

Influence of land use and lithology on sources and ages of nutritional resources for stream macroinvertebrates: a multi-isotopic approach

Amber R. Bellamy¹ · James E. Bauer¹ · Andrea G. Grottoli²

Received: 10 December 2016 / Accepted: 10 May 2017
© Springer International Publishing 2017

Abstract Terrestrially-derived carbon (C) and organic matter (OM)—often of significant age—dominate in many streams and rivers, yet little is known about their potential nutritional contributions to aquatic macroinvertebrate consumers. Impacts of watershed characteristics (e.g., land use and lithology) on the sources and ages of C and OM utilized by aquatic consumers are also poorly understood. To assess these factors, macroinvertebrates were collected from six headwater streams having different watershed lithologies and land uses in the Hudson-Mohawk River system (New York, USA) and analyzed for natural $\delta^{13}\text{C}$, $\delta^{15}\text{N}$, $\delta^2\text{H}$, and $\Delta^{14}\text{C}$. A Bayesian stable isotopic mixing model revealed that autochthonous primary production dominated (62–92%) the biomass of all functional feeding groups (FFGs) across all sites, with allochthonous sources being of secondary but still significant (21–31%) importance. Macroinvertebrates collected from streams in watersheds having low vs. high agricultural land use were estimated to assimilate 0–13 and 4–31% soil-derived C and OM, respectively. $\Delta^{14}\text{C}$ values and apparent ages of macroinvertebrates from shale-rich and shale-poor sites were also significantly different (mean $\Delta^{14}\text{C} = -75$ and -34‰ ; equivalent ^{14}C ages = 630 and 280 years B.P., respectively).

Electronic supplementary material The online version of this article (doi:[10.1007/s00027-017-0542-3](https://doi.org/10.1007/s00027-017-0542-3)) contains supplementary material, which is available to authorized users.

✉ Amber R. Bellamy
bellamy.41@osu.edu

¹ Aquatic Biogeochemistry Laboratory, Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH 43210, USA

² School of Earth Sciences, Ohio State University, Columbus, OH 43210, USA

Inclusion of $\Delta^{14}\text{C}$ data in mixing models confirmed the importance of autochthonous primary production, and also demonstrated indirect lithological control of nutritional resource utilization by influencing stream substrate type and potential retention of allochthonous C and OM. Findings from this study further showed that the relative magnitudes of autochthonous vs. allochthonous contributions to macroinvertebrates were dependent on FFG, land use type, and lithology.

Keywords Macroinvertebrates · Isotopes · Nutritional subsidies · Land use · Lithology

Introduction

Nutritional resource utilization by aquatic macroinvertebrates can vary as a function of morphological and behavioral adaptations [i.e., functional feeding group (FFG); Cummins 2016], characteristics of the organisms' habitats, and the relative availability of different nutritional resources (Cummins and Klug 1979; Rosi-Marshall and Wallace 2002; Vannote et al. 1980; Wallace et al. 2015). Potential nutritional sources to aquatic systems comprised of living and non-living carbon (C) and organic matter (OM) can be generally classified as autochthonous (produced within the system, e.g., algae and macrophytes) or allochthonous (produced outside the system, e.g., living and senesced leaves, woody debris, and soils) in origin (Ishikawa et al. 2014; McCutchan and Lewis 2002; Vannote et al. 1980). Morphological and ecological characteristics of macroinvertebrates have also been used in previous studies to predict the forms of C and OM contributing to macroinvertebrate nutrition (Cummins 2016; Roach 2013; Vannote et al. 1980).

Natural abundance isotopes ($\delta^{13}\text{C}$, $\delta^{15}\text{N}$, and $\delta^2\text{H}$) are increasingly used to provide quantitative estimates of autochthonous and allochthonous contributions to aquatic consumer nutrition (Bunn and Boon 1993; McCutchan and Lewis 2002; Middelburg 2014). In some aquatic systems there may be significant overlap in the $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values of different sources of nutritional C and OM, making it difficult to accurately assess resource contributions to organism biomass (Moore and Semmens 2008; Phillips et al. 2014). $\delta^2\text{H}$ is increasingly used for establishing the contributions of terrestrial vs. aquatic OM to consumer biomass because of the large isotopic separation (~100‰) between the two (Doucett et al. 2007; Finlay et al. 2010; Wilkinson et al. 2015). Natural abundance radiocarbon (^{14}C) is a novel tracer of C sources and nutrition in aquatic food web studies and has a much greater dynamic range ($\geq 1000\text{‰}$) than $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ (tens of ‰ at most) or $\delta^2\text{H}$ (~100‰). Natural abundance ^{14}C also uniquely allows for determination of the ages of potential C and OM nutritional resources utilized by consumer organisms.

Examination of the ^{14}C ages of C and OM pools in streams and rivers has revealed that in many cases highly aged forms such as soils, weathered sedimentary rock, groundwater, and both natural and anthropogenic petroleum-derived hydrocarbons contribute to aquatic particulate and dissolved OM (POM and DOM, respectively) and dissolved inorganic C (DIC) pools (Butman et al. 2015; Hossler and Bauer 2013a, b; Longworth et al. 2007; Marwick et al. 2015; Raymond and Bauer 2001). Aged aquatic C and OM therefore contains materials that were fixed and stored in soils and/or sedimentary rocks for between decades to millions of years or more (Hedges 1992; Tourtelot 1979; Trumbore 1997) before mobilization to aquatic systems. These aged aquatic forms of C and OM

may serve as primary or secondary nutritional sources to bacterial and metazoan consumers. A recent review of this topic suggests that nutritional support of aquatic consumers by aged C and OM may be the rule rather than the exception across a range of inland water systems (Bellamy and Bauer 2017).

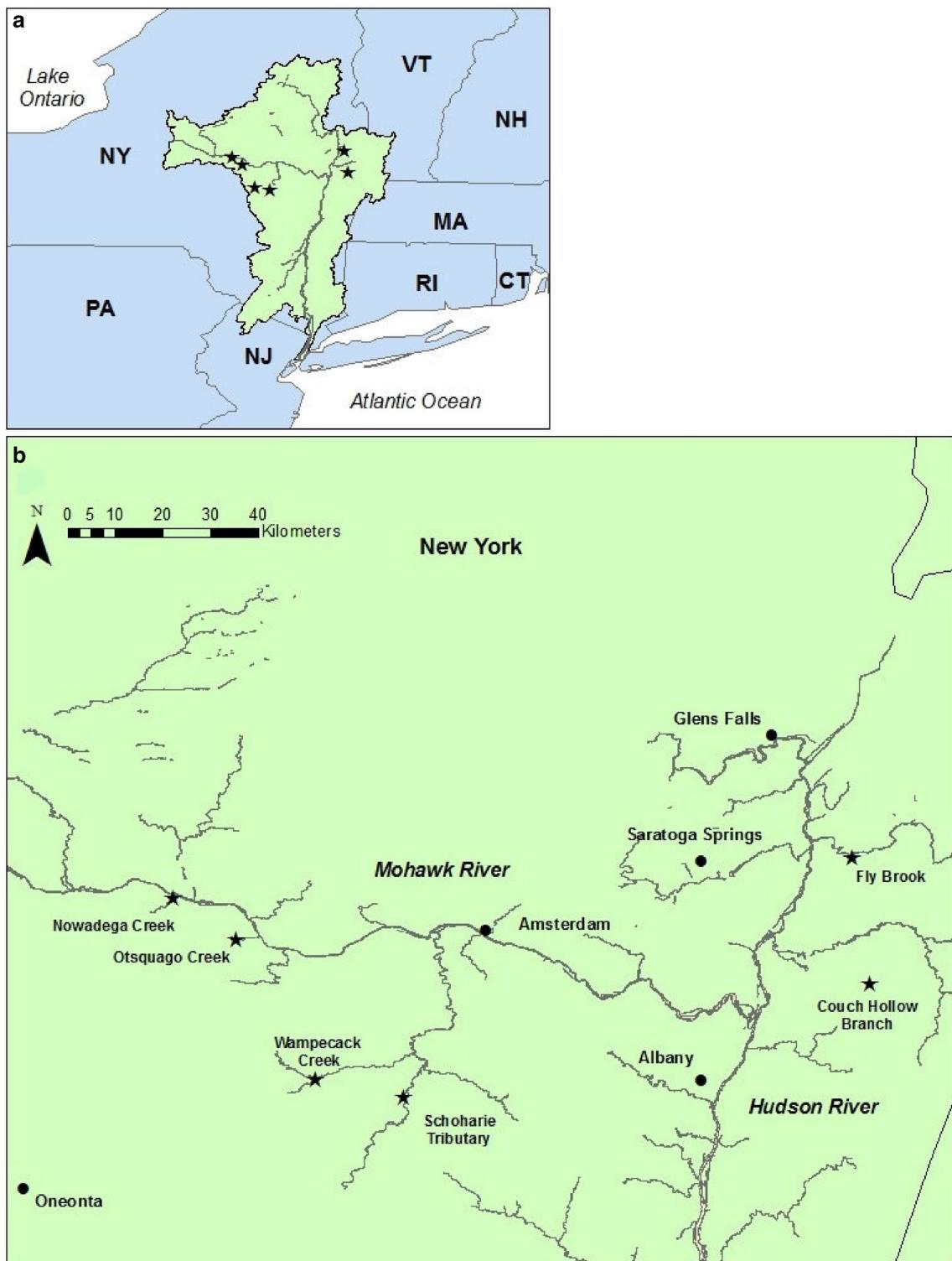
In the present study we evaluated the relative contributions of allochthonous and autochthonous sources of nutrition to stream macroinvertebrate consumers belonging to different FFGs in six geographically proximate temperate subwatersheds. The roles of watershed land use and lithology on the ages of nutritional resources utilized by macroinvertebrate consumers were also examined. We predicted (1) greater contributions of allochthonous sources of nutrition to shredders, collector-gatherers and chironomids, and of autochthonous materials to filtering collectors and scrapers due to differences in invertebrate feeding strategies and morphologies (Cummins 2016; Cummins and Klug 1979), and (2) depletion in stream macroinvertebrate ^{14}C (i.e., decreasing apparent age) in watersheds containing significant amounts of fossil shale OM.

