

PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B

BIOLOGICAL SCIENCES

Multiple global change stressor effects on phytoplankton nutrient acquisition in a future ocean

Journal:	<i>Philosophical Transactions B</i>
Manuscript ID	RSTB-2019-0706.R1
Article Type:	Review
Date Submitted by the Author:	n/a
Complete List of Authors:	Van de Waal, Dedmer; Netherlands Institute of Ecology, Aquatic Ecology litchman, elena; Michigan State University, Department of Integrative Biology
Issue Code (this should have already been entered but please contact the Editorial Office if it is not present):	MICROBIAL
Subject:	Ecology < BIOLOGY
Keywords:	Climate change, Phytoplankton, Traits, Resource allocation, Eco-physiology

SCHOLARONE™
Manuscripts

Author-supplied statements

Relevant information will appear here if provided.

Ethics

Does your article include research that required ethical approval or permits?:

This article does not present research with ethical considerations

Statement (if applicable):

CUST_IF_YES_ETHICS :No data available.

Data

It is a condition of publication that data, code and materials supporting your paper are made publicly available. Does your paper present new data?:

Yes

Statement (if applicable):

The data presented in our review is derived from earlier publications by other colleagues, for which we obtained permission to use but not distribute. For two figures, permission still needs to be confirmed for which I am in contact with Helen Eaton, Senior Commissioning Editor at Philosophical Transactions B.

Conflict of interest

I/We declare we have no competing interests

Statement (if applicable):

CUST_STATE_CONFLICT :No data available.

Authors' contributions

This paper has multiple authors and our individual contributions were as below

Statement (if applicable):

Both authors contributed to the ideas presented in the manuscript. DBvdW prepared a first version of the manuscript and figures, and both authors contributed to newer versions.

Multiple global change stressor effects on phytoplankton nutrient acquisition in a future ocean

Dedmer B. Van de Waal^{1,*}, Elena Litchman^{2,3}

¹Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevedaalsesteeg 10, Wageningen, 6871 CM, The Netherlands

²W. K. Kellogg Biological Station, Michigan State University, 3700 E. Gull Lake Dr., Hickory Corners, MI 49060, USA

³Department of Integrative Biology, Michigan State University, 288 Farm Lane, East Lansing, MI 48824, USA

Keywords: Climate change, phytoplankton, traits, resource allocation, eco-physiology

Main Text

Summary

Predicting the effects of multiple global change stressors on microbial communities remains a challenge because of the complex interactions among those factors. Here, we explore the combined effects of major global change stressors on nutrient acquisition traits in marine phytoplankton. Nutrient limitation constrains phytoplankton production in large parts of the present-day oceans, and is expected to increase due to climate change, potentially favouring small phytoplankton that are better adapted to oligotrophic conditions. However, other stressors, such as elevated $p\text{CO}_2$, rising temperatures and higher light levels, may reduce general metabolic and photosynthetic costs, allowing the reallocation of energy to the acquisition of increasingly limiting nutrients. We propose that this energy reallocation in response to major global change stressors may be more effective in large-celled phytoplankton species and, thus, could indirectly benefit large more than small-celled phytoplankton, offsetting, at least partially, competitive disadvantages of large cells in a future ocean. Thus, considering the size-dependent responses to multiple stressors may provide a more nuanced understanding of how different microbial groups would fare in the future climate and what effects that would have on ecosystem functioning.

Primary production in a future ocean

Marine phytoplankton play a pivotal role in the oceanic carbon cycle and fuel the marine food web. Consequently, climate-driven shifts in oceanic primary production will have major consequences not only for carbon export, but also for the structure and functioning of the entire marine biome. Understanding how multiple global change stressors act simultaneously affecting phytoplankton productivity and community structure is difficult because of the complex interactions among those factors [1]. Looking at traits that are involved in potential phytoplankton responses to different global change stressors and determining how these traits are affected by those stressors, together with assessing

1 potential trade-offs that may be involved, could help us improve the conceptual
2 understanding of multiple stressor effects on different phytoplankton groups.
3

4 Both elevated $p\text{CO}_2$ and warming are major global change stressors impacting
5 marine phytoplankton, and their effects can be direct as well as indirect. For instance,
6 elevated $p\text{CO}_2$ may directly facilitate oceanic primary production through enhanced
7 photosynthesis [2-4]. Yet, the effects are species- and even strain-specific, depending on
8 distinct inorganic carbon acquisition strategies including the operation and regulation of
9 carbon concentrating mechanisms (CCMs) [5-8]. Various studies, however, have shown that
10 elevated $p\text{CO}_2$ does not necessarily enhance primary production, or may even have
11 negative effects, e.g., caused by concomitant changes in carbonate chemistry such as
12 reduced pH (i.e. ocean acidification; [9, 10]). Warming directly affects organisms by
13 enhancing their metabolic rates [11, 12]. Specifically, warming may enhance respiration
14 rates more than photosynthesis, and thus possibly lead to declines in net oceanic carbon
15 fixation [13, 14].
16

17 Besides the direct effects on primary production, warming is also expected to
18 enhance thermal stratification at low and mid-latitudes, preventing nutrients from deep
19 waters entering the well-lit surface mixed layer, thus exacerbating phytoplankton nutrient
20 limitation and reducing primary production [15-17]. Moreover, enhanced nutrient trapping
21 in the Southern Ocean due to climatic changes was shown to increase nutrient export to the
22 deep ocean, further strengthening nutrient limitation [18]. Thus, present-day oceanic
23 phytoplankton primary production is already constrained by the availability of key
24 nutrients such as nitrogen, phosphorus and iron [19], and this limitation is expected to
25 increase in a future ocean. Phytoplankton have developed a range of traits to deal with
26 prevailing low nutrient conditions. These nutrient utilization traits may change in response
27 not only to increased nutrient limitation but to major global change stressors as well, such
28 as higher $p\text{CO}_2$ and temperatures.
29

30 How do increased $p\text{CO}_2$, warming and nutrient limitation interact to modify
31 phytoplankton physiology, ecology and ecosystem impacts? No doubt, the effects are
32 complex and varied. To illustrate this complexity, we focus on how phytoplankton nutrient
33 acquisition may be modified by elevated $p\text{CO}_2$, warming and higher light availabilities, and
34 what consequences this may have on oceanic ecosystems. Inspired by trait-based
35 approaches in ecology [20-22], we propose using traits to understand the combined effects
36 of climate change factors and nutrient limitation on marine phytoplankton. Specifically, we
37 highlight the impacts of climate change on nutrient acquisition at the individual level
38 through phenotypic plasticity, at the population level through genotype-specific responses
39 with potential consequences for evolutionary adaptation, and at the community level
40 through climate-driven species sorting, revealing unexpected scenarios for shifts in
41 community size structure.
42

53 54 Plasticity of nutrient acquisition traits

55 56 *Elevated $p\text{CO}_2$ and warming*

57 Nutrient acquisition in phytoplankton approximates a hyperbolic function, with
58 uptake rates and growth rates steeply increasing at low nutrient concentrations toward
59 saturation when nutrient is in excess [23-26]. Key nutrient acquisition traits include the
60 maximum uptake rate (V_{max}) or maximum growth rate (μ_{max}), and the half-saturation

constant ($K_{1/2}$) that describes the concentration of a nutrient where nutrient uptake or growth equals half of the maximum rate. Nutrient uptake or growth affinity (α) combines both traits, representing the initial slope following $V_{max}/K_{1/2}$ and $\mu_{max}/K_{1/2}$, respectively (Fig. 1A) [24, 27]. Climate-driven increases in nutrient limitation may thus likely benefit phytoplankton with high nutrient uptake or growth affinities, either attained through plastic responses or through evolutionary selection. In addition to the uptake traits, the minimum nutrient requirement, minimum nutrient quota Q_{min} , is important in determining nutrient competitive abilities that can be expressed as scaled uptake affinity $\frac{V_{max}}{K_{1/2}Q_{min}}$ [28]. In general, smaller-celled species tend to have better competitive abilities [28], so that they would have a competitive advantage in the future more oligotrophic ocean.

