=yr —xv + 1,
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Fig. 7. The sequence of transformations on the lattice path in Fig. 6.

which is greater than y, — x, for all 0 < £ < j — 1, and is greater than or equal to (y¢ + 1) — (x, — 1) = y, — x¢, + 2 for
allj+1=1i+2 < ¢ <2m, since yy — Xy > y¢ — X,. This shows that (x; — 1, y; + 1) is the pinnacle of the lattice path P;,
and hence, (x;, y;) is a pinnacle-elect of P.

Finally, if there are two pinnacle-elects (x;, y;) and (xy,yy) in the lattice path P for some j < j, then (x;,y;) =
(xi—1 + 1,yj-1) and (xy,yy) = (xy—1 + 1,yy_1). Now, at the pinnacle of the new lattice path P, given by (xo, yo) —
(*1,¥1) = (%2,¥2) = -+ = X1, ¥7-1) > K — Lyy + 1) > X1 — Lyppr +1) > - = (xom — 1, y2m + 1), we
have (yy +1)—(xy — 1) > y, —x; for all 0 < £ < j — 1. In particular, (yy + 1) — (X — 1) > yj_1 — xj_1. This implies
that at the pinnacle of the lattice path P;, we have (y; + 1) —(x, — 1) = (yj-1+ 1) -1 +1-1)=yi1 —x_1+ 1<
(yy +1)—(xy — 1)+ 1= (yy_1 + 1) — (xy—1 — 1), which contradicts that (x; — 1, y; + 1) is the pinnacle of the lattice path
P;. This establishes the uniqueness of the pinnacle-elect in the lattice path P. O

Now, we are ready to define an algorithm to transform a lattice path (0, 0) = (xo, Yo) = (X1, y1) = (X2,¥2) > -+ —>
(X2m» Yom) in X.
If (Xam, y2m) = (m, m), then we have completed the transformation. Otherwise, note that x,,;, — y», > 0, and
let (x;, y;) be the pinnacle-elect. Update (xo, ¥o) — (X1,¥1) = (X2,¥2) = - -+ = (Xam, Y2m) as the new lattice
path (xo, o) = (X1,y1) = (x2,¥2) = - —> (%1, ¥j-1) > ¥ = Lyj+ 1) = (31 — Ly + 1) —> - —
(Xxam — 1, ¥2m + 1), and reiterate this process.

(6)

It is easy to see that this algorithm produces a well-defined function from X to Y, and is the desired inverse of the
function from Y to X defined above. Therefore, the cardinality of X is the same as the cardinality of Y, which is (Zn'T")

5. Final remarks

In Section 1, we discussed how the introduction of designated terminating positions makes our investigation different
from the usual study of generalized knight tours. For instance, Watkins and Hoenigman showed that without these
terminating positions, every position in the torus Z, x Z, is reachable when (a, b) = (1,2) and n > 6 is even [10].
However, our following conjecture suggests a very different result when terminating positions are introduced.

Conjecture 5.1. Every position in Z, x Zn \ {(a, a), (b, b)} is reachable if and only if a # 2b (mod n), 2a # b (mod n), and
a® — b? is relatively prime to n.

While our main focus in this paper was to study two specific variations of a game presented by Wong and Xu, it
is worth noting that many other variations could be considered. For example, future directions may include studying a
three-player game that follows rules similar to those in Wong and Xu's paper, or rules similar to those established in
this paper. Another interesting variation would be a modulo independent game that follows the winning rules of the
modulo dependent game, but where Alice and Bob each flip coins independently. One may also consider a dependent
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game with two different winning criteria or a modulo dependent game with two different moduli. We briefly considered
these variations, and provide here some preliminary observations of the last variation.

Let a, b, ny, and n, be positive integers such that gcd(a, b, ny,n;) = 1 and a < b < min{ny, ny}, and consider the
variation of the modulo dependent game where Alice is the winner any time x = 0 (mod n;) after the first turn and Bob
the winner if y = 0 (mod n;) and x # 0 (mod n4) after the first turn. The following is an easy application of Theorem 3.10.

Theorem 5.2. Let n; | ny. If nq | (b2 —a?), then the positions (0, y), where n; | y, are the only reachable position in the union
of Alice’s and Bob’s winning regions, i.e., a random walk only terminates at the positions (0, y), where ny | y. Thus, the winning
probability of Bob is 0.

Computational data suggests the following conjecture, which is the converse of Theorem 5.2.

Conjecture 5.3. Let ny | ny. If the positions (0, y) are the only reachable position in the union of Alice’s and Bob’s winning
regions, then nq | (b> — a?).

The condition that ny | n, is not necessary for the winning probability of Bob to be 0. For example, if (nq, ny, a, b) =
(6,9, 2, 4), then the winning probability of Bob is 0. Computationally, the only necessary condition that we can identify
is ny | (b*> — a?). As for the sufficient condition, it is still elusive. For instance, we find that if (n;,n,, a,b) €
{(10, 15, 4, 6), (12, 9, 4, 8), (20, 28, 5, 15)}, then the winning probability of Bob is 0, but the winning probability of Bob
is nonzero when (nq, ny, a, b) = (6, 9, 1, 5).
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