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Abstract
We develop a complete framework for modeling general electromechanical
systems in the quasi-electrostatic regime. The equations are applicable to a
broad range of electrostatic problems and offer the advantage of being the-
oretically tractable for scaling arguments. Additionally, we show how the
formalism can be used together with finite element simulations to obtain esti-
mates for non-stationary effects such as charge accumulation in insulators. As a
demonstration,we combined the formalismwith measurements fromAdvanced
LIGO to give an updated estimate for the Johnson noise coupling to the
gravitational-wave channel. The induced signal was determined to be 10 times
lower than the instrument’s design sensitivity in the detection band and scaling
as f−2.

Keywords: Johnson noise, LIGO, Electromechanics

(Some figures may appear in colour only in the online journal)

1. Introduction

The first direct detection of gravitational waves (GW) [1] confirmed the predictions derived
from Einstein’s general theory of relativity more than a century ago. This first detection of
a black hole–black hole merger in 2015 has been followed by more than 50 more detection
candidates [2, 3], including first observation of GW produced by a neutron star–neutron star
merger [4]. This single event opened a new window in our understanding of the Universe
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through multimessenger astronomy: in this case the observation of both GW and electromag-
netic radiation. The continuous improvement of the detectors’ signal-to-noise ratio is casting
new light on astrophysical questions such as the Hubble constant H0 [5], the equation of state
in neutron stars [6], the mass-gap and population distributions of BBHs [7]. By the end of the
third observation run, the detection of candidate GW signals was occurring more than once per
week [8].

Continued reduction in the noise floor of the detectors is a high priority for the field. The
design specifications for the detector noise are typically given by the noise from quantum
mechanics of the optical system and thermal noise of the optical coatings and suspensions, and
are often called the ‘fundamental noise’ for a particular design. However, at the low-frequency
end of the detection band, i.e. from 10 Hz to around 50–70 Hz, the actual performance is
typically limited by so-called ‘technical noise’ [9, 10]. Some of the noise sources, such as cou-
pling from the angular control system, have been identified but there remains some for which
the source is not well understood. At the end of O3a, this ‘technical noise’ was responsible for
a significant reduction of the astrophysical reach of the LIGO Livingston Observatory (LLO),
cutting the volume of observable space in half [11].

Careful analysis of possible noise sources is therefore a high priority. Noise from charge
has long been a source of concern. The test masses are insulators, they are affected by spatially
inhomogeneous and temporally varying charge accumulations [12], and are driven by electro-
static actuators [10]. A variety of calculations for several expected noise sources have been
done, but these all make important simplifying assumptions [13, 14].

In this paper, we aim to lay the theoretical groundwork for a systematic study of the sources
of technical noise that have an electromechanical origin, as well as illustrating the framework’s
applications. Section 2 lays out the assumptions and equations for modeling a general elec-
tromechanical system in the quasi-electrostatic regime. The section concludes by introducing
what we call the electromechanical reciprocity relation, which constitutes the central relation-
ship that enables us to perform all of the calculations and inferences that this article presents. In
sections 3 and 5, we apply part of the theory to show that the Johnson noise of the electrostatic
actuators is not large enough to impact Advanced LIGO’s sensitivity, regardless of the time-
varying charge accumulation observed around the test masses. Additionally, in section 4 we
show that by pre-calculating the geometric potentials for the configuration (with finite element
modeling), it is then straightforward to carry that solution to the estimation of the effect of arbi-
trary free charge distributions on the actuation strength. In future studies, we plan to use these
simulations, together with the insight from the theoretical framework, to obtain the likelihood
of particular charge accumulations given the variations in the actuation strength measured at
the observatories.

Interested readers can also refer to appendices B and C to learn more about the implications
of the electromechanic reciprocity relations and how to leverage them for different electrome-
chanical calculations. Appendix A contains a set of simple examples to help digest the more
abstract results of the paper, while also serving to provide insight into how the framework
can deal with the different elements of a complex electromechanical environment. Finally,
appendix D provides the full general derivation for the electromechanical equations. These
equations can be used as the starting point for more accurate electromechanical models for
current or future gravitational-wave observatories.
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2. Theoretical framework

2.1. Problem statement

We frame the problem in the context of linear electrostatics theory by assuming: (a) magnetic
effects can be neglected4, (b) the surface of every conductor remains a well-defined equipoten-
tial at all times, and (c) all the circuits and dielectrics involved have linear responses to driven
voltage perturbations. Assumption (a) is justified by the fact that the velocities of all objects
in our system are very small compared to the speed of light. Assumption (b) is justified by
the small resistivity of the various metals in the vicinity of the Advanced LIGO test masses,
which provides very small relaxation times, keeping the surfaces of the conductor as equipo-
tentials for the frequencies of interest5. In regard of assumption (c) the fused silica test mass,
its coatings and other non-conductors in the array behave like linear dielectrics6,7. The related
circuits are linear in the frequencies of interest, which we conclude from parsing the various
schematics shown in [21].

Under these assumptions, our system consists of an electrical and amechanical part, an illus-
trative example shown in figure 1. The electrical part is composed of conductors (C), dielectrics
(D) and possible free charges (ρfree). The mechanical part is a subset of the electrical compo-
nents, comprised of objects (O) like the test mass, on which both mechanical and electrical
forces can act. The objects move rigidly in both position and orientation, but they cannot be
deformed.

For the remainder of this article, we will consider the rigid body translation of a single
mechanical object O, representing one of the Advanced LIGO test masses. The general case,
including rotations and multiple moving objects is detailed in appendix D, but the general
conclusions derived in this section remain the same.

The conductors of the system are connected through linear circuits to voltage sources with
fixed potentials φin. The actual potential φi on the surface of each conductor Ci will depend on
their fixed potential φin

i , the potential on the surfaces on the other conductors φ j, the positions
of the dielectrics and free charges and finally the position�r of the objectO. In turn, the position
of the object will depend on both the mechanical and electrical forces acting on it, the latter
one sensitive to the potential at the surface of each conductor.

The potential at the surface of each conductorφi and the position of each one of the mechan-
ical objects�r describe the state of the system8. Since the Jonhson noise is small we are inter-
ested in the limit of small oscillations. We assume that the object’s position and conductors’
potentials oscillate around their equilibrium values by a small quantity: δ�r and δφi respectively.

Under this assumption and taking the δ�r and δφi as our variables, the electromechanical
problem can be separated into two coupled systems, one electrical and one mechanical. We
show in the next sections that after the small oscillations approximation is made, the electric

4We work under the quasistatic approximation: ∇× E ≈ 0. Which means that the electric field can be written as the
gradient of a scalar potential. This approximation is justified when the length and time scales of our system satisfy
L
τ
� c [15]. The spatial scale of our system is L ∼ 1 m, and the shortest time scale of interest is of order τ ∼ 10−3 s.

5 For a conductor the relaxation time can be defined as ρε0 [16], where ρ is the resistivity and ε0 the vacuum permittivity.
The resistivity of the various metals surrounding the advanced LIGO test masses satisfy ρ � 10−6 Ωm. Since we are
interested in frequencies below 10 kHz, then the relation ρε0 � 1/ fmax is satisfied.
6 The mass coatings are layers of silica and titania-doped tantala [17], the earthquake stops are rubber with silica tips
[18], and the ring heater is made of metals and glass [19].
7 One proposed upgrade to the observatories suggests using silicon test masses [20]. Since silicon is a semiconductor,
a more detailed analysis will be required to account for the effect of nonlinearities in the Johnson noise estimates.
8 Alternatively, we could replace one or more of the conductor potentials φi by their total charge qi as the generalized
coordinate. This description is analogous to the one presented in this article.

3



Class. Quantum Grav. 38 (2021) 025014 E Bonilla et al

Figure 1. (a) Simplified example of the electromechanic system. The set of conductors
C shown in gray are connected to voltage sources with potentials φin through linear
circuits. The potential φi at the surface of each conductor Ci is shifted by a small amount
δφi. The dielectrics D j are shown in red and the free charge ρfree is shown in blue. The
mechanical object Ok , a dielectric, is shown in red with dashed boundaries. The object
is mechanically bounded by a force modeled by a spring. The equilibrium position of
the objects measured from the coordinates origin xk is shifted by a small amount δxk.

system is transformed into a circuit for the variables δφi with external input currents that depend
on the coordinates of the object δrk. In a similar way, the mechanical system can be simplified
to a set of objects in harmonic potentials around their equilibrium positions, together with
forces linear on the potentials δφi.

2.2. Circuit equations

In order to write the circuit equations we first note that the linear circuits that connect the con-
ductors Ci to their respective voltage sources φin

i can be replaced by their Thévenin equivalents
[22] 9.

This immediately implies that in equilibrium, we expect the potentials φi = φTh
i . Small

oscillations δφi around this equilibriumwill result in currents through the impedances. Charge
conservation implies that any current going through each subcircuit has to equal time derivative
of the charge of the conductors, consequently:10

1
Zeq
i

δφi = − d
dt
δqi = −

[∑
j

(
∂qi
∂φ j

)
0

dδφ j

dt
+
∑
k

(
∂qi
∂rk

)
0

dδrk
dt

]
, (1)

where the left-hand side is just the impedance version of Ohm’s law and we expanded the
perturbed charges δqi in terms of the independent variables of the system. The zero subscript
represents evaluation in the equilibrium position and potentials. We identify the derivatives(

∂qi
∂φ j

)
0
in equation (1) to be the coefficients of capacitance (C0)i j [16, 23] of the system of

9 i.e. each circuit is replaced by a single complex impedance Zeq
i connected to an ideal potential source φTh

i .
10We use the notation Zeq very loosely in equation (2) for the sake of clarity. However, the complex impedance picture
is only valid in frequency space, so we need to apply Fourier transforms before drawing any quantitative conclusions.
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Figure 2. Electrical part of the simplified instance shown in figure 1. After the Thévenin
relationships are applied, the linear circuits connected to the source potentials φin

i are
replaced by equivalent potentials φTh

i and an effective complex impedance Zeq
i . The inter-

actions between the different conductors are replaced by effective mutual capacitances
Cm that include the effect of dielectrics and free charges. Each conductor’s Ci interac-
tion with the motion of the object O is replaced by one dependent current generator Ii,
representing an internal rearrangement of charges. The current generators, the effective
capacitors and the potential sources all connect through a conductor node, displayed as
a black dot inside a dotted boundary. The circuit potential at these nodes correspond to
the actual potential in the surface of the conductors.

conductors and dielectrics at equilibrium. The capacitance mediates the interaction between
the potentials δφi that describe the electrical part of the system.