Phytoplankton possess high phenotypic plasticity and can strongly modulate their physiology in response to elevated pCO_2 and temperature. Warming may reduce the energetic and elemental costs for overall metabolism, and with elevated pCO_2 the energetic costs of carbon acquisition could be reduced, notably by down-regulation of energy-demanding CCMs [4, 5, 29]. Consequently, cells may reallocate energy and/or elements to enhance the uptake of a limiting resource, leading to higher nutrient uptake or growth affinities (Fig. 1B). Indeed, at higher temperatures phytoplankton seem to have higher nitrogen uptake rates (for ammonium and urea, but not nitrate) [30], and higher nutrient growth affinities (Fig. 2A) [27]. Similarly, elevated pCO_2 also led to higher net nitrogen assimilation rates (i.e., nitrogen quota multiplied by growth rate) in two dinoflagellate species. This was accompanied, however, by a disproportional increase in their $K_{1/2}$ for nitrogen, highlighting a potential trade-off between the rate at which nitrogen is assimilated and the relative affinity for nitrogen [31]. Consequently, nitrogen growth affinities (i.e., $\mu_{max}/K_{1/2}$) were at an optimum or decreased with elevated pCO_2 (Fig. 2B). These findings were mainly explained by a shift toward higher investments in nitrogen-rich functional compounds, such as alkaloid toxins and chlorophyll-a. Alternatively, the CO_2 -driven down-regulation of CCMs may enhance photo-oxidative stress, leading to increased energetic and elemental costs (e.g. nitrogen) associated to photo-inhibition [32-34], which may, in turn, lead to reduced nitrogen growth affinities.

A major source of (bioavailable) nitrogen in the open ocean is the N_2 fixed by diazotrophic cyanobacteria [35] and released into the water column. Thus, changes in N_2 fixation could significantly alter N budgets in oligotrophic oceans. Nitrogen fixation has been shown to be strongly temperature-dependent, with optimum rates in warm, low latitude tropical and subtropical regions (Fig. 2C) [36, 37]. Although warming generally enhances N_2 fixation rates, it may also cause oxygen inhibition of the responsible enzyme nitrogenase, thereby possibly leading to a decline in N_2 fixation rates at high temperatures [36, 38]. Nitrogen fixation rates were shown to generally increase at higher pCO_2 , from present day levels of around 400 ppm to approximately 750 ppm [39-41], beyond which N_2 fixation rates leveled off (Fig. 2D). These patterns show that N_2 fixation can be limited by CO_2 , but also that there is the maximum rate at CO_2 levels above 1,000 ppm [42]. Although elevated pCO_2 was shown to be beneficial for N_2 fixation, a decrease in pH may possibly inhibit it due to a decrease in nitrogenase efficiency, resulting in declined growth and N_2 fixation rates [43, 44, but see 45].

Besides nitrogen and phosphorus, iron is a major limiting resource for oceanic primary production as well, particularly in the Southern Ocean [19]. Similar to nitrogen and phosphorus, the uptake and assimilation of iron were also shown to be affected by

1 temperature. Specifically, along with enhancing N₂ fixation, warming increased iron use
2 efficiency in a marine diazotroph (*Trichodesmium*), and this could even offset the effect of
3 iron limitation [46]. At the same time, however, the inhibitory effect of decreasing pH was
4 most apparent under Fe-limiting conditions [43, 44]. Whether elevated pCO₂ would
5 promote N₂ fixation may, thus, depend on the availability of Fe, and further work is needed
6 to elucidate the interactive effects of Fe and CO₂ on N₂ fixation in marine diazotrophic
7 cyanobacteria.
8
9

10
11 *Increased light availabilities*

12 Enhanced thermal stratification of the oceanic waters may lead to shallowing of the
13 upper mixed layer that may, together with sea ice retreat, enhance the relative light
14 availability in the ocean surface layers and thereby stimulate primary production [47, 48].
15 With higher relative light availabilities, the costs required for light capture may be reduced
16 and, thus, could allow reallocation of energy and/or elements towards nutrient acquisition.
17 Indeed, higher light levels were shown to enhance N₂ fixation rates in diazotrophic
18 cyanobacteria [36, 49]. Moreover, cellular chlorophyll-a content in various phytoplankton
19 species decreased with higher light intensities [50], which may reduce nitrogen demand for
20 synthesizing these pigments [51]. Increasing light availability can also directly decrease
21 nutrient demands of phytoplankton by reducing their elemental quota [52], though these
22 responses may vary among species [53]. Higher light availabilities combined with elevated
23 pCO₂, however, may cause photo-oxidative stress, thereby leading to reduced primary
24 production [33, 54, but see 55]. Despite being beneficial to photosynthesis, the impact of
25 enhanced light levels will thus depend on the availability of other resources, and may
26 possibly become detrimental.
27
28

29 *Favouring the small...*

30 Climate-driven depletion of nutrients may shift phytoplankton communities towards
31 dominance by species with low nutrient requirements, high nutrient uptake efficiencies,
32 and a high flexibility to shunt excess energy towards nutrient acquisition. Being small
33 seems a particularly good strategy to deal with nutrient depletion, as (absolute) nutrient
34 requirements are proportional to size [25, 56]. Moreover, because of their high surface-to-
35 volume ratio, small cells have higher growth and nutrient uptake affinities for nutrients,
36 and are less likely to become diffusion-limited [25, 57-59]. Consequently, smaller-sized
37 phytoplankton generally dominate phytoplankton biomass in the open ocean where
38 nutrients are depleted and primary production is low, while larger celled phytoplankton
39 are generally more dominant in more productive coastal waters [60, 61].
40
41

42 With climate-driven declines in nutrient availabilities, phytoplankton communities
43 may thus possibly shift towards small-celled species. Indeed, the size of diatom frustules,
44 indicative of diatom cell size, was shown to be inversely correlated with temperature
45 variations over the past ~65 million years (Fig. 3A). In other words, warmer periods had
46 smaller diatoms dominant, which could have resulted from the reductions in nutrient
47 availability due to enhanced thermal stratification [62]. Also in contemporary marine
48 phytoplankton, cell size usually decreases with temperature (Fig. 3B) [63]. Similarly,
49 experimental warming led to a shift in the phytoplankton community toward smaller
50 phytoplankton species, which was most prominent under high nutrient stress (Fig. 3C) [64].
51
52
53
54
55
56
57
58
59
60

1 This is in line with climate change scenarios tested with a global Earth System model, which
2 projected a shift toward smaller phytoplankton species, particularly at higher latitudes [65].
3
4

