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A B S T R A C T

Value Iteration (VI) is a powerful, though time consuming, approach to solve Markov Decision Processes
(MDPs). Existing algorithms for VI incur a large number of cache misses. Motivated by the observation that,
on modern computers, the cost of a cache miss is two to three orders of magnitude more than that of an
arithmetic operation, we explore the possibility of improving the performance of VI by reducing the number
of cache misses, possibly at the expense of increasing the number of arithmetic operations. Cache efficiency
is obtained by performing VI on partitions of the MDP state space that fit in the lowest level cache of the
computational platform on which the code is to run. Further performance improvement, motivated by the use
of MDP partitions, is obtained using a clustering scheme to construct the partitions and an annealing schedule
to converge to the target accuracy. We demonstrate experimentally that incorporating partitioning, clustering,
and annealing into state-of-the-art VI software result in speedups of up to a factor of 8.1 on our computational
platforms.

1. Introduction

Reinforcement Learning problems with Markov properties can be
modeled as Markov Decision Processes (MDPs). There are a large
number of real world applications of MDPs that have been well studied
and implemented [1]. These applications come from diverse areas such
as:

• Population (such as fish) harvesting
• Agriculture
• Purchasing, inventory and production
• Sales/Marketing promotions
• Patient admissions

Some examples of applications in the sales/marketing area [2] are:

• Decisions have to be made about price discounts and the duration
of discounts that are to be offered on a product. The states
represent the number of discounts currently running, discount
periods remaining and current prices. The objective function is to
maximize the expected profit over a finite horizon, where profit
is computed as sales revenue discounting the penalty costs due to
exceeding the budget.

• A common use case is deciding the size of an advertising budget.
The states in this application are based on the budget spent in the
past and resulting demand for the product. The reward is defined

✩ A preliminary version of this work that does not include clustering and annealing appears in A. Jain and S. Sahni, Cache efficient value iteration, IEEE
Symposium on Computers and Communications (ISCC), 2019.
∗ Corresponding author.

E-mail addresses: jaianuj99@gmail.com (A. Jain), sahni@cise.ufl.edu (S. Sahni).

in terms of net profit, where profit is defined as sales revenue plus
salvage values less advertising cost.

Value Iteration (VI) [3] is a powerful method for solving MDPs.
However, algorithms based on VI can be extremely time consuming
because of the large number of states in any practical problem and
the large number of backups needed for VI to converge to the target
accuracy. Many attempts have been made to improve the efficiency
of VI [4–6]. These have focussed on reducing the number of backups
by employing heuristics to eliminate redundant backups [4,5] and
exploiting the graph structure of the MDP [4]. An approach to obtain an
approximate solution of an MDP is described in [7]. Parallel solutions
to solve MDP are also proposed in [8] and [9]. Efficient Algorithms for
solving MDP under different kinds of budget constraints are proposed
in [10]

To our knowledge, there has been no prior attempt to speed VI by
exploiting the cache efficiency of modern computers. In this paper,
we first develop a basic cache efficient VI algorithm that works on
cache size partitions of the MDP state space. This basic cache efficient
algorithm is then enhanced using clustering to construct the partitions
and an annealing schedule to compute the values of all states with the
target accuracy. By employing, partitioning, clustering, and annealing,
we are able to attain a speed up of up to a factor of 7.88 relative to
state-of-the-art VI software.

In Section 2 we provide a description of MDPs and VI. In Section 3,
we describe a cache model that has been successfully used before
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in [11] to improve the performance of algorithms. This model provides
the intuitive support for the base partitioning strategy that is devel-
oped in Section 4 to improve the cache efficiency of VI. In Section 5
we describe two strategies (clustering and annealing) to improve the
performance of the VI algorithm that results from the application of
the base partitioning strategy. An experimental evaluation of the perfor-
mance impact of incorporating partitioning, clustering, and annealing
into a state-of-the-art VI implementation that does not employ these
strategies is provided in Section 6. We conclude in Section 7.

2. Markov decision processes and value iteration

A reinforcement learning task that satisfies the Markov Property is
called a Markov Decision Process or MDP. An MDP comprises vertices
and directed edges where each vertex represents a state and edges
represent transitions from one state to another. When the agent is in
a state s, it can choose from a set of possible actions. Having selected
the action a, the agent moves into a next state s’ with some probability.
We use the term state space to represent set of states in the MDP. Action
space refers the set of all actions. In a finite MDP, the state and action
spaces are finite. Given any state, s and action, a, the probability of
each possible next state, s’ is given by Eq. (1).

𝑝(𝑠′|𝑠, 𝑎) = 𝑃𝑟{𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎}. (1)

The goal of many reinforcement learning algorithms is to compute the
value function of a problem, which is given by the Bellman equation:

𝑄(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾
∑

𝑠′
𝑇 (𝑠, 𝑎, 𝑠′)max

𝑎′∈𝐴
𝑄(𝑠′, 𝑎′) (2)

where Q(s,a) denotes the value of taking action a ∈ A, R(s,a) is the
immediate reward of taking action a from s, T(s,a,s’) is the transition
probability from s to s’ using a and 𝛾 is the discount factor between
0 and 1. Qualitatively, the value function estimates how good it is for
a reinforcement learning agent to be in a certain state or (state,action)
pair. Therefore, optimal values would be the maximum possible values
that converge for a given policy of the reinforcement learning agent.
The same Bellman equation could also be expressed in terms of cost,
where the problem is modeled such that the agent incurs an immediate
cost for taking an action instead of getting a reward. This can be
expressed as:

𝑄(𝑠, 𝑎) = 𝐶(𝑠, 𝑎) + 𝛾
∑

𝑠′
𝑇 (𝑠, 𝑎, 𝑠′)min

𝑎′∈𝐴
𝑄(𝑠′, 𝑎′) (3)

In such a model the optimal values would be the minimal values that
converge given a policy. Most optimal MDP algorithms are based on
dynamic programing. The most powerful, yet simple dynamic program-
ing algorithm is called Value Iteration (VI) (Bellman, 1957). In VI, the
values of states or (state, action) pairs are updated iteratively in cycles,
to obtain successively better approximations of the optimal values of
each state, action (s,a) pair. In each cycle, the value of each state or
(state, action) pair is updated using a backup operation in which we
transfer the information back to a state or (state, action) pair from its
successor states or (state, action) pairs. The VI algorithm stops when, we
complete a cycle in which the value of each state changes by less than
a specified threshold (𝜖𝑓𝑖𝑛𝑎𝑙) (Algorithm 1). This specified threshold is
also called the target accuracy.