The second sum in equation (1) acts like an extra current term Ii that is dependent on the

mechanical variables δrk of the system. It is mediated by the coefficients
(

∂qi
∂rk

)
0
which we will

explore later, as they play an important role in the Johnson noise estimation.
With the introduction of the capacitance matrix C0, equation (1) can be represented as

a circuit diagram, where we replace the effect of the interaction between the conductors
and dielectrics by a mutual capacitance network Cm [24], and we include branches with
dependent current sources for the interaction with the mechanical system, as depicted in
figure 2.

It is important to note that, although the excess potentials δφi in the conductor nodes of
figure 2 are exactly the same as the excess potential on the actual conductors Ci (shown
in figure 1), the excess charges are not. This can be inferred by noting that the dependent
currents Ii represent the charge redistribution inside the conductors Ci, necessary to keep
them as equipotentials as the mechanical variables are perturbed. The charges associated
with the conductor nodes in figure 2 are the ones associated with the potential perturbations
δφi.

Having defined the capacitance matrix we can write the equations that describe the electric
part of the system as:

(Zeq)−1δ�φ+ C0δ�̇φ+

(
∂�q
∂�r

)
0

δ�̇r = 0, (2)

5
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where the overhead dot represents time differentiation, �q = [q1, . . . , qN] and
δ�φ = [δφ1, . . . , δφN] are the instantaneous total charges and perturbed potentials of the
conductors, respectively. (Zeq)−1 is a diagonal matrix that represents the inverse of the

equivalent impedances of each subcircuit, and we introduced the Jacobian
(

∂�q
∂�r

)
ik
= ∂qi

∂rk
.

These equations contain the relations between the variables of the system δφi and δrk and will
be coupled to the mechanical equations that we develop in the next subsection.

2.3. Mechanical equations

In this subsection we derive the mechanical equations that govern the movement of the object
O. At the equilibrium positions and potentials, the total forces on the object O are zero by
definition. Small perturbations δ�r and δφi around this equilibrium will generate a fluctuating
force δ�F onO. Under the effect of this force, Newton’s second law can be written as:

Mδ̈�r = δ�F =
∑
k

(
∂�F
∂rk

)
0

δrk +
∑
i

(
∂�F
∂φi

)
0

δφi, (3)

whereM is a diagonal matrix with the total mass m of the object O in each diagonal entry.
We can associate the terms of equation (3) that are proportional to the mechanical variables

δrk to the opposite of a effective stiffness matrix Keff that relates the displacements of the
object with the forces on it that bring it back into equilibrium. This is roughly equivalent to
connecting the mobile object with a set of linear springs.

On the other hand, the second sum involves the perturbed force that depends on the con-

ductor potentials δφi. The coefficients
(

∂�F
∂φi

)
0
that mediate the electromechanical interaction

are crucial in the Johnson noise estimate and will be studied in section 3. If we denote them as
the matrix elements of the Jacobian ∂�F

∂ �Φ
, we can write equation (3) as:

Mδ̈�r +Keffδ�r −
(

∂�F

∂�Φ

)
0

δ�φ = 0. (4)

Figure 3 shows a free body diagram representing the mechanical and electrical components
acting on the mobile object of figure 1. The electromechanical forces that depend on the posi-
tion of the object have been abstracted to a single stiffness kmeff, and the interaction with the
fluctuating potentials is shown as set of forces that depend on δφi.

2.4. Electromechanical reciprocity

Before proceeding with the Johnson noise estimates, we will briefly discuss an important
relation between the two sets of electromechanical coefficients ∂qi

∂rk
and ∂Fk

∂φi
that connect

the electrical and mechanical variables in equations (2) and (4). These coefficients are not
independent, in fact they are related through what we call the electromechanical reciprocity
relation:

∂qi
∂rk

=
∂Fk
∂φi

⇒ ∂�q
∂�r

=

[
∂�F

∂�Φ

]T

. (5)
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Figure 3. Mechanical part of the simplified instance shown in figure 1. Under the small
oscillation approximation, the forces linear with the displacement δx1 are abstracted as
an effective spring constant keff attached to the equilibrium position. The interaction with
the fluctuating potentials is shown as forces dependent on δφi.

This equation is a consequence of the relation of the different variables and forces to the
free energy available to the system in its electrostatic equilibrium states11. The rigorous proof
for this equation and similar ones is given in the appendix.

It is important to highlight that the partial derivative ∂qi
∂rk

is performed by keeping the poten-

tials �φ constant while the partial derivative ∂Fk
∂φi

is taken by keeping the position of the object
�r constant. This follows from our choice of δφi and δrk as the independent variables of our
system when performing the Taylor expansion in equations (1) and (3).

As a side note, let us suppose we want to actively control the position rk of O by applying
a slowly changing potential Δφin

i , in a similar fashion to what is done with the electrostatic
drive in Advanced LIGO [18]. This translates through the Thévenin equivalence to a fluctu-
ation ΔφTh

i in the potentials of the conductors. Then the applied force on O is proportional
to ∂Fk

∂φi
ΔφTh

i . Thus, the right-hand side of equation (5) represents the susceptibility of the
mechanical system to electrostatic actuation.

On the other hand, ∂qi
∂rk

δṙk represents the current that needs to be drawn to conductor i to
keep the system at its equilibrium potentials (δφi = 0, ∀ i) when O is only moving in the rk
direction.

The conclusion from equation (5) is that the more sensitive the mechanical system is to
the control forces coming from its electrical counterpart, the more backreaction current its
motion will create in the circuits connected to the conductors. The current will pass through
the impedances Zeq

i , generating Joule heating in their dissipative elements. This energy loss
mechanism is ultimately connected to the injection of thermal noise in the motion ofO.

11 This is similar to the Maxwell relations in thermodynamics [25]. The electrostatic assumptions of our formulation
match the quasi-static ones oftentimes used to describe thermodynamic systems.
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3. Johnson noise calculation

Having derived the sets of coupled electromechanical equations together with the elec-
tromechanical reciprocity relation we proceed to estimate the fluctuations that the Johnson
noise, generated in the electronic part of the circuit, produces on the position of the object
δ�r. These fluctuations are intimately related to the behavior of the dissipative parts of the
electromechanical system, as described by the fluctuation–dissipation theorem [26, 27].

There are two equivalent approaches to this problem, and both yield the same result. The first
one consists of modeling each of the N noisy impedances Zeq

i as a noiseless ideal impedance,
connected in series with one of N independent white noise current sources ηi(t) with power
spectral density given by |η̂i( f )|2 = 4kBT Re[(Zeq

i )−1] [28]. Once the ηi are introduced, all
that is left is to transform the equations onto the frequency space and solve for the noise forces
they introduce in the mechanical object.

Alternatively, we can abstract the electrical part of the system by writing δ�φ as a function of
the positions in equation (2) and substitute it into themechanical equation (4). This is equivalent
to treating the system as a position only problem,with a frequency-dependentviscous damping.
Applying the fluctuation–dissipation theorem as outlined in [29] will yield the same result for
the Johnson noise coupling.

To illustrate this calculation, consider the case of a single mobile object, representing the
test mass moving in a single dimension. For the electrical part of the problem, assume we can
describe the system with a single potential12 φ. Finally, let the impedance of the circuit be
a single resistance R. Under these assumptions, the electromechanical equations (2) and (4)
simplify to:

mδ̈x + keffδx −
(
∂Fx
∂φ

)
0

δφ = 0, (6)

1
R
δφ+ C0δφ̇+

(
∂q
∂x

)
0

δ ẋ = η(t). (7)

We transform these equations into Fourier space and apply the electromechanical reciprocity
to obtain:

(
keff − m(2π f )2

)
δ x̂ −

(
∂Fx
∂φ

)
0

δφ̂ = 0, (8)

(
1
R
+ i2π f C0

)
δφ̂+ i2π f

(
∂Fx
∂φ

)
0

δ x̂ = η̂( f ). (9)

We can now decouple these two equations and finally obtain the effective noise force on the
object:

|Fη( f )| =
√
4kbT

∣∣∣∣∂Fx∂φ

∣∣∣∣
0

√
R

1+ (2π fRC0)2
. (10)

12 This is valid for the case of a single conductor with the potential at infinity set to zero, and for closed two-
conductor arrays. Only one capacitance coefficient is necessary to describe these systems. The general case is left
for the appendices.
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If our frequencies of interest f are much bigger than the resonant frequencies of the
electromechanical system (roughly meaning keff/m� f2) then the object can be considered
inertial and we obtain the frequency spectrum of δx as:

|δxη( f )| ≈
1

m(2π f )2
√
4kbT

∣∣∣∣∂Fx∂φ

∣∣∣∣
0

√
R

1+ (2π fRC0)2
. (11)

Even though equation (10) was derived for a simple system consisting of only one potential
and one object constrained to move in a single dimension, we can highlight three important
characteristic features that we expect to observe on the Johnson noise inmore complex systems.

First, the noise amplitude is directly proportional to the actuation strength of the conductor(
∂Fx
∂φ

)
0
. Moreover, since

(
∂Fx
∂φ

)
0
=

(
∂q
∂x

)
0
, we see that the noise amplitude is proportional to

the amount of current that gets generated from movements of the object. Since the current in
the resistor is the source of damping, we see the electromechanical reciprocity is consistent
with usual statement of the fluctuation–dissipation theorem [27].

Second, we can see that in the limiting cases R→ 0 and R→∞ the noise amplitude
|xη( f )| → 0. In this simple examplewe can interpretR→ 0 as a perfect connection between the
conductor and its potential source, andR→∞ as the conductor being completely disconnected
from the circuits.

Third, above the resonant frequencies of the system, but given f � 1/RC0, the displacement
noise’s spectral amplitude decays as 1/ f2, which is the typical attenuation for force noises due
to the inertia ofO. However, for higher frequencies ( f � 1/RC0) the Johnson noise gets further
attenuated by the latency on the charge and discharge time τ = 1/RC0 of the circuit, falling
off as 1/ f3 as a result. At these high frequencies, the capacitance acts as a low pass filter for
any current noise coming from the circuit.

