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Abstract—We propose a multilevel methodology to improve
the performance of parallel codes whose run time increases at
a faster rate than the increase in workload. We have derived
the conditions under which the proposed methodology improves
performance for a simple parallel computing model. Formulas
to predict the amount of performance improvement that is
attainable are also derived for this simple computing model.
The effectiveness of the proposed strategy is demonstrated
by applying it to the highly optimized BLAS (Basic Linear
Algebra Subprograms) routines cblas_dgemm, cblas_dtrmm and
cblas_dsymm from the Intel MKL (Math Kernel Library) on the
Intel KNL (Knights Landing) platform. We are able to reduce
the run time of MKL cblas_dgemm by 20%, cblas_dtrmm by
15%, and cblas_dsymm by 50% on double-precision matrices of
size 16Kx16K. Further, our performance prediction formulas are
demonstrated to be accurate on this platform.
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tuning

I. INTRODUCTION

For some parallel codes, as the problem size is increased, the
run time increases at a faster rate than does the computational
workload. This may happen, for example, because of increased
communication time. In this paper, we propose a methodology
to improve the performance of codes that exhibit this property
and demonstrate its effectiveness on 3 example optimized
commercial linear algebra codes. The methodology is used to
solve a problem at multiple levels, and the target application
must be decomposable into smaller instances. For a two-
level implementation, the problem is decomposed into smaller
pieces where each piece is solved using a one-level algorithm.
The concept of a one-level algorithm is different from what is
conventionally used. Here, by a one-level algorithm, we mean
the original parallel code that exhibits a speedup reduction
on large instances. The decomposed pieces may be solved -
using the one level algorithm - sequentially, in parallel, or by
a hybrid of the two strategies. Finally, the solutions to the
subproblems are combined to solve the original problem. For
a n level implementation, the problem is divided into smaller
pieces, each piece is solved using a n—1 level implementation,
and finally, the solutions are combined to solve the whole
problem.

The described strategy has similarities to divide and con-
quer, block matrix multiplication, and Canon’s submatrix
movement scheme [1]. In typical divide and conquer algo-
rithms [2], [3], [4], [5], [6] the decomposition and recombi-
nation follow a uniform strategy at all levels of the divide-
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and-conquer recursion while in our outlined strategy, the way
an instance is decomposed and recombined may vary across
levels of the decomposition and also within the same level.
For example, Strassen’s matrix multiplication algorithm [2]
uses O(log n) levels of dividing a n X n matrix multiplication
problem; where at each level, the division and recombination
strategy is the same. Block matrix multiplication (which can
be viewed as a single-level divide-and-conquer algorithm) has
also been used to improve measured performance on both
serial and parallel computers [7], [8], [1]. Cannon’s matrix
multiplication algorithm, for instance, was developed for mesh
connected parallel computers with wraparound connections.
Each processor in the mesh begins with a distinct submatrix of
A and B, where A and B are the two matrices to be multiplied.
Each processor computes a submatrix of the result matrix
through a series of rounds. In each round, each processor
multiples the A and B submatrices it has, adds the result to
the partially computed result submatrix it has. Next, the A
submatrices are shifted one left circularly in each row of the
mesh, and the B submatrices are shifted one up circularly in
each column, and we move on to the next round.

Our strategy differs from a pure divide-and-conquer in
that we use potentially different division and recombination
schemes at each level. It is different from the block matrix
multiply in that we may use more than one level of problem
decomposition, and it differs from Cannon’s scheme both in
the number of division levels and the data movement scheme
(we use a serpentine scheme versus Cannon’s row and circular
column shifts). However, independent of the similarity with
techniques used in the past to speed matrix multiplication is the
key observation that using our methodology, we can speed up
existing (finely tuned) parallel codes whose run time increases
at a faster rate than the workload. Thus, the value of our work
lies in substantially reducing the run time of fine-tuned code by
recursive subdivision and not necessarily in proposing a “new”
algorithm design method that has been taught in classrooms
for decades. Our methodology could potentially be applied to
speed fine-tuned parallel codes for non-linear-algebra codes as
the methodology views the parallel code to be sped as a black
box.

