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Abstract Annual coral bleaching events due to increas-
ing sea surface temperatures are predicted to occur globally
by the mid-century and as early as 2025 in the Caribbean,
and severely impact coral reefs. We hypothesize that het-
erotrophic carbon (C) in the form of zooplankton and
dissolved organic carbon (DOC) is a significant source of C
to bleached corals. Thus, the ability to utilize multiple
pools of fixed carbon and/or increase the amount of fixed
carbon acquired from one or more pools of fixed carbon
(defined here as heterotrophic plasticity) could underlie
coral acclimatization and persistence under future ocean-
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warming scenarios. Here, three species of Caribbean
coral—Porites divaricata, P. astreoides, and Orbicella
faveolata—were experimentally bleached for 2.5 weeks in
two successive years and allowed to recover in the field.
Zooplankton feeding was assessed after single and repeat
bleaching, while DOC fluxes and the contribution of DOC
to the total C budget were determined after single
bleaching, 11 months on the reef, and repeat bleaching.
Zooplankton was a large C source for P. astreoides, but
only following single bleaching. DOC was a source of C
for single-bleached corals and accounted for 11-36 % of
daily metabolic demand (CHARpgc), but represented a net
loss of C in repeat-bleached corals. In repeat-bleached
corals, DOC loss exacerbated the negative C budgets in all
three species. Thus, the capacity for heterotrophic plasticity
in corals is compromised under annual bleaching, and
heterotrophic uptake of DOC and zooplankton does not
mitigate C budget deficits in annually bleached corals.
Overall, these findings suggest that some Caribbean corals
may be more susceptible to repeat bleaching than to single
bleaching due to a lack of heterotrophic plasticity, and
coral persistence under increasing bleaching frequency
may ultimately depend on other factors such as energy
reserves and symbiont shuffling.

Keywords Coral - Zooplankton - DOC - Bleached -
Annual - Heterotrophy

Introduction
Coral reefs are threatened globally due to mass bleaching
events that are already causing coral reef decline world-

wide (Wilkinson 2008). Bleaching events are expected to
increase in frequency and intensity in the coming decades
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(Hoegh-Guldberg 1999; Donner et al. 2007; Frieler et al.
2013). At the current rate of greenhouse gas emissions and
warming sea surface temperatures (SSTs), models predict
that reefs globally will experience annual bleaching events
by 2040, with parts of the Caribbean potentially experi-
encing annual bleaching events as soon as 2025 (van
Hooidonk et al. 2015).

At sustained elevated SSTs, corals lose their endosym-
biotic algae (Symbiodinium spp.) rendering them pale white
or bleached (Jokiel and Coles 1990; Glynn 1996; Brown
1997; Hoegh-Guldberg 1999; D’Croz et al. 2001). While
healthy scleractinian corals can obtain up to 100 % of their
daily metabolic demand from the translocated photosyn-
thate of their endosymbiotic algae, dramatic decreases in
photosynthesis in single-bleached and some repeat-
bleached corals can lead to coral carbon (C) budget deficits
of up to 80 % (Muscatine et al. 1981; Falkowski et al.
1993; Grottoli et al. 2006; Palardy et al. 2008; Tremblay
et al. 2012; Grottoli et al. 2014). To recover from bleach-
ing, corals may rely on a combination of alternative sour-
ces of fixed carbon such as energy reserves and/or
increased heterotrophy in conjunction with recovery of
photosynthesis.

In addition to autotrophically acquired C, both healthy
and stressed corals can obtain up to 150 % of fixed carbon
from the ingestion of zooplankton (Grottoli et al. 2006;
Palardy et al. 2008; Anthony et al. 2009; Houlbreque and
Ferrier-Pages 2009; Grottoli et al. 2014), pico- and nano-
plankton (Tremblay et al. 2012), non-living sedimentary and
particulate organic matter (Anthony 1999, 2000; Ferrier-
Pages et al. 2011; Leal et al. 2014), and dissolved organic
matter (Tremblay et al. 2012). For example, singly bleached
corals Montipora capitata and Porites astreoides increase
their zooplankton consumption and can meet more than
100 % of their metabolic demand (heterotrophically plastic),
thus replenishing or maintaining energy reserves during
bleaching events (Grottoli et al. 2006; Rodrigues and Grot-
toli 2007; Palardy et al. 2008; Grottoli et al. 2014). Even in
corals that do not increase their heterotrophic organic C
intake when bleached, such as P. lobata and P. compressa,
heterotrophically acquired zooplankton C still represents a
significant component (25 and 40 %, respectively) of their
total fixed C budgets (Grottoli et al. 2006; Palardy et al.
2008). However, for the Caribbean corals P. divaricata and
Orbicella faveolata, zooplankton heterotrophy represents
<4 % of their total fixed C budgets, irrespective of bleaching
status or bleaching frequency (Grottoli et al. 2014). Thus,
zooplankton heterotrophy is highly species specific and
varies based on single versus sequential annual bleaching.
However, little is known about Caribbean coral preferences
for zooplankton size and species. If bleached Caribbean
corals selectively capture a specific group and/or size of
zooplankton similar to Hawaiian corals (Palardy et al. 2008),
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changes in zooplankton communities could potentially have
drastic effects on bleached coral recovery.