Methods

Site description

Individual sites from six streams in subwatersheds of varying size (21–149 km²; Table 1) were sampled in the Mohawk-Hudson River watershed, New York, USA (Fig. 1). These sites were previously studied by Longworth et al. (2007) and found to vary in the amounts of OM-rich shale [2–4% total organic C (TOC) and OM-poor shale (<0.5% TOC)] in their watershed lithologies (Table 1).

Table 1 Site and watershed characteristics of the six study streams in the Mohawk-Hudson River watershed sampled in June 2014


Site	Watershed area (km ²) ^a	pH	Temp. (°C)	DO (mg/l)	OM-Rich Shale (%) ^a	OM-Poor Shale (%) ^a	Agriculture by area (%) ^a	Canopy Cover (%)	Stream Width (m) ^b
Nowadega Creek (NC) ^c	82	8.22	20.6	9.7	45	44	49	3	25.3
Fly Brook (FB)	31	8.14	17.4	8.7	0	7	46	66	5.8
Couch Hollow Branch (CH)	24	6.77	17.4	8.8	0	0	6	92	5.7
Schoharie Tributary (ST)	21	8.31	15.9	9.6	0	95	19	6	7.9
Wampecack Creek (WC)	50	8.33	18.9	9.8	0	8	61	0	8.5
Otsquago Creek (OC)	149	8.20	21.0	9.5	55	37	65	7	17.7

DO dissolved oxygen

^aFrom Longworth et al. (2007)

^bWidth of stream at sampling location

^cAbbreviations of sites are given in parentheses after each site name

Fig. 1 a The Hudson-Mohawk River drainage basin (New York, USA) and b the sampling region of the present study in the Hudson-Mohawk watershed. Stars in panels a and b represent sampling sites and filled dots represent major regional population centers

OM-rich shales in this region are a part of the Utica shale formation, whereas OM-poor shales consisted of Grey and Frankfort shales and Gneiss (Longworth et al. 2007). The

six subwatersheds also varied by over an order of magnitude in the relative amounts of agricultural activity (pasture and row crop; 6–65%; Table 1).

Field sampling

Macroinvertebrates belonging to different FFGs (filtering collectors, scrapers, collector-gatherers, shredders, predators, and chironomids) and their potential nutritional sources were collected from each stream in June 2014. Organisms were collected by hand-picking them from rocks and logs and using a kick net where sediments and aquatic vegetation dominated. Primary consumers and predators were separated from each other into quartz fiber-filtered (type QMA, 0.8 μm nominal pore size) stream water and allowed to void their guts for 24 h at ambient temperature (Brooke et al. 1996). After gut voidance, organisms were placed in baked (525 °C) aluminum foil pouches and frozen in Ziplock bags on dry ice in the field and at -20 °C in the lab until processing (note that all other sample types, unless otherwise noted, were stored in the same manner).

The dominant potential nutritional sources to macroinvertebrates, including both aquatic and terrestrial OM, were also collected from the six individual sites. Stream sediment samples were collected using a 60 ml syringe corer. Where cleanly eroded stream banks were present within a sampling reach, terrestrial soil samples were collected by inserting syringe corers horizontally into the stream bank at shallow (surface) and deep (~20 cm) depths. When eroded stream bank was not present, terrestrial soil samples were collected by excavating a hole of ~20 cm depth on level ground within 10 m of the stream. Soil samples were collected at ~1 and ~20 cm depths using a baked spatula. When available, shale shards were also collected.

Terrestrial vegetation from riparian trees and aquatic vegetation samples were collected by hand using clean disposable nitrile gloves and preserved as for soil and sediment samples. Stream biofilm samples were collected from 2 to 3 cobbles of similar size (15–20 cm in diameter) by scraping the surface of a ~25 cm^2 area with a new toothbrush or a baked razor blade, and rinsing the scraped material from the cobble surface using ultra-pure Labconco water into acid-cleaned (10% HCl) polycarbonate bottles. Bulk suspended POM was collected by filtering water through a baked 47 mm QMA filter.

DIC samples from each site were QMA-filtered into baked, crimp-sealed 125 ml serum bottles containing 200 μl of a saturated HgCl_2 solution and sparged with ultra-high purity N_2 gas; bottles were stored in the dark at ambient room temperature until processing. DOM and nutrients (N and P) from the same filtrations were collected in acid-cleaned polycarbonate bottles. Stream water samples from each site were also collected in baked 20 ml scintillation vials for $\delta^2\text{H}$ analysis of H_2O and stored at ambient temperature. Basic water properties including temperature, pH, dissolved oxygen (DO), and conductivity were measured at each site using a Model AP110 Accumet Portable pH/

ORP meter, a YSI ProODO handheld DO meter, and a YSI Model 30/10 FT multiparameter probe, respectively.

Sample processing and analysis

Macroinvertebrates were sorted and identified to genus whenever possible and assigned to their appropriate FFG according to Merritt et al. [2008; see Supplementary Information [SI] Table S1.1]. Chironomids were identified to family only (Chironomidae) and were treated as such in the mixing models. Chironomids were not assigned to a specific FFG because their FFG and trophic position can vary across subfamily and genus (Reuss et al. 2013). Organisms, terrestrial vegetation, and aquatic vegetation were thawed, dried at 60 °C, and homogenized to a fine powder in preparation for stable isotope and ^{14}C analysis. In some cases, multiple individuals of small macroinvertebrates were pooled to increase sample sizes for isotopic (especially $\Delta^{14}\text{C}$) analysis (SI Table S1.1). Samples of aquatic vegetation, terrestrial soil, aquatic sediment, shale, biofilms, and POM filters were acid-fumed with fresh concentrated HCl in a clean glass desiccator prior to homogenization to ensure that carbonates were removed. With the exception of POM filters and biofilms, subsamples of each sample type were set aside prior to acid fuming for $\delta^2\text{H}$ analysis. POM and biofilm samples were not analyzed for $\delta^2\text{H}$ because of interference from the quartz filters (POM) and large uncertainties in the organically bound H content of the biofilms.

Homogenized samples and filter portions were packed in tin capsules for $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ analysis. $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ analyses were conducted at the University of California at Davis Stable Isotope Facility, using a PDZ Europa ANCA-GSL elemental analyzer interfaced to a PDZ Europa 20–20 isotope ratio mass spectrometer. Stable isotope values for $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ are reported relative to the V-PDB and air international standards, respectively. For $\delta^2\text{H}$ analysis, homogenized samples of macroinvertebrate, aquatic and terrestrial vegetation, soil, and sediment were packed in silver capsules. In order to determine $\delta^2\text{H}$ of the nonexchangeable H fraction for solid samples, a bench-top equilibration method was used to allow for the exchange of H in the samples with H in the local water vapor (Doucett et al. 2007; Wassenaar and Hobson 2003). Solid samples were analyzed for $\delta^2\text{H}$ on a Thermo-Finnigan TC/EA and Delta PLUS-XL and stream water samples were analyzed using a Los Gatos Research DLT-100 Liquid Water Isotope Analyzer at the Colorado Plateau Stable Isotope Laboratory at Northern Arizona University.

For $\Delta^{14}\text{C}$ analyses, selected homogenized and acid-fumed samples and filters from two of the streams (Fly Brook and Nowadega Creek) were placed in pre-baked 9 mm diameter quartz tubes containing cleaned CuO and elemental Cu and combusted to CO_2 at 750 °C for 4 h.

Within 24 h of combustion, CO_2 from each sealed tube combustion was purified and quantified on a vacuum extraction line and sealed in pre-baked 6 mm Pyrex tubes. The purified CO_2 was reduced to graphite and analyzed for $\Delta^{14}\text{C}$ at the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) Laboratory at Woods Hole Oceanographic Institution. DIC samples were acidified and sparged using ultra-high purity He gas and the CO_2 was collected and purified cryogenically on a vacuum extraction line, and stored and analyzed for $\Delta^{14}\text{C}$ as above. Dissolved inorganic N and P nutrient concentrations were analyzed using a Lachat QuikChem 8500, and DOC concentrations were analyzed using a Shimadzu 5000 TOC Analyzer.

Statistical analyses

Multivariate statistical analyses were conducted using the PRIMER software package (Clarke and Gorley 2006; v. 6, PRIMER-E Ltd) in order to assess relationships between the composite isotope data of organisms from different sampling sites and FFGs. Macroinvertebrate $\delta^{13}\text{C}$, $\delta^{15}\text{N}$, $\delta^2\text{H}$, and $\Delta^{14}\text{C}$ values were normalized and visually evaluated using non-metric multidimensional scaling (NMDS). One-way analysis of similarity (ANOSIM) was used for macroinvertebrate isotopic data in order to determine whether significant isotopic differences existed between (a) individual sites, (b) FFGs, (c) percent of agricultural land use in each watershed, and (d) the presence or absence of OM-rich shale in watershed lithologies. Agricultural land use in the study watersheds fell into two categories: <20% ("low") and >40% ("high"; Table 1). The ANOSIM pairwise test statistic, R , is considered a better indicator of separation between groups than the p value because it is not influenced by sample size, which was relatively small in this study (Clarke and Gorley 2006). In cases where the overall p values for the ANOSIM model were significant ($p < 0.05$), all pairwise comparisons within the model were examined, including those where $p > 0.05$, but global $R > 0.8$. We used a nonparametric Wilcoxon/Kruskal–Wallis rank test to assess differences in the individual isotopic compositions ($\delta^{13}\text{C}$, $\delta^{15}\text{N}$ and $\delta^2\text{H}$) of macroinvertebrates across FFGs and site, and a Wilcoxon/Mann–Whitney test to assess the same differences in high and low agricultural streams using JMP software (JMP, Version 11, SAS Institute Inc., Cary, NC, USA).

