

1 Strange metal behavior in a pure ferromagnetic Kondo lattice

2 Bin Shen,^{1,*} Yongjun Zhang,^{1,*} Yashar Komijani,^{2,*} Michael Nicklas,³ Robert
3 Borth,³ An Wang,¹ Ye Chen,¹ Zhiyong Nie,¹ Rui Li,¹ Xin Lu,¹ Hanoh Lee,¹
4 Michael Smidman,¹ Frank Steglich,^{1,3} Piers Coleman,^{2,4,†} and Huiqiu Yuan^{1,5,‡}

5 *¹Center for Correlated Matter and Department of Physics,
6 Zhejiang University, Hangzhou 310058, China*

7 *²Department of Physics and Astronomy,
8 Rutgers University, Piscataway, New Jersey 08854, USA*

9 *³Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany*

10 *⁴Hubbard Theory Consortium, Department of Physics, Royal Holloway,
11 University of London, Egham, Surrey TW20 0EX, UK*

12 *⁵Collaborative Innovation Center of Advanced Microstructures,
13 Nanjing University, Nanjing, 210093, China*

14 (Dated: January 13, 2020)

15 The strange metal phases found to develop in a wide range of materials near a
16 quantum critical point (QCP), have posed a long-standing mystery. The frequent as-
17 sociation of strange metals with unconventional superconductivity and antiferromag-
18 netic QCPs [1–4] has led to a belief that they are highly entangled quantum states [5].
19 Ferromagnets, by contrast are regarded as an unlikely setting for strange metals, for
20 they are weakly entangled and their QCPs are often interrupted by competing phases
21 or first order phase transitions [6–8]. Here, we provide compelling evidence that the
22 stoichiometric heavy fermion ferromagnet CeRh_6Ge_4 [9, 10] becomes a strange metal
23 at a pressure-induced QCP: specific heat and resistivity measurements demonstrate
24 that the FM transition is continuously suppressed to zero temperature revealing a
25 strange metal phase. We argue that strong magnetic anisotropy plays a key role in
26 this process, injecting entanglement, in the form of triplet resonating valence bonds
27 (tRVBs) into the ordered ferromagnet. We show that the singular transformation
28 from tRVBs into Kondo singlets that occurs at the QCP causes a jump in the Fermi
29 surface volume: a key driver of strange metallic behavior. Our results open up a new
30 direction for research into FM quantum criticality, while also establishing an impor-
31 tant new setting for the strange metal problem. Most importantly, strange metallic
32 behavior at a FM quantum critical point suggests that it is quantum entanglement
33 rather than the destruction of antiferromagnetism that is the common driver of the
34 many varied examples of strange metallic behavior.

35 Quantum materials augmented by strong electronic correlations are promising for appli-
36 cations, but the electronic interactions that empower these materials challenge our under-
37 standing. One of the most pressing questions in strongly correlated electronic systems is the
38 origin of the strange metallic behavior which develops at a quantum critical phase transi-
39 tion between a delocalized Fermi liquid (FL), and a localized or partially localized electronic
40 phase. A prime example is the strange metal (SM) phase which develops in the normal state
41 of cuprate superconductors at optimal doping, characterized by a robust linear resistivity
42 and a logarithmic temperature dependence of the specific heat coefficient [2, 3]; similar be-
43 havior is also observed in various quantum critical heavy electron materials. The underlying

* These authors contributed equally to this work

† coleman@physics.rutgers.edu

‡ hqyuan@zju.edu.cn

44 universality of SM behavior that develops in the vicinity of QCPs is currently a subject of
45 intense theoretical interest. One of the valuable ways of identifying the key ingredients of
46 SM behavior is through experiments that explore new classes of quantum materials.