5 ...and the large?
6
7

8 Although nutrient depletion generally favors small phytoplankton, climate-driven
9 reallocation of energy and/or elements may be particularly beneficial for large species. First,
10 large species are more diffusion-limited compared to small species and may thus benefit
11 relatively more from enhanced $p\text{CO}_2$ diffusion rates. For example, elevated $p\text{CO}_2$ was shown
12 to favor growth of larger diatoms [66], and to shift phytoplankton communities to larger
13 species [66, 67]. Secondly, large species have relatively high elemental investments in light
14 capturing, because of the lower absorption efficiencies compared to small-celled
15 phytoplankton [68]. Consequently, large species may benefit relatively more from increased
16 light availability caused by shallower mixing layer depths in a warmer ocean, as they can
17 reallocate more resources and energy from light harvesting to nutrient acquisition. Third,
18 large species also tend to be more flexible in size, with a proportionately greater possible
19 reduction compared to smaller species, because smaller-celled species are closer to their
20 minimum structural demands and, therefore, have limited cell size flexibility [69]. Large
21 species may, thus, have a greater ability to reduce cell size and benefit from the associated
22 increases in surface-to-volume ratio. Fourth, some larger phytoplankton taxa possess
23 vacuoles that increase their surface-to-volume ratio, thereby enhancing the effective surface
24 area for nutrient transport [70, 71]. Fifth, these vacuoles serve as storage compartments for
25 nutrients, particularly advantageous in fluctuating nutrient conditions [72]. With climate
26 change, storm intensities are predicted to increase [73], which may temporally enhance
27 nutrient concentrations in the surface waters by mixing with nutrient-rich deeper waters,
28 and was shown, as consequence, to promote primary production and favor large diatoms
29 [74, 75]. Lastly, cell size is generally correlated with genome size [76, 77], and processes
30 such as adaptive gene loss and genomic streamlining may optimize nutrient acquisition
31 traits in small phytoplankton species, particularly in more stable environments [78].
32 Conversely, it is conceivable that larger cells may have a greater gene redundancy leading
33 to more resilient traits [8], which may provide a competitive advantage in dynamic
34 environments. In summary, the higher flexibility of larger phytoplankton species in
35 response to direct and indirect effects of warming and elevated $p\text{CO}_2$ may, at least partly,
36 offset their competitive disadvantage in nutrient acquisition.
37
38

48 Evolution of nutrient acquisition traits 49

50 Impacts of climate change on marine phytoplankton will not only depend on their
51 plastic responses, but also on their potential to adapt evolutionarily through selection on
52 standing genetic variation or novel mutations [79, 80]. Adaptation to elevated $p\text{CO}_2$ and
53 warming was observed in various phytoplankton species across major marine
54 phytoplankton groups [81-87]. Yet, evolutionary responses to elevated $p\text{CO}_2$ seem to be
55 diverse, and may, furthermore, differ in direction compared to the observed plastic
56 responses of phenotypes [88]. However, evolutionary changes observed in coccolithophores
57 that adapted to elevated $p\text{CO}_2$ were consistent with their plastic responses and, at least
58 partially, offset fitness losses [81, 88, 89].
59
60

1 Evolutionary adaptation toward elevated $p\text{CO}_2$ was particularly evident under
2 environmental conditions that decreased fitness [88]. It is therefore conceivable that a
3 decline in fitness due to increased nutrient limitation might be compensated by adaptation
4 through increased nutrient uptake affinities. Existing intraspecific genetic and phenotypic
5 diversity of marine phytoplankton populations is substantial and thus provides the basis
6 for adaptation through selection of best fit genotypes [90-93]. With regard to nutrient
7 acquisition, populations of the dinoflagellate *Alexandrium ostenfeldii* were shown to exhibit a
8 large intraspecific variation in nutrient uptake kinetics, demonstrating a wide range of
9 nitrogen uptake affinities (Fig. 4) [94]. This suggests a large potential for selection of clones
10 with higher nutrient uptake affinities when nutrients become (more) limiting.
11
12

13 Concluding remarks and future directions

14 We described how a trait-based ecological approach may help understand the
15 interactive impacts of climate change factors and nutrient limitation on marine
16 phytoplankton, highlighting possible shifts in nutrient acquisition through elevated $p\text{CO}_2$,
17 warming or changes in light availabilities. We hypothesize that climate-driven exacerbation
18 of nutrient limitation may be partially counteracted by the concomitant increases in $p\text{CO}_2$,
19 temperature and relative light availabilities, which may benefit large phytoplankton species
20 capable of reallocating greater resources to nutrient acquisition more than small species
21 and, thus at least partially, offset their competitive disadvantages. This could lead to
22 different outcomes for phytoplankton size distributions, which, in turn, would have
23 different effects on ecosystem processes and food-web dynamics. The next step would be to
24 incorporate energy or resource reallocation in mechanistic models, investigating the
25 magnitude of possible direct and indirect effects of simultaneously acting stressors, and link
26 these to food-web and ecosystem models, thereby generating process-based predictions for
27 oceanic ecosystems.
28

29 Obviously, global environmental changes involve a multitude of factors that may
30 affect phytoplankton in diverse ways, maybe different from what we propose here. By
31 highlighting the complex interplay of several global change stressors on phytoplankton
32 nutrient acquisition, we argue that investigating how multiple stressors may interact to
33 modify phytoplankton traits should be an urgent research priority, requiring collaborations
34 of phytoplankton physiologists, ecologists and modelers. Also, we note that taking into
35 account interacting stressors may yield different predictions compared to when stressors
36 are considered in isolation. For example, recent work showed that nutrient limitation may
37 make phytoplankton more vulnerable to rising temperatures by decreasing their
38 temperature optima and impeding evolutionary adaptation to warming [95, 96]. Using a
39 trait-based framework for a better mechanistic understanding of trait flexibility in different
40 phytoplankton size classes under the combined changes in $p\text{CO}_2$, temperature and resource
41 availabilities, as well as other anticipated environmental change stressors, should further
42 improve our predictions of the future oceanic primary production and ecosystem dynamics.
43
44

45 Acknowledgment

46 The authors would like to thank David Hutchins, David Atkinson, and Ulrich
47 Sommer for providing data used for figures 2D, 3B, and 3C, respectively. EL acknowledges
48

1 support from the NSF grant OCE-1638958 and the German Centre for Integrative
2 Biodiversity Research (iDiv).
3
4

5 References 6

8 [1] Boyd, P. W., Lennartz, S. T., Glover, D. M. & Doney, S. C. 2014 Biological ramifications of
9 climate-change-mediated oceanic multi-stressors. *Nature Climate Change* **5**, 71.
10 (DOI:10.1038/nclimate2441).

11 [2] Hein, M. & Sand-Jensen, K. 1997 CO₂ increases oceanic primary production. *Nature* **388**, 526-
12 527. (DOI:10.1038/41457).

13 [3] Riebesell, U., Schulz, K. G., Bellerby, R. G. J., Botros, M., Fritsche, P., Meyerhofer, M., Neill,
14 C., Nondal, G., Oschlies, A., Wohlers, J., et al. 2007 Enhanced biological carbon consumption in a
15 high CO₂ ocean. *Nature* **450**, 545-U510. (DOI:10.1038/nature06267).

16 [4] Van de Waal, D. B., Brandenburg, K. M., Keuskamp, J., Trimborn, S., Rokitta, S., Kranz, S. A. &
17 Rost, B. 2019 Highest plasticity of carbon-concentrating mechanisms in earliest evolved
18 phytoplankton. *Limnology and Oceanography Letters* **4**, 37-43. (DOI:10.1002/lol2.10102).

19 [5] Raven, J. A., Giordano, M., Beardall, J. & Maberly, S. C. 2011 Algal and aquatic plant carbon
20 concentrating mechanisms in relation to environmental change. *Photosynthesis Res.* **109**, 281-296.
21 (DOI:10.1007/s11120-011-9632-6).

22 [6] Beardall, J., Stojkovic, S. & Larsen, S. 2009 Living in a high CO₂ world: Impacts of global
23 climate change on marine phytoplankton. *Plant Ecology & Diversity* **2**, 191-205.
24 (DOI:10.1080/17550870903271363).

25 [7] Dutkiewicz, S., Morris, J. J., Follows, M. J., Scott, J., Levitan, O., Dyhrman, S. T. & Berman-
26 Frank, I. 2015 Impact of ocean acidification on the structure of future phytoplankton communities.
27 *Nature Climate Change* **5**, 1002. (DOI:10.1038/nclimate2722).

28 [8] Hennon, G. M. M., Hernández Limón, M. D., Haley, S. T., Juhl, A. R. & Dyhrman, S. T. 2017
29 Diverse CO₂-induced responses in physiology and gene expression among eukaryotic phytoplankton.
30 *Frontiers in Microbiology* **8**. (DOI:10.3389/fmicb.2017.02547).