We develop a framework based on a simple parallel comput-
ing model to evaluate the conditions under which the proposed
methodology improves performance and also derive formulas
to predict performance improvement attainable. We demon-
strate our methodology on a matrix-matrix multiplication prob-
lem and show that the runtime of MKL cblas_dgemm is re-
duced by 20% on the KNL platform. Further, the performance
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prediction formulas are shown to be accurate on this platform.
Using the same methodology, we also obtained considerable
speedup on cblas_dtrmm and cblas_dsymm, though the details
of these routines are omitted due to space constraints.

Although the Knights Landing is being discontinued by
Intel, our work does not lose relevance because firstly, there
are existing KNL clusters at many of the national laboratories
which will continue to operate their KNL; and secondly, the
work will still be useful for other architectures that implement
a high-bandwidth memory. For example, exascale computers
are expected to have multiple levels of memory with different
bandwidths.

The rest of the paper is organized as follows. Section II
presents related work. This is followed by Section III, which
describes the generalized problem and an application on
matrix-matrix multiplication for matrices of huge sizes. Sec-
tion IV presents the performance improvements we obtained
for matrix-matrix multiplications and shows that the improve-
ment predicted using our framework was very close to the ac-
tual improvement obtained. Finally, we conclude in Section V.

II. RELATED WORK ON PERFORMANCE TUNING

There has been wide-scale research on high-performance
computing (HPC) applications on parallel systems. We present
here some existing work in this category that focuses on
application speedup.

Data layout transformation [9], [10], [11], [12] has been
widely used to improve memory utilization, and cache hit
rate in memory-bound applications. These methods work for
multidimensional arrays where there is a canonical compiler-
imposed mapping from the array index space to the virtual
address space. Data layout transformation works by changing
this mapping, which is also referred to as the layout function.
In our proposed method, we do not use layout transformation
explicitly. As we explain in Section III in more detail, our
method repeatedly breaks the problem into smaller subprob-
lems. At the leaf level of the solution tree, we solve the
subproblems using a state-of-the-art algorithm. Using or not
using data layout transformation depends on the specifications
of that algorithm.

Tiling [13], [14], [15], [16] is another widely used method
to improve data locality and cache performance. By breaking
the problem into subproblems or tiles, the amount of data reuse
in the fast levels of cache hierarchy increases. Increasing the
cache hit rate improves the overall speed of the application.
Our target BLAS routines implement tiling. Our methodology,
when applied to BLAS operations, decomposes the matrices
as bigger tiles, which are then processed by the target routines.

Synchronization places a big overhead on parallel programs.
Therefore, asynchrony is sometimes used as a method to
reduce communication costs and increase the speed [17], [18].
Although asynchrony can be very effective in reducing the
communication overhead, it is only applicable to a certain class
of problems where lack of synchronization does not affect the
correctness of the solution.  Other methods [19], [20] have
used computation and communication overlapping to reduce

the communication overhead. These methods, however, are
algorithm-specific, and unlike our method, the details of the
corresponding fast algorithms should be known.

Another group of methods [21], [22] uses automatic data
placement to increase memory efficiency and speedup the
memory-bound applications.  These methods use compile-
time/run-time analysis methods to analyze memory access
patterns and find the optimal data placement scheme. We do
not use automatic data placement in our method because the
real data is not accessed until the very last level. Access
patterns can not be determined at compile-time, and using
runtime profiling methods introduces much overhead.

III. PROPOSED APPROACH
A. Generalized problem

In this paper, the term generalized problem refers to any
decomposable problem whose runtime increases at a faster rate
than the workload size.  Algorithm 1 describes an n_level
algorithm where n > 2. Here, we solve a problem A of size
s. The algorithm divides the original problem A into smaller
pieces of size bs. Then through the loop in lines 2 — 4, we
sequentially call a (n — 1)-level function on each small piece
Al[I] and combine the partial results to get the output C. The
implementation of GEN,,_; is similar. Each A[I] is further
subdivided, and a (n — 2)-level algorithm is called to solve
the pieces of A[I]. This goes on until a two-level algorithm
GFEN, is reached. Algorithm 2 describes GENs, in which
we perform the last level of problem size reduction and then
solve the pieces using a GE Ny, or a 1-level algorithm. Any
state-of-the-art algorithm can be used as GENj.

In a k-level algorithm, where 2 < k < n, the subproblems
are processed sequentially. Due to space constraints in fast
memory, only our two-level algorithm runs the subproblems
in parallel.