Returning to the more general case with one movable object and several conductors, if the
charge and discharge time of the capacitor array is dominated byZeq rather thanC0, the noise’s
amplitude spectral density above the resonances of the system is given by:

|δxη( f )| ≈
√
4kbT

m(2π f )2

√√√√∑
i∈C

(
∂Fx
∂φi

)2

0

Re(Zeq
i ). (12)

Here x is any of themechanical variables describing the translation of an objectwithmassm.
We expect this last limit to be valid for the electrostatic array used to control the Advanced
LIGO test masses, since current-limiting capacitors have been set in all of the circuits [21] and
the test mass can be considered inertial at the frequencies of interest. In section 5 we apply this
result directly to estimate the Johnson noise coupling to the Advanced LIGO optic.

It is important to note, that under these assumptions, the estimation of the Jonhson noise
relies on the value of the individual circuit’s impedances Zeq

i and the estimation of the

electromechanical coefficients
(

∂Fx
∂φi

)
0
.

4. Extracting the electromechanical coefficients

The electromechanical coefficients are one of the main ingredients needed to estimate the
Johnson noise spectral amplitude by using equation (12).

Thanks to the reciprocity relation (5) knowing either of the two sets of coefficients, ∂�q
∂�r or

∂�F
∂ �Φ

, is enough to estimate the Johnson noise amplitude in the system. Under that scope both

9
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sets are equivalent, but since they are constructed from different concepts, each one presents
its shortcuts and challenges at the time of estimation.

First, the coefficients ∂�F
∂ �Φ

are very easily measured if we consider their connection to electro-
static actuation. For a given electromechanic array, they can be obtained by individually driving
the potentialsφin

i around their equilibriumvalues. From the electromechanical equation (2) and
(3), we can find that the response on a coordinate x of the objectO, under the assumption that
C0 does not dominate the charge and discharge of the conductors13, and above the mechanical
resonances is related to the drive signalΔφin

i by:∣∣∣∣∂Fx∂φi

∣∣∣∣
0

= m(2π f )2
∣∣∣∣Δx( f )Δφin

i

∣∣∣∣
∣∣∣∣Δφin

i

ΔφTh
i

∣∣∣∣ . (13)

We recognize the first fraction of equation (13) as the transfer function between the input
potentials and the motion Δx and the second one as the Thévenin relation for the input and
the equivalent potential sources. The first one can be easily measured by driving the circuits
and observing the response of the mechanical object at a frequency above the resonances. The
second one can be inferred directly from the circuit schematics. This is the approach taken on
section 5 when making the estimates for Advanced LIGO.

Direct modelling of ∂�F
∂ �Φ

for complex electrostatic environments can become challenging if
free charges are present in the array. In principle, it requires not only knowing the free charge
distribution beforehand but also a way to estimate the effect that the free charges have in the
mechanical objects, which in turn reflects on the actuation strength of the conductors. Through
this lens, even invoking the superposition principle, we need to run as many simulations as
different densities ρfree we would like to evaluate.

On the other hand, the sets ∂�q
∂�r would be difficult to measure experimentally, since one should

be able to measure precisely how much charge is entering or leaving the conductor i when the
object is moved a small amount drk. However, careful analysis reveals there is a shortcut to
obtaining them by a computational simulation approach such as finite element modelling. The
theoretical basis of how this can be done are left for appendix C, and the particular application
to the study of the charge buildup around the Advanced LIGO test masses is left for a future
manuscript. We show here a brief overview of the idea:

In the appendix C we show that the induced charge14 in conductor i due to the presence of
any free charge density ρfree(�r ) can be calculated as:

(qimag)i = −
∫

ρfree(�r ) f i(�r )d3�r, (14)

where we define f i =
φ′i(�r )
V0

. The potential φ′
i(�r ) is obtained by setting all the conductors to

a reference potential (to be used as ground)15 except for the ith one, which is set to V0, in
the absence of any free charge distribution ρfree. Then, the function f i represents a geometric
potential at point�r and it is the proportionality between a free charge located at that point and
the charge it induces on conductor i.

13 In the case of Advanced LIGO, the 10 nF current-limiting capacitor for the bias electrode circuit (shown in figure 4)
is a good upper bound for the capacitance of the array. In the 10–100 Hz band, where measurements are made, we
can consider that the array charges instantaneously.
14 The notation for equation (14) hints at the fact that we could think of this charge as the net ‘image charge’ induced
on the conductors by the presence of free charge density.
15 In the case of Advanced LIGO, a very reasonable choice is the potential of the vacuum wall that surrounds the array.
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To obtain the total charge in the conductors we just need to add C0
�φ to equation (14).

Therefore, to obtain the coefficients ∂�q
∂�r it is sufficient to know the geometric potentials f i,

the capacitance matrix C0 and how they change due to a small displacement of the object. In
a system with N conductors, for each degree of freedom, the finite differences can be com-
puted in 2N simulations using a standard simulation package. The main advantage of this
approach is that we could then use the superposition principle to calculate the effect of any
charge distribution ρfree on the electromechanic coefficients without having to simulate them
explicitly.

5. Johnson noise estimate for advanced LIGO

The Advanced LIGO tests masses are actuated directly via the electrostatic drives (ESDs).
The drives consist of five different conducting bodies, one ‘bias’ electrode and four ‘signal’
electrodes [30]. By applying a DC bias on the bias electrode a polarization is induced on the
test mass. The four signal electrodes are then used to apply forces on these polarized charges
and thus actuate the test mass.

In principle, to properly estimate the Johnson noise contribution to the displacement noise
of the test masses (and consequently to the gravitational-wave channel), it should be sufficient

to measure the electromechanical coefficients
(

∂Fx
∂φi

)
0
for each of the electrode voltages φi.

While there are such measurements available, the values for the actuation strength are sensitive
to charge accumulation in the test mass’ environment [30] and hence vary over time.

In consequence,we decided to provide a range for the estimate by using all the recent history
of measurements for the actuation strength of the ESDs, recorded over the course of the third
observing run at the LLO [31, 32].

The data for these measurements is given in terms of the coefficients that enter the semi-
empirical longitudinal force equation for the ESDs16 [33]:

F = α(Vb − Vs)2 + β(Vb + Vs)+ β2(Vb − Vs)+ γ(Vb + Vs)2 + δ, (15)

where Vb and V s are the potentials of the ‘bias’ and ‘signal’ electrodes. The assumption is
made that all four signal electrodes are driven in unison.

Given this equation for the force, the electromechanical coefficients that participate in the
Johnson noise equation (12) can be expressed as:

(
∂F
∂Vb

)
0

= 2(γ + α)VDC
b + 2(γ − α)VDC

s + (β + β2),(
∂F
∂Vs

)
0

= 2(γ − α)VDC
b + 2(γ + α)VDC

s + (β − β2).
(16)

For the purposes of the Johnson noise estimates, we add the assumption that each signal
electrode contributes one fourth of the actuation strength, before adding their contributions in
quadrature. This is a reasonable assumption, given the measurements taken from the masses
[31, 32].

16 In this equation, the potential of the cage surrounding the test mass is used as the reference. It is important to note that
equation (15) contains all the information about the electrostatic environment surrounding the test masses. In particular,
the coefficients β and β2 vary depending on free charge accumulation for the system. These facts are discussed briefly
in appendix C, where we arrive at a version of this semi-empirical equation from first-principle electrostatics.
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Table 1. Range for ESD force coefficients and nominal operating voltages measured
at the LIGO Livingston Observatory during the third observing run. Extracted from
[31, 32]. The columns correspond to each one of the two ETMs. Small differences
in geometry and variations in the charge accumulation on the test masses and their
surroundings account for the difference in the coefficients’ values. The ranges for the
coefficients (represented inside brackets) correspond to maximum and minimum values
over the recorded data and are larger than the uncertainty associated with any individual
measurement.

Parameters Units ETMX ETMY

(γ − α) 10−10
(
N V−2

)
{−3.0;−1.0} {−4.0;−0.2}

(γ + α) 10−10
(
N V−2

)
{3.2; 4.6} {4.0; 5.4}

(β − β2) 10−8
(
N V−1

)
{−0.3; 1.8} {−5.6; 4.0}

(β + β2) 10−8
(
N V−1

)
{−5.5;−0.3} {−7.6;−0.8}

VDC
b (V) 350 380

VDC
s (V) 0 0

Table 2. Estimated range for the electromechanical coefficients for the bias and the four
signal electrodes (driven in unison) at the LIGO Livingston Observatory. The values
displayed are the ranges for the absolute values obtained by using the coefficients from
table 1 and equation (16). Note that for our estimates, the electromechanical coefficient
for each one of the four signal electrode will be taken to be one quarter of the value
presented in this table.

Parameters Units ETMX ETMY
∣∣∣ ∂F
∂Vb

∣∣∣
0

10−7
(
N V−1

)
{1.7; 3.2} {2.3; 4.0}∣∣∣ ∂F

∂Vs

∣∣∣
0

10−7
(
N V−1

)
{0.5; 2.1} {0.0; 3.6}

Of the four test masses at the LLO, only the two end test-masses (ETMs) are actively biased
for actuation17. Hence they are the ones that will contribute in any significant way to the total
Johnson noise coupling to the gravitational-wave channel18.

Table 1 shows a summary of the ranges for themeasured parameters that are needed to calcu-
late the electromechanical coefficients via equation (16). Table 2 shows the expected range for
the absolute value of the electromechanical coefficients, which is in the range of 10−7 N V−1

for the bias electrodes. Note that for the signal electrodes the time-varying charging of the
masses can have a substantial impact on the actuation strength.

The only missing piece to estimate the Johnson noise-induced displacement ASD of each
test mass are the circuits connected to each electrode. The circuit diagrams shown in figure 4
were taken from [21] and correspond to the usual circuit paths for electrostatic actuation. The
voltage outputs controlled by amplifiers are treated as ideal voltage sources and only elements
after them are taken into consideration for our calculations.