It is shown in [12] that the VI algorithm is guaranteed to converge
regardless of the order in which updates are performed on the states.
Prioritized VI (PVI) is a refinement of VI in which the state updates are
done in priority order [3]. In PVI, each state is assigned a priority. To
perform a backup, we select the state with highest priority to update.
Following the update of this state, the priority values of dependent
states are recomputed and the highest priority state becomes the next
state to update. Since PVI incurs a high overhead to select the next state
to update, Wingate et al. [6] developed a partitioned version to reduce
this overhead. In their partitioned version, states are grouped into parti-
tions and priorities are assigned to the whole partition. Subsequently VI

Algorithm 1 Value Iteration
1: Input MDP
2: Initialize Q arbitrarily for each (state,action) pair.
3: while true do
4: Bell_error ← 0
5: for all s ∈ S do
6: oldQ ← Q(s,a)
7: Q(s,a) ← R(s,a) + 𝛾

∑

𝑠′
𝑇 (𝑠, 𝑎, 𝑠′)max

𝑎′∈𝐴
𝑄(𝑠′, 𝑎′)

8: Residual(s,a) ← |Q(s,a) − oldQ|

9: Bell_error ← 𝑚𝑎𝑥(Bell_error,Residual(s,a))
10: end for
11: if Bell_error < 𝜖𝑓𝑖𝑛𝑎𝑙 then
12: return Q
13: end if
14: end while

is done on partitions in priority order. Wingate et al. [6] point out that
although PVI works well with an appropriate choice for partition size,
they do not know how to predict a good partition size. Our motivation
to partition the state space is cache efficiency rather than reducing the
overhead of selecting the next state to update. Good partition sizes
in our scheme can be predicted based on cache size. Further, in our
cache efficient algorithm, partitions are updated in a predetermined
fixed order with no (dynamic) priority scheme employed.

3. Cache model

Since the time to access main memory is two to three orders of
magnitude more than that required to perform an arithmetic operation,
modern computers employ a limited amount of high speed memory
(called cache) to hide memory latency. Although modern computers
have several levels of cache (typically, L1, L2, and L3 with L3 being
the largest and lowest-level cache), we employ a simple one-level cache
model (the single level of cache may be assumed to be the lowest-level
cache in the computer on which the code is to run) to provide intuitive
support for the strategies proposed in this paper. As in prior work on
cache efficiency [11], we assume the cache replacement policy is LRU
(Least Recently Used). We assume that the cache consists of c cache
lines. Each cache line consists of w words and each word consists of
4 bytes. So the total cache capacity is cw words. w is the number of
words in a single cache line that can be transferred between the main
memory and the cache in a single cache operation. Main memory is
also organized in blocks of w words each. When a program needs to
read a word that is not present in the cache then a cache miss occurs.
To service the cache miss the block from the main memory containing
the word is copied into the cache over the cache line selected using the
LRU rule. Cache is written back with write allocate mechanism. Write
allocate means that when we want to write a piece of data and it is
not present in the cache then a write miss occurs. To service the write
miss, the block of memory containing the word is copied into the cache
from the main memory. Subsequently the data is written in the cache
line only. It is written into main memory only when this cache line
becomes the LRU cache line and needs to be overwritten by a block of
fresh data from the main memory.

Therefore, every read and write miss makes a read access to the
main memory. Also, every read and write miss makes a write access
to the main memory when the LRU cache line about to be overwritten
contains data that has been changed.

Modern computers use far more sophisticated cache replacement
strategies than the simple LRU cache model described above. Some
can even learn the memory access pattern and prefetch the data that
need to be accessed into the cache. For our purposes here, a simple
cache model, such as the one described above, is sufficient. Eventu-
ally the effectiveness of our cache efficient algorithm will be verified
experimentally.
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4. Base cache efficient VI

The value function used in VI has the form

𝑄(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾
∑

𝑠′
𝑇 (𝑠, 𝑎, 𝑠′)max

𝑎′∈𝐴
𝑄(𝑠′, 𝑎′) (4)

Therefore, to update the value of a state–action pair for a state 𝑠, we
need to access the current values of all possible successor states 𝑠′ of
𝑠 under all possible actions 𝑎. Since, for large MDPs, the cache size
is much smaller than the memory required to hold the data associated
with all MDP states, the update of the value of an (𝑠, 𝑎) pair could incur
several cache misses. This observation leads to the following strategies
to improve cache efficiency possibly at the expense of an increase in
the number of updates.

• Partition the state space into sets of states, where each set is
represented as S. As stated in [3] for the asynchronous dynamic
programing algorithms used for evaluating an MDP, states in a
given MDP can be updated in any order, using whatever values of
the other states that happen to be available. Values of some states
or (state, action) pairs may be backed up several times before
some other states are backed up even once. The only condition
required for the algorithm to converge is that no state is ignored
unless it is known that backups of that state are not required to
arrive at the optimal solution. Taking advantage of this flexibility
in how backups may be done, we partition the state space into
disjoint sets of states such that each set (and associated data)
fits into cache. Then, instead of repeatedly performing backup
cycles with every MDP state being backed up in a cycle, we begin
by placing all partitions into a first-in-first-out queue. Next, we
extract the first partition S from this queue and perform VI on
the states in S (i.e., the state values in this partition are repeatedly
backed up until Q(s,a) for all (s,a) ∈ S converge with an accuracy
𝜖𝑓𝑖𝑛𝑎𝑙). If during the VI for S, the value of some state changes, then
following the VI on S, all dependent partitions of S are added to
the queue (unless they are already on the queue). We then work
on the next partition in the queue. This continues until the queue
becomes empty. Typically, when performing VI on a partition S,
each state of S is visited multiple times. If all s ∈ S together with
all their properties fit into cache, then while performing VI on S,
no write misses occur. The size of a partition is limited by the
cache size and in our base cache efficient algorithm, states are
assigned to partitions arbitrarily while ensuring that no partition
exceeds the allowable maximum size.

• Reduce read misses when performing VI on a partition S. The
partitioning process just described partitions the entire state space
of the MDP into sets such that each state s belongs to exactly one
S. Let SS be the set of all such sets. Let the complete state space
be denoted by C.
⋃

𝑆∈𝑆𝑆
𝑆 = 𝐶 and 𝑆𝑖 ∩ 𝑆𝑗 = ∅, 𝑖 ≠ 𝑗 (5)

Each s ∈ S could transition into a state s’ such that s’ either
belongs to the same partition 𝑆 or to a different partition 𝑆′. The
external partitions of 𝑆 are as given by Eq. (6).