In recent years, dissolved organic carbon (DOC) has
been increasingly recognized as another source of fixed
carbon for corals and may play an important role in coral
resistance to bleaching. Healthy corals are typically net
producers of DOC (Haas et al. 2010; Naumann et al. 2010,
2012; Levas et al. 2015) via the release of mucus and/or
dissolved organic materials that account for losses of
5-45 % of photosynthetically fixed C (Crossland et al.
1980; Edmunds and Davies 1986; Crossland 1987; Bythell
1988; Ferrier-Pages et al. 1998; Tanaka et al. 2009),
although DOC can be utilized by some corals (Naumann
et al. 2010; Tremblay et al. 2012). However, temperature
stress and bleaching may at times influence coral net DOC
fluxes. For example, Haas et al. (2010) observed greater
DOC losses from temperature-stressed coral, while Niggl
et al. (2009) and Levas et al. (2015) found no differences in
DOC fluxes between temperature-stressed and control
corals.

DOC uptake could help mitigate or offset the loss of
autotrophic C during bleaching events in Caribbean corals,
which could experience annual bleaching by 2025 (van
Hooidonk et al. 2015). However, such heterotrophic plas-
ticity could potentially be influenced by the frequency of
bleaching events as seen with zooplankton heterotrophy in
bleached P. astreoides (Grottoli et al. 2014). To test these
hypotheses, we quantified the proportion of coral organic C
budgets derived from DOC fluxes and compared it with
those derived from symbiont photosynthesis and zoo-
plankton feeding from Grottoli et al. (2014) in singly
bleached, repeat-bleached, and non-bleached control frag-
ments of three ecologically important species of Caribbean
corals. Understanding and quantifying changes in the var-
ious components of carbon budgets for singly and repeat-
edly bleached corals are essential for determining potential
coral resilience to predict future increases in SST.

Materials and methods

Coral collection, acclimation, experimental design, and
procedures used in this study have been largely described
previously by Grottoli et al. (2014). Briefly, fragments of
Porites divaricata, P. astreoides, and Orbicella faveolata
were collected from the reefs near Puerto Morelos, Mexico,
from July 4 to 9, 2009 (Electronic Supplementary Material,
ESM, Table S1). After 5-d acclimation (July 14, 2009),
half of the fragments from each colony and species were
placed into tanks where the temperature was slowly
increased over 5 d (to 31.5 4 0.20 °C) (single bleaching
treatment) and the other half of the fragments were kept in
ambient control tanks (30.66 £ 0.24 °C) (Fig. 1a). On July
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29, 2009, after 15 d, the heaters in the treatment tanks were
turned off, and one-third of the bleached and control
fragments were collected and immediately frozen. The
other fragments were transplanted back to the reef at 4.9 m
depth (20°52.815'N, 86°50.989'W). After 11 months on the
reef (June 20, 2010), one treatment and control fragment
from each colony of each species was collected and DOC
fluxes were measured from June 20 to 26, 2010, according
to methods described below (Fig. 1a).

On July 22, 2010, the bleaching experiment was repeated
with the remaining treatment corals from the previous year
exposed to elevated temperatures again (31.6 = 0.24 °C)
(repeat bleaching treatment), while the control fragments
from 2009 were maintained at ambient temperature
(30.4 £+ 0.23 °C). At the end of 17 d (7 August 2010), hea-
ters were turned off. DOC fluxes were measured August
5-10, 2010, and all the fragments were placed back on the
reef. Feeding rates were quantified a week later, on August
15 and 17, 2010 (see below), according to Palardy et al.
(2008).

The feeding fragment samples from the single bleaching
experiment done in 2009 were inadvertently discarded
(Grottoli et al. 2014). Thus, in order to obtain DOC fluxes
and feeding rates, and calculate a total carbon budget, a
second single bleaching experiment was conducted from
June 28, 2010, to July 15, 2010. Two new coral fragments
from nine different parent colonies from the same location
of P. divaricata, P. astreoides, and O. faveolata (Fig. 1b)
were collected and are referred to as redo corals. Half of
the corals were exposed to elevated temperatures
(31.24 £ 0.21 °C), and the other fragments remained at
ambient control temperatures (29.47 + 0.22 °C). After 17
d (July 15, 2010), heaters were turned off and DOC fluxes
were measured from July 13 to 18, 2010. All coral frag-
ments were transplanted to the reef for 1 week, and then,

(a) :‘.(' - 4 fragments/colony
# > ‘ x 9 colonies
18 18
Control Treatment
Sjioer 30.6°C 15d 31.5°C Single
2009 g P ays gl bleachin
8 (14-29 July 2009) - g
9 9
11 reef
(20 June 2010)
Summer Repeat
2010 04T gy 17 days ,»|31~6°C bleaching
(22 July - 7 Aug 2010)
9 9
0 reef