To finish the Johnson noise estimate, we plug together the equivalent impedances from
the circuits in figure 4 and the electromechanical coefficients from table 2 into equation (12),

17 No control signals are sent to the ITMs during regular operation.
18 The input test-masses (ITMs) have VDC

b = VDC
s = 0 V during operation. Moreover, the gap between ITMs and their

respective ESDs is larger (20 mm) than the ETMs’ (5 mm) [34] which drops the order of magnitude of their coefficients
even lower [35].
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Figure 4. Schematics for the ESD circuits, extracted from [21]. (a) Bias path circuit, the
final 10 nF capacitor suppresses the Johnson noise coupling at very high frequencies.
The 3 μF capacitors suppress noise at frequencies above≈ 10 Hz. In the LIGO detection
band the effective resistance is just the 10 kΩ resistor. (b) Circuit for each of the signal
electrodes. Note that the overall impedance of this path, coupled with the overall smaller
couplings imply that most of the Johnson noise contribution to the displacement noise
comes from the bias circuit. The reason for using four signal electrodes, as well as two
different voltage drives has to do with the active damping of the parametric instability
of the cavity [36].

Figure 5. Estimate for the Johnson noise coupling to the gravitational-wave channel
using the coefficients from [33, 35]. The estimated noise is 10 times lower than the
instrument’s design sensitivity at 20 Hz and falls as 1/ f2. The sensitivity curves were
created using the data from [37, 38].

for the two 40 kg ETMs. The result is shown in figure 5, where we can see that the contri-
bution to the noise budget is about 10 times below the design sensitivity, sitting just under

13
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5× 10−20 m Hz−0.5 at 10 Hz and falling off as 1/ f2. Most of the expected noise coupling
comes from the unfiltered 10 kΩ resistor in the bias circuit.

It is important to note that the range of the time variation of the actuation strength does not
appear to be large enough to make the Johnson noise coupling a dominant source of noise for
the interferometer and thus it is an unlikely explanation for the unexplained sources of technical
noise of the apparatus.

To give a sense of the scale of these results, we can compare the more rigorous estimate with
a similar calculation made in [13], where the mass and drive are modelled as a parallel plate
capacitor (this model is worked as an example of the more general framework in appendix A).
Under this approximation, the results shown in figure 5 can be replicated if the two biased
masses had effective capacitances of about 5 pF.19

A similar comparison can be drawn by assimilating the ESD to a circular conductive plate
and the test mass to a point charge located in the axis of symmetry. As we shown in the
appendix A.1, under this toy model a total unscreened net charge of 1.3 μC in any of the
test masses would cause the Johnson noise to hit the design sensitivity and become a relevant
source of noise.

6. Conclusions and future work

We presented a complete framework for modeling general electromechanical systems in
the quasi-electrostatic regime. The formalism allows us to paint an accurate picture of
the interaction of the circuits with the mechanical objects in terms of the electromechanic
coefficients.

We show that this framework can be used to improve upon the preexisting estimates and
models for the Advanced LIGO test mass—ESD array. Moreover, it can be used to understand
some of the more complex interactions like the effect of charge accumulation on the actuation
strength of the ESDs. In the future, we expect to be able to use a model of the geometric
potentials together with the measurements of the actuation strength to help diagnose the charge
buildup observed in the interferometers.

Additionally, we use the general framework to derive a set of qualitative conclusions about
the electrostatic environment of the LIGO interferometers. We find that free charges in the
system change the actuation strength even if not directly placed on the test masses and that the
magnitude of Johnson noise coupling is intimately related to the charge and discharge time of
the circuits. These points are fleshed out in appendix A.

Finally, as an example, we applied the framework to the estimation of the Johnson noise
coupling to the gravitational-wavechannel of the LLO, yielding a displacement noise just under
5× 10−20 m Hz−0.5 at 10 Hz and falling off as 1/ f2. Since this value is about 10 times below
the design sensitivity of the instrument, we conclude that the performance of the interferometer
is dominated by other sources of fundamental and technical noise in the detection band.We also
give, under simplistic assumptions, an order-of-magnitude estimate for the maximum charge
accumulation that could be tolerated near the test masses, revealing that a few μC of charge
accumulation are enough tomake the Johnson noise similar to the fundamental sources of noise
for the interferometer.

We hope this article can serve as the first stepping stone in the way to a deeper understanding
of the electrostatic environment surrounding the test masses in Advanced LIGO. The joint

19 This assumes the capacitor gap is the same as the space between the ESD and the test mass, 5 mm for the ETMs as
per [34].
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effort between modeling and measurement will be needed to tackle issues such as the effect of
charge accumulation in the interferometers and beyond.

Furthermore, we believe the methods developed in this manuscript are also applicable to
estimating the Johnson noise coupling from electrostatic actuators in third-generation obser-
vatories, like LIGO Voyager [39] or the Einstein Telescope [40]. The two main caveats stem
from the fact that these projects plan to utilize cryogenically cooled silicon masses. First,
the lower temperature implies that the circuitry of the electrostatic drive will not necessar-
ily be in thermal equilibrium with the masses, hence violating one of the main assumptions
of the fluctuation–dissipation theorem [27]. However, reasonable estimates can be made in
non-equilibrium steady-state systems regardless of this fact [41], which we can immediately
translate into this work. The second is that silicon is a semiconductor, and as such, it might
violate the quasi-static assumptions made for this manuscript20. A more detailed analysis and
simulation for the case of a semiconductor mass are part of the future research directions for
the authors.
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Appendix A. Worked examples

In this appendixwe demonstrate the use of the electromechanical equations to estimate the fluc-
tuating force associated with the Johnson noise in simple electrostatic arrays. These examples
serve to illustrate some of the general properties to be expected of general electromechanical
systems in the electrostatic regime.

In all the examples, the key part of the estimation is finding the electromechanical coeffi-
cients ∂Fx

∂φ
for the configuration. This can be done either directly by analyzing the forces of

the system or indirectly through the electromechanical reciprocity (5). In each case, we take
this result and plug it into our general estimate for the spectral density of the Johnson noise
driven forces (10) to provide insight on the factors contributing to the Johnson noise coupling
to mechanical motion.

In the first example we explore a simple system consisting of a point charge representing
the movable object O subject to the electrostatic force of a conductive plate. This example
illustrates the most basic features of our framework.

20 It will ultimately depend on the relaxation time τ = ρε for the silicon mass. The strong dependence of silicon’s
resistivity on temperature and impurity concentration, in addition to the presence of field effects on surface conductivity
[42] make this analysis a delicate one, outside the scope of this article.
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Figure 6. Conducting disk and point charge configuration. The point charge q is at a
distance x from the center of the disk, which is connected to an ideal voltage source
through a resistance R. The charge q is assumed to be held at an equilibrium position x0
when the source’s potential is φ0.

In the second example we work with two conductive plates, one of them treated as the
movable object O, in order to show how capacitive forces are handled within the frame-
work. In contrast with the point charge example the fluctuating force amplitude is found to
be proportional to the potential difference φ.

Finally, in the third example we explore the effect that a point charge q has on the parallel
plate system of the second example, both when q is treated as a charge fixed in space near the
object, and then when the charge is moved with, or attached to the object O. In the latter case
we can distinguish between three types of forces that act on the objectO which are all treated
simultaneously by our framework.

In addition to illustrating the main features of our analysis, these toy models can serve
as a proxy for the more complex environment around the LIGO test masses. We can lever-
age the developed knowledge to get a sense for what the interaction between the bias plate
of the electrostatic drives and the Advanced LIGO test masses is in terms of simpler con-
cepts like charges or capacitances. This enables us to give an order of magnitude estimate
for the impact of free charge accumulation on the sensitivity of the interferometers, an esti-
mation that is performed at the end of the examples by modeling the LIGO environment
by the simplified configurations. For the purpose of these estimates, we will use the dimen-
sions of the test and reaction masses, as specified in [34]. The test and reaction masses have
a radius of 17 cm and are separated by a 5 mm vacuum gap.21. The test mass is 20 cm
thick.

A.1. Conducting disk and point charge in axis of symmetry

Consider the scenario depicted in figure 6. A conductive plate of radius a is connected through
a resistance R to an ideal voltage source with the potential fixed at φ0. We assume the charge
q rests at an equilibrium distance x0 along the axis of symmetry of the disk when the potential
is φ0.

21 The gap is 5 mm in the case of the end test masses (ETMs). The input test masses (ITMs) have a 20 mm gap instead.
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From [16] we can obtain the self-capacitance of the disk and the electric force on the charge
q as:

C0 = 8ε0a, (17)

Fx(x,φ) =
2φ
π

qa
x2 + a2

, (18)

(
∂Fx
∂φ

)
0

=
2
π

qa
x20 + a2

. (19)

From equation (10), the amplitude spectral density of the fluctuating force on the charge q
is:

|Fη( f )| =
(
2
π

qa
x20 + a2

) √
4kbTR√

1+ (2π fRC0)2
. (20)

There are three main aspects we would like to highlight from this expression. First, we
can recognize the usual 4kBTR from the voltage fluctuations on the resistor. More generally,
this numerator is directly proportional to the dissipative part of the circuits connected to the
conductors.

Second, for low frequencies ( f � 1/RC0) the fluctuating force’s spectrum is independent
of f , resembling white noise. When the charging time of the conductive plate (represented by
τ = RC0) is very long compared to the period of the fluctuating voltage (represented by 1/ f )
the conducting array acts as a low-pass filter and hence the force fluctuations on the charge q
fall off as 1/ f.22

Finally, we notice that the Johnson noise-induced force fluctuations go to zero both in the
limit R→ 0 and R→∞. The first case represents an ideal circuit with no dissipation, and
hence no Johnson noise, whereas the second represents an ideal conductor disconnected from
any circuits. There will be, for each frequency f, a value of R that maximizes the strength of
the noise on that band. This fact could be used during the design phase to avoid impacting the
important parts of the spectrum.

If we now assume that the conductive plate is the Advanced LIGOESD and the point charge
represents the test mass, we can obtain the displacement ASD from figure 5 with an equivalent
charge of 130 nC. According to this approximation, an equivalent charge of 1.3 μC on a single
test mass would be enough for the Johnson noise to hit the baseline of the design sensitivity
for Advanced LIGO.

However, considering the fact that there are two biased test masses, and their noises add up
in quadrature to make up for most of the Johnson noise coupling shown in figure 5, a more
refined estimate is that the equivalent charge for each test mass under this toy model is about
90 nC.