47 Kondo lattice systems with periodically arranged atoms hosting localized *f*-electrons
48 show a rich variety of properties, due to competition between magnetic interactions among
49 local moments, and their “Kondo” screening by conduction electrons [1]. The small energy
50 scales of these interactions leads to highly tunable ground states, which is ideal for studying
51 SM behavior. In a number of systems, the tuning of the aforementioned competition leads
52 to a continuous suppression of antiferromagnetic (AFM) order at a quantum critical point
53 (QCP)[4]. The outcome when a ferromagnetic (FM) transition is suppressed by a non-
54 thermal tuning parameter is generally different [7]. FM QCPs are often avoided by the
55 occurrence of a first order transition [11], the intersection of AFM phases [12, 13], or a
56 Kondo cluster glass phase [14]. This raises the question of whether AFM correlations are
57 crucial for realizing SM behavior.

58 Early theoretical studies of itinerant ferromagnets [6, 8] in the framework of Hertz-Millis-
59 Moriya (HMM) theory [15] predicted that quantum phase transitions in these materials
60 are inevitably driven first order by interactions between the critically scattered electron
61 fields, thereby interrupting the development of quantum criticality. However, the recent
62 discovery of a FM QCP in the heavy fermion system YbNi_4P_2 tuned by chemical pressure
63 [16], raised the fascinating possibility that the FM QCP in these systems is governed by a
64 different universality class, involving a break-down of Kondo screening [17–19]. The negative
65 pressure required to reach the FM QCP of YbNi_4P_2 necessarily involves chemical doping
66 of the stoichiometric compound, which introduces disorder, complicating the theoretical
67 interpretation. Disorder suppresses first order transitions [6], as in the case of ZrZn_2 , where
68 early experiments suggested the presence of a FM QCP [20], but improved sample quality led
69 to a first order transition [21]. Thus while the experimental data on YbNi_4P_2 suggests the
70 existence of FM QCPs, a definitive proof of such behavior in a quantum ferromagnet requires
71 utilizing hydrostatic, rather than chemical pressure. Ce-based heavy fermion ferromagnets,
72 where pressure can cleanly tune the system to a QCP, are ideally suited for such studies.

73 CeRh_6Ge_4 is a heavy fermion ferromagnet with a Curie temperature $T_C = 2.5$ K [10].
74 The crystal structure (Fig. 1a) consists of triangular lattices of Ce stacked along the *c*-axis
75 [9]. The Ce-Ce separation is much smaller along the *c*-axis (3.86 Å) than in the triangular

76 planes (7.15 Å), suggesting a quasi-one-dimensional nature to the magnetism. Under hy-
77 drostatic pressure, we find that the FM transition of CeRh₆Ge₄ is smoothly suppressed to
78 zero temperature, reaching a QCP at $p_c = 0.8$ GPa.

79 The temperature dependence of the resistivity $\rho(T)$ and specific heat (as $C(T)/T$) of
80 single crystalline CeRh₆Ge₄ both show transition anomalies at around $T_C \approx 2.5$ K (Figs. 1b
81 and 1c). When magnetic fields are applied within the *ab*-plane, the transition becomes a
82 broadened crossover, consistent with FM ordering. The low temperature magnetization (as
83 M/H) is shown in Fig 1d. Measurements up to 300 K demonstrate that the magnetic easy
84 direction lies within the *ab*-plane (Fig. S1). On cooling, just above T_C , the in-plane M/H
85 undergoes a marked enhancement, typical of FM order. For fields along the *c*-axis, M/H
86 abruptly increases at the transition. Magnetization loops below T_C for in-plane fields show
87 hysteresis characteristic of FM materials (Fig. 1e). $M(H)$ increases rapidly at low fields,
88 reaching $0.28\mu_B/\text{Ce}$ for $\mu_0H = 0.017$ T at 0.44 K. Upon further increasing the field, there is
89 no hysteresis between up and down field-sweeps, and $M(H)$ changes slowly, indicating that
90 $0.28\mu_B/\text{Ce}$ corresponds to the ordered moment (Fig. S1).