Fig. 1 Experimental design for a the single and repeat bleaching
experiment of 2009-2010 for Porites divaricata, P. astreoides, and
Orbicella faveolata and b the single bleaching experiment of 2010 for
O. faveolata. Days = number of days corals were in the tanks,

feeding rates were determined in situ according to Palardy
et al. (2008) (see below). Since these corals had not yet had
the opportunity to recover except for 1 week on the reef,
they are referred to as singly bleached corals. Differences
between discarded samples and these corals should be
minimal as these corals were collected from the same
populations of corals as the initial single and repeat
bleaching experiments and were subjected to similar tem-
perature regimes. Thus, differences between single and
repeat-bleached corals are most likely due to differences in
experimental thermal history (Grottoli et al. 2014).

Coral feeding measurements

On July 27, 2010, four clear 50-L polypropylene plastic
chambers with 50-um Nitex screen windows were placed
over half of the redo corals for 12 h during the day. The
Nitex screen windows allowed for sufficient flow but pre-
vented zooplankton from entering the chambers (Palardy
et al. 2005), enabling the corals to fully empty their guts.
One hour after dusk, the chambers were removed and the
coral fragments were allowed to feed on the natural
assemblage of zooplankton and seston on the reef. After
1 h of feeding, the fragments were collected and fixed in
formalin to prevent digestion of ingested zooplankton. On
July 29, 2010, this procedure was repeated with the
remainder of the single-bleached and control fragments.
Within 48 h, all or 150 polyps (whichever came first) of the
coral fragments were dissected (Palardy et al. 2005) under
a dissecting microscope (20 to 100x power) by probing
with a dissection needle and subsequent scraping of the
skeleton to expose any remaining zooplankton (Palardy
et al. 2008). Prey larger than 50 um were visible, and only
plankton inside the polyp were counted. The number of
zooplankton eaten per polyp as well as the prey taxon and

(b)
Y 2 fragmentsi/colony
. < | x 9 colonies
9 9
Control Treatment
Summer E Single
w0 [P0 S 17 days | e bleaching

(28 June - 1S July 2010)

0 reef

reef = number of months corals were on the reef, feed = coral
fragments used for feeding measurements, and numbers indicate
number of fragments collected. Diagram modified from Grottoli et al.
(2014)
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size was recorded. Size was determined using a stage
micrometer. If a consumed plankter could not be identified,
it was classified as unidentified, but size was measured.
Feeding rates were standardized to grams ash-free dry
weight of each coral fragment (plankton captured h™' g~'
dw). On August 13 and 17, 2010, the same procedure was
repeated to measure feeding rates of repeat-bleached and
control corals.

Each night, while the corals were feeding, at least two
vertical plankton tows from 4 m depth to the surface were
taken using a 0.5-m-diameter plankton net with 50-pum
mesh. The tows were performed within 10 m of the
experimental site and passed through a columnar sieve with
800-, 400-, 150-, and 50-um filters and preserved in 10 %
formalin. These size-fractioned samples were sorted and
counted in broad taxonomic groups (ostracods, shrimp,
eggs, isopods, snails, Cumacea, amphipods, polychaetes,
crab zoea, and unidentifiable).

DOC flux experiments

DOC fluxes were measured outdoors using the respective
treatment water (i.e., bleached corals received elevated
temperature, while the controls received ambient water)
under the same light used in the experiment in submerged
closed-top UV-transparent acrylic chambers according to
Levas et al. (2015). Briefly, two sets of incubations were
conducted between 1000 and 1600 h and between 2000 and
0200 h over 6 d at each time point. One chamber contained
no coral fragment and served as a control. It took 3 d to
complete the incubations for the bleached fragments (1 d
per species) and an additional 3 d to complete the incu-
bations for the non-bleached control fragments (1 d per
species).

Immediately after all chambers were sealed, two 1-L
seawater samples were taken from the flow-through tank
inflow, representing the background initial seawater DOC
concentrations. After 1.5 h of incubation, each chamber lid
and coral fragment were removed and the seawater from
each chamber was collected into individual 1-L polycar-
bonate brown bottles pre-cleaned with 10 % trace metal-
grade HCI and placed on ice. One 30-mL seawater aliquot
was taken for DOC analysis from each brown bottle.
Duplicate 30-mL seawater aliquots were taken from the
control chamber. A duplicate 30-mL aliquot was randomly
collected from one of the coral chambers. The procedure
was identical for the second set of incubations.

Seawater samples were kept frozen at —20 °C until
analysis by high-temperature catalytic oxidation (HTCO)
using a Shimadzu TOC 5050 in the Aquatic Biogeo-
chemistry Laboratory at The Ohio State University
according to Levas et al. (2015). The standard deviation of
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replicate measurements of a glucose standard was £4 %
(n = 100).