Isotopic mixing models

Proportional contributions of potential nutritional sources to macroinvertebrate biomass were estimated using MixSIAR (Stock and Semmens 2013), an isotopic mixing model that employs a Bayesian approach (Moore and Semmens 2008) via a graphical user interface (GUI) and R

Statistical Software (R Core Team 2014). Use of a Bayesian approach allows for the incorporation of uncertainty in source contribution estimates, as there are multiple sources of variation that could impact source contribution estimates, including, but not limited to, use of multiple nutritional sources by consumers, isotopic fractionation, and spatial and temporal variability of isotopic signatures (Finlay et al. 2002; Moore and Semmens 2008). In order for the model to better incorporate uncertainties in isotope values and fractionation, means and standard deviations of the isotope values of potential nutritional resources and trophic fractionation were included in the model. MixSIAR then provides posterior probability distributions for proportional resource contributions to provide a measure of the variability around the estimates provided. Details of the isotopic signatures of potential nutritional sources, trophic fractionation factors, methods associated with the Bayesian model, and how the models were run are described in SI Sect. 2.

Results

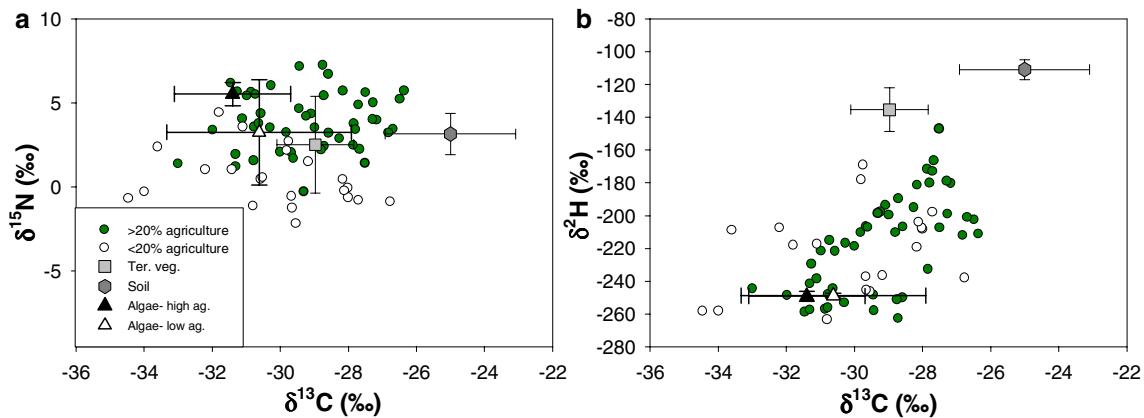
Isotopic values of potential nutritional resources and macroinvertebrate consumers

Algae had the lowest $\delta^{13}\text{C}$ and $\delta^2\text{H}$ values of potential nutritional resources collected from each site, while soil OM had the greatest $\delta^{13}\text{C}$ and $\delta^2\text{H}$ values (Fig. 2a, b). Algae were higher in $\delta^{15}\text{N}$ in high-agriculture than in low-agriculture streams, but both were higher in $\delta^{15}\text{N}$ than other potential nutritional resources (Fig. 2a, b). Overlap in the $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values of algae and terrestrial vegetation were observed for samples collected from each system (Fig. 2a, b).

The uncorrected (i.e., for trophic fractionation) stable and radiocarbon isotopic values for all macroinvertebrates and FFGs were used for statistical analyses and are presented in SI Sect. 3 and Table S3.1. NMDS analysis did not reveal any obvious clustering by FFG (SI Fig. 3.1), but one-way ANOSIM analysis revealed significant differences in composite isotopic compositions ($\delta^{13}\text{C}$, $\delta^{15}\text{N}$ and $\delta^2\text{H}$) between all FFGs (SI Table S3.2A). Significant differences were found between almost all pairwise comparisons of FFG isotopic composition. Examination of individual isotopes revealed significant differences in $\delta^{13}\text{C}$ values between FFGs (Kruskal–Wallis, $p < 0.0001$) but not for $\delta^{15}\text{N}$ or $\delta^2\text{H}$ values, suggesting that significant differences in the composite isotopic composition of FFGs were primarily driven by $\delta^{13}\text{C}$ values. Scraper FFG macroinvertebrates were lower in $\delta^{13}\text{C}$ and $\delta^2\text{H}$ than other FFGs across all sites, with the exception of Fly Brook (Fig. 2a, b; SI Table S3.1). In contrast, chironomids, collector–gatherers, and shredders were elevated in $\delta^{13}\text{C}$ and $\delta^2\text{H}$ compared to

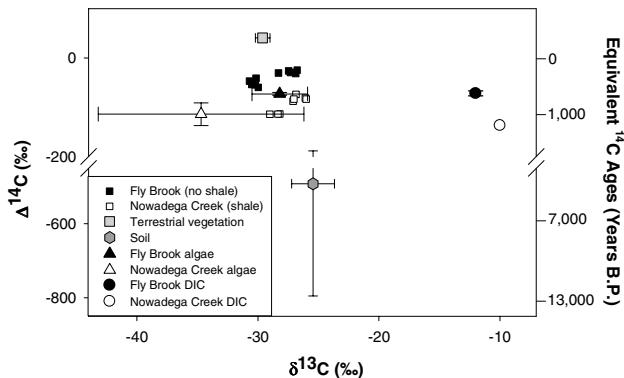
Fig. 2 $\delta^{13}\text{C}$, $\delta^{15}\text{N}$ and $\delta^2\text{H}$ values of macroinvertebrates and their potential nutritional sources collected from the six study streams in the Mohawk-Hudson River watershed (mean \pm SD). **a** $\delta^{15}\text{N}$ vs. $\delta^{13}\text{C}$ of macroinvertebrates and potential nutritional resources grouped by FFG, **b** $\delta^2\text{H}$ vs. $\delta^{13}\text{C}$ of macroinvertebrates and potential nutritional resources grouped by FFG, **c** $\delta^{15}\text{N}$ vs. $\delta^{13}\text{C}$ of macroinvertebrates and potential nutritional resources grouped by site, **d** $\delta^2\text{H}$ vs. $\delta^{13}\text{C}$ of macroinvertebrates and potential nutritional resources grouped by

site. Macroinvertebrate $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values are corrected for trophic fractionation (Post 2002) and macroinvertebrate $\delta^2\text{H}$ values are corrected for the influence of dietary water (Wilkinson et al. 2015). The shredder FFG is included in our figures even though sample size was too low to include it in statistical and mixing model analyses. *CH* Couch Hollow, *FB* Fly Brook, *NC* Nowadega Creek, *OC* Otsquago Creek, *ST* Schoharie Tributary, *WC* Wampecack Creek


other FFGs at all sites (Fig. 2a, b; SI Table S3.1). Filtering collectors from Otsquago Creek were lower in $\delta^{13}\text{C}$ and $\delta^2\text{H}$ relative to filtering collectors for the other sites. Predators (uncorrected for trophic fractionation) were the most elevated in $\delta^{15}\text{N}$ of all FFGs (SI Table S3.1).

NMDS of combined isotopic data revealed some clustering of macroinvertebrates by site (SI Fig. 3.2). One-way ANOSIM also indicated significant differences in macroinvertebrate composite isotopic compositions between sites, and all pairwise site comparisons were significant (SI Table S3.2B). Stable isotope data showed that Nowadega Creek macroinvertebrates were highest in $\delta^{15}\text{N}$ (Fig. 2c; SI Table 3.1), whereas those collected from the Schoharie Tributary were lowest in $\delta^{15}\text{N}$ (Fig. 2c; SI Table 3.1). Couch Hollow Branch macroinvertebrates were generally lower in $\delta^{13}\text{C}$ compared to those collected from the other five sites (Fig. 2c, d). In contrast to $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$, macroinvertebrate $\delta^2\text{H}$ values did not show any site-specific patterns (Fig. 2d). Further inspection of individual isotopes

revealed significant differences in $\delta^{13}\text{C}$, $\delta^{15}\text{N}$, and $\delta^2\text{H}$ values between sites (Kruskal–Wallis, $p=0.0006$, $p<0.0001$, and $p=0.0077$, respectively).

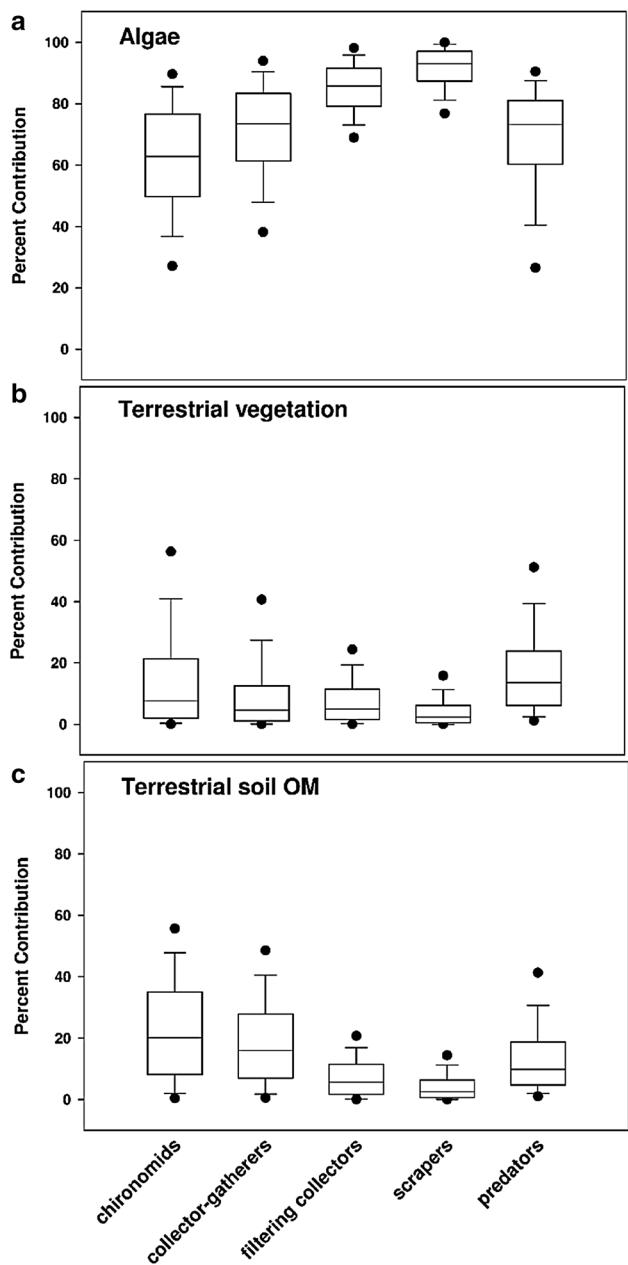

NMDS showed that macroinvertebrate individuals clustered according to high vs. low agriculture in their respective watersheds (SI Fig. S3.3), and the differences between macroinvertebrate stable isotopic values from the high and low agriculture watersheds were significant ($R=0.251$, $p<0.001$). Macroinvertebrates collected from streams with high agriculture were elevated in $\delta^{15}\text{N}$ compared to macroinvertebrates collected from streams with low agriculture (Fig. 3a). There were no apparent differences in macroinvertebrate $\delta^{13}\text{C}$ or $\delta^2\text{H}$ values relative to the amount of watershed agriculture (Fig. 3a, b). A Mann–Whitney test revealed significant differences in the $\delta^{15}\text{N}$ compositions of macroinvertebrates collected from high and low agriculture streams ($p<0.0001$), but not for $\delta^{13}\text{C}$ and $\delta^2\text{H}$.