31 [9] Beaufort, L., Probert, I., de Garidel-Thoron, T., Bendif, E. M., Ruiz-Pino, D., Metzl, N., Goyet,
32 C., Buchet, N., Coupel, P., Grelaud, M., et al. 2011 Sensitivity of coccolithophores to carbonate
33 chemistry and ocean acidification. *Nature* **476**, 80-83. (DOI:10.1038/nature10295).

34 [10] Nagelkerken, I. & Connell, S. D. 2015 Global alteration of ocean ecosystem functioning due to
35 increasing human CO₂ emissions. *Proceedings of the National Academy of Sciences* **112**, 13272-
36 13277. (DOI:10.1073/pnas.1510856112).

37 [11] Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. 2001 Effects of size
38 and temperature on metabolic rate. *Science* **293**, 2248-2251. (DOI:10.1126/science.1061967).

39 [12] Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. 2004 Toward a
40 metabolic theory of ecology. *Ecology* **85**, 1771-1789. (DOI:10.1890/03-9000).

41 [13] López-Urrutia, Á., San Martin, E., Harris, R. P. & Irigoien, X. 2006 Scaling the metabolic
42 balance of the oceans. *Proceedings of the National Academy of Sciences* **103**, 8739-8744.
43 (DOI:10.1073/pnas.0601137103).

44 [14] Regaudie-de-Gioux, A. & Duarte, C. M. 2012 Temperature dependence of planktonic
45 metabolism in the ocean. *Global Biogeochemical Cycles* **26**. (DOI:10.1029/2010GB003907).

46 [15] Boyce, D. G., Lewis, M. R. & Worm, B. 2010 Global phytoplankton decline over the past
47 century. *Nature* **466**, 591-596. (DOI:10.1038/nature09268).

48 [16] Behrenfeld, M. J., O'Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L., Feldman, G.
49 C., Milligan, A. J., Falkowski, P. G., Letelier, R. M. & Boss, E. S. 2006 Climate-driven trends in
50 contemporary ocean productivity. *Nature* **444**, 752-755. (DOI:10.1038/nature05317).

51 [17] Polovina, J. J., Howell, E. A. & Abecassis, M. 2008 Ocean's least productive waters are
52 expanding. *Geophys. Res. Lett.* **35**. (DOI:10.1029/2007gl031745).

53 [18] Moore, J. K., Fu, W., Primeau, F., Britten, G. L., Lindsay, K., Long, M., Doney, S. C.,
54 Mahowald, N., Hoffman, F. & Randerson, J. T. 2018 Sustained climate warming drives declining
55 marine biological productivity. *Science* **359**, 1139-1143. (DOI:10.1126/science.aa06379).

56

[19] Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd, P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., et al. 2013 Processes and patterns of oceanic nutrient limitation. *Nat. Geosci.* **6**, 701-710. (DOI:10.1038/ngeo1765).

[20] Kiørboe, T., Visser, A. & Andersen, K. H. 2018 A trait-based approach to ocean ecology. *ICES J. Mar. Sci.* **75**, 1849-1863. (DOI:10.1093/icesjms/fsy090).

[21] McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. 2006 Rebuilding community ecology from functional traits. *Trends Ecol. Evol.* **21**, 178-185. (DOI:10.1016/j.tree.2006.02.002).

[22] Litchman, E. & Klausmeier, C. A. 2008 Trait-based community ecology of phytoplankton. *Annual Review of Ecology, Evolution, and Systematics* **39**, 615-639. (DOI:10.1146/annurev.ecolsys.39.110707.173549).

[23] Droop, M. R. 1973 Some thoughts on nutrient limitation in algae. *J. Phycol.* **9**, 264-272. (DOI:10.1111/j.1529-8817.1973.tb04092.x).

[24] Healey, F. P. & Hendzel, L. L. 1980 Physiological indicators of nutrient deficiency in lake phytoplankton. *Can. J. Fish. Aquat. Sci.* **37**, 442-453. (DOI:10.1139/f80-058).

[25] Litchman, E., Klausmeier, C. A., Schofield, O. M. & Falkowski, P. G. 2007 The role of functional traits and trade-offs in structuring phytoplankton communities: Scaling from cellular to ecosystem level. *Ecol. Lett.* **10**, 1170-1181. (DOI:10.1111/j.1461-0248.2007.01117.x).

[26] Flynn, K. J., Skibinski, D. O. F. & Lindemann, C. 2018 Effects of growth rate, cell size, motion, and elemental stoichiometry on nutrient transport kinetics. *PLoS Comp. Biol.* **14**, e1006118. (DOI:10.1371/journal.pcbi.1006118).

[27] Reay, D. S., Nedwell, D. B., Priddle, J. & Ellis-Evans, J. C. 1999 Temperature dependence of inorganic nitrogen uptake: Reduced affinity for nitrate at suboptimal temperatures in both algae and bacteria. *Appl. Environ. Microbiol.* **65**, 2577-2584.

[28] Edwards, K. F., Klausmeier, C. A. & Litchman, E. 2011 Evidence for a three-way trade-off between nitrogen and phosphorus competitive abilities and cell size in phytoplankton. *Ecology* **92**, 2085-2095. (DOI:10.1890/11-0395.1).

[29] Hennon, G. M. M., Ashworth, J., Groussman, R. D., Berthiaume, C., Morales, R. L., Baliga, N. S., Orellana, M. V. & Armbrust, E. V. 2015 Diatom acclimation to elevated CO₂ via cAMP signalling and coordinated gene expression. *Nature Climate Change* **5**, 761-765. (DOI:10.1038/nclimate2683).

[30] Lomas, M. W. & Glibert, P. M. 1999 Temperature regulation of nitrate uptake: A novel hypothesis about nitrate uptake and reduction in cool-water diatoms. *Limnol. Oceanogr.* **44**, 556-572. (DOI:10.4319/lo.1999.44.3.0556).

[31] Eberlein, T., Van de Waal, D. B., Brandenburg, K. M., John, U., Voss, M., Achterberg, E. P. & Rost, B. 2016 Interactive effects of ocean acidification and nitrogen limitation on two bloom-forming dinoflagellate species. *Mar. Ecol. Prog. Ser.* **543**, 127-140. (DOI:10.3354/meps11568).

[32] Raven, J. A. 2011 The cost of photoinhibition. *Physiol. Plant.* **142**, 87-104. (DOI:10.1111/j.1399-3054.2011.01465.x).

[33] Rokitta, S. D. & Rost, B. 2012 Effects of CO₂ and their modulation by light in the life-cycle stages of the coccolithophore *Emiliania huxleyi*. *Limnol. Oceanogr.* **57**, 607-618. (DOI:10.4319/lo.2012.57.2.0607).

[34] Li, G., Brown, C. M., Jeans, J. A., Donaher, N. A., McCarthy, A. & Campbell, D. A. 2015 The nitrogen costs of photosynthesis in a diatom under current and future pCO₂. *New Phytol.* **205**, 533-543. (DOI:10.1111/nph.13037).

[35] Gruber, N. 2016 Elusive marine nitrogen fixation. *Proceedings of the National Academy of Sciences* **113**, 4246-4248. (DOI:10.1073/pnas.1603646113).

[36] Brauer, V. S., Stomp, M., Rosso, C., van Beusekom, S. A. M., Emmerich, B., Stal, L. J. & Huisman, J. 2013 Low temperature delays timing and enhances the cost of nitrogen fixation in the unicellular cyanobacterium *Cyanothece*. *ISME Journal* **7**, 2105-2115. (DOI:10.1038/ismej.2013.103).

[37] Breitbarth, E., Oschlies, A. & LaRoche, J. 2007 Physiological constraints on the global distribution of *Trichodesmium*: Effect of temperature on diazotrophy. *Biogeosciences* **4**, 53-61. (DOI:10.5194/bg-4-53-2007).