For each set of incubations, the average of the initial
DOC concentrations was corrected for potential micro-
heterotrophic and microautotrophic biases by subtracting
the average of the control DOC concentrations from the
same incubation set. The DOC flux for each fragment was
calculated as the difference between the measured DOC
concentration and the corrected initial DOC concentration
for its incubation set and standardized to the fragment
surface area as determined by the foil technique (Marsh
1970). Negative fluxes indicated a net uptake of DOC,
whereas positive fluxes indicated a net release of DOC into
the incubation chambers.

Contribution of DOC to coral respiration

The percent contribution of zooxanthellae (Symbiodinium
spp.) to animal respiration (CZAR, Muscatine et al. 1981),
contribution of zooplankton heterotrophy to animal respira-
tion (CHARy, Grottoli et al. 2006), and the total acquired
fixed carbon (CTAR, sum of CZAR and CHAR o) for the
same fragments used in this study were calculated as in
Grottoli et al. (2014). In this study, the percent contribution of
DOC to heterotrophy was also calculated (CHARpo(, Levas
et al. 2015) relative to respiration and a new comprehensive
total carbon budget (i.e., CTAR) was calculated as the sum of
CZAR, CHARZO(), and CHARDoc.

CHARpoc for each fragment was calculated as the sum
of daytime and nighttime DOC fluxes in pg C standardized
to grams ash-free dry weight hr™' (DOCy), divided by the
pg C lost via the sum of daytime and nighttime respiration
hr™' (R.), assuming a mole-to-mole relationship of O,
consumed to CO, produced during respiration (sensu
Grottoli et al. 2006). Thus, CHARpoc was calculated as:

DOC;

c

CHARpoc =

x 100 % (1)

Therefore, CHARpoc is the percent of a coral’s respi-
ration that can be met or lost through DOC uptake or
release. Negative CHARpoc values indicate a net loss of
DOC relative to respiratory demand, and positive
CHARpoc values indicate a net gain of DOC relative to
respiratory demand.

Statistical analyses

To determine whether zooplankton capture differed by size
and bleaching status, all zooplankton captured were con-
verted into relative contributions by taxon and size class.
These relative contributions were tested for differences
across species and bleaching status using a factorial
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MANOVA. No differences in the composition of zoo-
plankton taxa or size were found among species or
bleaching status for either year (ESM Table S2). Therefore,
data were pooled among experimental treatments and
analyzed with one-way ANOVAs and Tukey tests to
determine whether the proportion of captured zooplankton
varied among size classes and taxa.

Data for coral feeding rates, DOC flux measurements,
the CHARpoc, and CTAR estimates were non-normal, and
variances were heterogeneous. Therefore, the effects of
treatment (treatment, control) and time (0 and 11 months
recovery during single bleaching and 0 months for repeat
bleaching) on feeding rates, DOC fluxes, CHARpoc, and
CTAR between treatment and control corals of each spe-
cies at each time point were analyzed using the nonpara-
metric Kruskal-Wallis test using SAS version 9.2. Values
of p < 0.05 were considered significant.

Nonparametric two-way analysis of similarity (ANO-
SIM) was used to test for significant species (P. divaricata,
P. astreoides, O. faveolata) or bleaching event (single vs
repeat) effects in total DOC and CTAR. Since total DOC
encompasses both day and night DOC fluxes (see Fig. 4),
the individual day and night DOC flux values were not
used in the analysis. Since combining total DOC and
CTAR did not change the results of the ANOSIM, we do
not include those analyses here. Similarly, CTAR is com-
prised of several other measurements (see Fig. 5) that were
not included in the ANOSIM for the same reason. ANO-
SIM analyses were done using Primer6.

Results
Feeding

Overall feeding rates did not differ between treatment and
control corals of P. divaricata, P. astreoides, or O.

P. divaricata

P. astreoides

faveolata after single or repeat bleaching (Fig. 2). How-
ever, P. astreoides feeding rates were higher than those of
P. divaricata and O. faveolata (Fig. 2).

At the same time, the size and the relative abundances of
zooplankton taxa captured by corals did not differ signifi-
cantly by coral species or bleaching status in either year
(ESM Table S2a). Therefore, all feeding data were pooled
for each year to create an average assemblage composition
of zooplankton captured by size and taxa (ESM Table S2b).
Almost all (95 %) captured zooplankton were larger than
>400 pm yet constituted <20 % of zooplankton avail-
ability on the reef (Fig. 3; ESM Fig S2). Between 28 and
69 % of captured zooplankton were polychaetes, crab zoea,
or unknown, even though these plankton represent <1.5 %
of available zooplankton on the reef. Copepods represented
one of the most frequently captured zooplankton types, yet
their proportionate contribution to the zooplankton
assemblage captured by corals is still lower than their
availability on the reef. Approximately 82 % of the zoo-
plankton captured by singly bleached corals, in order of
most to least captured, was unidentifiable zooplankton,
crab zoea, polychaetes, and copepods (Fig. 3c). However,
in repeat-bleached corals, 89 % of the coral diet, in order of
most to least captured, consisted of copepods, crab zoea,
snails, and polychaetes (Fig. 3d).