Soil OM had the lowest $\Delta^{14}\text{C}$ values of all potential nutritional resources at both Fly Brook and Nowadega

Fig. 3 **a** $\delta^{15}\text{N}$ vs. $\delta^{13}\text{C}$ values of macroinvertebrates and their potential nutritional sources from high agriculture and low agriculture watersheds (mean \pm SD), **b** $\delta^2\text{H}$ vs. $\delta^{13}\text{C}$ of macroinvertebrates and their potential nutritional sources from high agriculture and low agri-

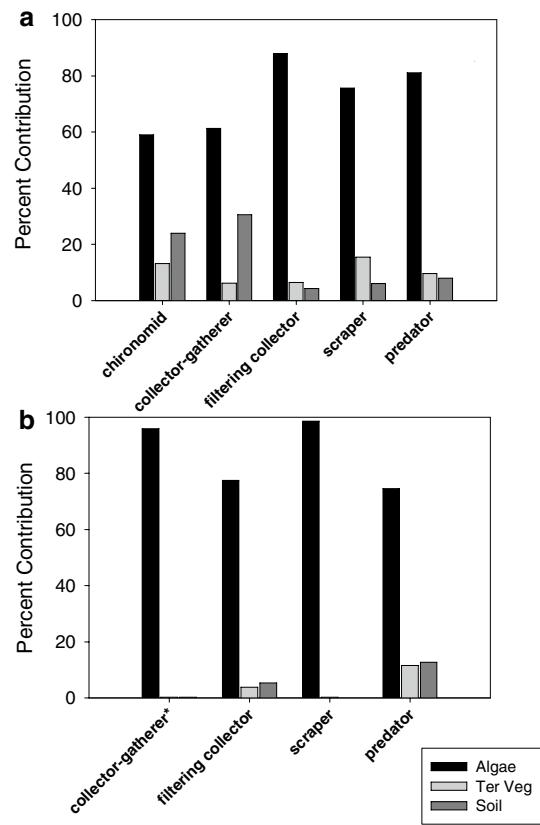
culture watersheds (mean \pm SD). Macroinvertebrate $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values are corrected for trophic fractionation (Post 2002) and macroinvertebrate $\delta^2\text{H}$ values are corrected for the influence of dietary water (Wilkinson et al. 2015)

Fig. 4 $\Delta^{14}\text{C}$ values and equivalent ^{14}C ages vs. $\delta^{13}\text{C}$ of macroinvertebrate individuals and their potential nutritional sources (means \pm SD) collected from Fly Brook (no shale in watershed) and Nowadega Creek (shale in watershed)


Creek, while terrestrial vegetation, based on the value of atmospheric CO_2 (Levin et al. 2013), had the highest $\Delta^{14}\text{C}$ values (Fig. 4). $\Delta^{14}\text{C}$ values of algae and DIC for each respective site were similar (Fig. 4). Macroinvertebrate $\Delta^{14}\text{C}$ values at Fly Brook ranged from -59 to 23‰ (equivalent ^{14}C age = 430 years B.P. to modern-aged, respectively; Fig. 4; SI Table S3.1), with the highest $\Delta^{14}\text{C}$ organism being a shredder. Macroinvertebrate $\Delta^{14}\text{C}$ values at Nowadega Creek ranged from -114 to -1‰ (910 years B.P. to modern-aged, respectively; Fig. 4). Inclusion of $\Delta^{14}\text{C}$ data in NMDS for the two sites for which it was available showed further separation between sites both with and without OM-rich shale in their watersheds (Nowadega Creek and Fly Brook; $R = 0.572$, $p < 0.001$; SI Figur. S3.4).

Potential nutritional source contributions to macroinvertebrate biomass

Mixing model estimates of nutritional source contributions (5, 50, and 95% posterior probabilities) for the different macroinvertebrate FFGs are provided in SI Sect. 4. Model results using mean $\delta^{13}\text{C}$, $\delta^{15}\text{N}$, and $\delta^2\text{H}$ values indicated that algae were the primary nutritional resource (63–92% contribution) for all FFGs in the streams studied (Fig. 5; SI Table S4.1). However, soil OM and terrestrial vegetation (i.e., allochthonous OM) comprised up to 21 and 31% of consumer biomass, respectively (Fig. 5; SI Table S4.1).


When organisms were grouped by the percent agriculture in the watershed, mixing model results again indicated that algae were the largest contributor to macroinvertebrate biomass, particularly in the sites with <20% agriculture (Fig. 6). Algal material comprised nearly the entirety of stream collector-gatherer and scraper biomass ($\geq 96\%$; Fig. 6; SI Table S4.3) in low agriculture watersheds according to our mixing models. While filtering collectors, scrapers, and predators from high agriculture streams were still primarily reliant on algae ($\geq 76\%$; Fig. 6; SI Table S4.2), there were also large contributions (4–31%) from allochthonous OM in the forms of soil-derived OM and terrestrial vegetation (Fig. 6; SI Table S4.2). Soil OM contributed up to 31% of the biomass of macroinvertebrates collected from the >40% agriculture streams but did not exceed 13% for macroinvertebrates from the <20% agricultural streams (Fig. 6; SI Tables S4.2, S4.3).

Inclusion of $\Delta^{14}\text{C}$ data in the mixing model for the two sites for which it was measured showed a slight decrease (37–92%) in the range of algal assimilation by macroinvertebrates compared to models using stable isotopes alone (62–92%; Fig. 7a, b; SI Tables S4.4, S4.5). This was most

Fig. 5 Posterior distributions of the percent contributions of **a** algal, **b** terrestrial vegetation, and **c** terrestrial soil organic matter (OM) sources of potential nutrition to the biomass of macroinvertebrates using average isotopic values of $\delta^{13}\text{C}$, $\delta^{15}\text{N}$ and $\delta^2\text{H}$ across all individuals belonging each FFG for all sites. $n=5$ for scrapers, $n=6$ for filtering collectors, $n=3$ for collector-gatherers, $n=3$ for chironomids, and $n=5$ for predators. The averages of all potential nutritional sources across all sites were used in the model and algal isotope values were estimated (see “Methods” section for details). The 5th, 25th, 50th, 75th, and 95th percentiles are shown

evident for Fly Brook, which did not contain OM-rich shale in its watershed. Algae were still the primary nutritional resource for all FFGs (39–93%) at both sites when $\Delta^{14}\text{C}$ data were included, with the exception of collector-gathers

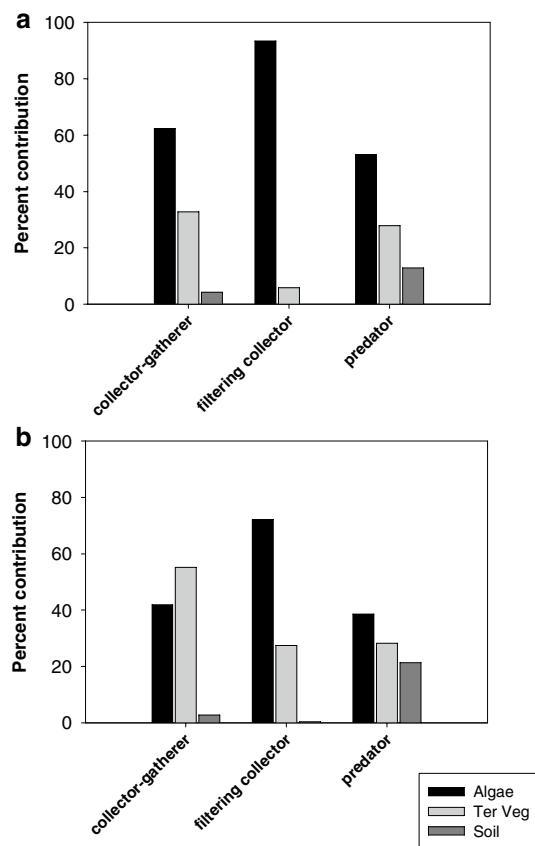


Fig. 6 Comparison of median proportional nutritional source contributions to macroinvertebrate biomass from mixing models in **a** sites with >20% watershed agriculture and **b** sites with <20% watershed agriculture. * $n=1$

at Fly Brook which primarily assimilated terrestrial vegetation (55%; Fig. 7b). Use of $\Delta^{14}\text{C}$ in mixing models also showed increased utilization (28–55%) of terrestrial vegetation and concomitant decreased utilization (0–51%) of soil OM at by macroinvertebrates from both Nowadega Creek and Fly Brook (Fig. 7a). Soil OM was still nutritionally important to predators (21% at Fly Brook, 13% at Nowadega Creek), but contributed less than 5% to all other FFGs at these two sites (SI Tables S4.4, S4.5).

Discussion

Macroinvertebrates have long been known to play a number of important roles in stream ecosystems, including the processing and decomposition of both aquatic and terrestrial OM and support of higher trophic level aquatic and riparian consumers (Baxter et al. 2005; Carlson et al. 2016; Kautza and Sullivan 2016; Prather et al. 2013). Knowledge of the sources and ages of C and OM contributing to the nutrition of macroinvertebrate species and FFGs in streams and other aquatic systems, and how these nutritional contributions

Fig. 7 Comparison of median proportional nutritional source contributions to macroinvertebrate biomass from mixing models for **a** the Nowadega Creek site containing OM-rich shale in its watershed, and **b** the Fly Brook site without shale in its watershed. These sites are the only the two for which natural ^{14}C analyses were conducted on macroinvertebrates and their potential nutritional sources

vary as a function of watershed land use and lithology, are critically important for improving our understanding of the integration of, and connections between, elemental and energetic flows between terrestrial and aquatic systems (Smits et al. 2015; Tanentzap et al. 2017).