[38] Gallon, J. R., Pederson, D. M. & Smith, G. D. 1993 The effect of temperature on the sensitivity of nitrogenase to oxygen in the cyanobacteria *Anabaena cylindrica* (Lemmermann) and *Gloeothece* (Nägeli). *The New Phytologist* **124**, 251-257. (DOI:10.1111/j.1469-8137.1993.tb03814.x).

[39] Hutchins, D. A., Fu, F. X., Zhang, Y., Warner, M. E., Feng, Y., Portune, K., Bernhardt, P. W. & Mulholland, M. R. 2007 CO₂ control of *Trichodesmium* N₂ fixation, photosynthesis, growth rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry. *Limnol. Oceanogr.* **52**, 1293-1304. (DOI:10.4319/lo.2007.52.4.1293).

[40] Kranz, S. A., Sültemeyer, D., Richter, K. U. & Rost, B. 2009 Carbon acquisition by *Trichodesmium*: The effect of pCO₂ and diurnal changes. *Limnol. Oceanogr.* **54**, 548-559. (DOI:10.4319/lo.2009.54.2.0548).

[41] Barcelos e Ramos, J., Biswas, H., Schulz, K. G., LaRoche, J. & Riebesell, U. 2007 Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer *Trichodesmium*. *Global Biogeochemical Cycles* **21**. (DOI:10.1029/2006gb002898).

[42] Hutchins, D. A., Fu, F.-X., Webb, E. A., Walworth, N. & Tagliabue, A. 2013 Taxon-specific response of marine nitrogen fixers to elevated carbon dioxide concentrations. *Nat. Geosci.* **6**, 790-795. (DOI:10.1038/ngeo1858).

[43] Hong, H., Shen, R., Zhang, F., Wen, Z., Chang, S., Lin, W., Kranz, S. A., Luo, Y.-W., Kao, S.-J., Morel, F. M. M., et al. 2017 The complex effects of ocean acidification on the prominent N₂-fixing cyanobacterium *Trichodesmium*. *Science* **356**, 527-531. (DOI:10.1126/science.aal2981).

[44] Shi, D., Shen, R., Kranz, S. A., Morel, F. M. M. & Hong, H. 2017 Response to Comment on “The complex effects of ocean acidification on the prominent N₂-fixing cyanobacterium *Trichodesmium*”. *Science* **357**, eaao0428. (DOI:10.1126/science.aao0428).

[45] Hutchins, D. A., Fu, F., Walworth, N. G., Lee, M. D., Saito, M. A. & Webb, E. A. 2017 Comment on “The complex effects of ocean acidification on the prominent N₂-fixing cyanobacterium *Trichodesmium*”. *Science* **357**, eaao0067. (DOI:10.1126/science.aao0067).

[46] Jiang, H.-B., Fu, F.-X., Rivero-Calle, S., Levine, N. M., Sañudo-Wilhelmy, S. A., Qu, P.-P., Wang, X.-W., Pinedo-Gonzalez, P., Zhu, Z. & Hutchins, D. A. 2018 Ocean warming alleviates iron limitation of marine nitrogen fixation. *Nature Climate Change* **8**, 709-712. (DOI:10.1038/s41558-018-0216-8).

[47] Grebmeier, J. M., Moore, S. E., Overland, J. E., Frey, K. E. & Gradinger, R. 2010 Biological response to recent Pacific Arctic sea ice retreats. *EOS Trans. Am. Geophys. Union* **91**, 161-168. (DOI:10.1029/2010EO180001).

[48] Doney, S. C., Ruckelshaus, M., Duffy, J. E., Barry, J. P., Chan, F., English, C. A., Galindo, H. M., Grebmeier, J. M., Hollowed, A. B., Knowlton, N., et al. 2012 Climate change impacts on marine ecosystems. *Annu. Rev. Mar. Sci.* **4**, 11-37. (DOI:doi:10.1146/annurev-marine-041911-111611).

[49] Fu, F. X. & Bell, P. R. F. 2003 Factors affecting N₂ fixation by the cyanobacterium *Trichodesmium* sp. GBRTRLI101. *FEMS Microbiol. Ecol.* **45**, 203-209. (DOI:10.1016/s0168-6496(03)00157-0).

[50] Laviale, M. & Neveux, J. 2011 Relationships between pigment ratios and growth irradiance in 11 marine phytoplankton species. *Mar. Ecol. Prog. Ser.* **425**, 63-U386. (DOI:10.3354/meps09013).

[51] Edwards, K. F., Thomas, M. K., Klausmeier, C. A. & Litchman, E. 2015 Light and growth in marine phytoplankton: Allometric, taxonomic, and environmental variation. *Limnol. Oceanogr.* **60**, 540-552. (DOI:10.1002/lno.10033).

[52] Rhee, G. Y. & Gotham, I. J. 1981 The effect of environmental factors on phytoplankton growth, light and the interactions of light with nutrient limitation. *Limnol. Oceanogr.* **26**, 649-659. (DOI:10.4319/lo.1981.26.4.0649).

[53] Finkel, Z. V., Quigg, A., Raven, J. A., Reinfelder, J. R., Schofield, O. E. & Falkowski, P. G. 2006 Irradiance and the elemental stoichiometry of marine phytoplankton. *Limnol. Oceanogr.* **51**, 2690-2701. (DOI:10.4319/lo.2006.51.6.2690).

[54] Gao, K., Xu, J., Gao, G., Li, Y., Hutchins, D. A., Huang, B., Wang, L., Zheng, Y., Jin, P., Cai, X., et al. 2012 Rising CO₂ and increased light exposure synergistically reduce marine primary productivity. *Nature Clim. Change* **2**, 519-523. (DOI:10.1038/nclimate1507).

[55] Valenzuela, J. J., López García de Lomana, A., Lee, A., Armbrust, E. V., Orellana, M. V. & Baliga, N. S. 2018 Ocean acidification conditions increase resilience of marine diatoms. *Nature Communications* **9**, 2328. (DOI:10.1038/s41467-018-04742-3).

[56] Shuter, B. J. 1978 Size dependence of phosphorus and nitrogen subsistence quotas in unicellular microorganisms. *Limnol. Oceanogr.* **23**, 1248-1255. (DOI:10.4319/lo.1978.23.6.1248).

[57] Aksnes, D. L. & Egge, J. K. 1991 A theoretical model for nutrient uptake in phytoplankton. *Mar. Ecol. Prog. Ser.* **70**, 65-72. (DOI:10.3354/meps070065).

[58] Edwards, K. F., Thomas, M. K., Klausmeier, C. A. & Litchman, E. 2012 Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton. *Limnol. Oceanogr.* **57**, 554-566. (DOI:10.4319/lo.2012.57.2.0554).

[59] Hein, M., Pedersen, M. F. & Sand-Jensen, K. 1995 Size-dependent nitrogen uptake in micro- and macroalgae. *Mar. Ecol. Prog. Ser.* **118**, 247-253.

[60] Marañón, E., Cermeóo, P., Rodríguez, J., Zubkov, M. V. & Harris, R. P. 2007 Scaling of phytoplankton photosynthesis and cell size in the ocean. *Limnol. Oceanogr.* **52**, 2190-2198. (DOI:10.4319/lo.2007.52.5.2190).

[61] Cabré, A., Shields, D., Marinov, I. & Kostadinov, T. S. 2016 Phenology of size-partitioned phytoplankton carbon-biomass from ocean color remote sensing and CMIP5 models. *Frontiers in Marine Science* **3**. (DOI:10.3389/fmars.2016.00039).

[62] Finkel, Z. V., Katz, M. E., Wright, J. D., Schofield, O. M. E. & Falkowski, P. G. 2005 Climatically driven macroevolutionary patterns in the size of marine diatoms over the Cenozoic. *PNAS* **102**, 8927-8932. (DOI:10.1073/pnas.0409907102).

[63] Atkinson, D., Ciotti, B. J. & Montagnes, D. J. S. 2003 Protists decrease in size linearly with temperature: ca. 2.5% degrees C⁻¹. *Proceedings of the Royal Society B: Biological Sciences* **270**, 2605-2611. (DOI:10.1098/rspb.2003.2538).