For Advanced LIGO, above the detection band, the frequency at which we expect to see the
forces to fall as 1/ f is driven by the 1 nF capacitor at the end of the bias circuit (see figure 4).
This gives, for R = 10 kΩ, a value of f = 100 kHz

22 In general, the force fluctuations will be low passed due to the finite charge time of the circuits. The final frequency
dependence will vary according to the linear circuits attached to the conductors in a more general array.
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Figure 7. Parallel plate capacitor configuration. Both disks are of radius a. The left disk
is connected to a reservoir potential through a resistance R while the right disk, treated
as the object O, is directly connected to the ground, maintaining the difference between
them constant at φ0.

A.2. Purely capacitive forces: parallel plate capacitor

In a system with only linear capacitive couplings (no free charges), the electrostatic force on
any object (conductors or dielectrics) is given by23:

Fx =
1
2

(
∂C
∂x

)
φ2 ⇒

(
∂Fx
∂φ

)
0

=

(
∂C
∂x

)
0

φ0, (21)

where ∂C
∂x represents the change on the total capacitance of the system when the involved object

is moved along x. In the case of a parallel plate capacitor, like the one shown in figure 7,
C(x) ∝ 1

x represents the mutual capacitance of the array while the potential φ is the potential
difference between the plates. The proportionality of C(x) implies that

(
∂C
∂x

)
0
= −C0

x0
.

Consequently, after the application of equation (10), the amplitude spectral density of the
fluctuating force on each plate is:

|Fη( f )| =
C0φ0

x0

√
4kbTR

1+ (2π fRC0)2
. (22)

An interesting property of capacitive systems is that the Johnson noise amplitude is propor-
tional to the equilibrium potential φ0. This is due to the fact that the Johnson noise fluctuations
exert forces on the induced charges, which are proportional to φ0.

The result shown in equation (22) is identical to an early estimate for the Advanced LIGO
Johnson noise [13] in where the authors used an array similar to the one shown in figure 7,
associating one plate with the electrostatic drive and the other with the Advanced LIGO test
mass.

23 This is valid for any electrical system that can be described by a single potential φ. The treatment for multiple
potentials requires the capacitance matrix.
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Figure 8. Parallel plate capacitor with point charge configuration. The left disk of radius
a is connected to an ideal potential source through a resistance R, while the right plate
is connected to the ground. At equilibrium, the potential is set to φ0 and the distance
between the plates is x0. The point charge qfree is completely fixed at a distance d from
one of the plates. In this configuration, we assume the right hand plate (shown with
dashed lines) represents the objectO to which we apply the electromechanical equations.

If we use this approximation, in order to reproduce the contribution of the Johnson noise
(≈4× 10−19 at 10 Hz) to the position ASD (shown in figure 5) with the parallel plate model
we need to set the effective capacitance of the two biased masses to be C0 ≈ 5 pF.24. With the
usual values for the bias potential φ0 ≈ 400 V (from table 1) this corresponds to an induced
charge of Q0 = C0φ0 ≈ 2 nC.

To achieve the same level of noise the total induced charge is an order of magnitude less
than the obtained in the previous point charge model. The difference can be accounted for
by the different dependencies of the electric forces with the separation between the test and
reaction masses. Since the capacitance in this example scales as 1

x , a small separation such as
x0 = 5 mm boosts the force considerably.

In this sense, while the parallel platemodel captures the essence of the test mass polarization
by the electrostatic drive, the assumption that C(x) ∝ 1

x is clearly invalid. Nevertheless, the
parallel plate toy model is good enough to illustrate the effect of free charges in the Johnson
noise amplitude, as we show in the next section.

A.3. Parallel plate capacitor in the presence of a point charge

Similar to the previous example, we have a parallel plate capacitor, but this time there is a point
charge q present in the array. Figure 8 shows the basic arrangement in where the charge qfree
is located at a distance d from one of the conducting plates and does not move. Our ‘object’O
is once again the other plate, represented with dashed lines in the figure.

Under these assumptions, the total charge on the plate connected to the resistance is:

q = Cφ+ qimag. (23)

24 This assumes that the gap size x0 = 5 mm as per [34].
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The charge qimag is the charge induced by the presence of the point charge qfree when both
plates are grounded25. If we assume the dimension of the plates is much larger than their sepa-
ration, and that the charge qfree is close to the axis of symmetry of the two plates, we can treat
the array as two infinite plates. Then, we can find the geometric potential at the point charge’s
location (see appendix C) to be f = 1− d

x . Using equation (14) we find the charge on the left
plate qimag:

qimag = −qfree
(
1− d

x

)
. (24)

We can then use the electromechanical relation (5) and the expression for the charge qimag
to find the force derivative:(

∂Fx
∂φ

)
0

=

(
∂q
∂x

)
0

=

(
∂C
∂x

)
0

φ0 −
qfreed
x20

. (25)

The term ∂C
∂x was already calculated on the previous example and still holds. Note that

the geometric potential approach saved us the trouble of having to use the images method
to explicitly calculate the induced charge distribution on any of the plates.

Plugging this result in equation (10) to get the spectral density of the force, we obtain:

|Fη( f )| =
∣∣∣∣C0φ0

x0
+
qfreed
x20

∣∣∣∣
√

4kbTR
1+ (2π fRC0)2

=

∣∣∣∣QO,0

x0

∣∣∣∣
√

4kbTR
1+ (2π fRC0)2

.

(26)

The last equality comes from recognizing that the total charge induced on the plate that
represents the ‘object’ of interest O (right plate in figure 8) is given by:

QO = −Cφ− qfree
d
x
. (27)

This results implies that the magnitude of the force associated with Johnson noise is
proportional to the total induced charge on the plate representing the objectO.

From this calculation we would like to highlight some interesting points about the effect of
free charges on the Johnson noise coupling.

First, we can see that the effect of the free charges on the Johnson noise coupling is indepen-
dent on the equilibrium potential φ0. The reason for this is that the magnitude and distribution
of the charges induced in O by any free charge density ρfree, at the equilibrium position of the
array, is independent of the potential.

Second, we notice that the presence of the free charge had a net effect in the magnitude of
the Johnson noise even though it did not form part of the moving object O. We can conclude
that in a more general system free charges will have a direct effect on the magnitude of the
force noise even if they are not attached to the moving objects.

Third, the presence of free charges could potentially counteract the contribution from the
potential φ0, depending on the magnitude and sign of qfree.

26

25 It can be helpful to think about these as the image charges induced by qfree on the conductive plate.
26More generally, it will depend on the specifics of the charge distribution ρfree and the geometry of the system.
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Fourth, the magnitude of the effect caused by qfree goes to zero if d→ 0. In this situation,
the charge is completely screened by the other conductor and it is equivalent to the charge not
being present.

Finally, the noise effect grows as the charge qfree is closer to O, since doing this increases
the amount of charge induced on the plate. However, the situation changes if the charge is
attached (belongs) to the plate, as we explore in the following subsection.

A.3.1. Charge attached to the conductive plate. Let us consider the case where the point
charge qfree is ‘attached’ to the conducting test mass at its position, such that Δd = Δx. This
implies that from the mechanical point of view, the objectO is comprised by not only the right
hand plate from figure 8 but also the free charge qfree as a singular rigid body.

We can immediately include the effect of forces on this charge by including the derivative
of d with respect to x in equation (25):(

∂Fx
∂φ

)
0

=

(
∂q
∂x

)
0

=

(
∂C
∂x

)
0

φ0 −
qfreed
x20

+
qfree
x0

(
∂d
∂x

)
0

= −C0φ0

x0
− qfreed

x20
+
qfree
x0

. (28)

We recognize three different components on the right-hand side of equation (28) which will
contribute to the total effect of the Johnson noise. All three components are forces that the left
plate applies on the object O, but they have different interpretations:

• The first term relates to the capacitive force on the charges induced by the potential
difference φ0.

• The second is the force on the image charges induced by the free charge qfree.
• The third one is the force on the free charge qfree itself, which now forms part of the object
O due to the constraintΔd = Δx.

This analysis highlights the power of the electromechanical reciprocity relation (5), since
we have treated the three different forces simultaneously, without the need to find or integrate
charge distributions.

If the point charge is attached to the surface of the right plate then d = x0 and the sum of the
forces on the charge qfree and its image in O cancels. This is to be expected, since for d = x0
the test mass’s image charge perfectly screens the charge qfree.

In the case of Advanced LIGO, the test mass is not a conductor but a dielectric. This implies
that there is never a complete screening of the charge qfree. Nevertheless, we can use the
knowledge we have gathered from the toy models to increase our understanding of the real
arrangement.

A.4. Notes on dielectrics

While the general approach used for the previous examples still applies for an array of conduc-
tors and dielectrics, it must be noted that it is complicated to make a meaningful approximation
without knowledge about the specific geometry in which the conductor and dielectrics are
arranged, since dielectrics do not have a set potential.

These constraints prevent us from making an example that is both analytic and accu-
rately illustrates the way that conductors and dielectrics interact in the actual array present
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Figure 9. Conducting disk and dielectric configuration. One of the faces of a dielectric
cylinder is placed at a distance x from a circular conductive plate. The conductor is
connected to an ideal voltage source through a resistance R. The dielectric is assumed to
be at an equilibrium position x0 when the source’s potential is φ0. In this configuration,
we assume the dielectric cylinder (shown with dashed lines) represents the object O to
which we apply the electromechanical equations.

in Advanced LIGO. Numerical simulations are required even for the simple model shown in
below.

Therefore, for this section, we will limit ourselves to a qualitative analysis of the system
shown in figure 9: a circular plate of radius a is connected through a resistance R to an ideal
voltage source with the potential fixed at φ0. A dielectric cylinder with the same radius and
dielectric constant κ is placed with one of its circular faces at a distance x0 from the conductive
plate.

The forces on the dielectric are purely capacitive in nature, so we expect equation (21) to

apply, hence
(

∂Fx
∂φ

)
0
=

(
∂C
∂x

)
0
φ0.

Similarly, we also know that the capacitance of the array is increased by the presence of the
dielectric slab. It should lie somewhere in between the vacuum capacitance and the capacitance
if space was filled with a dielectric of constant κ. That is: 8ε0a < C0 < 8ε0κa.