DOC fluxes

Single and repeat bleaching had no significant effect on
daytime or nighttime DOC fluxes of P. divaricata com-
pared to controls (Fig. 4a, b). Overall, the net 24-h DOC
fluxes were negative in both singly bleached and control
corals due to the strong negative fluxes measured at night
(Fig. 4c). Net 24-h DOC fluxes were positive for both
treatment and control corals in the rest of the study due to
consistently neutral or positive day and night fluxes
(Fig. 4c).

O. faveolata

50
2= @ Control (b) ()
xS 40 —— Treatment
£8
3o
% 8 201
E
g8 10 FL
] - = S | B =
Single Repeat Single Repeat Single Repeat

Fig. 2 Average feeding rate (£SE) of coral fragments in control
(gray bars) and bleached treatments (white bars) after single and
repeat bleaching of a Porites divaricata, b Porites astreoides, and
¢ Orbicella faveolata. Values are standardized to coral fragment

grams dry weight per hour. Sample size for each average was 8 or 9.
No significant differences were detected between treatment and
control average pairs using Kruskal-Wallis tests
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Fig. 3 Average proportion (+ SE) of (a, b) size and (¢, d) compo-
sition of zooplankton assemblage captured by corals exposed to
ambient concentrations of zooplankton in (a, ¢) single- and (b,
d) repeat-bleached corals. Zooplankton groups: UN = unidentified,

Singly bleached P. astreoides had lower daytime DOC
fluxes than controls; this suppression of DOC flux persisted
after 11 months on the reef (Fig. 4d). In contrast, repeat
bleaching had no significant effect on daytime DOC fluxes.
At night, DOC fluxes did not differ between treatment and
control corals after single bleaching and 11 months on the
reef, but repeat-bleached corals had greater DOC fluxes
than controls (Fig. 4e). Integrated over 24 h, treated P.
astreoides took up DOC when singly bleached, but
released DOC after 11 months on the reef and immediately
after repeat bleaching (Fig. 4f). Net 24-h fluxes of the
control corals were positive throughout the study (Fig. 4f).
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OS SHEG IS SN CU AM CO PO CZ UN
Zooplankton Group

CZ = crab zoea, PO = polychaetes, CO = copepods, AM = am-
phipods, CU = Cumacea, SN = snails, IS = isopods, EG = eggs,
SH = shrimp, OS = ostracods

Like P. astreoides, singly bleached O. faveolata frag-
ments had lower daytime DOC fluxes than controls
(Fig. 4g). Nighttime DOC fluxes only differed between
treatment and control corals after 11 months on the reef
(Fig. 4h). Integrated over 24 h, treated O. faveolata had
negative DOC fluxes when singly bleached, but the con-
trols had positive fluxes (Fig. 4i). As with P. divaricata and
P. astreoides, net 24-h DOC fluxes did not differ between
repeat-bleached and control O. faveolata corals and were
positive (Fig. 4a—1).

Total DOC fluxes did not differ between species and
only mildly differed between single and repeat bleaching
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Fig. 4 Average DOC fluxes (£SE) during a, d, g daytime, b, e,
h nighttime, and ¢, f, i diurnal for control (gray bars) and treatment
(white bars) Porites divaricata (a, b, ¢), Porites astreoides (d, e, f),
and Orbicella faveolata (g, h, i) after single bleaching, 11 months on
the reef, and repeat bleaching. All averages are standardized to coral

events (two-way ANOSIM; species: R = 0.027, p =
0.082; bleaching events: R = 0.062, p = 0.01).

Percent contribution of DOC and zooplankton
to coral respiration

Singly bleached P. divaricata, P. astreoides, and O. fave-
olata met 35, 10, and 16 % of their daily metabolic demand
from DOC uptake, respectively, but control corals lost
1-10 % of their total fixed carbon through DOC release
(Fig. 5a—). However, only singly bleached O. faveolata
had significantly greater CHARpoc than the controls

Exeperiment

surface area and time. Negative fluxes indicate uptake, while positive
fluxes are release of DOC. For each species, asterisks indicate
significant differences at p < 0.05 between treatment means within a
time interval using Kruskal-Wallis tests. Sample sizes for each
average ranged from 5 to 9

(Fig. 5¢). As previously shown in Grottoli et al. (2014),
zooplankton contributed <15 % of total metabolic demand
in P. divaricata and O. faveolata irrespective of bleaching
at any time (Fig. 5d, f). However, zooplankton feeding
contributed dramatically to metabolic demand in the con-
trols (50 %) and treatment corals (140 %) following single
bleaching of P. astreoides (Fig. 5e). While the contribution
of zooplankton feeding to CTAR has already been docu-
mented (Grottoli et al. 2014) (Fig. 5g—i), the addition of
CHARpoc to CTAR from Grottoli et al. (2014) resulted in
a net increase in total CTAR in singly bleached corals and
a slight decrease in their respective controls (Fig. 5g-i).
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Fig. 5 Average (+SE) a, b, c CHARpoc, d, e, f CHARzo0, and g, h,
i CTAR in control (gray bars) and treatment (white bars) for Porites
divaricata (a, d, g), Porites astreoides (b, e, h), and Orbicella
faveolata (c, f, i) after single and repeat bleaching. CHAR o0 values
from Grottoli et al. (2014). For CTAR graphs (g, h, i), lines without

When repeat-bleached, treatment corals lost 4-30 % of
their metabolic C and control corals lost 8-10 % of their
metabolic C as DOC (Fig. 5g—i). Therefore, the addition of
CHARpoc to CTAR from Grottoli et al. (2014) resulted in
a net 5-25 % decline in the CTAR of repeat-bleached
corals and a net 5-10 % decline in the CTAR of control
corals.