[64] Peter, K. H. & Sommer, U. 2013 Phytoplankton cell size reduction in response to warming mediated by nutrient limitation. *PLoS ONE* **8**. (DOI:10.1371/journal.pone.0071528).

[65] Marinov, I., Doney, S. C. & Lima, I. D. 2010 Response of ocean phytoplankton community structure to climate change over the 21st century: Partitioning the effects of nutrients, temperature and light. *Biogeosciences* **7**, 3941-3959. (DOI:10.5194/bg-7-3941-2010).

[66] Wu, Y., Campbell, D. A., Irwin, A. J., Suggett, D. J. & Finkel, Z. V. 2014 Ocean acidification enhances the growth rate of larger diatoms. *Limnol. Oceanogr.* **59**, 1027-1034. (DOI:10.4319/lo.2014.59.3.1027).

[67] Sommer, U., Paul, C. & Moustaka-Gouni, M. 2015 Warming and ocean acidification effects on phytoplankton: From species shifts to size shifts within species in a mesocosm experiment. *PLoS ONE* **10**, e0125239. (DOI:10.1371/journal.pone.0125239).

[68] Beardall, J., Allen, D., Bragg, J., Finkel, Z. V., Flynn, K. J., Quigg, A., Rees, T. A. V., Richardson, A. & Raven, J. A. 2009 Allometry and stoichiometry of unicellular, colonial and multicellular phytoplankton. *New Phytol.* **181**, 295-309. (DOI:10.1111/j.1469-8137.2008.02660.x).

[69] Raven, J. A. 1998 The twelfth Tansley Lecture. Small is beautiful: The picophytoplankton. *Funct. Ecol.* **12**, 503-513. (DOI:10.1046/j.1365-2435.1998.00233.x).

[70] Stolte, W. & Riegman, R. 1995 Effect of phytoplankton cell size on transient-state nitrate and ammonium uptake kinetics. *Microbiology* **141**, 1221-1229. (DOI:doi:10.1099/13500872-141-5-1221).

[71] Marañón, E. 2015 Cell size as a key determinant of phytoplankton metabolism and community structure. *Annu. Rev. Mar. Sci.* **7**, 241-264. (DOI:10.1146/annurev-marine-010814-015955).

[72] Litchman, E., Klausmeier, C. A. & Yoshiyama, K. 2009 Contrasting size evolution in marine and freshwater diatoms. *Proceedings of the National Academy of Sciences* **106**, 2665-2670. (DOI:10.1073/pnas.0810891106).

[73] Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K., Holland, G., Landsea, C., Held, I., Kossin, J. P., Srivastava, A. K. & Sugi, M. 2010 Tropical cyclones and climate change. *Nature Geosci* **3**, 157-163. (DOI:10.1038/ngeo779).

[74] Landry, M. R., Brown, S. L., Rii, Y. M., Selph, K. E., Bidigare, R. R., Yang, E. J. & Simmons, M. P. 2008 Depth-stratified phytoplankton dynamics in Cyclone Opal, a subtropical mesoscale eddy.

1 *Deep Sea Research Part II: Topical Studies in Oceanography* **55**, 1348-1359.

2 (DOI:10.1016/j.dsr2.2008.02.001).

3 [75] Chen, Y. L. L., Chen, H. Y., Jan, S. & Tuo, S. H. 2009 Phytoplankton productivity enhancement
4 and assemblage change in the upstream Kuroshio after typhoons. *Mar. Ecol. Prog. Ser.* **385**, 111-126.
5 (DOI:10.3354/meps08053).

6 [76] Von Dassow, P., Petersen, T. W., Chepurnov, V. A. & Virginia Armbrust, E. 2008 Inter- and
7 intraspecific relationships between nuclear dna content and cell size in selected members of the
8 centric diatom genus *Thalassiosira* (Bacillariophyceae). *J. Phycol.* **44**, 335-349.
9 (DOI:10.1111/j.1529-8817.2008.00476.x).

10 [77] Shuter, B. J., Thomas, J. E., Taylor, W. D. & Zimmerman, A. M. 1983 Phenotypic correlates of
11 genomic DNA content in unicellular eukaryotes and other cells. *The American Naturalist* **122**, 26-44.
12 (DOI:10.1086/284116).

13 [78] García-Fernández, J. M., de Marsac, N. T. & Diez, J. 2004 Streamlined regulation and gene loss
14 as adaptive mechanisms in *Prochlorococcus* for optimized nitrogen utilization in oligotrophic
15 environments. *Microbiol. Mol. Biol. Rev.* **68**, 630-638. (DOI:10.1128/mmbr.68.4.630-638.2004).

16 [79] Litchman, E., Edwards, K. F., Klausmeier, C. A. & Thomas, M. K. 2012 Phytoplankton niches,
17 traits and eco-evolutionary responses to global environmental change. *Mar. Ecol. Prog. Ser.* **470**,
18 235-248. (DOI:10.3354/meps09912).

19 [80] Reusch, T. B. H. & Boyd, P. W. 2013 Experimental evolution meets marine phytoplankton.
20 *Evolution* **67**, 1849-1859. (DOI:10.1111/evo.12035).

21 [81] Lohbeck, K. T., Riebesell, U. & Reusch, T. B. H. 2012 Adaptive evolution of a key
22 phytoplankton species to ocean acidification. *Nat. Geosci.* **5**, 346-351. (DOI:10.1038/ngeo1441).

23 [82] Schaum, C. E. & Collins, S. 2014 Plasticity predicts evolution in a marine alga. *Proceedings of
24 the Royal Society B-Biological Sciences* **281**. (DOI:10.1098/rspb.2014.1486).

25 [83] Tatters, A. O., Schnetzer, A., Fu, F., Lie, A. Y. A., Caron, D. A. & Hutchins, D. A. 2013 Short-
26 versus long-term responses to changing CO₂ in a coastal dinoflagellate bloom: Implications for
27 interspecific competitive interactions and community structure. *Evolution* **67**, 1879-1891.
28 (DOI:10.1111/evo.12029).

29 [84] Crawfurd, K. J., Raven, J. A., Wheeler, G. L., Baxter, E. J. & Joint, I. 2011 The response of
30 *Thalassiosira pseudonana* to long-term exposure to increased CO₂ and decreased pH. *PLoS ONE* **6**,
31 e26695. (DOI:10.1371/journal.pone.0026695).

32 [85] Huertas, I. E., Rouco, M., López-Rodas, V. & Costas, E. 2011 Warming will affect
33 phytoplankton differently: Evidence through a mechanistic approach. *Proceedings of the Royal
34 Society B: Biological Sciences* **278**, 3534-3543. (DOI:doi:10.1098/rspb.2011.0160).

35 [86] Listmann, L., LeRoch, M., Schlüter, L., Thomas, M. K. & Reusch, T. B. H. 2016 Swift thermal
36 reaction norm evolution in a key marine phytoplankton species. *Evolutionary Applications* **9**, 1156-
37 1164. (DOI:10.1111/eva.12362).

38 [87] O'Donnell, D. R., Hamman, C. R., Johnson, E. C., Kremer, C. T., Klausmeier, C. A. &
39 Litchman, E. 2018 Rapid thermal adaptation in a marine diatom reveals constraints and trade-offs.
40 *Global Change Biol.* **24**, 4554-4565. (DOI:10.1111/gcb.14360).

41 [88] Collins, S., Rost, B. & Ryneanson, T. A. 2014 Evolutionary potential of marine phytoplankton
42 under ocean acidification. *Evolutionary Applications* **7**, 140-155. (DOI:10.1111/eva.12120).

43 [89] Jin, P., Gao, K. & Beardall, J. 2013 Evolutionary responses of a coccolithophorid *Gephyrocapsa
44 oceanica* to ocean acidification. *Evolution* **67**, 1869-1878. (DOI:10.1111/evo.12112).