𝐸𝑃 (𝑆) = {𝑆′ ∣ ∃(𝑠, 𝑎) ∈ 𝑆 ∧ 𝑝(𝑠′ ∈ 𝑆′
|𝑠, 𝑎) > 0} (6)

The dependent partitions S’’ of 𝑆 are the partitions that contain at
least one state s’’ such that s’’ can transition to a state s ∈ S as
in Eq. (7). Any change in value of s,a ∈ S implies S’’ needs to
reevaluated.

𝐷𝑃 (𝑆) = {𝑆′′ ∣ ∃(𝑠′′, 𝑎′′) ∈ 𝑆′′ ∧ 𝑝(𝑠 ∈ 𝑆|𝑠′′, 𝑎′′) > 0} (7)

Fig. 1 illustrates the concepts of external and dependent parti-
tions. As noted earlier, write misses are eliminated during the VI
of a partition 𝑆 when 𝑆 fits into cache. However, read misses
may occur as the successor states for an 𝑠 ∈ 𝑆 may be external

to 𝑆. Whenever the value of such a successor state is needed we
may incur a read miss. To avoid these read misses, we note that
the value of external states does not change during the VI of 𝑆.
So, the contribution of external states to the value of any state
in 𝑆 may be computed prior to beginning the VI of 𝑆 and the
aggregate contribution of all external states that an internal state
𝑠 may transition to accounted for.

Algorithm 2 gives our base cache efficient VI algorithm that uses
partitions and aggregation of external state values. This Algorithm is
described in detail in [13]

Algorithm 2 Base Cache Efficient VI
1: Define the partition size based on the (lowest-level) cache size of

the computational platform.
2: Partition the entire state space into sets of states such each set fits

within the cache.
3: Add all these sets to a queue
4: If the queue is empty, terminate the algorithm, else remove the first

Set S from the queue and choose it as the current set for performing
VI

5: Load the values of all the states external to S that would be required
for performing VI as some states from S may transition to these
external states 𝑠′𝑒 ∉ S.

6: Aggregate the impact of external states 𝑠′𝑒 ∉ S for
every (state,action) pair (s,a) ∈ S as in: 𝑒.𝑐𝑠,𝑎 =
𝛾
∑

𝑠′𝑒

𝑇 (𝑠, 𝑎, 𝑠′𝑒)𝑆.𝑒𝑥𝑡_𝑠𝑒𝑡𝑠[𝑆′].𝑒𝑥𝑡_𝑠𝑡𝑎𝑡𝑒𝑠[𝑠′𝑒]

7: Perform VI on all (s,a) ∈ S until convergence, using the following:
Q(s,a) ← R(s,a) + 𝛾

∑

𝑠′𝑖

𝑇 (𝑠, 𝑎, 𝑠′𝑖)max
𝑎′∈𝐴

𝑄(𝑠′𝑖 , 𝑎
′) + 𝑒.𝑐𝑠,𝑎

8: Finally, after S converges, add any dependent sets S’’ to the queue
and go back to step 4

For Algorithm 2, we note that:

• The complete information ∀ s ∈ S should be loaded into cache
prior to performing VI on S. To do this efficiently, we store the
information required for each 𝑆 in contiguous memory.

• Ideally we want that once the information about all the states
s ∈ S is loaded into cache and we start performing VI on these
states, we do not have to service a cache miss until convergence.
Therefore, the values of all the external states (s’) should also
be present in cache. Hence, as described in steps 5 and 6 of
Algorithm 2 we load the values of all the external states required
to perform this VI even before we begin the VI on the set S.

• Notice that in step 7, while performing VI on S, which may
include several thousands of operations, we can use a precom-
puted impact of all the external states on a given (s,a) pair. This
is the value 𝑒.𝑐𝑠,𝑎. This is because the value of these external
states does not change while performing VI on S and hence their
aggregate impact does not change either. Therefore, it is feasible
to precompute the aggregate impact of external states and cache
it till the convergence of S.

5. Enhancements to the base algorithm

In Section 4 we described our base cache efficient VI algorithm. In
this section we introduce two strategies to enhance the performance of
this base algorithm.

• Clustering. When states within a given partition have dependen-
cies across partition boundaries, extra work needs to be done to
cache the values of such states. Further, whenever the value of
a state 𝑠 ∈ 𝑆 changes and 𝑠 has dependencies in a set S’ ≠ S,
then S’ may need to be scheduled again for performing VI on
it as described in Algorithm 2. To reduce these side effects, we
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Fig. 1. Example of arbitrary sets with states s’’, s and s’. s ∈ S can transition to s’ ∈ S’, therefore S’ is an external partition for S. S’’ is dependent on S as s’’ ∈ S’’ can transition
to s ∈ S.

use a clustering scheme to construct partitions with fewer inter-
dependencies of states across partition boundaries. To minimize
the overhead of the clustering scheme, we use a simple heuristic
to partition the MDP such that highly connected states fall into the
same partition. Starting from an arbitrary state 𝑠, for each possible
action 𝑎 from 𝑠, we perform a breadth first search (BFS), such that
all possible next states 𝑠′ that have high transition probability are
included in the same partition 𝑆 as the state 𝑠, until we reach
the pre-defined maximum size of the partition (this maximum is
based on the cache size of the hardware platform). The transition
probability to a next state 𝑠′ from 𝑠 given action 𝑎 is considered
high if it adds at least a pre-defined threshold percentage to the
total probability accumulated for transitioning out of 𝑠 given 𝑎.
In our base plus clustering VI algorithm, Step 2 of the base
algorithm (Algorithm 2) is replaced by the steps:

– 2a: Repeat Step 2b until all MDP states have been assigned.
– 2b: Pick an arbitrary unassigned state 𝑠 and assign it to a

new set/partition 𝑆. Perform a BFS beginning at 𝑠. Unas-
signed states reached during this BFS are assigned to 𝑆 if
they make a reasonable contribution (see below) to the total
transition probability of the state currently being examined
by the BFS. Stop the BFS when 𝑆 reaches the permissible
partition size or no unassigned reachable state remains.

Specifically, when the BFS of Step 2b above examines an as yet
unexamined state 𝑡 that is in 𝑆, the following is done.

– Repeat the following steps for each action 𝑎 possible at state
𝑡.

– Sort the unassigned states that can be transitioned to from
𝑡 by performing the action 𝑎 into descending order of tran-
sition probabilities. Let 𝑡1,… , 𝑡𝑘 be the sorted list of states
that can be transitioned to.