CTAR significantly differed between species and
bleaching events (two-way ANOSIM; species: R = 0.048,
p = 0.014; bleaching events: R = 0.041, p = 0.032).
Pairwise tests within ANOSIM revealed that P. divaricata
had lower overall CTAR values than either P. astreoides
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Repeat Single Repeat

Experiment

error bars represent CTAR values from Grottoli et al. (2014) without
CHARpoc values. For each species, asterisks indicate significant
differences at p < 0.05 between treatment means within a time
interval using Kruskal-Wallis tests

(R =0.066, p=0.014) or O. faveolata (R = 0.071,
p = 0.015).

Discussion

Previous studies have established that some thermally
stressed corals are capable of utilizing zooplankton
heterotrophy and DOC to meet metabolic demand and
recover more quickly Grottoli et al. (2006, 2014). How-
ever, this is the first study to quantify the relative contri-
bution of each pathway to the C budget of bleached corals



Coral Reefs (2016) 35:495-506

503

and assess whether this heterotrophic plasticity was affec-
ted by increased frequency of bleaching events.

Coral feeding

Similar to Montipora capitata in Hawaii (Grottoli et al.
2006; Palardy et al. 2008), P. astreoides could completely
meet its metabolic demand from zooplankton heterotrophy
when initially bleached (Grottoli et al. 2014). However,
neither singly bleached P. divaricata nor O. faveolata
exhibited any heterotrophic plasticity (Fig. 2a, c), and they
could not meet their metabolic demand after single
bleaching (Grottoli et al. 2014). Interestingly, none of the
species studied here were able to increase their feeding
rates (Fig. 2), nor meet their metabolic demand following
repeat bleaching (Grottoli et al. 2014). This suggests that
for P. astreoides, the cumulative impact of multiple
bleaching events inhibits zooplankton heterotrophy and
corroborates previous findings by Grottoli et al. (2014) that
acclimatization and/or resilience to multiple bleaching
events is independent of zooplankton heterotrophy for all
three species.

Uniformity in zooplankton size and community com-
position captured among coral species within each year,
irrespective of bleaching status, is consistent with findings
from previous studies where the size and taxa of zoo-
plankton captured were the same regardless of coral spe-
cies, polyp size, morphology, and depth (Sebens et al.
1996; Palardy et al. 2005, 2006, 2008). As with other
Caribbean corals (Sebens et al. 1996), the vast majority of
zooplankton captured in this study were relatively large
(>400 pm) and consisted of crab zoea, polychaetes, and
copepods or were unidentified. Our data show that all three
species of coral were selectively feeding on copepods, crab
zoea, and polychaetes >400 pum independently of their
abundance on the reef (Fig. 3; ESM Fig. S2). This contrasts
with Pacific corals where ~70 % of the zooplankton
captured were much smaller (<400 pm) and primarily
amphipods, crab zoea, isopods, and larval shrimp (Palardy
et al. 2006, 2008). Thus, the size and preferred taxa of
zooplankton captured by corals appear to differ between
Pacific and Caribbean species.

Some studies suggest that climate change will reduce
zooplankton population abundances (Tada et al. 2003;
Piontkovski and Castellani 2009). This may ultimately
decrease the potential resilience of corals that increase their
heterotrophic subsidies in response to a single bleaching
event such as P. astreoides (this study) and M. capitata
(Grottoli et al. 2006; Palardy et al. 2008). However, since
none of the Caribbean species studied here displayed any
heterotrophic plasticity following repeat bleaching (Fig. 2)
and zooplankton represented <9 % of daily metabolic
demand when corals were repeat-bleached (Grottoli et al.

2014) (Fig. 5d-f), any long-term changes in reef zoo-
plankton abundance may have little to no effect on coral
resilience to repeated bleaching stress.