45 [90] Ryneanson, T. A. & Virginia Armbrust, E. 2004 Genetic differentiation among populations of
46 the planktonic marine diatom *Ditylum brightwellii* (Bacillariophyceae). *J. Phycol.* **40**, 34-43.
47 (DOI:10.1046/j.1529-8817.2004.03089.x).

48 [91] Alpermann, T. J., Tillmann, U., Beszteri, B., Cembella, A. D. & John, U. 2010 Phenotypic
49 variation and genotypic diversity in a planktonic population of the toxicogenic marine dinoflagellate
50 *Alexandrium tamarense* (Dinophyceae). *J. Phycol.* **46**, 18-32. (DOI:10.1111/j.1529-
51 8817.2009.00767.x).

52 [92] Iglesias-Rodríguez, M. D., Schofield, O. M., Batley, J., Medlin, L. K. & Hayes, P. K. 2006
53 Intraspecific genetic diversity in the marine coccolithophore *Emiliania huxleyi* (Prymnesiophyceae):
54 55 56 57 58 59 60

1 The use of microsatellite analysis in marine phytoplankton population studies. *J. Phycol.* **42**, 526-
2 536. (DOI:10.1111/j.1529-8817.2006.00231.x).

3 [93] Nagai, S., McCauley, L., Yasuda, N., Erdner, D. L., Kulis, D. M., Matsuyama, Y., Itakura, S. &
4 Anderson, D. M. 2006 Development of microsatellite markers in the toxic dinoflagellate
5 *Alexandrium minutum* (Dinophyceae). *Mol. Ecol. Notes* **6**, 756-758. (DOI:10.1111/j.1471-
6 8286.2006.01331.x).

7 [94] Brandenburg, K. M., Wohlrab, S., John, U., Kremp, A., Jerney, J., Krock, B. & Van de Waal, D.
8 B. 2018 Intraspecific trait variation and trade-offs within and across populations of a toxic
9 dinoflagellate. *Ecol. Lett.* **21**, 1561-1571. (DOI:10.1111/ele.13138).

10 [95] Thomas, M. K., Aranguren-Gassis, M., Kremer, C. T., Gould, M. R., Anderson, K., Klausmeier,
11 C. A. & Litchman, E. 2017 Temperature–nutrient interactions exacerbate sensitivity to warming in
12 phytoplankton. *Global Change Biol.* **23**, 3269-3280. (DOI:10.1111/gcb.13641).

13 [96] Aranguren-Gassis, M., Kremer, C. T., Klausmeier, C. A. & Litchman, E. 2019 Nitrogen
14 limitation inhibits marine diatom adaptation to high temperatures. *Ecol. Lett.* **22**, 1860-1869.
15 (DOI:10.1111/ele.13378).

16 [97] Mitchell, M., Muftakhidinov, B. & Winchen, T. 1991 Engauge Digitizer Software. Web page:
17 <http://markummitchell.github.io/engauge-digitizer>.

18 [98] Brandenburg, K. M., Wohlrab, S., John, U., Kremp, A., Jerney, J., Krock, B. & Van de Waal, D.
19 B. 2018 Data from: Intraspecific trait variation and trade-offs within and across populations of a toxic
20 dinoflagellate. *Dryad Digital Repository*. (DOI:10.5061/dryad.6502mg2).

Figure and table captions

Figure 1. Conceptual overview of nutrient acquisition traits (A) and putative impacts of climate change (warming and elevated $p\text{CO}_2$) on these traits in marine phytoplankton (B). Nutrient acquisition traits include maximum growth (μ_{max}) or uptake (V_{max}) rate, half-saturation concentration ($K_{1/2}$), and the nutrient or growth uptake affinity (α). Red arrows in (B) indicate potential effects of climatic change (darker shades) on nutrient acquisition traits.

Figure 2. Impacts of climate change factors on nitrogen acquisition. Temperature and CO_2 effects on (A,B) nitrogen growth affinity, and (C,D) nitrogen fixation in marine phytoplankton. (A,B) Nitrogen growth affinity is defined as the initial slope of the Monod relationship, expressed as $\text{L } \mu\text{mol}^{-1} \text{ d}^{-1}$. Nitrogen fixation is expressed as (C) fmol $\text{C}_2\text{H}_4 \text{ cell}^{-1} 12 \text{ h}^{-1}$ for *Cyanothece*, and as mmol $\text{N}_2 (\text{mol POC})^{-1} \text{ h}^{-1}$ for *Trichodesmium*, and as (D) $\mu\text{mol N (mg Chl a)}^{-1} \text{ h}^{-1}$ for different species or strains (indicated by different color shades) of *Crocosphaera* and *Thrichodesmium*. Figures were redrawn from Reay *et al.* [27] with permission from the American Society for Microbiology (A), from Eberlein *et al.* [31] and Breitbarth *et al.* [37] under the Creative Commons Attribution license (B, C), and from Brauer *et al.* [36] and Hutchins *et al.* [42] both with permission from the Nature Publishing Group (C,D). If unavailable, data was extracted using Engauge Digitizer [97].

Figure 3. Relationships between cell size and temperature in the past, present and future. Size of diatom frustules from sediment cores as a function of reconstructed past temperatures (A), cell volumes of contemporary phytoplankton from culture experiments of brackish water and marine phytoplankton (B), and cell sizes of a Baltic Sea phytoplankton community in response to experimental warming combined with nutrient limitation from a high (darkest shade) to a low (lightest shade) level of nutrient limitation (C). The y-axis in

(B) indicates the difference between cell volume at any temperature and the estimated volume at 15°C, normalized to this mean volume, and the x-axis indicates difference between the tested temperature and 15°C (for further details see Atkinson *et al.* [63]). Figures were redrawn from Finkel *et al.* [62] with Copyright (2005) National Academy of Sciences (A), from Atkinson *et al.* [63] with permission from the Royal Society Publishing (B), and from Peter and Sommer [64] under the Creative Commons Attribution license (C). If unavailable, data was extracted using Engauge Digitizer [97].

Figure 4. Intraspecific variation in nitrogen uptake kinetics. (A) Nitrogen uptake rates as a function of nitrogen concentrations, and (B) uptake affinities of various dinoflagellate *Alexandrium ostenfeldii* clones (indicated by different color shades). Data was modified from Brandenburg *et al.* [94] and available through Brandenburg *et al.* [98].