– Add 𝑡1 to 𝑆 and set 𝑇 𝑜𝑡𝑃 𝑟(𝑡, 𝑎) = 𝑃𝑟(𝑡1|𝑡, 𝑎). Set 𝑖 = 2.
– While (𝑖 <= 𝑘 and 𝑃𝑟(𝑡𝑖|𝑡, 𝑎) > 0.2 ∗ 𝑇 𝑜𝑡𝑃 𝑟(𝑡, 𝑎)) { Add 𝑡𝑖 to
𝑆; 𝑇 𝑜𝑡𝑃 𝑟(𝑡, 𝑎)+ = 𝑃𝑟(𝑡𝑖|𝑡, 𝑎); 𝑖 + +}

• Annealing. In the annealing of a hot metal, the hot metal is
cooled gradually to get it to a desired state. The concept of
gradual cooling may be employed to our base cache efficient VI
algorithm with a view to reducing run time. In the base algorithm,

whenever a partition is worked on, VI is used until no state sees
a change in value larger than the target accuracy 𝜖𝑓𝑖𝑛𝑎𝑙. The
rationale behind this is that while a partition is in the cache
we want to maximize the work done on it toward achieving the
target accuracy. However, the convergence to the target accuracy
is done using values of as yet unconverged external dependant
states. When the values of these dependent states change as a
result of performing VI on their partitions, we have to redo VI
on the partition that is currently in the cache. In an annealing
approach to achieve global convergence to the target accuracy,
we set up an annealing schedule 𝜖1 > 𝜖2 > ⋯ > 𝜖𝑘 = 𝜖𝑓𝑖𝑛𝑎𝑙 and
run the base algorithm 𝑘 times seeking first global convergence
to 𝜖1, then to 𝜖2, ⋯, and finally to the target 𝜖𝑓𝑖𝑛𝑎𝑙. So, like in the
annealing of a hot metal, we converge to the target state defined
by 𝜖𝑓𝑖𝑛𝑎𝑙 gradually. Through experimentation, we discovered that
better performance is achieved by modifying the described an-
nealing strategy that anneals all partitions at the same rate to
one that anneals different partitions at possibly different rates
(i.e., partition localized annealing). When partitions are initially
placed into the first-in-first-out queue of Algorithm 2, each is
assigned a convergence value of 𝜖1. When a partition is removed
from this queue an initially zero counter local to the partition
is incremented by 1, VI is performed on that partition using its
current convergence value, and if the partition’s local counter is
a multiple of 10, the partition’s convergence value is changed to
the next epsilon (if any) in the annealing schedule.
We note that our adaptation of annealing has similarities to the
combinatorial optimization method of simulated annealing [14]
in its use of an annealing schedule. Our adaptation differs from
simulated annealing in that we do not use the annealing schedule
to decide whether or not to accept bad moves (i.e., moves that
take you away from the desired final state); in simulated anneal-
ing, the annealing schedule is used to determine the probability
with which a bad move is to be accepted. In fact, we do not permit
any bad moves. Further, our use of an annealing schedule does
not affect the final state values computed by our adaptation of
VI, whereas in simulated annealing, the final results vary with
the annealing schedule in use.

Algorithm 3 is our final cache efficient VI algorithm that incor-
porates clustering and partition localized annealing. This algorithm
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uses the annealing schedule {10, 1, 0.1,… , 10−6} (this schedule may be
changed to any other suitable schedule). So, 𝜖1 = 10 and 𝜖𝑓𝑖𝑛𝑎𝑙 = 10−6.
We begin by using clustering to partition the states of the MDP into
disjoint sets each of which fits into the cache of the computer on which
the code is to run. Since modern computers have multiple levels of
cache, we set the allowable partition size based on the size of the lowest
level (typically L3) cache in the target computer. Next, in lines 2 to 9,
we do the setup, where for each set S we identify the external partitions
and states (S’,s’) as well as the dependent partitions S’’. We store this
information in appropriate data structures associated with each set S
and initialize a 𝑞𝑢𝑒𝑢𝑒 with all the partitions. Subsequently, in lines
11 to 32, we pick up partitions from the 𝑞𝑢𝑒𝑢𝑒, one at a time, and
perform VI on the picked partition. While performing VI on a partition,
we read the values of the external states only once before the first
iteration and compute the contribution of all such external states to
(s,a) in 𝐸𝑥𝑡𝑆𝑒𝑡𝑆𝑡(𝑠, 𝑎). This way we do not incur a cache miss while
performing any of the subsequent iterations of VI on the partition, until
convergence. Also, as described in step 14, to read the values of the
external states we go in the order of the external sets that these states
belong to. Therefore, we only incur as many cache misses as the number
of external sets S’ for any given set S. Finally if there is any change in
a value of a state s ∈ S we add the dependents sets S’’ to the 𝑞𝑢𝑒𝑢𝑒. The
𝑞.𝑒𝑛𝑞𝑢𝑒𝑢𝑒() operation is designed such that it adds an item to the queue
only if not already present. The accuracy (𝜖) to use when performing
VI on a partition 𝑆 is given by 𝑆.𝜖. This is changed to the next epsilon
(if any) by dividing by 10 whenever its counter 𝑆.𝑐𝑜𝑢𝑛𝑡𝑒𝑟 becomes a
multiple of 10 (line 28).

Algorithm 3 Cache Efficient Value Iteration With Clustering and
Annealing
1: Use clustering to partition the state space into sets of a size that fit

into the cache. Let 𝑆𝑆 be the set of partitions obtained.
2: for all S ∈ SS and (𝑠, 𝑎) ∈ 𝑆 do
3: for all (𝑠′ ∣ 𝑝(s’|s,a) > 0 and 𝑠′ ∉ S) do
4: Add (𝑆′, 𝑠′) to 𝐸𝑥𝑡𝑆𝑒𝑡𝑆𝑡(𝑆, 𝑠, 𝑎)
5: Add 𝑆 to 𝑆.𝐷(𝑆′)
6: end for
7: 𝑆.𝜖 = 10; 𝑆.𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0;
8: q.enqueue(S)
9: end for

10: 𝜖𝑓𝑖𝑛𝑎𝑙 = 10−6

11: while !q.isEmpty() do
12: S ← q.deque()
13: for all (S’,s’) ∈ 𝐸𝑥𝑡𝑆𝑒𝑡𝑆𝑡(𝑆, 𝑠, 𝑎) do
14: 𝐸𝑥𝑡𝑆𝑒𝑡𝑆𝑡(𝑆𝑠𝑎) ← 𝑉 [𝑠′] ⊳ V[s’] = max