91 The zero-field resistivity and specific heat coefficient at various pressures are displayed
92 in Figs. 2a and 2b, respectively (see also Figs. S3 and S4). The evolution of the properties
93 with pressure and the resulting $T - p$ phase diagram are presented in Figs. 3a and 3b. At T_C
94 the resistivity crosses over from a T -linear behavior at high temperature to a T^2 behavior
95 at low temperatures (Fig. S3), where $C(T)/T$ becomes temperature independent. The FM
96 transition, which is suppressed almost linearly by pressure, cannot be detected anymore
97 beyond $p_c = 0.8$ GPa. In the paramagnetic (PM) phase above p_c , the aforementioned low- T
98 FL properties are again observed (Figs. S3 and S4). The temperature at which this FL
99 behavior onsets (T_{FL}) increases almost linearly with pressure (Fig. 3b). Both the value of
100 the low-temperature plateau in $C(T)/T$ and the A -coefficient in $\rho(T) = \rho_0 + AT^2$ show
101 an incipient divergence when approaching p_c from the FM or PM side (Fig. 3a). On both
102 Fermi-liquid sides of the phase diagram, the Kadowaki-Woods ratio A/γ^2 is 1.49×10^{-6}
103 (ambient pressure) and $1.33 \times 10^{-6}\mu\Omega \text{ cm mol}^2 \text{ K}^2 \text{ mJ}^{-2}$ (1.12 GPa), which are close to the
104 value for a 4*f*-electron ground state degeneracy $N = 4$.

105 At $p_c = 0.8$ GPa, the resistivity is strictly linear in temperature over two decades down to
106 at least 40 mK, while $C(T)/T \propto \log(T^*/T)$ over nearly a decade with $T^* = 2.3$ K (T^* is a
107 characteristic temperature of the spin fluctuation energies [4]), (Fig. 2c). At 60 mK, $C(T)/T$

108 reaches a very large value of $1.1 \text{ J mol}^{-1}\text{K}^{-2}$. Between the FM and PM phases, there is a fan-
109 shaped SM region with properties similar to canonical AFM quantum critical systems such
110 as $\text{CeCu}_{6-x}\text{Au}_x$ [22] and YbRh_2Si_2 [23]. The pressure dependences of the A -coefficient and
111 the Sommerfeld coefficient γ (Fig. 3a) follow the residual resistivity ρ_0 , which also develops
112 a maximum at p_c , reflecting the presence of quantum critical fluctuations (Fig. S3).

113 At first sight, the strange metal properties of CeRh_6Ge_4 might be attributed to itiner-
114 ant quantum criticality, for aside from the absence of a first order phase transition, HMM
115 theory predicts a logarithmic Sommerfeld coefficient and a T -linear electron scattering rate,
116 naively equivalent to a T -linear resistivity [4]. However, the scattering off long-wavelength
117 FM fluctuations does not relax electron currents, and once this effect is included, a $\rho \sim T^{5/3}$
118 dependence of the resistivity is expected [4, 11]. A T -linear resistivity suggests large angle
119 scattering, a feature typical of *local* fluctuations involving a wide range of momenta. More-
120 over, the strength of the logarithmic divergence in the specific heat anomaly, determined
121 by the fit $C/T \sim \frac{S_0}{T_*} \log(T_*/T)$, shows that a large fraction of the local moment entropy,
122 $S_0 \sim \frac{1}{10}R \log(2)$ is released over a temperature scale T^* [4]. In contrast, the itinerant HMM
123 theory predicts $S_0 \propto (q_0/q_F)^3$ where q_0 is the momentum cutoff of the intinerant magnetic
124 fluctuations (supplementary materials). Applying this theory to the data then requires
125 $q_0 \sim q_F$ which, by Fourier's theorem, implies that the critical spin fluctuations are local.
126 Together with the absence of a first order phase transition, these features provide strong
127 evidence in favor of a local quantum critical point.