We also expect the capacitance to not diverge as the distance x0 goes to zero. Considering
the other relevant length scales of the problem we can estimate that

∣∣ ∂C
∂x

∣∣
0
≈ C0

L if L� x0.27

If we plug the numbers for the advanced LIGO masses and with κ = 3.8 for fused silica,

we obtain an approximate value of
∣∣∣ ∂Fx∂φ

∣∣∣
0
≈ 1× 10−7 N V−1, which is on the same order of

magnitude of the values from the biased masses on table 2.
As mentioned above, we cannot expect more than an order-of-magnitude estimate for

the actuation strength, since the specific values will depend on the geometry of the sys-
tem. Nevertheless it is important to note that a simplification like this can yield a better
back of the envelope estimate for the actuation strength than the parallel-plate capacitor
model.

27 Numerous tractable toy models exhibit this same behavior, such as the parallel plate capacitor partially filled with a
dielectric medium.
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Appendix B. Electromechanical reciprocity relations

In this appendix we derive the electromechanical reciprocity relation shown in equation (5)
from first principles, that is:

∂�q
∂�r

=

[
∂�F

∂�Φ

]T

. (29)

This important equation relates ∂qi
∂rk

, the partial derivative of the charge stored in conductor

Ci by moving an object in the direction rk and keeping the potentials �φ constant, with ∂Fk
∂φi

, the
derivative on the force in direction rk acting on the same object by changing the potential φi of
the same conductor Ci by keeping the position of the object�r constant.

We start by computing the electric energy of the system U(�q,�r ) and then derive the free
energy Ũ(�φ,�r ). We then show that the electromechanical reciprocity relation follows from
considering second derivatives of Ũ.

B.1. Internal energy of a system of conductors, charges and dielectrics

The total electric energy contained in a system of conductors, charges and dielectrics is:

U =
1
2

∫
�E · �D d3�r = −1

2

∫
(∇φ) · �D d3�r

= −1
2

(∫
∇ · (φ�D) d3�r −

∫
φ∇ · �D d3�r

)
, (30)

where �E and �D are the electric and displacement field respectively, and the volume integrals
are over all space28.

Using Gauss’ law the first integral becomes zero since φ is defined to be zero at infinity.
For the second integral, since ∇ · �D = ρfree we will have two types of terms: those relating
the free charge on the surface of the conductors and those relating to the free charges in the
rest of space. The former simplifies since the conductors are at constant potential and we
obtain:

U =
1
2

(∑
i

φiqi +
∫

φρfree d
3�r

)
. (31)

Here, the sum is over the conductors and the integral is over the free charge density not
associated with any conductor.

B.2. Conjugate variables for U and the associated free energy Ũ

As it is done in Landau and Lifshitz’s Electrodynamics [16] we can express the change in the
energy U due to a change of the conductors’ charge by dqi, assuming that all dielectrics are

28 The arguments of this section still hold if the system is enclosed inside another conductor CN+1 (for example, the
vacuum chamber in Advanced LIGO). The caveat is that the potential of this conductor has to be set as the reference
potential φN+1 = 0.
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linear29:

dU =
∑
i

φidqi. (32)

Since the potential U is written as a function of the independent charges in the conductors

we conclude that φi =
(

∂U
∂qi

)
.

These ideas are explored further in Landau and Lifshitz’s Electrodynamics pp 30 [16] in
which the authors justify the introduction of a modified potential energy Ũ that is a function
of the potentials on the conductors:

Ũ = U −
∑
i

φiqi =
1
2

(∫
φρfreed3�r −

∑
i

φiqi

)
, (33)

which represents the free energy available to the system when we consider it as a function of
the independent potentials �φ.30

Using this formalism, the forces due to displacing any object inside the arrangement of
conductors can be calculated through eitherU or Ũ and the result should be the same, yielding:

Fk = −
(
∂U
∂rk

)
qi

= −
(
∂Ũ
∂rk

)
φi

. (34)

Note also, that since Ũ is a Legendre transform of U then qi = −
(

∂Ũ
∂φi

)
, which can be

verified by plugging equation (44) into the definition for Ũ 31. A bit of attention must be taken,
the partial derivatives assume all of the generalized coordinates are kept constant.We will drop
the subscripts for now, with the knowledge that U is a function of the positions and charges,
while Ũ is a function of the positions and potentials.

B.3. Electromechanical reciprocity

Having defined the free energy Ũ we can finally prove equation (5). Since by equation (34) the

force on an object Fk is a first derivative of Ũ then
(

∂Fk
∂φi

)
involves second derivatives of Ũ. It

is then straightforward to see that:(
∂Fx
∂φi

)
= − ∂2Ũ

∂φi∂rk
= − ∂2Ũ

∂rk∂φi
=

(
∂qi
∂rk

)
. (35)

As we have mentioned earlier, this relation implies that the rate of change of the net force
on an object when changing the value of the surface equipotential of a given conductor is equal
to the rate of change of the equilibrium charge of the conductor when displacing the object on
the direction of the force.

29 The factor 1
2 in equation (31) is not present in equation (32) as one might naively guess if the differential operator

is applied considering the potentials φi to be independent from the change in the charges. We must remember that the
derivative ∂φi

∂q j
= (C−1)i j �= 0.

30 Ũ arises since it is impossible to keep the potentials of the conductors constant during a mechanical transition
without exchanging charge with the environment. This is similar to the definition for enthalpy from thermodynamics.
The enthalpy arises since it is impossible to increase the temperature of a gas at constant pressure without it doing
work on its surroundings.
31 Alternatively, this relationship can be taken as the definition of the total charge in the conductors, which yields the
same result as (44) for linear systems.
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Another useful, and almost equivalent relation is:(
∂Fk
∂qi

)
= − ∂2U

∂qi∂rk
= − ∂2U

∂rk∂qi
= −

(
∂φi
∂rk

)
. (36)

We can write similar relations for each coordinate motion. Furthermore, these relations
also hold for angular degrees of freedom. Using the definition for the torque: τk = −

(
∂U
∂θk

)
=

−
(

∂Ũ
∂θk

)
, we find that:

(
∂τk
∂φi

)
=

(
∂qi
∂θk

)
and

(
∂τk
∂qi

)
= −

(
∂φi
∂θk

)
. (37)

Appendix C. Modelling the electromechanic coefficients

In this appendix we prove equation (14) used in section 4 to calculate the charge induced in
each conductor due to the presence of free charge distributions. The backbone of the proof uses
an extension of the Green’s reciprocity relation (see [43]) that relates the charge distributions
ρ1 and ρ2 and the electric potentials φ1 and φ2 of two different system configurations that share
the same geometry in terms of conducting surfaces.

The usual statement of the Green’s reciprocity theorem is made in the absence of dielectrics.
We show that if the dielectrics involved are linear, then the proposition of the theorem it is still
true for the free charge density ρfree.

We then use the equation derived to illustrate the steps necessary to estimate the electrome-
chanical coefficients (5) from a finite element simulation by leveraging the geometric potentials
of an electrostatic array with no free charges.

C.1. Green’s reciprocity in the presence of linear dielectrics

Consider a system of N conductors, with linear dielectrics and free charges, bounded by an
external conductor CN+1. The potential of the external conductor is set to be zero (or as the
reference potential) for the remainder of this proof32.

For a given single spatial configuration of the system of conductors and dielectrics,
Maxwell’s equations for electrostatics can be used to describe the electric interactions. The
equations can be summarized as:

∇ · (ε̂∇φ) = −ρ ; φ = φi (constant) in Ci. (38)

The first equation includes the spatially varying electric permittivity ε̂ in its most general
form as a rank-two symmetric tensor [16], this accounts for the effect of dielectrics anywhere
in space. It is satisfied in the volume enclosed by CN+1. The second one provides the boundary
conditions for the electrostatic potential φ inside the conductors.

The charge density ρ considered in equation (38) is that of all conductors plus any free
charge density ρfree present in the system, not including the bound charge due to polarization
of the dielectrics, since the information regarding the possible existence of these polarization
charge densities is encoded in ε̂.

32 This is the natural choice, since in the absence of free charge density, if all the conductors’ potentials match the
enclosure’s the electric field inside has to be zero.
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Let us consider two different free charge distributions ρ1(�r ) and ρ2(�r ) with their associated
potentials φ1(�r ) and φ2(�r ) of this system. The potentials both satisfy the equation (38). We can
find a relation between the two distributions by partial integration on the following equation:

∫
V
φ2ρ1d

3�r = −
∫
V
φ2∇ · (ε̂∇φ1)d

3�r =
∫
V
[∇φ2 · (ε̂∇φ1)−∇ · (φ2ε̂∇φ1)] d

3�r.

(39)

If we take the integration domain V to be the inside of the exterior conductor CN+1, then the
last term on the right-hand side of equation (39) is zero, due to Gauss’ law and our convention
where the potential of the outer conductor is set to zero. On the other hand, the other term
satisfies ∇φ2 · (ε̂∇φ1) = ∇φ1 · (ε̂∇φ2) due to the symmetry of the permittivity tensor.

Continuing with a second integration by parts, and making use of the fact that the two
distributions share the same geometry:

∫
V∇

φ1 · (ε̂∇φ2)d3�r =
∫
V
[∇ · (φ1ε̂∇φ2)− φ1∇ · (ε̂∇φ2)] d3�r =

∫
V
φ1ρ2d3�r.

(40)

Where we have again used the reference potential convention to eliminate the boundary
term and equation (38) to write the integral in terms of the charge density. The final result is
then: ∫

V
φ2ρ1d3�r =

∫
V
φ1ρ2d3�r. (41)

Which is the usual known form of the Green’s reciprocity theorem [23]. Note, however that in
the usual statement of the theorem, the densities ρ correspond to the total charge density on an
arbitrary configuration of charges. The expression (41) involves two arbitrary configurations
of free charge density, provided that the conductors and dielectrics (which affect ε̂) remain in
the same positions.

C.2. Charge induced by a free charge distribution ρfree

We will apply the green reciprocity relation to estimate the effect that a free charge distribution
ρfree has on the total charge of the conductors of the system.

Given an array like the one shown in figure 10, let us consider two situations:

(a) The first one with all the conductors grounded and the free charge ρfree present. Let qi
denote the total charge of conductor i induced by the free charge density in this grounded
configuration.

(b) The second one with all but one conductor grounded. Let us assume that the ungrounded
conductor is conductor i and its potential is denoted by V0. The potential in the rest of the
array is denoted by φi(�r ). No extra free charge density is present in this configuration.

Equation (41) applied to these two situations yields:

qiV0 +

∫
V
ρfree(�r )φi(�r )d3�r = 0. (42)
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Figure 10. System consisting of conductors Ci, dielectrics D j and free charge density
ρfree.