𝑎′∈𝐴
𝑄(𝑠′, 𝑎′)

15: end for
16: for all (s,a) ∈ S do ⊳ Sum external state contributions
17: 𝑒.𝑐𝑠,𝑎 ← 𝛾

∑

𝑠′
𝑇 (𝑠, 𝑎, 𝑠′)𝐸𝑥𝑡𝑆𝑒𝑡𝑆𝑡(𝑆, 𝑠, 𝑎)

18: end for
19: Perform 𝑉 𝐼 on 𝑆 with 𝜖 = 𝑆.𝜖 using eqn:
20: Q(s,a) ← R(s,a) +
21: 𝛾

∑

𝑠′𝑖

𝑇 (𝑠, 𝑎, 𝑠′𝑖)max
𝑎′∈𝐴

𝑄(𝑠′𝑖 , 𝑎
′) + 𝑒.𝑐𝑠,𝑎 ⊳ 𝑠′𝑖 ∈ 𝑆

22: 𝑆.𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + +
23: if 𝑄(𝑠, 𝑎) for any (s,a) has changed then
24: q.enqueue(S.D(S)) ⊳ Add dependent sets to queue
25: if 𝑆.𝜖 > 𝜖𝑓𝑖𝑛𝑎𝑙 then
26: q.enqueue(S) ⊳ Add the set back to queue
27: if 𝑆.𝑐𝑜𝑢𝑛𝑡𝑒𝑟%10 == 0 then
28: 𝑆.𝜖 = 𝑆.𝜖∕10 ⊳ Next epsilon
29: end if
30: end if
31: end if
32: end while

6. Experimental results

To evaluate the effectiveness of partitioning, clustering, and (parti-
tion localized) annealing we incorporated these into the state-of-the-art
VI algorithm 𝐹𝑇𝑉 𝐼 [4]. We chose 𝐹𝑇𝑉 𝐼 for our experiments because
experimental results reported in [4] indicate that 𝐹𝑇𝑉 𝐼 outperforms
other known VI algorithms. A high level description of the 𝐹𝑇𝑉 𝐼
algorithm, as described in [4], is provided in Algorithm 4. Let 𝐵𝐶𝐸
(Base Cache Efficient), 𝐶𝐸𝐶 (Cache Efficient with Clustering), and
𝐶𝐸𝐶𝐴 (Cache Efficient with Clustering and Annealing), respectively,
be 𝐹𝑇𝑉 𝐼 modified to invoke our base cache efficient algorithm (Al-
gorithm 2), our cache efficient with clustering algorithm, and our
cache efficient with clustering and annealing algorithm (Algorithm 3),
for 𝑆𝐶𝐶s (strongly connected components) whose size (i.e., number
of states) exceeds a threshold, which was set to 1000 states in our
experiments.

Algorithm 4 High Level Description of FTVI
1: Perform Search operation on the state space to eliminate sub-

optimal transitions. This reduces the connectivity of the graph.
2: Partition the state space graph into strongly connected components

(𝑆𝐶𝐶𝑠). This also orders the components in reverse topological
order from goal state/s to start state/s.

3: Perform VI on the 𝑆𝐶𝐶𝑠 in reverse topological order.

To compare the performance of 𝐹𝑇𝑉 𝐼 , 𝐵𝐶𝐸, 𝐶𝐸𝐶, and 𝐶𝐸𝐶𝐴 we
used the following data sets [4,5]:

(1) Mountain Car (MCAR) — This is a two-dimensional control
problem that is characterized by position and velocity. A small
car must rock back and forth until it gains enough momentum
to carry itself up the top of the hill. Any exit on the left hand
side of the problem results in a reward of −1. A gradient reward
is given on the right hand side, with the maximum reward of 1
being given if the car exits the state space with zero velocity. A
high velocity results in a reward of −1.

(2) Single Arm Pendulum (SAP) — This is a two dimensional min-
imum time optimal control problem. The agent has two actions
available representing positive and negative torques applied to
a rotating pendulum, which the agent must learn to swing up
and balance. Similar to the MCAR the agent cannot move the
pendulum from the bottom to the top directly, but must learn to
rock it back and forth. Rewards are zero everywhere but in the
balanced region. The state space is defined by the angle of the
link (𝜃) and the angular velocity of the link (𝑑𝜃∕𝑑𝑡).

(3) Double Arm Pendulum (DAP) — This is a four-dimensional
minimum-time control problem. A central motor applies torque
to the primary link. It is similar to SAP, except that there are
two links. The agent must balance the second link vertically but
it is a free-swinging link. The state space is defined by the two
linkages (𝜃1, 𝜃2) and their angular velocities (𝑑𝜃1∕𝑑𝑡, 𝑑𝜃2∕𝑑𝑡).

The MDPs for MCAR, SAP, and DAP were generated using the data
generation programs of [5]. For MCAR, we generated two instances.
One of these has 1M states and the other has 4M states. For DAP we
also generated two instances. One of these has 1M states and the other
has 2M states. For SAP, we used only a single instance with 0.8M states.
We were unable to use larger SAP instances as the FTVI code crashed
on instances with more states. While we experimented also with the
Mesh problem of [5], the Mesh MDPs had no SCC whose size exceeded
the threshold of 1000 states used to invoke 𝐵𝐶𝐸, 𝐶𝐸𝐶, and 𝐶𝐸𝐶𝐴. As
a result, 𝐹𝑇𝑉 𝐼 , 𝐵𝐶𝐸, 𝐶𝐸𝐶, and 𝐶𝐸𝐶𝐴 had the same performance on
Mesh instances. We were unable to use the remaining data sets of [4]
as the generators for these data sets were not available. Since 𝐹𝑇𝑉 𝐼
requires that the MDP have one or more goal states specified, our data
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Fig. 2. Platform 1.

Fig. 3. Platform 2.

Fig. 4. Platform 3.

sets also had goal states. So, the experiments reported in the sequel
involve a total of 5 instances.

Our experiments were performed on three different computational
platforms:

• Platform 1: MAC with an Intel Core, base clock frequency 2.5 GHz
i7 Processor with 3 levels of cache and 16 GB of main memory.

The cache sizes: L1 Cache: 32 KB, L2 Cache: 256 KB, L3 Cache: 6
MB.