Contributions of autochthonous vs. allochthonous primary production to stream consumers

Considering all mixing model scenarios for FFGs examined in our study, with the exception of collector–gatherers from Fly Brook (Fig. 7b), stream algae were the dominant contributor to macroinvertebrate biomass (39–99%). This finding was counter to our initial predictions. The streams we sampled were small subwatersheds of the Hudson–Mohawk basin (all streams had watershed areas $<150 \text{ km}^2$; Table 1), and the river continuum concept predicts that allochthonous OM fuels secondary production in headwater and low order streams (Vannote et al. 1980). However, our findings support other recent studies that have highlighted the

importance of autochthonous OM to macroinvertebrate nutrition in streams and rivers, despite the fact that allochthonous OM dominates in lotic systems (Brett et al. 2017; Guo et al. 2016; Hayden et al. 2016; Rosi-Marshall et al. 2016).

Aquatic primary production is typically thought to be of higher quality [e.g., lower C:N and higher essential fatty acid (EFA) content] and more bioavailable than allochthonous OM (Guo et al. 2016; Müller-Navarra 2008; Torres-Ruiz et al. 2007). High-quality nutritional resources are important for adequate growth and reproduction in macroinvertebrates (Torres-Ruiz et al. 2007), and macroinvertebrates may be selective in what they consume and assimilate (Goedkoop et al. 2007; Guo et al. 2016).

Of all the FFGs in the present study, scrapers and filtering collectors were the most reliant on algae ($\geq 85\%$; Fig. 3; SI Table S4.1). Inclusion of ^{14}C data in the mixing models also suggested that algae contributed the most to filtering collector biomass (Fig. 7; SI Tables S4.4, S4.5). Algae-derived materials were also the most important basal nutritional resource to predatory macroinvertebrates in all mixing model scenarios, suggesting that autochthonous nutritional resources may be more readily transferred to higher trophic levels than allochthonous resources (Figs. 5, 6, 7). Previous studies have also shown that fatty acid abundances in aquatic consumers increase with increasing trophic level, which further suggests that some macroinvertebrate predators may have the ability to select higher quality prey (Guo et al. 2016; Lau et al. 2014).

Despite the general dominance of algal material to most of the aquatic consumers in the present study, terrestrial vegetation still contributed measurably, and at times significantly, to macroinvertebrate biomass and is therefore important in macroinvertebrate nutritional and energy budgets. The Bayesian mixing model output indicated that terrestrial vegetation made up 55% of collector–gatherer biomass in Fly Brook (Fig. 7b). Collector–gatherers in Fly Brook consisted of gammarid amphipods and *Ephemera* mayflies, which most likely consume fine particulate OM composed of fragmented terrestrial vegetation and phytoplankton (Cummins 2016; Cummins and Klug 1979). Based on feeding experiments and determination of leaf litter breakdown rates, as well as gut content analysis, terrestrial vegetation is known to be a significant component of the diets of both gammarids and *Ephemeridae* mayflies (Arsuffi and Suberkropp 1989; Hamilton and Clifford 1983; Piscart et al. 2009).

Shredding macroinvertebrates are also generally thought to depend on terrestrial vegetation, however, other stable isotope studies have shown algae to contribute significantly to their biomass (Leberfinger et al. 2011; Neres-Lima et al. 2016). Unfortunately, limited sample size for the shredder FFG ($n=2$) prevented us from assessing nutritional

resource utilization using the mixing models. While autochthonous OM was of primary importance to most consumers, it should be noted that the $\delta^{13}\text{C}$ values for algae and terrestrial vegetation in our study were similar (Fig. 2a–d) and may have led to increased uncertainty in mixing model outcomes. However, the inclusion of $\delta^2\text{H}$ data in our mixing model allowed for much better isotopic separation between algae and terrestrial vegetation ($>100\text{\textperthousand}$; Fig. 2b, d). Additionally, inclusion of $\Delta^{14}\text{C}$ data in our models further supported the importance of autochthonous OM.

Mixing models that included both stable isotopes and ^{14}C also indicated that algae were the dominant nutritional resource to filtering collectors, collector–gatherers, and predators (42–92%), with the exception of collector–gatherers from Fly Brook (Fig. 7a, b). Other studies that have employed natural ^{14}C in stream and river food web studies have observed equivalent organism apparent ages ranging from ~ 2000 years B.P. to modern-aged ($\Delta^{14}\text{C} = -240$ to $68\text{\textperthousand}$; Caraco et al. 2010; Ishikawa et al. 2016, 2014). While some of these studies contend and/or demonstrate that ^{14}C -depleted consumer biomass is dependent on assimilation of significantly aged OM from allochthonous sources, ^{14}C depletion in aquatic consumers may also be due to consumer utilization of algae that fix ^{14}C -depleted DIC and $\text{CO}_2(\text{aq})$ (Bellamy and Bauer 2017; Ishikawa et al. 2014, 2016). Based on our mixing model results and the similarity in $\Delta^{14}\text{C}$ values of DIC, algae, and macroinvertebrates, this is likely the case for at least some of our study sites (Fig. 4). There are a number of sources of CO_2 that may contribute to stream DIC, including atmospheric CO_2 exchange, weathering of carbonate rocks, and respiration of soil and sediment OM, with the most aged sources being carbonate rocks and respiration of soil CO_2 (Broecker and Walton 1959; Butman and Raymond 2011; Ishikawa et al. 2016; Keaveney and Reimer 2012). The incorporation by aquatic secondary producers of aged (in many cases, highly aged; see review by Bellamy and Bauer 2017) C and OM—regardless of the specific pathway—alters our understanding of terrestrial-aquatic linkages and the sources and ages of C and OM supporting aquatic food webs.

Influence of agricultural activity on macroinvertebrate nutritional resource utilization

Agricultural activity is known to increase exports of young and moderately aged (10^3 – 10^4 years B.P. in age) soil OM and associated mineral particles to streams and rivers (Burdon et al. 2013; Hossler and Bauer 2012, 2013a, b; Mattheai et al. 2010). These inputs may serve as a source of aged allochthonous nutrition and concomitantly limit light and autochthonous nutritional resources to aquatic consumers by increasing turbidity (Allan 2004; Roach 2013).

Collector–gatherers (*Ephemerella* mayflies) in the low-agriculture Schoharie Tributary were more reliant (96%, Fig. 6b; SI Table S4.3) on algae than in the high-agriculture Nowadega Creek (61%, Fig. 6a), possibly due to the higher quality habitat in streams less impacted by agriculture (Lenat 1984; Lenat and Crawford 1994). Increased sedimentation in our higher agriculture streams may shift nutritional resource utilization by macroinvertebrates inhabiting the sediment–water interface such as *Ephemerella* mayflies from autochthonous to allochthonous materials such as terrestrial vegetation and soils (Yule et al. 2010). The decreased role of autochthonous nutritional resources by this group may be explained by (1) sedimentation inhibiting light availability and aquatic primary production, (2) increased scouring and removal of aquatic autotrophs (Hall et al. 2015; Henley et al. 2000; Horner et al. 1990; Madsen et al. 2001), and/or (3) increased availability and utilization of terrestrial materials (Wang et al. 2014).

Soil OM may also be incidentally ingested by aquatic consumers as they feed on algae or terrestrial vegetation. However, because soil OM is generally considered to be of lower nutritional quality due to its high C:N ratio and molecular composition (Kleber 2010; Kleber and Johnson 2010) it may be ingested and/or assimilated less by consumers. Recent reevaluations of the reactivity and bioavailability of soil OM in aquatic systems (Marín-Spiotta et al. 2014; Schmidt et al. 2011; Weber et al. 2017) suggest that heterotrophic bacteria and fungi may facilitate utilization of soil OM by macroinvertebrates (Hall and Meyer 1998; Wang et al. 2014; Williams et al. 2010). Microbial processing and “repackaging” of soil OM may increase its quality (i.e., lower C:N ~ 4 to 9) and bioavailability to macroinvertebrate consumers than unaltered OM (C:N ~ 8 to 25; Finlay and Kendall 2007). Our findings suggest that soil OM may increasingly support macroinvertebrate biomass with increasing inputs of soils under higher agricultural land use. This further suggests that human alteration of watersheds and catchments may play a direct role in the sources and characteristics of C and OM supporting aquatic food webs (de Castro et al. 2016; Docile et al. 2016; Lu et al. 2014).

Potential roles of lithology on nutritional resources and their utilization

Macroinvertebrates from Nowadega Creek (significant amounts of shale in its watershed) and Fly Brook (little to no shale) also showed significant differences in $\Delta^{14}\text{C}$ values and ^{14}C ages (Fig. 4). Mixing model results using the $\Delta^{14}\text{C}$ data suggest that terrestrial vegetation and soil OM were of greater nutritional importance to Fly Brook than to Nowadega Creek macroinvertebrates (Fig. 7a). We initially predicted that the presence of OM-rich shale

in a watershed would potentially provide a more highly aged source of nutrition (Petsch et al. 2001; Schillawski and Petsch 2008). This was based on previous work in the Hudson River showing significant ^{14}C -depletion in zooplankton (mean $\Delta^{14}\text{C} = -240\text{\textperthousand}$, equivalent age of 2000 years B.P.), indicating that they assimilated 57% moderately aged soil OM ($\Delta^{14}\text{C} = -350\text{\textperthousand}$, equivalent age of 3460 years B.P.) or 21% fossil aged OM (>50,000 years B.P.; Caraco et al. 2010). The small but significant decrease in $\Delta^{14}\text{C}$ values of Nowadega Creek vs. Fly Brook macroinvertebrates (Fig. 4a) indicates that Nowadega Creek organisms were not assimilating significant amounts of fossil shale-derived OM ($\Delta^{14}\text{C} = -1000\text{\textperthousand}$). Instead, the greater equivalent ^{14}C ages of Nowadega Creek macroinvertebrates are more likely attributable to consumption of algae that are depleted in ^{14}C due to their fixation of ^{14}C -depleted (i.e., aged) DIC and $\text{CO}_2(\text{aq})$ (Fig. 4; Ishikawa et al. 2014, 2016).