128 In AFM heavy electron metals, the development of a T -linear resistivity at the lowest
129 temperatures coincides with an abrupt jump in the Fermi surface volume, accompanied by
130 singular charge fluctuations [24–26]. It has been argued that such a jump in the Fermi
131 surface is caused by an abrupt transformation in the pattern of spin entanglement [5], as
132 the Kondo singlets transform into resonating valence bonds (RVBs) in the spin fluid. This
133 leaves us with a puzzle, for the spins in a simple ferromagnet are not entangled, which would
134 imply a *continuous* evolution of the Fermi surface [27]. As shown below, a clue to unravel
135 this puzzle comes from the unusual aspect that CeRh_6Ge_4 develops a SM phase at a FM
136 QCP, similar to what was observed for the non-stoichiometric material $\text{YbNi}_4\text{P}_{2-x}\text{As}_x$ [16].

137 Apart from the quasi-1D nature, a common feature of these two materials is an easy-plane
138 anisotropy. In such systems, the magnetic order parameter is no longer conserved and will
139 develop marked zero-point fluctuations, likely responsible for the severely reduced magnetic

140 moment. This can be seen clearly in a two-site example where the magnetization is along
 141 the x -direction. The ordered phase is a product state which can be expanded in terms of
 142 triplets,

$$\left(\frac{|\uparrow_i\rangle + |\downarrow_i\rangle}{\sqrt{2}}\right)\left(\frac{|\uparrow_j\rangle + |\downarrow_j\rangle}{\sqrt{2}}\right) = \frac{|\uparrow_i\uparrow_j\rangle + |\downarrow_i\downarrow_j\rangle}{2} + \frac{1}{\sqrt{2}}\left(\frac{|\uparrow_i\downarrow_j\rangle + |\downarrow_i\uparrow_j\rangle}{\sqrt{2}}\right). \quad (1)$$

143 An easy-plane anisotropy projects out the equal-spin pairs on the right-hand-side, creating
 144 a triplet valence bond. In a lattice, the same effect creates a quantum superposition of
 145 triplet pairs, forming a triplet-RVB (tRVB) state, written schematically $P_G |FM\rangle = |tRVB\rangle$.
 146 Hence, an easy-plane anisotropy in FM systems plays the same role as magnetic frustration
 147 in AFM systems, injecting a macroscopic entanglement into the ground state. This leads
 148 us to hypothesize that the SM behavior at the FM QCP has its origins in the magnetic
 149 anisotropy.

150 To test these ideas, we have studied a simplified Kondo lattice model with nearest neighbor
 151 FM couplings with an easy-plane anisotropy of the form $-J_{xy}^{ij}(S_i^x S_j^x + S_i^y S_j^y) - J_z^{ij} S_i^z S_j^z$
 152 on a tetragonal lattice, consisting of spin chains along the c -direction with weak inter-chain
 153 couplings (see Supplementary Material). When the chains are weakly coupled, our simulations
 154 indicate the development of a second order phase transition, while at higher couplings
 155 a first order phase transition develops. This feature is in agreement with the current ob-
 156 servations of FM QCPs developing in quasi-1D systems. We assume $J_{xy} > J_z$ which has a
 157 dual effect: it converts the model into an easy plane $x - y$ ferromagnet, and generates triplet
 158 resonating valence bonds (tRVB). Also, the anisotropy changes the magnetic dispersion at
 159 low momenta from quadratic to linear (see Supplementary Material). By switching on the
 160 Kondo screening [26–28] we can then tune the model to the QCP.