Note that the right-hand side of equation (42) is identically zero, since situation 1 has the
potentials on the conductor surfaces equal to zero and situation 2 has no free charge densities
not attached to conductor surfaces.

The induced charge qi by the free charge ρfree in conductor Ci is then given by:

qi = − 1
V0

∫
V
ρfree(�r )φ2(�r )d3�r = −

∫
V
ρfree(�r ) f i(�r )d3�r. (43)

Where we have defined the geometric potentials f i(�r ) =
φi
V0

associated with conductor i,
as defined in [44]. These are defined as the normalized potentials for the configuration (b)
mentioned before, with only conductor i ungrounded.

By applying the superposition principle we can compute the total induced charges on the
conductors�q as the sum of the charges generated by the free charge distributions in the system
ρfree plus the charges induced by the set of potentials on the conductors through the capacitance
matrix:

�q = C�φ−
∫
V
ρfree(�r )�f (�r )d3�r. (44)

C.3. Obtaining the electromechanical coefficients

In order to obtain the effect of free charges on the electromechanical coefficients ( ∂�q
∂�r ) we need

to take the derivative of equation (44), the accumulated charge on the conductors, with respect
to rigid body motions of an object O.

First, we need to define a coordinate system representing the frame of reference ofO. Trans-
lations and rotations ofO will all be referenced to translations and rotations of this coordinate
system instead.

Let us consider a rigid body translation along a direction rk first:

∂qi
∂rk

=
∑
j

∂Ci j
∂rk

φ j −
∫
V

∂ρfree
∂rk

f i(�r ′)d3�r ′ −
∫
V
ρfree(�r′)

∂ f i
∂rk

d3�r ′. (45)

The first and last terms of this equation contain derivatives that are completely independent
of the free charge distribution ρfree. In fact, if O is only composed of free charges, they are
identically zero. On the other hand, the middle term only contributes if the moving object
contains any of the free charge density.
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Figure 11. Simplified examples of the behavior of the integrands in the last two terms in
equation (46) in one dimension. (a) The object O consisting of free charges (in blue) is
moved from rk to rk + drk. The function f(r′) does not change overall by this movement
but now the object’s free charge is in another position, offset by an amount drk , where
f(r′) has a different value. The net effect is captured by the gradient of f in the êk direc-
tion. (b) The object O consists of a dielectric (red) and is moved from rk to rk + drk.
The function f(r′) now changes overall since it depends on the position of all the con-
ductors and dielectrics. On the third integral of equation (45) the free charge at position
r′, which did not move, gets multiplied by a different value under the integration f̃ (r′).
This modified function is such that

˜f (r′ )− f (r′)
drk

≈ ∂ f (r′ )
∂rk

. The final result (46) for a general
object is the superposition of these two effects.

Let ρo be the subset of the charge ρfree that is part ofO. The middle integral in equation (45)
can be simplified by performing the derivative of the charge density in a step-by step basis
(see figure 11). The resulting quantity is the gradient of f i along the direction set by rk (here
denoted by êk). We have therefore:

∂qi
∂rk

=
∑
j

∂Ci j
∂rk

φ j −
∫
V
(∇ f i · êk) ρo(�r′)d3�r′ −

∫
V
ρfree(�r′)

∂ f i(r′)
∂rk

d3�r′. (46)

By virtue of the electromechanical reciprocity relations (5), ∂qi
∂rk

= ∂Fk
∂φi

. Hence, we can inter-
pret themeaning of the terms on equation (46) as the different potential-dependent forces acting
on O:

• The first one corresponds to the forces between the charges on the surfaces of every con-
ductor and the charges induced on the object O by the potentials �φ. It is zero if O is
comprised only of free charges (and thus cannot be charged or polarized).

• The second term is the force on the free charges that are part ofO. It is proportional to the
geometric electric fields∇ f i at the position of the charges.

• The last term is the force between the charges induced by the potentials �φ and the ones
induced by the free charge density ρfree.

It is important to note that the force between ρfree and the charge it induces onO is missing
from the list, since it does not depend on the potentials �φ.

In the case of a rotation, a similar analysis yields:

∂qi
∂θk

=
∑
j

∂Ci j
∂θk

φ j −
∫
V

[
(�r −�ro)×∇ f i

]
· êk ρo(�r)d3�r −

∫
V
ρfree(�r)

∂ f i
∂θk

d3�r. (47)
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Here�ro represents the position of the origin of the rotating coordinate system and êk represents
the unitary vector along the axis of rotation. Using the electromechanical reciprocity: ∂qi

∂θk
=

∂τk
∂φi

, we conclude this is how we study the sensitivity of the angular degrees of freedom to
electrostatic actuation.

C.4. Leveraging finite element modelling

From equations (46) and (47), we can see that in order to evaluate the effect of free charges in
the electromechanic coefficients, it is sufficient to model the derivatives and gradients of f i and
Cij. All of this quantities can be obtained from modelling an electrostatic array with no free
charge density ρfree. Let us quickly outline the method for assembling the necessary pieces to
obtain them:

• The geometric potentials f i and their gradients∇ f i can be obtained for all space by mod-
elling the electrostatic environment with all conductors grounded, with the exception of
conductor iwhich is set to a potential of unity. The sets of conductors C, dielectricsD and
objectsO, are located at their equilibrium positions.

• The capacitance matrix can be modelled in a similar way to the previous point. The
procedure is standard, an example explanation for it can be found in [24].

• The derivatives ∂Ci j
∂rk

and ∂ fi
∂rk

can be approximated for a single object in O by repeating
the modelling from the previous two bullet points but with the object displaced a small
amount Δrk in the êk direction. Then we can approximate the derivatives by comparing
the displaced values with the equilibrium ones: ∂Ci j

∂rk
≈ ΔCi j

Δrk
and ∂ fi

∂rk
≈ Δ fi

Δrk
.

• In order to evaluate the effect of an arbitrary charge distribution ρfree on the electrome-
chanic coefficients, we need to use the stored values for ∇ f i and

∂ fi
∂rk

and integrate them
with the charge distribution as in equations (46) and (47).

• The number of simulations needed per object in order to be able to store the necessary
parameters is at most 2Ndof (|C|+ 1).33 Then, we can compare the effect of arbitrary
distributions by integrating over the stored parameters.

• In contrast, if we naively tried to estimate ∂Fk
∂φi

for a single distribution we would need
2|C| simulations. Adding up all degrees of freedom it yields 2Ndof |C| simulations for one
charge distribution ρfree. The advantage of the method outlined is that it allows us to store
the relevant physical parameters to compare multiple charge distributions with ease.

C.5. Notes on potential dependent forces and charge effects in advanced LIGO

An interesting consequence of equation (46), through the electromechanical reciprocity is that
we can find an explicit form for the electrostatic forces acting on an object O in the direction
of êk as:

Fk = �φ � ∂C
∂rk

�φ−
(∫

V

(
∇�f · êk

)
ρo(�r′)d3�r′ +

∫
V
ρfree(�r′)

∂�f (r′)
∂rk

d3�r′

)
· �φ+ F0, (48)

where F0 is a electrostatic force independent of the potentials (for example free charge
attracting a dielectric object).

33Ndof is the number of mechanical degrees of freedom of the object. |C| is the number of conductors. This assumes
we need to model each geometric potential and the capacitance matrix separately, a worst case scenario, since the
capacitance matrix and the geometric potentials are related by an integral equation [44].
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Note that the vector �φ is just a list of the potentials of the conductors in the array. Note that
in this expression, the reference potential is set to be the potential of the surrounding conductor
(as in figure 10).

In a system like the Advanced LIGO test masses and electrostatic drives, we are interested
in the longitudinal actuation from two potentials: the bias electrode potential Vb and the signal
electrodes’ potential Vs if they are all driven in unison. The potential of other conductors is
considered constant and not relevant for actuation.

Under these assumptions let us define �Φ as the list of all other conductor potentials that are
not part of the ESDs34. Expanding equation (48) for longitudinal actuation and writing it with
Vb and Vs as variables yields:

Fx = AV2
b + BVbVs + CV2

s + DVb + EVs + F. (49)

We can find an explicit form for the different coefficients in this equation:

• A = ∂Cbb
∂x is related to the force of the bias electrode on charges polarized by its own poten-

tial. It can only vary over time due to changes in the geometry (or material properties) of
the system.

• B = 2
∑4

i=1
∂Cbsi
∂x is related to the force that the signal electrodes exert on charges polar-

ized by the bias electrode and vice-versa. It depends directly only in the geometry of the
system.

• C =
∑4

i=i

∑4
j=1

∂Csis j
∂x is related to the force of all of the signal electrodes on all of the

charges that each one and the others polarize when driven in unison. Same as A and B, it
depends only on the geometry of the system.

• D = −
(∫

V

(
∇�f b · êk

)
ρo(�r′)d3�r′ +

∫
Vρfree(

�r′) ∂ fb(r
′)

∂rk
d3�r′

)
+ 2

∂�C
b�Φ

∂x · �Φ. Where �Cb�Φ is the

quadrant of the capacitance matrix relating the bias electrode and the potentials �Φ consid-
ered irrelevant for actuation. It represents the forces between the bias electrode and charges
induced in the object due to any other sources different than the bias or signal electrodes.
This term can vary due to changes in the geometry of the system, due to changes in the
potentials �Φ or due to changes in the free charge distribution of the electrostatic array.

• E =
∑4

i=1

[
−
(∫

V

(
∇�f si · êk

)
ρo(�r′)d3�r′ +

∫
Vρfree(

�r′)
∂ fsi (r

′)
∂rk

d3�r′
)
+ 2

∂�C
si
�Φ

∂x · �Φ
]
. Where

�Csi �Φ
is the quadrant of the capacitance matrix relating the signal electrode si and the

potentials �Φ considered irrelevant for actuation. It represents the forces between the signal
electrodes (driven in unison) and charges induced in the object due to any other sources
different than the bias or signal electrodes. This term can vary due to changes in the geom-
etry of the system, due to changes in the potentials �Φ or due to changes in the free charge
distribution of the electrostatic array.