Lithological factors such as the presence of shale may be overridden by biological and physical factors in certain watersheds. For example, the reach sampled at Nowadega Creek had far lower canopy cover (3%) than the reach sampled at Fly Brook (66%; Table 1). Correspondingly, collector-gatherers and filtering collectors from Fly Brook utilized 21% more terrestrial vegetation than those from Nowadega Creek (Fig. 7; SI Tables S4.4, S4.5). Thus, higher canopy cover, and the greater inputs of terrestrial vegetation mediated by it, may better explain the increased use of terrestrial vegetation than the presence or absence of shale in the watershed (Collins et al. 2015; Doi et al. 2007; England and Rosemond 2004). In addition, previous studies have demonstrated that shale-rich lithologies are not necessarily predictive of the amounts of aged C and OM in associated stream waters (Goñi et al. 2013; Leithold and Blair 2001), possibly due to rapid sedimentation and burial of mineral-associated shale OM.

Internal characteristics such as streambed substrate may also influence nutritional resource utilization by aquatic consumers (Smits et al. 2015; Sullivan 2013). In the present study, the size and type of substrate in our different stream systems varied (SI Table 5.1). Streambeds in shale streams were dominated by large unbroken rock outcrop surfaces and small boulders, whereas substrate in non-shale streams was mixed in composition (SI Table 5.1). Large, unbroken rock streambed surfaces in shale streams may limit the retention of terrestrial OM and detritus in these systems, consequently reducing the availability of allochthonous OM to consumers and increasing the assimilation of aquatic primary production (Smits et al. 2015; Wallace et al. 2015; Walters et al. 2007). Therefore, the presence of shale in our watershed may have indirectly influenced nutritional resource utilization by macroinvertebrates.

Factors affecting the availability of soil and shale-derived OM to macroinvertebrates

Previous studies in the same six subwatersheds of the Hudson-Mohawk system by Longworth et al. (2007) suggested that both land use and lithology were important but independent factors influencing stream suspended POM composition and $\Delta^{14}\text{C}$ values. We measured $\Delta^{14}\text{C}$ from only Nowadega Creek and Fly Brook samples (Fig. 4; SI Tables S2.6, S2.7, S3.1). Both streams were in high agriculture watersheds, preventing us from evaluating the relative influences of lithology and agriculture separately on nutritional resource availability and utilization by macroinvertebrates. However, Longworth et al. (2007) found that both shallow and deep soils at Nowadega Creek had greater median proportional contributions (52 and 42%, respectively) to the POM pool than ^{14}C -free (i.e., fossil aged) shale OM (6%) using a linear mixing model.

For Nowadega Creek, we employed a mass balance approach using the C:N and $\Delta^{14}\text{C}$ values of algae/phytoplankton, soil, and terrestrial vegetation (see SI Sect. 5 for details) to estimate the contribution of each to POM. We used two different combinations of endmembers for our mass balance calculations: (1) algae/phytoplankton, 20 cm-depth soil, and terrestrial vegetation and (2) algae/phytoplankton, shale, and terrestrial vegetation. Mass balance calculations suggested that modern terrestrial vegetation did not contribute to suspended POM, but that POM contained roughly equal contributions (~50:50) from algae and soil OM from 20 cm-depth. When fossil shale was used as the aged end member instead of 20 cm-depth soil OM, our calculations again showed that terrestrial vegetation did not contribute (0%), algae comprised an even greater proportion (81%), and shale-derived OM contributed 19% to suspended POM (SI Sect. 5). Contributions of 20-cm-depth soil-derived OM, shale, or both to the POM pool are required to explain the $\Delta^{14}\text{C}$ values of POM from Nowadega Creek, as algae alone were not ^{14}C -depleted enough to explain the ^{14}C -depletion in the POM.

Other possible explanations for the lower-than-expected contributions of shale OM to suspended POM and of soil and shale OM to macroinvertebrate biomass in Nowadega Creek include (1) different delivery mechanisms and input rates of soil- and shale-derived particulates (Leithold et al. 2016) and (2) agricultural tilling increasing inputs of aged soil OM (Boix-Fayos et al. 2009; Lal 2003; Longworth et al. 2007). In some lotic systems, mechanical weathering may be primarily responsible for inputs of shale-derived OM and higher erosive flows may be necessary to mechanically weather shale (Graz et al. 2012; Hilton et al. 2011; Leithold et al. 2006). Shale-derived OM may therefore be less readily mobilized to streams, even when shale outcrops

are present due to it being more physically stable than soil-derived OM (Leithold et al. 2006).

Chemical weathering of shales is thought to depend on the specific form(s) of kerogen in them (Durand 1980; Zhu et al. 2015). There is also experimental evidence that solubilization releases fossil DOM from shales to aqueous systems (Schillawski and Petsch 2008). However, only two (from Otsquago Creek) out of 24 $\Delta^{14}\text{C}$ values of DOM from Longworth et al. (2007) were even modestly ^{14}C -depleted ($\Delta^{14}\text{C} = -40$ and -22‰ ; 330 and 180 years B.P., respectively). Therefore, the input of fossil shale-derived DOM to these and similar systems through chemical weathering is unlikely to be significant. Because of the physical and chemical constraints imposed on the weathering of OM-rich sedimentary rocks, we suggest that any aged allochthonous OM subsidizing macroinvertebrate nutrition in our streams was probably derived from moderately aged soil OM, with agricultural activity facilitating its movement into the adjacent streams.

Use of ^{14}C as a tracer in stream food webs

There is growing interest in assessing the roles and quantitative importance of aged C and OM in aquatic food webs, and the implications that the assimilation of aged C and OM by consumers may have on aquatic community structure and ecosystem dynamics (Bellamy and Bauer 2017; Guillemette et al. 2017). Previous aquatic food web studies employing natural abundance ^{14}C found that highly aged forms of OM, such as weathered sedimentary rock, soils, and peat can contribute significantly (up to 57%) to the nutrition of aquatic consumers (Caraco et al. 2010; Schell 1983; Wang et al. 2014). Fossil shale-derived OM potentially contributed ~20% to Nowadega Creek stream suspended POM (SI Table S5.2). This estimate is larger than that of Longworth et al. (2007; 6%), but we have no direct evidence that a source of fossil shale-derived OM contributed to macroinvertebrate biomass. However, one or more sources of fossil non-shale or moderately aged C (most likely weathered carbonates and/or respiration soil CO_2 , respectively) contributed to macroinvertebrate biomass via fixation of aged DIC by aquatic primary producers and their subsequent consumption and assimilation. The synthesis of living, ^{14}C -depleted autochthonous OM in aquatic systems has been observed in other lentic and lotic systems (Ishikawa et al. 2013, 2014; Keaveney et al. 2015). Findings from the present study indicate that aged forms of C (both organic and inorganic) can be active components of contemporary stream food webs. Natural abundance ^{14}C can be an important independent tracer in aquatic food web studies, and, as in the present study and others, reveals that modern aquatic food webs can be supported by carbon and

OM that was formed thousands to millions of years ago (Bellamy and Bauer 2017; Guillemette et al. 2017).

Utilization of allochthonous vs. autochthonous OM varied by FFG in this study as predicted. Assimilation of aged C and OM was also observed to vary by FFG for the two streams in which natural ^{14}C was measured. Future research should aim to identify the primary mechanisms responsible for the ^{14}C -depletion (i.e., non-modern apparent ages) of the majority of aquatic consumers studied to date (Bellamy and Bauer 2017), i.e., either through direct assimilation of aged OM (e.g., fossil and/or soil-derived OM) or via utilization ^{14}C -depleted algae from fixation of aged DIC/ CO_2 (aq). Utilization and cycling of aged C and OM by aquatic food webs could lead to significant revisions in our conceptual and quantitative elemental and energetic models and budgets for aquatic systems.

The present findings and those of a similar previous study by Wang et al. (2014) suggest that human land alteration in the form of agriculture may influence the inputs, availability and aquatic consumer utilization of aged OM. The present study provides one example of how land use may directly impact contributions of aged OM to stream ecosystems and the subsequent assimilation of this aged OM by stream consumers. Consideration of these two studies together suggests a potential causative relationship between the amount of agriculture in a watershed and the contributions of aged, soil-derived OM to aquatic consumer biomass (SI Fig. S5.1). We also found that an internal stream characteristic (substrate type) controlled the sources and ages of C and OM available to consumers (SI Table S5.1). Future research should therefore also seek to address the importance of different watershed-scale factors and internal characteristics of aquatic systems on the ages of C and OM pools present in stream waters and sediments, and explore the potential consequences of this for associated food webs.

Contrary to the traditional paradigm that young materials are more readily consumed and assimilated by aquatic organisms (Berggren et al. 2009; Mayorga et al. 2005; Sobczak et al. 2005), findings from the present and other recent studies (see Bellamy and Bauer 2017, for review) suggest that aged forms of C and OM are more often than not important to the nutrition of aquatic consumers. It is increasingly thought that the ages of different sources of naturally occurring OM are alone not indicative of their nutritional value or bioavailability (Guillemette et al. 2017; Marin-Spiotta et al. 2014; McCallister and del Giorgio 2012). Future studies that employ natural ^{14}C as a tracer in aquatic food webs should therefore seek to evaluate (1) the relationship between OM substrate age and its nutritional availability to consumers, and (2) contributions of ^{14}C -depleted algal and macrophytic biomass. Approaches including the use of compound class and

compound-specific isotope analyses may also prove valuable for better differentiating between aged allochthonous and aged autochthonous OM utilization by aquatic consumers (Ishikawa et al. 2015; Kruger et al. 2016).