161 Our calculations take advantage of a Schwinger boson representation of the magnetic
 162 moments which allows us to treat the magnetic and Kondo-screened parts of the phase dia-
 163 gram, and the QCP that links them together (Fig. 3c). The key feature of this approach is
 164 a representation of the spins as bosonic spinons, permitting a dynamical description of the
 165 Kondo effect in which neutral local moments fractionalize into negatively charged electrons,
 166 leaving behind positively charged Kondo singlets. In the ordered phase, a majority of the
 167 moments are aligned, while some form tRVB pairs with their neighbors. In an isotropic
 168 ferromagnet, the continuous growth of magnetization away from the QCP, indicates a con-
 169 tinuous change in the fraction of Kondo screened moments, or a continuous evolution of

170 the Fermi surface. However, when the moments entangled within tRVB states are abruptly
171 released into the Fermi sea, we find (Supplementary text) that there is a jump in the Fermi
172 surface volume. The resulting QCP is a plasma, in which the Kondo singlets, the electrons
173 and the RVB bonds are in a state of critical dynamical equilibrium, giving rise to singular
174 spin and charge fluctuations as well as a logarithmic in temperature specific heat coefficient
175 (Supplementary text), in agreement with our experimental results.

176 Our findings of a pressure-induced QCP in CeRh_6Ge_4 demonstrate that a FM system can
177 develop a continuous quantum phase transition in the absence of disorder, a result that at
178 present, can only be understood in the framework of local quantum criticality, where Kondo
179 screening is suppressed to zero at the QCP. The observation of SM behavior at finite tem-
180 peratures above the QCP with a T -linear resistivity and a specific heat coefficient that is
181 logarithmically divergent in T , now expands the scope of this phenomenon to encompass fer-
182 romagnets. Central to the SM behavior in a ferromagnet is a small abrupt jump in the Fermi
183 surface volume. An experimental observation of such a jump would be an unambiguous test
184 of Kondo breakdown, as there is no unit-cell doubling at a FM phase transition.

185 Finally, spin-triplet superconducting pairing states have been proposed in FM heavy-
186 fermion systems, such as UGe_2 [29] and URhGe [30]. While there is no sign of superconduc-
187 tivity in CeRh_6Ge_4 down to 40mK, it is very likely that at sufficiently low temperatures, the
188 tRVB states that are already present in the critical regime will migrate into the conduction
189 band as a triplet superconducting condensate.

190 **Methods**

191 **Crystal growth and characterization.** Needle-like shaped single crystals of CeRh₆Ge₄
192 were grown using a Bi flux [9]. The elements were combined in a molar ratio of Ce:Rh:Ge:Bi
193 of 1:6:4:150, and sealed in an evacuated quartz tube. The tube was heated and held at 1100°C
194 for 10 hours, before being cooled at 3°C/hour to 500°C. The tube was then removed, and
195 centrifuged to remove the excess Bi. The orientation of the crystals was determined using
196 single crystal x-ray diffraction, and the chemical composition was confirmed using energy
197 dispersive x-ray spectroscopy. The samples measured under pressure had typical values of
198 $\rho_0 \approx 1.6 \mu\Omega \text{ cm}$ and $RRR = \rho(300 \text{ K})/\rho(0.3 \text{ K}) \approx 45$ (Fig. S2).

199 **Physical property measurements.** Magnetization measurements were performed using
200 a Quantum Design Magnetic Property Measurement System (MPMS). The heat capacity
201 at ambient pressure was measured down to 0.4 K, in applied magnetic fields up to 14 T,
202 using a Quantum Design Physical Property Measurement (PPMS) system with a ³He insert,
203 utilizing the standard relaxation method. Specific heat experiments under pressure were
204 carried out using a CuBe piston-cylinder-type pressure cell [31]. The sample and a piece of
205 lead as pressure gauge were put in a teflon capsule together with Flouinert serving as liquid
206 pressure transmitting medium. The capsule was then mounted inside the pressure cell. The
207 heat capacity of the whole assembly was determined by a compensated heat-pulse method
208 in a dilution refrigerator (Oxford Instruments) down to temperatures of 60 mK. To obtain
209 the heat capacity of the sample the addenda has been recorded in a separate measurement
210 run and subtracted for each pressure from the data obtained of the whole setup including
211 the sample. The pressure inside the cell was determined by the pressure-induced shift of the
212 superconducting transition temperature of the piece of lead measured in a Quantum Design
213 MPMS. The magnetic field was removed in an oscillating fashion to reduce the remanent
214 field (< 3 Oe) of the superconducting magnet. The remaining effect on the superconducting
215 transition temperature was compensated for by determining the shift of the superconducting
216 transition of the lead inside the pressure cell with respect to a reference piece fixed to the
217 outside. Electrical transport and ac calorimetry measurements under pressure were carried
218 out in a piston-cylinder clamp-type cell with Daphne oil 7373 as a pressure transmitting
219 medium. The pressure was also determined from the superconducting transition of Pb. The
220 resistivity was measured using the four contact configuration between 0.05 K and 300 K.
221 The measurements between 1.9 K and 0.4 K were performed in a ³He refrigerator.