• Platform 2: PC with Intel Core, base clock frequency 3.3 GHz, i9
Processor with 3 levels of Cache and 64 GB main memory. The
cache sizes: L1 Cache: 32 KB, L2 Cache: 1 MB, L3 Cache: 14 MB

• Platform 3: PC with Intel (R) Xeon (R) Platinum 8151 Core, base
clock frequency 3.4 GHz, Instance type Z1d.metal from AWS with
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Fig. 5. Platform 1.

Fig. 6. Platform 2.

Fig. 7. Platform 3.

3 levels of Cache and 300 GB. The cache sizes: L1 Cache: 32 KB,
L2 Cache: 1 MB, L3 Cache: 25 MB

We first conducted exploratory experiments on Platform 1 to deter-
mine a good partition size to use. These experiments were guided by
the size (6MB) of the lowest level cache (L3). For Platform 1, partitions
of size 5000 states fit into L3 cache and gave best performance for
𝐵𝐶𝐸. In addition to the reduction in cache misses that were expected

from the use of our partitioning strategy, the exploratory experiments
revealed a significant drop in the number of backups and, consequently,
in the number of instructions executed. In the extreme case when
the whole MDP fits into L3 cache, there is only 1 partition and no
reduction in backups. So, while larger partitions (up to the size of
L3 cache) improve cache behavior, larger partitions negatively impact
the number of backups and, in turn, result in longer run times. as a
result, BCE, gave best performance on our remaining platforms also

192



A. Jain and S. Sahni Computer Communications 159 (2020) 186–197

Fig. 8. MCar 1 M.

Fig. 9. Mcar 4M.

Fig. 10. DAP 1M.

using a partition size of 5000 even though these platforms have a
larger L3 cache. For 𝐶𝐸𝐶 and 𝐶𝐸𝐶𝐴, best run time performance was
observed using the smaller partition size of 1300. This is because, for
these methods, the advantage of a smaller number of backups resulting

from the smaller partition size outweighed the benefits from improved
cache utilization using a larger partition size. The experimental results
presented in this section use a partition size of 5000 for BCE and 1300
for 𝐶𝐸𝐶 and 𝐶𝐸𝐶𝐴.
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Fig. 11. DAP 2M.

Fig. 12. SAP .81M.

For each data set, we measured the total time to solve the MDP (this
includes the time for searching through the MDP and for partitioning
the MDP into components, which is common across all the algorithms
being evaluated), the time to solve the largest 𝑆𝐶𝐶 (each data set had
only one 𝑆𝐶𝐶 whose size exceeded the threshold size of 1000 used
by us), the number of backups (i.e., the number of state updates) to
solve all 𝑆𝐶𝐶s, total cache misses, total number of micro instructions
executed by the programs, and the cache misses per instruction. Also,
reported is the number of instructions executed per cycle for each of the
programs. All three computational platforms ran the Ubuntu operating
system and all codes were written in C++. The cache misses and all
the instruction level data was obtained using the ‘‘perf’’ [15] tool. The
maximum difference in the computed values for the (s,a) pairs by the
four different algorithms across the entire state space after convergence
was less than 10−6 for all our data sets. The threshold, 𝜖𝑓𝑖𝑛𝑎𝑙, for VI
convergence was set to 10−6 for all runs. For annealing, the schedule
{10, 1, 0.1,… , 10−6} was used.

Tables 1–15 give the experimental results for our 5 data sets and 3
computational platforms. Figs. 2–4 give the speedups attained by 𝐵𝐶𝐸,
𝐶𝐸𝐶, and 𝐶𝐸𝐶𝐴 relative to 𝐹𝑇𝑉 𝐼 (i.e., 𝑟𝑢𝑛𝑡𝑖𝑚𝑒(𝐹𝑇𝑉 𝐼)∕𝑟𝑢𝑛𝑡𝑖𝑚𝑒(𝑋),
𝑋 ∈ {𝐵𝐶𝐸,𝐶𝐶𝐸,𝐶𝐶𝐸𝐴}) on each of our 3 computational platforms.
This speedup ranges from a low of 1.56 for the 0.81M state SAP
problem run on platform 1 with 𝐵𝐶𝐸 Algorithm to a high of 8.15 for
the 2𝑀 state DAP problem run on platform 2 with 𝐶𝐸𝐶𝐴 Algorithm.
So, on all instances and platforms 𝐵𝐶𝐸, 𝐶𝐸𝐶, and 𝐶𝐸𝐶𝐴 were faster

than 𝐹𝑇𝑉 𝐼 . 𝐶𝐸𝐶 was faster than 𝐵𝐶𝐸 in all cases except on Mcar 1M
problem where they are almost similar. Barring these exceptions, the
speedup attained by 𝐶𝐸𝐶 relative to 𝐵𝐶𝐸 ranged from a low of 1.72
for the 4M state MCar problem run on platform 1 to a high of 4.61
for the .81𝑀 state SAP problem run on platform 1. 𝐶𝐸𝐶𝐴 was faster
than 𝐶𝐸𝐶 in all cases except SAP with 0.81M states on all platforms.
Barring these exceptions, the speedup attained by 𝐶𝐸𝐶𝐴 relative to
𝐶𝐸𝐶 ranged from a low of 1.005 for the 1M state DAP problem run
on platform 3 to a high of 1.5 for the 1M state Mcar problem run on
platform 1.

In all cases, 𝐵𝐶𝐸, 𝐶𝐸𝐶, and 𝐶𝐸𝐶𝐴 had fewer cache misses and
backups than incurred by 𝐹𝑇𝑉 𝐼 . The instruction count was also usually
less. The instruction count increased for 𝐵𝐶𝐸 on MCAR with 1M states
and 4M states. It also increased for 𝐵𝐶𝐸 for SAP with 0.81M states
on all Platforms. Figs. 5–7 plot the ratio #𝐼𝑛𝑠𝑡𝑟𝑠(𝐹𝑇𝑉 𝐼)∕#𝐼𝑛𝑠𝑡𝑟𝑠(𝑋)
for 𝑋 ∈ {𝐵𝐶𝐸,𝐶𝐸𝐶,𝐶𝐸𝐶𝐴}. This ratio ranges from a low of 0.52
to a high of 3.28. Despite the increase in instruction count on some
instances, run time decreased indicating the speedup came from a
reduction in cache misses. We can get insight into the contribution
of reduced cache misses to the reduction in run time by examin-
ing the values in the rows labeled #Instructions/CPU-cycle in the
tables as well as the ratio (speedup relative to FTVI) divided by
(#𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠(𝐹𝑇𝑉 𝐼)∕#𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠(𝑋)) for 𝑋 ∈ {𝐵𝐶𝐸,𝐶𝐸𝐶,𝐶𝐸𝐶𝐴}.
The latter ratio, which is shown in Figs. 8–12 for each of our 3
computational platforms, ranges from a low of 1.3 to a high of 4.3
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Table 1
Platform 1: Mountain Car problem with 1 M states. Size of the largest
component: 767098 states. (s = seconds, M = million, B = billion).
Platform 1