Daily DOC fluxes

Throughout the study, non-bleached control P. astreoides
and O. faveolata released DOC (Fig. 4f, 1), consistent with
findings from most previous studies of healthy non-
bleached coral DOC fluxes (Crossland 1987; Wild et al.
2004, 2005, 2008, 2010a, b; Tanaka et al. 2008, 2009; Haas
et al. 2010; Naumann et al. 2010; Levas et al. 2015). At the
same time, non-bleached control P. divaricata took up
DOC after the single bleaching event (Fig. 4c), just as did
healthy Pocillopora sp., Fungia sp., and Stylophora pis-
tillata (Naumann et al. 2010; Tremblay et al. 2012).
However, similar to P. astreoides and O. faveolata, non-
bleached control P. divaricata released DOC during the
remainder of the study (Fig. 4c). These findings further
show that while DOC typically represents a loss of C from
healthy corals, it can sometimes also be a source of C.
When singly bleached, all three species in this study
took up DOC (Fig. 4c, f, i). While this is consistent with
DOC uptake observed for bleached P. lobata (Levas et al.
2013), it contrasts with other findings of DOC release for
bleached Acropora sp., Porites spp., and S. pistillata (Niggl
et al. 2009; Haas et al. 2010). Naumann et al. (2010)
inferred that DOC uptake in non-bleached corals was the
result of heterotrophic microbial activity at the coral sur-
face and not due to active uptake by the coral host. Con-
versely, Haas et al. (2010) hypothesized that DOC uptake
in one species of stressed Manicinia was the result of active
DOC ingestion by the coral in direct response to temper-
ature stress. The plasticity of DOC flux observed in all
three species in this study suggests that some species of
bleached corals do take up DOC as a source of fixed C. The
ability of singly bleached P. divaricata, P. astreoides, and
0. faveolata to utilize DOC as a fixed C source could
provide these corals with a significant advantage over
species that are incapable of doing so when bleached.
After 11 months on the reef, singly bleached P.
astreoides had recovered its DOC fluxes and released DOC
(Fig. 4f). Porites divaricata DOC fluxes never differed
from controls, indicating that DOC fluxes were not sensi-
tive to bleaching in this species. However, both bleached
and non-bleached P. divaricata displayed a seasonal pat-
tern in their DOC fluxes that had not been previously
observed—both had negative DOC flux in late summer
(after single bleaching) and positive flux 11 months later in
late spring/early summer (Fig. 4c). Only one species of
healthy coral has shown significant seasonal differences in
the magnitude of DOC release (Naumann et al. 2010), but
with no change in the direction of DOC flux. These
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findings suggest that DOC fluxes in these Caribbean corals
are not only highly species specific and affected by sea-
sonality, but also driven by the bleaching status of the
coral.

Although all singly bleached corals took up DOC, all
repeat-bleached corals released DOC to the same extent as
the control corals (Fig. 4c, f, i). This suggests that repeat
bleaching altered the capacity of corals to utilize DOC as a
fixed C source. Thus, it appears that repeat-bleached corals
are unable to obtain supplemental heterotrophic nutrition
from either DOC (Fig. 4) or zooplankton feeding (Fig. 2),
making them even more dependent on either energy
reserves (Anthony et al. 2009; Grottoli et al. 2014) or shifts
in Symbiodinium type (Thornhill et al. 2006; LaJeunesse
et al. 2009; Grottoli et al. 2014) to survive annual bleaching
events.

Contribution of DOC to animal respiration
(CHARpoc)

Single bleaching

When singly bleached, P. divaricata, P. astreoides, and O.
faveolata were able to supplement their C budget by taking
up DOC as a source of heterotrophic C (Fig. 5a—c). With the
large addition of CHARpqc, the overall CTAR budget for
singly bleached P. divaricata was >100 % and no longer
significantly different from non-bleached controls corals as
was the case without CHARpoc in Grottoli et al. (2014)
(Fig. 5g). Other studies have shown that some species of
corals are capable of taking up DOC when bleached or
thermally stressed (Haas et al. 2010; Levas et al. 2013). Thus,
DOC uptake can serve as a critical mechanism for some
species to maintain their C budgets when singly bleached and
to promote recovery from bleaching.

In contrast, the significant increase in zooplankton feed-
ing (Fig. 2b) in singly bleached P. astreoides accounted for
more than 140 % of its total C budget (Grottoli et al. 2014)
(Fig. 5d), and the additional 10 % from CHARpq served to
further magnify its C budget surplus (Fig. 5g). This large
CTAR surplus most likely played a role in the rapid recovery
of this coral from single bleaching (Grottoli et al. 2014).
Similar dramatic increases in zooplankton feeding have also
been observed in singly bleached Hawaiian M. capitata and
resulted in CTAR < 100 % (Grottoli et al. 2006; Palardy
et al. 2008) accompanied by rapid recovery of energy
reserves, and maintenance of normal spawning rates the year
following bleaching (Cox 2007). Therefore, increased zoo-
plankton feeding is a strong mechanism for some species to
maintain their C budgets when singly bleached and to pro-
mote recovery from bleaching.