Acknowledgements We thank Brett Longworth for input during the development stage of this research and Amy Weber and Thomas Evans for help with field sampling. We are grateful to the University of California at Davis Stable Isotope Facility for $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ analyses, the Colorado Plateau Isotope Laboratory for $\delta^2\text{H}$ analyses, and the National Ocean Sciences AMS Facility for $\Delta^{14}\text{C}$ analyses. We also thank Jon Cole for his feedback on early drafts of the manuscript and two anonymous reviewers whose comments and suggestions helped to improve the final version of this manuscript. This work was supported by funding from the Hudson River Foundation to J.E.B. and A.R.B., National Science Foundation awards DEB-0234533, EAR-0403949 and OCE-0961860 to J.E.B., National Science Foundation awards OCE-1656292 and OCE-1514859 to A.G.G, and The Ohio State University.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflicts of interest.

References

Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. *Annu Rev Ecol Evol Syst* 35:257–284

Arsuffi TL, Suberkropp K (1989) Selective feeding by shredders on leaf-colonizing stream fungi: comparison of macroinvertebrate taxa. *Oecologia* 79:30–37

Baxter CV, Fausch KD, Saunders CW (2005) Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. *Freshw Biol* 50:201–220

Bellamy AR, Bauer JE (2017) Nutritional support of inland aquatic food webs by aged carbon and organic matter. *Limnol Oceanogr Lett*. doi:10.1002/lo2.10044

Berggren M, Laudon H, Jansson M (2009) Aging of allochthonous organic carbon regulates bacterial production in unproductive boreal lakes. *Limnol Oceanogr* 54:1,333–1,342

Boix-Fayos C, de Vente J, Albaladejo J, Martínez-Mena M (2009) Soil carbon erosion and stock as affected by land use changes at the catchment scale in Mediterranean ecosystems. *Agric Ecosyst Environ* 133:75–85

Brett MT, Bunn SE, Chandra S, others (2017) How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems? *Freshw Biol* 62:833–853

Broecker WS, Walton A (1959) The geochemistry of C-14 in freshwater systems. *Geochim Cosmochim Acta* 16:15–38

Brooke LT, Ankley GT, Call DJ, Cook PM (1996) Gut content weight and clearance rate for three species of freshwater invertebrates. *Environ Toxicol Chem* 15:223–228

Bunn SE, Boon PI (1993) What sources of organic carbon drive food webs in billabongs? A study based on stable isotope analysis. *Oecologia* 96:85–94

Burdon FJ, McIntosh AR, Harding JS (2013) Habitat loss drives threshold response of benthic invertebrate communities to deposited sediment in agricultural streams. *Ecol Appl* 23:1,036–1,047

Butman D, Raymond PA (2011) Significant efflux of carbon dioxide from streams and rivers in the United States. *Nat Geosci* 4:839–842

Butman DE, Wilson HF, Barnes RT, Xenopoulos MA, Raymond PA (2015) Increased mobilization of aged carbon to rivers by human disturbance. *Nat Geosci* 8:112–116

Caraco N, Bauer JE, Cole JJ, Petsch S, Raymond P (2010) Millennial-aged organic carbon subsidies to a modern river food web. *Ecology* 91:2,385–2,393

Carlson PE, McKie BG, Sandin L, Johnson RK (2016) Strong landscape effects on the dispersal patterns of adult stream insects: implications for transfers of aquatic subsidies to terrestrial consumers. *Freshw Biol* 61:848–861

Clarke KR, Gorley RN (2006) User manual/tutorial. Primer-E Ltd, Plymouth, p 93

Collins SM, Kohler TJ, Thomas SA, Fetzer WW, Flecker AS (2015) The importance of terrestrial subsidies in stream food webs varies along a stream size gradient. *Oikos* 125:674–685

Cummins KW (2016) Combining taxonomy and function in the study of stream macroinvertebrates. *J Limnol* 75:235–241

Cummins KW, Klug MJ (1979) Feeding ecology of stream invertebrates. *Annu Rev Ecol Syst* 10:147–172

de Castro, D.M.P., de Carvalho DR, dos Santos Pompeu P, Moreira MZ, Nardoto GB, Callisto M (2016) Land use influences niche size and the assimilation of resources by benthic macroinvertebrates in tropical headwater streams. *PLoS One* 11:e0150527

Docile T, Rosa DC, Figueiró R, Nessimian J (2016) Urbanisation alters the flow of energy through stream food webs. *Insect Conserv Divers* 9:416–426

Doi H, Takemon Y, Ohta T, Ishida Y, Kikuchi E (2007) Effects of reach-scale canopy cover on trophic pathways of caddisfly larvae in a Japanese mountain stream. *Mar Freshw Res* 58:811–817

Doucett RR, Marks JC, Blinn DW, Caron M, Hungate BA (2007) Measuring terrestrial subsidies to aquatic food webs using stable isotopes of hydrogen. *Ecology* 88:1,587–1,592

Durand B (1980) Sedimentary organic matter and kerogen. Definition and quantitative importance of kerogen. In: Durand B (ed) Kerogen: insoluble organic matter from sedimentary rocks. Editions Technip, Paris, pp 13–34

England LE, Rosemond AD (2004) Small reductions in forest cover weaken terrestrial-aquatic linkages in headwater streams. *Freshw Biol* 49:721–734

Finlay JC, Kendall C (2007) Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems. *Stable Isotop Ecol Environ Sci* 2:283–333

Finlay JC, Khandwala S, Power ME (2002) Spatial scales of carbon flow in a river food web. *Ecology* 83:1,845–1,859

Finlay JC, Doucett RR, McNeely C (2010) Tracing energy flow in stream food webs using stable isotopes of hydrogen. *Freshw Biol* 55:941–951

Goedkoop W, Demandt M, Ahlgren G (2007) Interactions between food quantity and quality (long-chain polyunsaturated fatty acid concentrations) effects on growth and development of *Chironomus riparius*. *Can J Fish Aquat Sci* 64:425–436

Goñi MA, Hatten JA, Wheatcroft RA, Borgeld JC (2013) Particulate organic matter export by two contrasting small mountainous rivers from the Pacific Northwest, USA. *J Geophys Res Biogeosci* 118:112–134

Graz Y, Di-Giovanni C, Copard Y, Mathys N, Cras A, Marc V (2012) Annual fossil organic carbon delivery due to mechanical and chemical weathering of marly badlands areas. *Earth Surf Process Landf* 37:1,263–1,271

Guillemette F, Bianchi TS, Spencer RG (2017) Old before your time: Ancient carbon incorporation in contemporary aquatic food-webs. *Limnol Oceanogr*. doi:10.1002/lo.10525

Guo F, Kainz MJ, Sheldon F, Bunn SE (2016) The importance of high-quality algal food sources in stream food webs—current status and future perspectives. *Freshw Biol* 61:815–831

Hall RO, Meyer JL (1998) The trophic significance of bacteria in a detritus-based stream food web. *Ecology* 79:1,995–2,012

Hall RO, Yackulic CB, Kennedy TA, Yard MD, Rosi-Marshall EJ, Voichick N, Behn KE (2015) Turbidity, light, temperature, and hydropeaking control primary productivity in the Colorado River, Grand Canyon. *Limnol Oceanogr* 60:512–526

Hamilton H, Clifford F (1983) The seasonal food habits of mayfly (Ephemeroptera) nymphs from three Alberta, Canada, streams, with special reference to absolute volume and size of particles ingested. *Arch Hydrobiol Suppl* 65:197–234

Hayden B, McWilliam-Hughes SM, Cunjak RA (2016) Evidence for limited trophic transfer of allochthonous energy in temperate river food webs. *Freshw Sci* 35:544–558

Hedges JI (1992) Global biogeochemical cycles: progress and problems. *Mar Chem* 39:67–93

Henley WF, Patterson MA, Neves RJ, Lemly AD (2000) Effects of sedimentation and turbidity on lotic food webs: a concise review for natural resource managers. *Rev Fish Sci* 8:125–139

Hilton RG, Galy A, Hovius N, Horng M-J, Chen H (2011) Efficient transport of fossil organic carbon to the ocean by steep mountain rivers: an orogenic carbon sequestration mechanism. *Geology* 39:71–74

Horner RR, Welch EB, Seeley MR, Jacoby JM (1990) Responses of periphyton to changes in current velocity, suspended sediment and phosphorus concentration. *Freshw Biol* 24:215–232

Hossler K, Bauer JE (2012) Estimation of riverine carbon and organic matter source contributions using time-based isotope mixing models. *J Geophys Res* 117:G03035

Hossler K, Bauer JE (2013a) Amounts, isotopic character and ages of organic and inorganic carbon exported from rivers to ocean margins: 1. Estimates of terrestrial losses and inputs to the Middle Atlantic Bight. *Glob Biogeochem Cycles* 27:331–346

Hossler K, Bauer JE (2013b) Amounts, isotopic character, and ages of organic and inorganic carbon exported from rivers to ocean margins: 2. Assessment of natural and anthropogenic controls. *Glob Biogeochem Cycles* 27:347–362

Ishikawa NF, Hyodo F, Tayasu I (2013) Use of carbon-13 and carbon-14 natural abundances for stream food web studies. *Ecol Res* 28:759–769

Ishikawa NF, Uchida M, Shibata Y, Tayasu I (2014) Carbon storage reservoirs in watersheds support stream food webs via periphyton production. *Ecology* 95:1,264–1,271

Ishikawa NF, Yamane M, Suga H, Ogawa NO, Yokoyama Y, Ohkouchi N (2015) Chlorophyll a-specific $\Delta^{14}\text{C}$, $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values in stream periphyton: implications for aquatic food web studies. *Biogeosciences* 12:6,781–6,789

Ishikawa NF, Togashi H, Kato Y, Yoshimura M, Kohmatsu Y, Yoshimizu C, Ogawa NO, Ohte N, Tokuchi N, Ohkouchi N, others (2016) Terrestrial–aquatic linkage in stream food webs along a forest chronosequence: multi-isotopic evidence. *Ecology* 97:1,146–141,158

Kautza A, Sullivan, S.M.P. (2016) The energetic contributions of aquatic primary producers to terrestrial food webs in a mid-size river system. *Ecology* 97:694–705

Keaveney EM, Reimer PJ (2012) Understanding the variability in freshwater radiocarbon reservoir offsets: a cautionary tale. *J Archaeol Sci* 39:1,306–1,316

Keaveney EM, Reimer PJ, Foy RH (2015) Young, old, and weathered carbon—part 2: using radiocarbon and stable isotopes to identify terrestrial carbon support of the food web in an alkaline, humic lake. *Radiocarbon* 57:425–438