Metric MCar 1 M States

BCE CEC CECA FTVI

Run time 30.72 s 30.92 s 25.14 s 65.86 s
Time for
Biggest Comp

22.6 s 22.8 s 16.6 s 61.81 s

Backups 276.7 M 213M 121M 600 M
#Instructions 210 B 162.4B 115.9B 214 B
Cache-misses 226.2M 337.4M 355M 945M
Cache-misses/
Instruction

0.10% 0.2% 0.3% 0.44%

#Instructions/
CPU-cycle

1.85 1.6 1.25 0.88

Table 2
Platform 1: Mountain Car problem with 4 M states. Size of the largest
component: 3.18𝑀 states.
Platform 1

Metric MCar 4 M States

BCE CEC CECA FTVI

Run time 284.2 s 161.19 s 148 s 577.5 s
Time for
Biggest Comp

218.36 s 114.94 s 101 s 515.6 s

Backups 2.8 B 1.09B 770M 5.2 B
#Instructions 1.95 T 854B 700.2B 1.73 T
Cache-misses 1.8 B 2.8B 2.86B 8.5 B
Cache-misses/
Instruction

0.05% 0.3% 0.4% 0.5%

#Instructions/
CPU-cycle

1.88 1.36 1.17 0.82

clearly indicating that much of the speedup comes from increased cache
efficiency. We note that under the assumption that the instruction mix
has not changed, this ratio would be very close to 1 if almost all the
speedup came from a reduction in the number of instructions executed.

Comparing BCE and CEC, Clustering is a heuristic and gives less
number of cache misses on all problem sets on Platform 2 and 3.
There are exceptions on platform 1, however. In all cases it reduces
the number of backups by sufficient amount that there was a noticeable
reduction in run time in all test cases. Comparing 𝐶𝐸𝐶𝐴 with the other
two techniques, annealing is a heuristic that was used to reduce the
number of backups and consequently number of instructions at slight
cost of the cache efficiency. In all problem sets except the SAP problem
instance, annealing reduces the number of backups and number of
instructions.

The cache miss rate for 𝐵𝐶𝐸 is similar for platforms 2 and 3
and is much lower for platform 1. Since different architectures use
different cache replacement strategies, we expect variations in the
number of cache misses per instruction. Using our simple cache model,
our algorithms reduce run time on all platforms on all problem sets.

7. Conclusion

We have proposed several techniques (Partitioning, Clustering, An-
nealing) to speed the performance of classical implementations of
𝑉 𝐼 and benchmarked these against the state-of-the-art 𝐹𝑇𝑉 𝐼 code.
The effectiveness of our techniques was demonstrated experimentally
and speedups of up to 8.1 relative to a classical implementation at-
tained. Although, some of the speedup comes from a reduction in
the number of instructions executed, not all of it does as the ratio
(speedup relative to FTVI)/(#𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠(𝐹𝑇𝑉 𝐼)∕#𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠(𝑋)) for
𝑋 ∈ {𝐵𝐶𝐸,𝐶𝐸𝐶,𝐶𝐸𝐶𝐴} ranged from a low of 1.3 to a high of
4.3. If almost all the speedup came from a reduction in the number
of instructions executed, this ratio would be close to 1 (assuming
the instructions mix has not changed). Although 𝐵𝐶𝐸 was motivated

Table 3
Platform 1: Double Arm Pendulum problem with 1 M states. Size of the
largest component: 0.9𝑀 states.
Platform 1

Metric DAP 1 M States

BCE CEC CECA FTVI

Run time 74.5 s 48 s 46 s 219.64 s
Time for
Biggest Comp

56.24 s 36.12 s 34.12 s 201.90 s

Backups 286M 220M 178M 1.21B
#Instructions 360B 258B 237B 513.7B
Cache-misses 1.3B 980M 997.5M 5.1B
Cache-misses/
Instruction

0.36% 0.37% 0.4% 1%

#Instructions/
CPU-cycle

1.32 1.39 1.25 0.64

Table 4
Platform 1: Double Arm Pendulum problem with 2 M states. Size of the
largest component: 1.9𝑀 states.
Platform 1

Metric DAP 2 M States

BCE CEC CECA FTVI

Run time 159.94 s 90.8 s 84.1 s 577.36 s
Time for
Biggest Comp

126.4 s 49.8 s 44.3 s 556.94 s

Backups 823 M 415MM 351M 3.4B
#Instructions 886.6B 508.6B 475.6B 1.4T
Cache-misses 2.6 B 1.86 B 1.87 12.2B
Cache-misses/
Instruction

0.29% 0.36% 0.39% 0.85%

#Instructions/
CPU-cycle

1.51 1.52 1.53 0.67

Table 5
Platform 1: Single Arm Pendulum problem with 0.81 M states. Size of
the largest component: 0.8𝑀 states.
Platform 1

Metric SAP 0.81 M States

BCE CEC CECA FTVI

Run time 74.72 s 16.12 s 18.48 s 116.92 s
Time for
Biggest Comp

69.5 s 14.16 s 16.4 s 111.57 s

Backups 1.02B 108M 101M 1.07B
#Instructions 661.5B 107.1B 118.5B 348.8B
Cache-misses 113 M 240M 278M 1.63B
Cache-misses/
Instruction

0.017% 0.2% 0.23% 0.46%

#Instructions/
CPU-cycle

2.41 1.81 1.49 0.81

Table 6
Platform 2: Mountain Car problem with 1 M states. Size of the largest
component: 767098 states. (s = seconds, M = million, B = billion).
Platform 2

Metric MCar 1 M States

BCE CEC CECA FTVI

Run time 29.2 s 29.3 s 25.6 98.98 s
Time for
Biggest Comp

20.01 s 20.19 s 16.36 s 89.72 s

Backups 276.7 M 214.3M 121.7M 600 M
#Instructions 210 B 161.3B 115.3B 213.8 B
Cache-misses 1.05B 564M 588M 10.3 B
Cache-misses/
Instruction

0.5% 0.34% 0.5% 5%

#Instructions/
CPU-cycle

1.69 1.29 1.06 0.51
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Table 7
Platform 2: Mountain Car problem with 4 M states. Size of the largest
component: 3.18𝑀 states.
Platform 2