222 **Data availability** All the data supporting the findings are available from the corresponding
223 author upon reasonable request.

224

225 **Acknowledgments** We would like to thank Cornelius Krellner and Manuel Brando for
226 fruitful discussions, Guanghan Cao and Zhicheng Wang for assisting with ^3He -SQUID mea-
227 surements, and Xiaoyan Xiao for assistance with single crystal x-ray diffraction. This
228 work was supported by the National Key R&D Program of China (No. 2017YFA0303100,
229 No. 2016YFA0300202), the National Natural Science Foundation of China (No. U1632275),
230 the Science Challenge Project of China (No. TZ2016004) and the National Science Founda-
231 tion of the United States of America, grant DMR-1830707.

232

233 **Additional information** Correspondence and requests for materials should be addressed
234 to P. Coleman (coleman@physics.rutgers.edu) or H. Q. Yuan (hqyuan@zju.edu.cn)

235

236 **Author contributions** The project was concieved by H. Y.. The crystals were grown
237 by Y. Z. and H. L., and measurements were performed by B. S., Y. Z., M. N., R. B., A.
238 W., Y. C., Z. N., R. L., and X. L.. The experimental data were analyzed by B. S., Y. Z.,
239 M. N., H. L., M. S., F. S. and H. Y.. Theoretical calculations were performed by Y. K. and
240 P. C.. The manuscript were written by Y. K., M. S., F. S., P. C., and H. Y. All authors
241 participated in discussions.

242

243 **Competing financial interests** The authors declare no competing financial interests.

244 [1] Gegenwart, P., Si, Q. & Steglich, F. Quantum criticality in heavy-fermion metals. *Nature*
245 *Phys.* **4**, 186–197 (2008). URL <http://dx.doi.org/10.1038/nphys892>.

246 [2] Daou, R. *et al.* Linear temperature dependence of resistivity and change in the Fermi surface
247 at the pseudogap critical point of a high- T_c superconductor. *Nature Physics* **5**, 31 (2008).
248 URL <https://doi.org/10.1038/nphys1109>.

249 [3] Legros, A. *et al.* Universal T -linear resistivity and Planckian dissipation in overdoped cuprates.
250 *Nature Physics* **15**, 142–147 (2019). URL <https://doi.org/10.1038/s41567-018-0334-2>.

251 [4] Stewart, G. R. Non-Fermi-liquid behavior in d - and f -electron metals. *Rev. Mod. Phys.* **73**,
252 797–855 (2001). URL <https://link.aps.org/doi/10.1103/RevModPhys.73.797>.

253 [5] Senthil, T., Vojta, M. & Sachdev, S. Weak magnetism and non-Fermi liquids near heavy-
254 fermion critical points. *Phys. Rev. B* **69**, 035111 (2004). URL <https://link.aps.org/doi/10.1103/PhysRevB.69.035111>.

255 [6] Belitz, D., Kirkpatrick, T. R. & Vojta, T. First order transitions and multicritical points in
256 weak itinerant ferromagnets. *Phys. Rev. Lett.* **82**, 4707–4710 (1999). URL <https://link.aps.org/doi/10.1103/PhysRevLett.82.4707>.