Algorithm 1 n_level algorithm

1: function GEN,,(A, C) > Problem A of size s is divided
into /bs blocks of sizes bs.C' is the output.

2 for I =1 to s/bs do

3 Call GEN,,_; over A[I]

4 end for

5 do in parallel

6: Combine the results of GEN,,_1
7 to form the final solution C'

8 end do

9: end function

GE N, solves problem A of size  and produces output C.
In this algorithm, we also input an integer b, which determines
the number of pieces of A that are to be processed in parallel.
Here, we divide A into 5/6s blocks each of size bs. The loop
at lines 2 to 14 implements the main body of the algorithm.
At each iteration, we copy b pieces from A in order to create
an input for GEN; (lines 3 to 5). Then in lines 6 to 8, we
call b parallel instances of GEN; over each of these pieces,
and in lines 9 to 11, the partial results are summed up to C.
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Algorithm 2 two_level algorithm

Algorithm 3 I_level matrix multiplication algorithm

1: function GEN5(A, C, b) > Problem A of size 3 is
divided into 5/5s blocks of size bs. C is the output and b
is the level of parallelism.
for 5/bs iterations involving I do
do in parallel
copy b blocks (A[I] to A[I +b—1])
end do
do in parallel
Call b instances of GEN; over the b pieces
end do
do in parallel
Sum up partial results of GEN; to C
end do
I+ T+b
13: end for
14: end function
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B. Matrix multiplication

In this section, we illustrate how our methodology may be
employed to matrix multiplication. Speeding up matrix-matrix
multiplication is a well-researched problem. There are many
open source as well as proprietary codes that provide out-
standing performance on a parallel platform. Some examples
of packages providing an efficient implementation of matrix
multiplication as part of the Basic Linear Algebra Subroutines
(BLAS), are AMD Core Math Library (ACML), OpenBLAS,
ATLAS, Intel Math Kernel Library (MKL), and the relevant
routine for double-precision matrix-matrix multiplication is
cblas_dgemm. Our parallel algorithm leverages cblas_dgemm
as a very efficient algorithm to solve subproblems at the leaf
level.

In the matrix multiplication problem, matrices A and B of
sizes m X p and p X n respectively, are multiplied resulting in a
matrix C' of size m x n. The same methodology is used as the
one used for the generalized problem. Algorithm 3 describes
the L_level algorithm (M X M) where L > 2. Here, we
break A, B and C into blocks of sizes bs; x bssz, bsg X bss
and bs; X bsy respectively.Through the nested loop in lines
2 — 13, we iteratively call a lower-level function on A[I, K|
and B[K, J] and sum up the partial results to get C[I, J].

M X M, is our two-level algorithm for matrix-matrix mul-
tiplication. To optimize the block copy operation of M X M,
on a computer that has a large but slow memory as well as
a smaller but fast memory (e.g., our benchmark KNL as well
as future exascale computers), we use a serpentine pattern in
selecting the b blocks from input matrices M1 and M 2. This
reduces the amount of data transferred between the larger slow
and smaller fast memories. Figure 1 shows an example of this
particular movement when the number of blocks along each
direction is 3 and b = 1, which means that only 1 pair of
blocks are multiplied at the same time. Here, to compute the
first row of blocks in the output matrix M3, our algorithm
fetches blocks from M1 by iterating back and forth on the

1: function M X M (A, B,C) > Input matrices A, xp,
Bp,x» and output matrix C), %, are divided into blocks of
sizes bsy X bss, bss X bsy and bsy X bss respectively.

2 for I =1 to m/bs, do

3 for J =1 to 7/bs. do

4: for K =1 to P/bs; do

5: Call MX M, over A[I, K] and
6 B[K, J]

7 end for

8 do in parallel

9: Sum up partial results of M XMy _4
10: to C[I,J]

11: end do

12: end for

13: end for

14: end function
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Fig. 1: Parts (a)-(i) show the block choice for computing row

1 in M3. In each part, the left matrix is M1, and the right

matrix is M2. The resulting matrix M3 is not shown. (a)-

(c) compute M3[1,1], (d)-(f) compute M3[1,2] and (g)-(i)

compute M 3[1,3]. Blocks chosen from M2 follow a pattern
similar to the serpentine movement.
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first row of blocks in the input matrix M1, while at the same
time fetching the corresponding block from M2. Each pair
of blocks colored red are copied and multiplied in one step.
Note that in steps (c) and (d), the third M1 block is reused.
Similarly, in steps (f) and (g), the first M1 block is reused.
Note how the block copying in a row alternately iterates
between left-to-right and right-to-left to reduce the number
of required block copies. In a naive algorithm, the first row of
M1 is always iterated left-to-right. Then each block on the first
row of M1 is copied 3 times. Using our scheme, we reduce
the number of required copies of M1 by 2 for this example.
The benefit from reuse gets more significant as the block size
is increased and with a larger b.