Finally, singly bleached O. faveolata had low feeding
rates (Fig. 3c) and were not able to make up for the C
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budget deficit through feeding on zooplankton (Fig. 5f) nor
by taking up DOC as a fixed C source (Fig. 5c, i). Even
were this species to gain a potential 8 % more CHAR from
eating pico- and nano-plankton (Tremblay et al. 2012) or
other sources such as sediment organic matter and partic-
ulate organic matter that were not measured here and may
play a vital role in coral heterotrophy, it would not be
sufficient additional heterotrophic C to bring its CTAR up
to 100 % and meet daily metabolic demand. Of the three
species, O. faveolata was also the only species that did not
recover calcification rates and had increased levels of the
Symbiodinium trenchii (ITS-type Dla) within 6 weeks
following single bleaching (Grottoli et al. 2014). Thus,
heterotrophy by O. faveolata cannot compensate for
reduced CTAR due to dramatic decreases in photosynthesis
during single bleaching (Grottoli et al. 2014). As such,
prolonged periods of a deficient C budget could put this
species at particular risk during long bleaching events.

Irrespective of the total C obtained by singly bleached
corals, DOC represents a significant source of fixed carbon
to these corals (Fig. 5a—c). CHARpoc values ranged from
11 to 36 % and represented a greater source of hetero-
trophic carbon to singly bleached P. divaricata and O.
faveolata than did zooplankton feeding (Fig. 5d—f). Alter-
ations to the quantity, composition, and quality of coral
reef DOC pools by climate change, as predicted by Brocke
et al. (2015), could impact those corals that rely on DOC as
a C source when singly bleached.

Repeat bleaching

Interestingly, all three species of corals lost DOC when
repeat-bleached; CHARpoc losses were greatest in P.
astreoides and least in P. divaricata (Fig. 4c, f, i). These
DOC loses exacerbated the C limitation already caused by
significant declines in photosynthesis (Grottoli et al. 2014)
and resulted in a decline in the CTAR of all three species.
None of the repeat-bleached corals were able to meet
metabolic demand (CTAR < 100 %) (Fig. 5g—i). Declines
in CTAR values most likely contributed to the dramatic
declines in energy reserves and calcification in both repeat-
bleached P. astreoides and O. faveolata (Grottoli et al.
2014). Even though P. divaricata had the lowest CTAR
values of all three species, the values did not differ between
repeat-bleached and control fragments (Fig. 5g). In addi-
tion, this species had lower chlorophyll a levels after repeat
bleaching (Schoepf et al. 2014) but was otherwise unaf-
fected and maintained its endosymbiont density, high
levels of energy reserves, and calcification rates (Grottoli
et al. 2014), suggesting that P. divaricata obtained addi-
tional fixed C from a source that was not quantified in this
study (possibly particulate organic carbon <50 pm). Cou-
pled with the shuffling of its Symbiodinium (Grottoli et al.
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2014) and the smallest CHARpoc losses of all three spe-
cies, P. divaricata appears to have several physiological
traits that facilitate acclimatization to repeated bleaching
stress. However, prolonged periods of a C deficiency could
put species like P. astreoides and O. faveolata at particular
risk of death in the future if bleaching events occur annu-
ally and are longer in duration. Overall, these findings add
to the growing body of evidence that annual bleaching may
lead to a decline in both P. astreoides and O. faveolata
abundance, but that corals like P. divaricata could rapidly
acclimatize and persist. While previous studies have sug-
gested that some corals can acclimatize to bleaching events
separated by several years (Maynard et al. 2008; Middle-
brook et al. 2008; Bellantuono et al. 2012; Guest et al.
2012; McClanahan and Muthiga 2014), they have not shed
light on coral responses to annual bleaching. This study is
the first to show that at least one Caribbean coral could
rapidly acclimate to annual bleaching, but that other spe-
cies may be at risk of significant decline in the face of
annual bleaching stress.

Implications

Our findings showed that DOC and zooplankton can rep-
resent significant sources of organic C for some bleached
and healthy Caribbean corals. However, the proportionate
contribution of DOC and zooplankton varied with bleach-
ing status, bleaching frequency, seasons, and among spe-
cies. While DOC was a critical source of organic C for
singly bleached P. divaricata and zooplankton for singly
bleached P. astreoides, neither contributed meaningfully to
the C budget of repeat-bleached corals in any of the three
species. In fact, DOC losses resulted in an increased C
deficiency for repeat-bleached corals rather than mitigating
resource limitation. This suggests that the capacity for
heterotrophic plasticity (i.e., DOC uptake and zooplankton
feeding) in corals is compromised under annual bleaching
stress and that any climate change-driven changes in the
quality or quantity of reef seawater DOC or zooplankton
(Tada et al. 2003; Piontkovski and Castellani 2009; Brocke
et al. 2015) are therefore not likely to have an impact on
coral resilience to annual bleaching. This is in direct con-
trast to single isolated bleaching events where both DOC
and zooplankton feeding can be vital to maintaining coral
C budgets and promoting recovery (Grottoli et al. 2006,
2014; Palardy et al. 2008; Levas et al. 2013). Instead, other
physiological variables such as energy reserves (Rodrigues
and Grottoli 2007; Anthony et al. 2009; Grottoli et al.
2014) and Symbiodinium shuffling (Thornhill et al. 2006;
LaJeunesse et al. 2009; Grottoli et al. 2014) are more likely
to dictate which species or populations of species are
expected to survive and persist in a future with annual
bleaching.
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