257 [7] Brando, M., Belitz, D., Grosche, F. M. & Kirkpatrick, T. R. Metallic quantum ferromagnets.
258 *Rev. Mod. Phys.* **88**, 1–71 (2016). URL <http://link.aps.org/doi/10.1103/RevModPhys.88.025006>.

259 [8] Chubukov, A. V., Pépin, C. & Rech, J. Instability of the quantum-critical point of itinerant
260 ferromagnets. *Phys. Rev. Lett.* **92**, 147003 (2004). URL <https://link.aps.org/doi/10.1103/PhysRevLett.92.147003>.

261 [9] Vossinkel, D., Niehaus, O., Rodewald, U. C. & Pöttgen, R. Bismuth flux growth of CeRh_6Ge_4
262 and CeRh_2Ge_2 single crystals. *Zeitschrift für Naturforschung B* **67**, 1241–1247 (2012). URL
263 <https://doi.org/10.5560/znb.2012-0265>.

264 [10] Matsuoka, E. *et al.* Ferromagnetic transition at 2.5K in the hexagonal Kondo-lattice compound
265 CeRh_6Ge_4 . *J. Phys. Soc. Jpn.* **84**, 073704 (2015). URL <http://dx.doi.org/10.7566/JPSJ.84.073704>.

266 [11] Pfleiderer, C., McMullan, G. J., Julian, S. R. & Lonzarich, G. G. Magnetic quantum phase
267 transition in MnSi under hydrostatic pressure. *Phys. Rev. B* **55**, 8330 (1997). URL <https://link.aps.org/doi/10.1103/PhysRevB.55.8330>.

268 [12] Süllow, S., Aronson, M. C., Rainford, B. D. & Haen, P. Doniach phase diagram, revisited:
269 From ferromagnet to Fermi liquid in pressurized CeRu_2Ge_2 . *Phys. Rev. Lett.* **82**, 2963–2966
270 (1999). URL <https://link.aps.org/doi/10.1103/PhysRevLett.82.2963>.

271 [13] Brando, M. *et al.* Logarithmic Fermi-liquid breakdown in NbFe_2 . *Phys. Rev. Lett.* **101**, 026401
272 (2008). URL <https://link.aps.org/doi/10.1103/PhysRevLett.101.026401>.

273 [14] Westerkamp, T. *et al.* Kondo-cluster-glass state near a ferromagnetic quantum phase transi-
274 tion. *Phys. Rev. Lett.* **102**, 026404 (2009). URL <http://link.aps.org/doi/10.1103/PhysRevLett.102.206404>.

282 [15] Sachdev, S. *Quantum Phase Transitions* (Cambridge University Press, 2011), 2 edn. URL
283 <https://doi.org/10.1017/CBO9780511973765>.

284 [16] Steppke, A. *et al.* Ferromagnetic quantum critical point in the heavy-fermion metal
285 $\text{YbNi}_4(\text{P}_{1-x}\text{As}_x)_2$. *Science* **339**, 933–936 (2013). URL <https://doi.org/10.1126/science.1230583>.

287 [17] Custers, J. *et al.* The break-up of heavy electrons at a quantum critical point. *Nature* **424**,
288 524–527 (2003). URL <http://dx.doi.org/10.1038/nature01774>.

289 [18] Schröder, A. *et al.* Onset of antiferromagnetism in heavy-fermion metals. *Nature* **407**, 351–355
290 (2000). URL <http://dx.doi.org/10.1038/35030039>.

291 [19] Yamamoto, S. J. & Si, Q. Metallic ferromagnetism in the Kondo lattice. *Proceedings of
292 the National Academy of Sciences* **107**, 15704–15707 (2010). URL [https://www.pnas.org/content/107/36/15704](https://www.pnas.org/
293 content/107/36/15704).