Algorithm 4 describes our 2-level matrix multiplication
algorithm, M X M,. We divide M1lmyp and M25.5 into
blocks of sizes bs; x bsy and bss X bss respectively. The
resulting matrix M 37«7 will also be divided into blocks of
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size bsy X bso. We will have:

P/bsy
M3[I,J] =Y MI[I,K] x M2[K, J]
K=1

where I, J and K are indexes for the matrix blocks. Lines
8 to 29 implement the main body of the algorithm where b
blocks of M1[I, K] and b blocks of M2[K, J] are copied.
Then in lines 22 to 25, b parallel multiplications are done using
MKL cblas_dgemm over the corresponding block pairs and in
line 26 to 29, the partial results are summed up to M3[I, J].
Variables copyl, copy2, K_direction and J_direction are
used to implement the serpentine pattern. This pattern requires
a periodic change of direction from “left-to-right” to “right-
to-left” (when moving along the columns) and from “top-to-
bottom” to “bottom-to-top” (when moving along the rows).
That is why lines 6 and 7 do not implement a direct iteration.
Determining the values of J and K and the movement
directions are done in lines 30 to 42. Also, blocks from M1
and M2 only get copied when copyl and copy2 are true
respectively. These values are only false at the turning points
of the serpentine movement when we want to preserve the
previously visited block in cache or in a high bandwidth
memory.

Thus, original matrices A and B are divided into sub-blocks,
each sub-block may be further divided, this division continues
based on memory constraints when we finally stop dividing
and start multiplying the smallest sub-blocks and combine
their results to solve the original matrix multiplication problem
eventually.

C. Performance Analysis of Our Methodology

We developed a simple model for parallel computing to
derive a formula for predicting the expected performance
improvement when our methodology is used. The detail of
this analysis is omitted here due to a lack of space but is
available at [23].

IV. EXPERIMENTAL RESULTS

We have evaluated the performance improvement of Intel
MKL cblas_dgemm on the Intel KNL platform using our
methodology. Different configurations for MCDRAM and
different clustering modes were combined, and the perfor-
mance of our algorithm tested. We used OpenMP for parallel
processing, and the number of threads was set to 64. Our
experiments show that having more threads causes a degra-
dation in performance due to severe resource contention. We
used Intel compiler icpc with the following compilation flags:
“-03 -xMIC-AVX512 -mkl -lmemkind -qopenmp”. When
MCDRAM is used in Flat mode, we allocate memory from
MCDRAM using hbw_posix_memalign. We allocate memory
from DDR4 using posix_memalign.

The reported run times for matrix sizes up to 16 K x 16K
are an average over 10 runs. For matrices of sizes 32K X
32K and 64K x 64K, the run times have been reported as an
average over 5 runs since these runs are time-consuming and
the run times are already stable enough for these large sizes.

Algorithm 4 two_level matrix multiplication algorithm

1: function M X My(M1,M2,M3,b) > In put matrices
M1wmyxp and M25,.5 and the output matrix M 3«5 are
divided into blocks of sizes bs; x bss, bss X bsg and bsq x
bsy respectively. b is the level of parallelism.