Metric MCar 4 M States

BCE CEC CECA FTVI

Run time 278.3 s 201.3 s 186.2 s 856.6 s
Time for
Biggest Comp

189.14 s 118.2 s 104.12 s 773.3 s

Backups 2.8 B 1.09B 770M 5.2 B
#Instructions 1.95 T 848B 695.8B 1.72 T
Cache-misses 12.8 B 4.6B 4.7B 91.1 B
Cache-misses/
Instruction

0.63% 0.5% 0.6% 5.3%

#Instructions/
CPU-cycle

1.65 1.0 0.88 0.47

Table 8
Platform 2: Double Arm Pendulum problem with 1 M states. Size of the
largest component: 0.9𝑀 states.
Platform 2

Metric DAP 1 M States

BCE CEC CECA FTVI

Run time 88.9 s 57.11 s 55.5 s 320.9 s
Time for
Biggest Comp

67.8 s 38.1 s 36.5 s 301.90 s

Backups 286M 220M 178.9M 1.21B
#Instructions 360B 256.9B 235.9B 513.7B
Cache-misses 2.7B 1.6B 1.6B 33.46B
Cache-misses/
Instruction

0.75% 0.6% 0.67% 6.5%

#Instructions/
CPU-cycle

0.95 1.05 1.0 0.38

Table 9
Platform 2: Double Arm Pendulum problem with 2 M states. Size of the
largest component: 1.9𝑀 states.
Platform 2

Metric DAP 2 M States

BCE CEC CECA FTVI

Run time 209.9 s 110.2 s 107.3 s 875 s
Time for
Biggest Comp

165.3 s 72.7 s 69.8 s 837.9 s

Backups 823 M 405M 351M 3.4B
#Instructions 886.3B 505.7B 472.6B 1.4T
Cache-misses 6 B 3.32 B 3.34B 97.7B
Cache-misses/
Instruction

0.67% 0.65% 0.7% 6.9%

#Instructions/
CPU-cycle

0.99 1.08 1.04 0.38

Table 10
Platform 2: Single Arm Pendulum problem with 0.81 M states. Size of
the largest component: 0.8𝑀 states.
Platform 2

Metric SAP 0.81 M States

BCE CEC CECA FTVI

Run time 66.32 s 18.9 s 20.9 s 149.88 s
Time for
Biggest Comp

61.4 s 13.54 s 15.55 s 144.58 s

Backups 1.02B 106M 119M 1.07B
#Instructions 661.3B 106.4B 117.7B 348B
Cache-misses 1.03 B 650M 741M 17B
Cache-misses/
Instruction

0.15% 0.6% 0.62% 4.8%

#Instructions/
CPU-cycle

2.3 1.34 1.34 0.55

Table 11
Platform 3: Mountain Car problem with 1 M states. Size of the largest
component: 767098 states. (s = seconds, M = million, B = billion).
Platform 3

Metric MCar 1 M States

BCE CEC CECA FTVI

Run time 30.7 s 32.23 s 27.98 s 98.56 s
Time for
Biggest Comp

21.1 s 21.2 s 17.05 s 89 s

Backups 276.7 M 213M 121.4M 600 M
#Instructions 211.6 B 163.5B 117.3B 217.1 B
Cache-misses 1.07B 575M 598M 10.4 B
Cache-misses/
Instruction

0.5% 0.35% 0.5% 4.7%

#Instructions/
CPU-cycle

1.72 1.27 1.05 0.55

Table 12
Platform 3: Mountain Car problem with 4 M states. Size of the largest
component: 3.18𝑀 states.
Platform 3

Metric MCar 4 M States

BCE CEC CECA FTVI

Run time 281.98 s 208.4 s 195.08 s 852.4 s
Time for
Biggest Comp

194.14 s 136.8 s 122.3 s 768.3 s

Backups 2.8 B 1.09B 770M 5.2 B
#Instructions 1.96 T 861.3B 707.8B 1.81 T
Cache-misses 12.9 B 4.8B 4.85B 93.5 B
Cache-misses/
Instruction

0.65% 0.55% 0.68% 5.1%

#Instructions/
CPU-cycle

1.75 1.03 0.91 0.53

Table 13
Platform 3: Double Arm Pendulum problem with 1 M states. Size of the
largest component: 0.9𝑀 states.
Platform 3

Metric DAP 1 M States

BCE CEC CECA FTVI

Run time 89.17 s 57.63 s 57.6 s 306.7 s
Time for
Biggest Comp

70.38 s 38.7 s 39.1 s 287.8

Backups 286M 220M 179M 1.21B
#Instructions 363.3B 259B 238.3B 527.9B
Cache-misses 2.8B 1.58B 1.6B 31.9B
Cache-misses/
Instruction

0.77% 0.6∕% 0.67% 6.0%

#Instructions/
CPU-cycle

1.02 1.12 1.03 0.43

Table 14
Platform 3: Double Arm Pendulum problem with 2 M states. Size of the
largest component: 1.9𝑀 states.
Platform 3

Metric DAP 2 M States

BCE CEC CECA FTVI

Run time 195.77 s 114.9 s 111.83 880.8 s
Time for
Biggest Comp

157.9 s 74.7 s 71.1 s 842.7 s

Backups 823 M 415M 351M 3.4B
#Instructions 900B 511B 478.5B 1.46T
Cache-misses 6.2 B 3.3 B 3.34B 96.2B
Cache-misses/
Instruction

0.68% 0.64% 0.69% 6.5%

#Instructions/
CPU-cycle

1.15 1.11 1.07 0.42
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Table 15
Platform 3: Single Arm Pendulum problem with 0.81 M states. Size of
the largest component: 0.8𝑀 states.
Platform 3

Metric SAP 0.81 M States

BCE CEC CECA FTVI

Run time 71.26 s 20.7 s 23 s 150.77 s
Time for
Biggest Comp

64.9 s 14.4 s 16.7 s 145.25 s

Backups 1.52B 106M 119M 1.07B
#Instructions 662.4B 107.6B 119.1B 353.4B
Cache-misses 1.05 B 638.6M 730M 17B
Cache-misses/
Instruction

0.15% 0.59% 0.61% 4.8%

#Instructions/
CPU-cycle

2.33 1.30 1.3 0.59

by a simple one-level cache model using the LRU cache replacement
strategy, as in [11], it results in significant performance improvement
on tested contemporary computers that have 3 levels of cache and use
more sophisticated cache replacement strategies. Future work includes
multi-level partitioning designed to take advantage of the different
levels of cache in a contemporary computer.
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