For Review Only

Figure 1

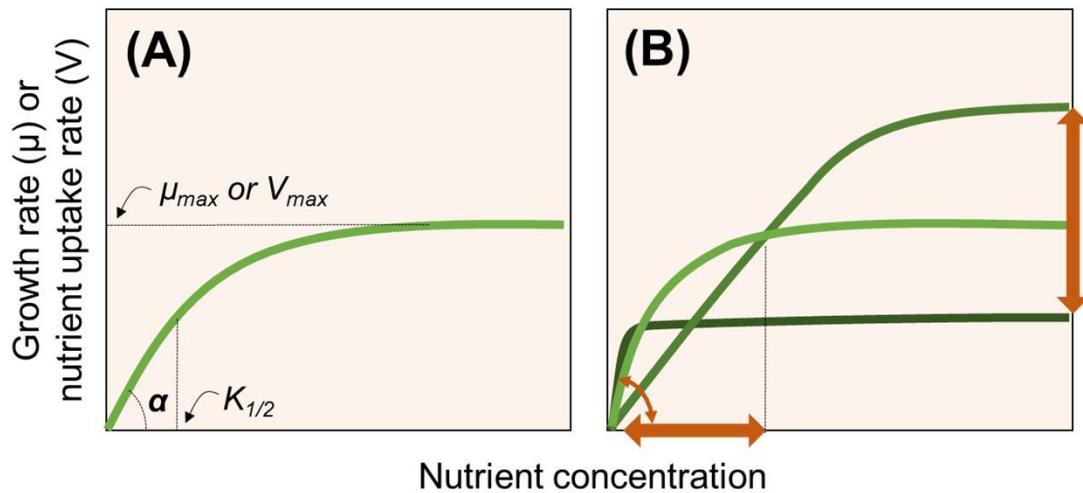


Figure 2

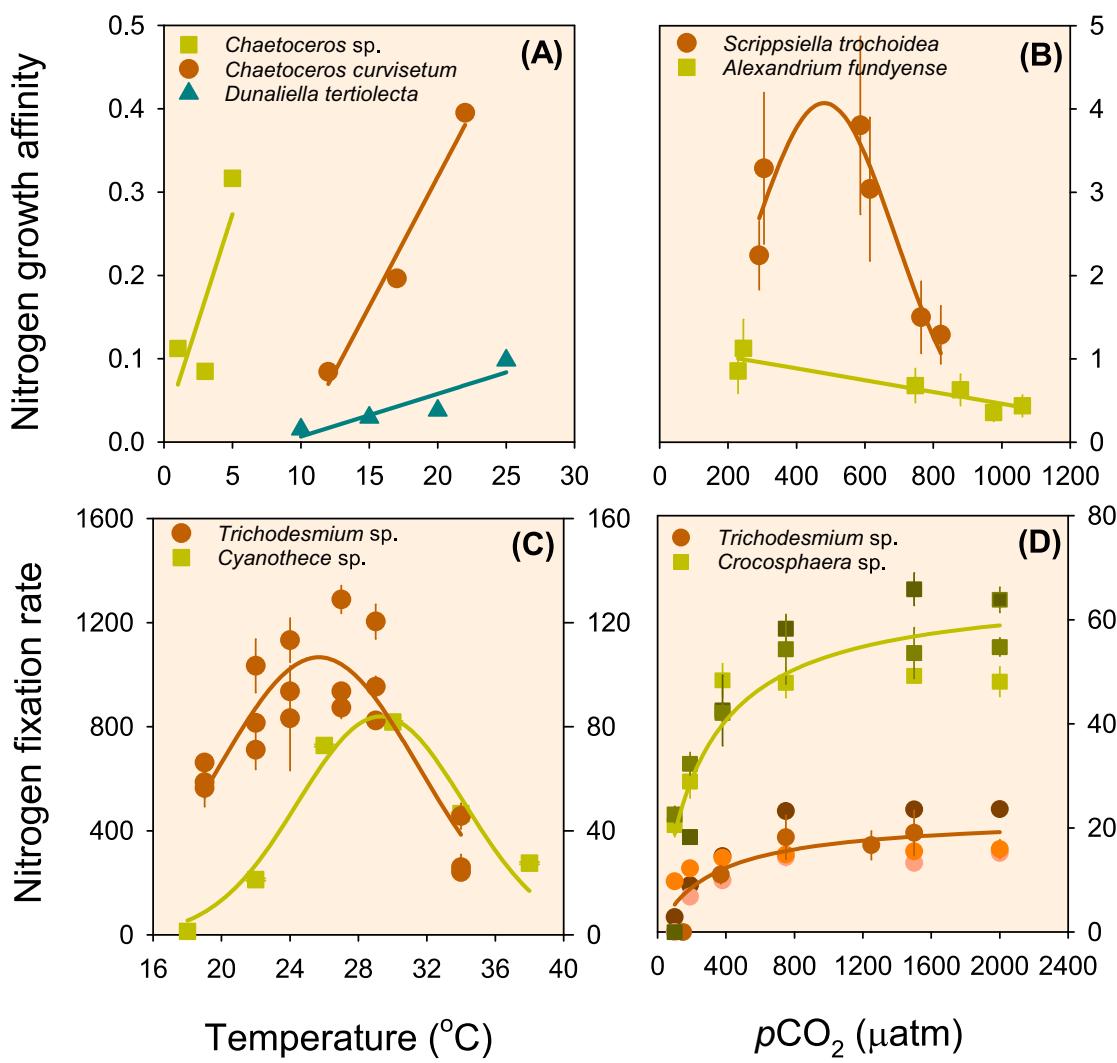


Figure 3

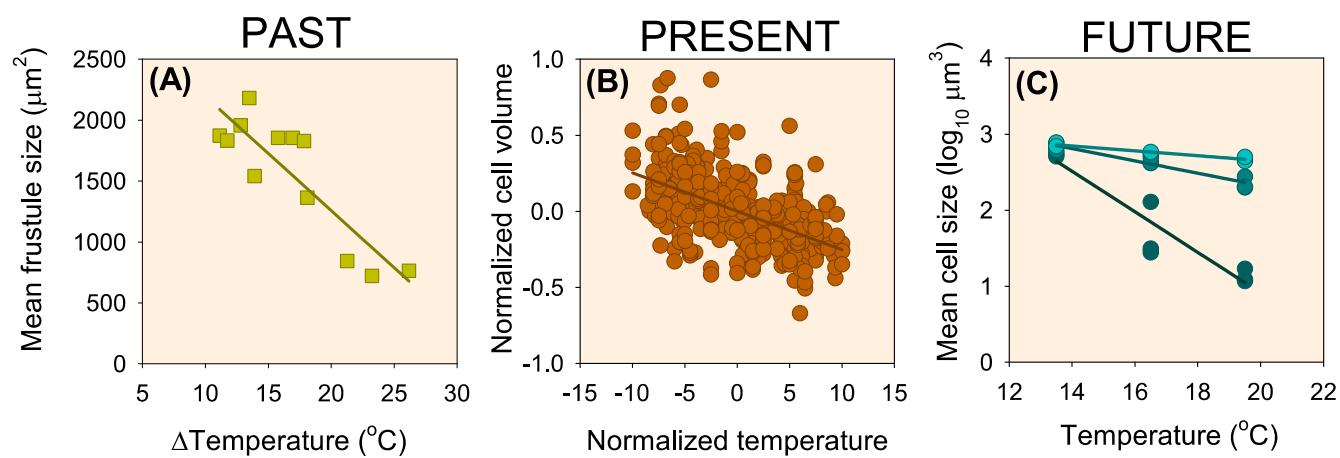
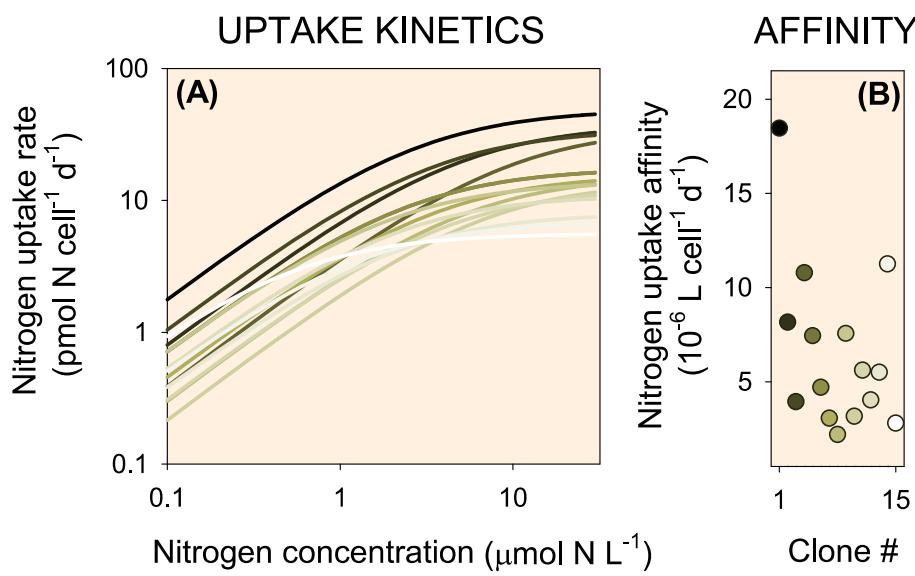



Figure 4