2 copyl < true, copy2 < true

3 K«1, J+1

4: K_direction < 1,

5: for 7 =1 to ™/bs, do

6

7

8

9

J_direction <1

for 7/s, iterations involving J do
for P/vs, iterations involving K do
if copyl then
: do in parallel
10: copy b blocks from M1 starting

11: from M1[I, K] along K_direction.
12: end do

13: end if

14: if copy2 then

15: do in parallel

16: copy b blocks from M2 starting
17: from M2[K, J] along K_direction.
18: end do

19: end if

20: do in parallel

21: Call b instances of cblas_dgemm over
22: blocks of copied from M1 and M?2
23: end do

24: do in parallel

25: Sum up partial results of cblas_dgemm
26: to M3[I,J]

27: end do

28: K < K + b x Kdirection

29: copyl < true

30: if K =1 or K = P/bs; then

31: K _direction < —K_direction

32: copyl + false

33: end if

34: end for

35: J «+— J+1 x J_direction

36: copy?2 — true

37: if J=1 or J ="7/ts, then

38: J_direction < —J_direction

39: copy?2 < false

40: end if

41: end for

42: end for

43: end function
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The reported numbers have an error bound of at most 4%.
We used 9 different configurations on KNL, using different
combinations of MCDRAM and clustering modes.

A. Results

Table I shows the run time values for the cblas_dgemm
which is our 1-level algorithm. The values are measured on
different sizes of double precision matrices and on different
KNL memory-cluster configurations.

Table II shows the runtime values for our 2-level algorithm.
For all the results shown here, we used 16 blocks arranged
as a 4 x 4 grid. At each iteration, 4 parallel cblas_dgemm
calls were initiated on the blocks (b = 4). We have tried other
blocking arrangements such as 2 x 2, as well as 2 and 8 parallel
cblas_dgemm calls, but the configuration presented here gave
us the best results.

Tables III and IV show the run time values for the 3-level
and 4-level algorithms respectively. For our third and fourth
level we divided the matrices using 2 x 2 grids and multiplied
the resulting blocks serially.

The results in these tables are used to plot Figure 2. For
each of the matrix sizes, we picked the best runtime among
all average runtimes for the different KNL memory-cluster
configurations. We also picked the best average runtime of the
one-level code (cblas_dgemm) among all the configurations.
Figure 2 shows the comparison results. We used 2-, 3- and
4-level algorithm on 16 K X 16 K, 32K x 32K and 64K x 64K
matrices, respectively. We got an improvement of 20.5% on the
2-level algorithm, 19.0% on the 3-level algorithm, and 16.2%
on the 4-level algorithm relative to the 1-level cblas_dgemm
code for the same problem.

Using the same methodology, we were also able to speed up
other MKL BLAS routines such as cblas_dtrmm (triangular
matrix multiplication) and cblas_dsymm (symmetric matrix
multiplication). For the former, a speedup of 15% was ob-
served, and for the latter, the speedup was 50%; in both cases,
the matrix size was (double-precision) 16Kx16K.

V. CONCLUSIONS

We proposed a multilevel methodology to improve the
performance of parallel codes whose run time increases at
a faster rate than the actual workload. This methodology is
applicable to problems where a large instance may be solved
by decomposing into smaller instances. The methodology
treats the original fine-tuned parallel code as a black box
and makes no change to it. For the proposed methodology,
we used a simple parallel computing model to derive the
conditions under which our strategy improves performance
and further derived formulas to predict the amount of perfor-
mance improvement that is attainable using this methodology.
Although, in this paper we demonstrated the effectiveness of
our methodology by applying it to the highly optimized BLAS
routines cblas_dgemm, cblas_dtrmm and cblas_dsymm on the
Intel KNL platform using 64 processors, the methodology
itself is quite general and could potentially be used to speed
parallel codes for other applications and other platforms.
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Fig. 2: Comparison of the best runtimes among all average
runtimes taken for the different KNL memory-clustering con-
figurations for each matrix size. In case of the results for “our
algorithm”, the runtime for 16 K x 16 K matrices was obtained
using a 2-level algorithm, for 32K x 32K matrices using a
3-level algorithm and for 64K x 64K matrices using a 4-level
algorithm.

We could reduce the run time of MKL cblas_dgemm by
20%, cblas_dtrmm by 15% and cblas_dsymm by 50% on
double-precision matrices of size 16Kx16K. We repeated each
experiment several times, and the runtime in each case was
within 4% of the average runtime. We tried 9 configurations
of memory and clustering modes on the KNL platform. As
shown in the complete version of the paper [23], the condition
we derived for performance improvement using our theoretical
models correctly predicted if the performance gets improved
or not for 8 out of 9 configurations. Further, the prediction of
the amount of performance increase or decrease was within
1.2% of the actual values for all the 8 configurations when the
problem size was 64K x 64K (Flat-SNC4 is the configuration
where we failed in either case).
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