• F = �Φ� ∂C�Φ�Φ
∂rk

�Φ−
(∫

V

(
∇�f �Φ · êk

)
ρo(�r′)d3�r′ +

∫
Vρfree(

�r′)
∂�f �Φ(r′)
∂rk

d3�r′
)
· �Φ+ F0. Where

C�Φ�Φ is the quadrant of the capacitance matrix related to the potentials �Φ and �f �Φ is a

list of geometric potentials associated with the potentials �Φ. It represents all of the elec-
trostatic forces that are independent on Vb and Vs. This term can vary due to changes in
the geometry of the system, due to changes on the potentials �Φ or due to changes in the
free charge distribution on the electrostatic array.

34 The list of potentials in �Φ includes the suspension cage, ring heater, etc.
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We can compare the first principles model from equation (49) to the semi-empirical model
(15) used in [33]. The main difference between the two lies on the fact that the coefficients
related to V2

b and V
2
s (A andC, respectively) are equal in the case of the Advanced LIGO ESDs,

since the geometry of the electrodes is virtually the same, and hence their interaction with the
charges they polarize is the same [30]. On the other hand, the symmetry of the electrodes can be
broken by asymmetric free charge accumulation (which affects termsD andE in equation (49)).
This exercise then can help explain the possible origins for the time variation of the coefficients
in (15).

Appendix D. Full derivation

The objective of this appendix is to formulate the more general versions of the electromechan-
ical equations of motion (2) and (4) in order to include several moving objects as well as the
possibility of rotations as well as translations.

D.1. General problem statement

Our system consists of N conductors C, linear dielectricsD and free charge distributions ρfree.
Everything under consideration is surrounded by an external conductor CN+1 which serves as
the reference for all potentials (ground in the circuits). The mechanical part of this system is
comprised by a subset of the system of conductors, dielectrics and free charges that can move
as rigid bodies.35 Each subset that acts as a rigid body will be called an ‘object’, the set of all
objects being denoted byO.

For our treatment we assume that the conductors and dielectrics in the system have a very
short relaxation time compared to the timescales of interest. On the other hand, we assume all
insulators have a conductivity such that the reorganization of free charges inside them is many
orders of magnitude longer than the timescales of relevance. We include the extra condition
that magnetic fields are not relevant to our calculations. Under these assumptions we can treat
the fields as quasi-static [16], meaning that the system can be described by an electromagnetic
equilibrium state at all times.36. Since we disregard magnetic effects, the quasi-static electric
field in the array can be described as the gradient of a scalar potential φ.

In turn, the linearity of Maxwell’s equations imply that given the position of all objects,
the state of the system can be fully described by the potentials �φ = {φi} of each conductor,
plus the values of the free charge density ρfree. In turn, the charges �q of the conductors will be
considered dependent variables.

Each conductor is connected through linear circuits to ideal voltage sources �φin. In what
follows, we assume that the potentials have only small variations around a set value, so that
the equilibrium position of the system is well defined and time independent.

The positions of the objects are described in the way that is usual for rigid body mechanics
[45]. Each object is represented by an instantaneous ‘local’ coordinate system located at the
center of mass of each object. The position of object n is represented by the position �rn 37 of
the origin of its coordinate systems relative to an overall, inertial coordinate frame.

35 For example, one can consider a dielectric mass with free charge embedded on it or a group of conducting plates
attached to a dielectric.
36 Note that the timescale assumptions are essentially the same as the ones used to describe thermodynamic equilibrium
states [25].
37 This is in contrast with the main body of the paper, where we decided to use subscripts to denote the coordinate
directions.
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Rotations of the objects are represented by changes in the orientation of the instantaneous
coordinate system’s axes. The angular position of object n is denoted by �θn, which is used to
represent the nautical angles (roll, pitch, yaw).

In what follows all variables are in the frequency domain to streamline the derivations.

D.2. Linearized equations

D.2.1. Circuit equations. Due to the linearity of the circuits we can change them to their
Thévenin equivalents [22]. The circuit equations then are:

d�q
dt

=
(
Zeq

)−1
(
�φth − �φ

)
, (50)

where �φth
i represents the ideal potential sources of the of the Thévenin equivalent and Zeq

i an
equivalent impedanceZeq

i Sincewe are treating�q as a dependentvariable from the electrostatics
of the problem (the potentials, positions and angles), we can write this as:

C
d�φ
dt

+
∑
n

(
∂�q
∂�rn

d�rn
dt

+
∂�q

∂ �Θn

d�θn
dt

)
=

(
Zeq

)−1
(
�φth − �φ

)
, (51)

where we used a short notation for the capacitance coefficients of the system. Under small
oscillations, and keeping only terms of first order, the linearized circuit equations can bewritten
in the frequency domain as:

((Zeq)−1 + iωC0)δ�φ+ iω
∑
n

((
∂�q
∂�rn

)
0

δ�rn +

(
∂�q

∂ �Θn

)
0

δ�θn

)
=

(
Zeq

)−1
δ�φth. (52)

The right-hand side of this equation has the contribution from the (small) oscillating drive
signal through �φth. We also can recognize the matrix on the left-hand side of equation (52) to be
the conductancematrixG [22] of the equivalent circuit38 for the electrical part of the system.39

D.2.2. Mechanical equations. Since we are observing the center of mass of each object, the
translational component of the equations of motion reduce simply to the common expression
for Newton’s second law:

Mn
d2�rn
dt2

= �Fn, (53)

where �Fn are the external forces acting on object n andMn is a diagonal matrix with the mass
of object n in each nonzero entry.

Under small oscillations around an equilibrium position, this can be recast as:

−ω2Mnδ�rn =
∑
m

(
K(nm)δ�rm +

(
∂�Fn
∂ �Θm

)
0

δ�θm

)
+

(
∂�Fn
∂�Φ

)
0

δ�φ, (54)

where the stiffness matrix K(nm) are 3× 3 matrices which connect the displacement of object
m with the mechanical force on object n. Specifically, the entry i j of K(nm) connects the force

38 The equivalent circuit can be written by changing the conductors by conductor nodes and the capacitance matrix by
a network of mutual capacitances Cm [46].
39 The conductance matrix approach can be used to generalize these equations for situations where there are
impedances connecting the different connectors. For simplicity we will not focus on those examples on this derivation.

32



Class. Quantum Grav. 38 (2021) 025014 E Bonilla et al

object n feels in the direction i due to movements of object m in direction j. The coupling to
the angular degrees of freedom, as well as the electromechanical coefficients are left as partial
derivatives.

The evolution of the rotational degrees of freedom are given by the general equation:

In
d�Ωn

dt
+ �Ωn ×

(
In�Ωn

)
= �τ n, (55)

where Ωn represents the instantaneous angular velocity vector of the body. The torques and
inertia tensors are understood to be seen from the center of mass frame of each object. If we
choose the ‘nautical’ convention for the Euler angles �θn 40 and set �θn = 0 for the equilibrium
position, then δ�Ωn =

d
dtδ

�θn for small perturbations. With this definition, equation (55) reduces
to:

−ω2Inδ�θn =
∑
m

(
Kθ

(nm)δ
�θm +

(
∂�τ n
∂�rm

)
0

δ�rm

)
+

(
∂�τ n

∂�Φ

)
0

δ�φ. (56)

Similar to the translation equation, we have written the rotational stiffness between two
different objects as Kθ

(nm).

D.3. Johnson noise

Equations (52), (54) and (56) represent the linearized equations of motion. The Johnson noise
contribution can be accounted for by addingN independent white current noise sources |ηi|2 =
4kbT Re(1/Zeq

i ) to each subcircuit. The superposition principle implies that we can treat the
source terms δ�φth as zero for this analysis.

The resulting effect on the mechanical variables can be computed by solving for δ�φ in the
circuit equation (52) and plugging it into the different mechanical equations to obtain:

−ω2Mnδ�rn =
∑
m∈O

[
Knmδ�rm +

(
∂�Fn
∂ �Θm

)
0

δ�θm

+ iω

(
∂�Fn
∂�Φ

)
0

G−1

((
∂�q
∂�rm

)
0

δ�rm +

(
∂�q

∂ �Θm

)
0

δ�θm

)]
+ �Fn(�η ),

(57)

−ω2Inδ�θn =
∑
m∈O

[
Kθ
nmδ

�θm +

(
∂�τ n
∂�rm

)
0

δ�rm

+ iω

(
∂�τ n

∂�Φ

)
0

G−1

((
∂�q
∂�rm

)
0

δ�rm +

(
∂�q

∂ �Θm

)
0

δ�θm

)]
+ �τ n(�η ). (58)

The forces and torques induced by the Johnson noise are given by:

�Fn(�η) =

(
∂�Fn
∂�Φ

)
0

G−1�η ; �τ n(�η) =

(
∂�τ n

∂�Φ

)
0

G−1�η. (59)

The total Johnson noise contribution to the different degrees of freedom can be calculated
by adding the contributions of each independent noise source ηi in quadrature.

40 This refers to the convention in which each angle represents a rotation along a different local axis.
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D.4. Approximate forms

The general form of these equations is complicated and it involves solving for the resonances
of the system. However, if we assume that our frequencies of interest are such that we can
consider the system to be inertial, then the force and torque equations simplify to:

−ω2Mnδ�rn =

(
∂�Fn
∂�Φ

)
0

G−1�η, (60)

−ω2Inδ�θn =
(
∂�τ n

∂�Φ

)
0

G−1�η. (61)

Moreover, if we assume thatG ≈ (Zeq)−1 (meaning that the conductance contributed by the
capacitance matrix can be considered to be zero at the frequencies of interest), then we obtain
the more familiar forms:

−ω2Mnδ�rn =

(
∂�Fn
∂�Φ

)
0

Zeq�η, (62)

−ω2Inδ�θn =
(
∂�τ n

∂�Φ

)
0

Zeq�η. (63)

Then, for the translation of a given object in the x direction, due to a single noise source ηi
we find:

δxn=
−1
mnω2

(
∂Fn,x
∂φi

)
Zeq
i ηi ⇒ |δxn|2 =

1
(mnω2)2

(
∂Fn,x
∂φi

)2

4kbT Re
(
Zeq
i

)
,

(64)

where we have used Re
(
1
z

)
= Re(z)

|z|2 for complex numbers z. Adding the noise sources in
quadrature yields:

|δxn| =
√
4kbT
mnω2

√√√√∑
i∈C

(
∂Fn,x
∂φi

)2

0

Re(Zeq
i ), (65)

which is equivalent to the form (12) given in the main paper.
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