Kleber M (2010) What is recalcitrant soil organic matter? *Environ Chem* 7:320–332

Kleber M, Johnson MG (2010) Advances in understanding the molecular structure of soil organic matter: implications for interactions in the environment. *Adv Agron* 106:77–142

Kruger BR, Werne JP, Branstrator DK, Hrabik TR, Chikaraishi Y, Ohkouchi N, Minor EC (2016) Organic matter transfer in Lake Superior's food web: insights from bulk and molecular stable isotope and radiocarbon analyses. *Limnol Oceanogr* 61:149–164

Lal R (2003) Soil erosion and the global carbon budget. *Environ Int* 29:437–450

Lau DC, Sundh I, Vrede T, Pickova J, Goedkoop W (2014) Autochthonous resources are the main driver of consumer production in dystrophic boreal lakes. *Ecology* 95:1,506–1,519

Leberfinger K, Bohman I, Herrmann J (2011) The importance of terrestrial resource subsidies for shredders in open-canopy streams revealed by stable isotope analysis. *Freshw Biol* 56:470–480

Leithold EL, Blair NE (2001) Watershed control on the carbon loading of marine sedimentary particles. *Geochim Cosmochim Acta* 65:2,231–2,240

Leithold EL, Blair NE, Perkey DW (2006) Geomorphologic controls on the age of particulate organic carbon from small mountainous and upland rivers. *Glob Biogeochem Cycles* 20:GB3030

Leithold EL, Blair NE, Wegmann KW (2016) Source-to-sink sedimentary systems and global carbon burial: a river runs through it. *Earth Sci Rev* 153:30–42

Lenat DR (1984) Agriculture and stream water quality: a biological evaluation of erosion control practices. *Environ Manag* 8:333–343

Lenat DR, Crawford JK (1994) Effects of land use on water quality and aquatic biota of three North Carolina Piedmont streams. *Hydrobiologia* 294:185–199

Levin I, Kromer B, Hammer S (2013) Atmospheric $\Delta^{14}\text{CO}_2$ trend in Western European background air from 2000 to 2012. *Tellus B* 65:20092

Longworth BE, Petsch ST, Raymond PA, Bauer JE (2007) Linking lithology and land use to sources of dissolved and particulate organic matter in headwaters of a temperate, passive-margin river system. *Geochim Cosmochim Acta* 71:4,233–4,250

Lu YH, Canuel EA, Bauer JE, Chambers RM (2014) Effects of watershed land use on sources and nutritional value of particulate organic matter in temperate headwater streams. *Aquat Sci* 76:419–436

Madsen JD, Chambers PA, James WF, Koch EW, Westlake DF (2001) The interaction between water movement, sediment dynamics and submersed macrophytes. *Hydrobiologia* 444:71–84

Marín-Spiotta E, Gruley KE, Crawford J, Atkinson EE, Miesel JR, Greene S, Cardona-Correa C, Spencer, R.G.M. (2014) Paradigm shifts in soil organic matter research affect interpretations of aquatic carbon cycling: transcending disciplinary and ecosystem boundaries. *Biogeochemistry* 117:279–297

Marwick TR, Tamoooh F, Teodoro CR, Borges AV, Darchambeau F, Bouillon S (2015) The age of river-transported carbon: a global perspective. *Glob Biogeochem Cycles* 29:122–137

Matthaei CD, Piggott JJ, Townsend CR (2010) Multiple stressors in agricultural streams: interactions among sediment addition, nutrient enrichment and water abstraction. *J Appl Ecol* 47:639–649

Mayorga E, Aufdenkampe AK, Masiello CA, Krusche AV, Hedges JL, Quay PD, Richey JE, Brown TA (2005) Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. *Nature* 436:538–541

McCallister SL, del Giorgio PA (2012) Evidence for the respiration of ancient terrestrial organic C in northern temperate lakes and streams. *Proc Natl Acad Sci USA* 109:16,963–16,968

McCutchan JH, Lewis WM (2002) Relative importance of carbon sources for Macroinvertebrates in a Rocky Mountain Stream. *Limnol Oceanogr* 47:742–752

Merritt RW, Cummins KW (2008) An introduction to the aquatic macroinvertebrates of North America, 4 edn. Kendall-Hunt, Dubuque, Berg, M.B

Middelburg JJ (2014) Stable isotopes dissect aquatic food webs from the top to the bottom. *Biogeosciences* 11:2,357–2,371

Moore JW, Semmens BX (2008) Incorporating uncertainty and prior information into stable isotope mixing models. *Ecol Lett* 11:470–480

Müller-Navarra DC (2008) Food web paradigms: the biochemical view on trophic interactions. *Int Rev Hydrobiol* 93:489–505

Neres-Lima V, Brito EF, Krsulović FA, Detweiler AM, Hershey AE, Moulton TP (2016) High importance of autochthonous basal food source for the food web of a Brazilian tropical stream regardless of shading. *Int Rev Hydrobiol* 101:132–142

Petsch ST, Eglinton TI, Edwards KJ (2001) C-dead living biomass: evidence for microbial assimilation of ancient organic carbon during shale weathering. *Science* 292:1,127–1,131

Phillips DL, Inger R, Bearhop S, Jackson AL, Moore JW, Parnell AC, Semmens BX, Ward EJ (2014) Best practices for use of stable isotope mixing models in food-web studies. *Can J Zool* 92:823–835

Piscart C, Genoel R, Doledec S, Chauvet E, Marmonier P (2009) Effects of intense agricultural practices on heterotrophic processes in streams. *Environ Pollut* 157:1,011–1,018

Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. *Ecology* 83:703–718

Prather CM, Pelini SL, Laws A, Rivest E, Woltz M, Bloch CP, Del Toro I, Ho C-K, Kominoski J, Newbold TA, others (2013) Invertebrates, ecosystem services and climate change. *Biol Rev* 88:327–348

Raymond PA, Bauer JE (2001) Riverine export of aged terrestrial organic matter to the North Atlantic Ocean. *Nature* 409:497–500

Reuss NS, Hamerlik L, Velle G, Michelsen A, Pedersen O, Brodersen KP (2013) Stable isotopes reveal that chironomids occupy several trophic levels within West Greenland lakes: implications for food web studies. *Limnol Oceanogr* 58:1,023–1,034

Roach KA (2013) Environmental factors affecting incorporation of terrestrial material into large river food webs. *Freshw Sci* 32:283–298

Rosi-Marshall EJ, Wallace JB (2002) Invertebrate food webs along a stream resource gradient. *Freshw Biol* 47:129–141

Rosi-Marshall EJ, Vallis KL, Baxter CV, Davis JM (2016) Retesting a prediction of the River Continuum concept: autochthonous versus allochthonous resources in the diets of invertebrates. *Freshw Sci* 35:534–543

Schell DM (1983) Carbon-13 and carbon-14 abundances in Alaskan aquatic organisms: delayed production from peat in arctic food webs. *Science* 219:1,068–1,071

Schillawski S, Petsch S (2008) Release of biodegradable dissolved organic matter from ancient sedimentary rocks. *Glob Biogeochem Cycles* 22:GB3002

Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DA, others (2011) Persistence of soil organic matter as an ecosystem property. *Nature* 478:49–56

Smits AP, Schindler DE, Brett MT (2015) Geomorphology controls the trophic base of stream food webs in a boreal watershed. *Ecology* 96:1,775–1,782

Sobczak WV, Cloern JE, Jassby AD, Cole BE, Schraga TS, Arnsberg A (2005) Detritus fuels ecosystem metabolism but not metazoan food webs in San Francisco estuary's freshwater delta. *Estuaries* 28:124–137

Sullivan, S.M.P. (2013) Stream foodweb $\delta^{13}\text{C}$ and geomorphology are tightly coupled in mountain drainages of northern Idaho. *Freshw Sci*:32:606–621

Tanentzap AJ, Kielstra BW, Wilkinson GM, others (2017) Terrestrial support of lake food webs: synthesis reveals controls over cross-ecosystem resource use. *Sci Adv* 3:e1601765

Torres-Ruiz M, Wehr JD, Perrone AA (2007) Trophic relations in a stream food web: importance of fatty acids for macroinvertebrate consumers. *J Inf* 26:509–522

Tourtelot HA (1979) Black shale—its deposition and diagenesis. *Clays Clay Miner* 27:313–321

Trumbore SE (1997) Potential responses of soil organic carbon to global environmental change. *Proc Natl Acad Sci* 94:8,284–8,291

Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. *Can J Fish Aquat Sci* 37:130–137

Wallace JB, Eggert SL, Meyer JL, Webster JR (2015) Stream invertebrate productivity linked to forest subsidies: 37 stream-years of reference and experimental data. *Ecology* 96:1,213–1,228

Walters DM, Fritz KM, Phillips DL (2007) Reach-scale geomorphology affects organic matter and consumer $\delta^{13}\text{C}$ in a forested Piedmont stream. *Freshw Biol* 52:1,105–1,119

Wang Y, Gu B, Lee M-K, Jiang S, Xu Y (2014) Isotopic evidence for anthropogenic impacts on aquatic food web dynamics and mercury cycling in a subtropical wetland ecosystem in the US. *Sci Total Environ* 487:557–564

Wassenaar LI, Hobson KA (2003) Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. *Isot Environ Health Stud* 39:211–217

Weber AE, Bauer JE, Watters GT (2017) Assessment of nutritional subsidies to freshwater mussels using a multiple natural abundance isotope approach. *Freshw Biol* 62:615–629

Wilkinson GM, Cole JJ, Pace ML (2015) Deuterium as a food source tracer: sensitivity to environmental water, lipid content, and hydrogen exchange. *Limnol Oceanogr Methods* 13:213–223

Williams CJ, Yamashita Y, Wilson HF, Jaffé R, Xenopoulos MA, others (2010) Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems. *Limnol Oceanogr* 55:1,159–1,171

Yule CM, Boyero L, Marchant R (2010) Effects of sediment pollution on food webs in a tropical river (Borneo, Indonesia). *Mar Freshw Res* 61:204–213

Zhu Y, Vieth-Hillebrand A, Wilke FD, Horsfield B (2015) Characterization of water-soluble organic compounds released from black shales and coals. *Int J Coal Geol* 150:265–275