294 [20] Smith, T. F., Mydosh, J. A. & Wohlfarth, E. P. Destruction of ferromagnetism in ZrZn_2 at
295 high pressure. *Phys. Rev. Lett.* **27**, 1732–1735 (1971). URL [https://link.aps.org/doi/10.1103/PhysRevLett.27.1732](https://link.aps.org/doi/10.
296 1103/PhysRevLett.27.1732).

297 [21] Uhlarz, M., Pfleiderer, C. & Hayden, S. M. Quantum phase transitions in the itinerant
298 ferromagnet ZrZn_2 . *Phys. Rev. Lett.* **93**, 256404 (2004). URL [https://link.aps.org/doi/10.1103/PhysRevLett.93.256404](https://link.aps.org/doi/
299 10.1103/PhysRevLett.93.256404).

300 [22] Löhneysen, H. v. *et al.* Non-Fermi-liquid behavior in a heavy-fermion alloy at a magnetic
301 instability. *Phys. Rev. Lett.* **72**, 3262–3265 (1994). URL [https://link.aps.org/doi/10.1103/PhysRevLett.72.3262](https://link.aps.org/doi/10.
302 1103/PhysRevLett.72.3262).

303 [23] Trovarelli, O. *et al.* YbRh_2Si_2 : Pronounced non-Fermi-liquid effects above a low-lying mag-
304 netic phase transition. *Phys. Rev. Lett.* **85**, 626–629 (2000). URL [https://doi.org/10.1103/PhysRevLett.85.626](https://doi.org/10.
305 1103/PhysRevLett.85.626).

306 [24] Paschen, S. *et al.* Hall-effect evolution across a heavy-fermion quantum critical point. *Nature*
307 **432**, 881–885 (2004). URL <http://dx.doi.org/nature10.1038/03129>.

308 [25] Shishido, H., Settai, R., Harima, H. & Ōnuki, Y. A drastic change of the Fermi surface at a
309 critical pressure in CeRhIn_5 : dHvA study under pressure. *J. Phys. Soc. Jpn.* **74**, 1103–1106
310 (2005). URL <https://doi.org/10.1143/JPSJ.74.1103>.

311 [26] Komijani, Y. & Coleman, P. Emergent critical charge fluctuations at the Kondo breakdown
312 of heavy fermions. *Phys. Rev. Lett.* **122**, 217001 (2019). URL <https://link.aps.org/doi/>

313 [10.1103/PhysRevLett.122.217001](https://doi.org/10.1103/PhysRevLett.122.217001).

314 [27] Komijani, Y. & Coleman, P. Model for a ferromagnetic quantum critical point in a 1D Kondo
315 lattice. *Phys. Rev. Lett.* **120**, 157206 (2018). URL <https://link.aps.org/doi/10.1103/PhysRevLett.120.157206>.

316

317 [28] Wang, J., Chang, Y.-Y., Mou, C.-Y., Kirchner, S. & Chung, C.-H. Quantum phase transition
318 in a two-dimensional Kondo-Heisenberg model: a Schwinger-boson large-N approach. *ArXiv:*
319 [1901.10411](https://arxiv.org/abs/1901.10411) (2019).

320 [29] Saxena, S. S. *et al.* Superconductivity on the border of itinerant-electron ferromagnetism in
321 UGe₂. *Nature* **406**, 587–592 (2000). URL <https://doi.org/10.1038/35020500>.

322 [30] Lévy, F., Sheikin, I., Grenier, B. & Huxley, A. D. Magnetic field-induced superconductivity
323 in the ferromagnet URhGe. *Science* **309**, 1343 (2005). URL <http://science.sciencemag.org/content/309/5739/1343.abstract>.

324

325 [31] Nicklas, M. & Avella, A. In Mancini, F. (ed.) *Strongly Correlated Systems - Experimental*
326 *Techniques*, Springer Series in Solid-State Sciences.

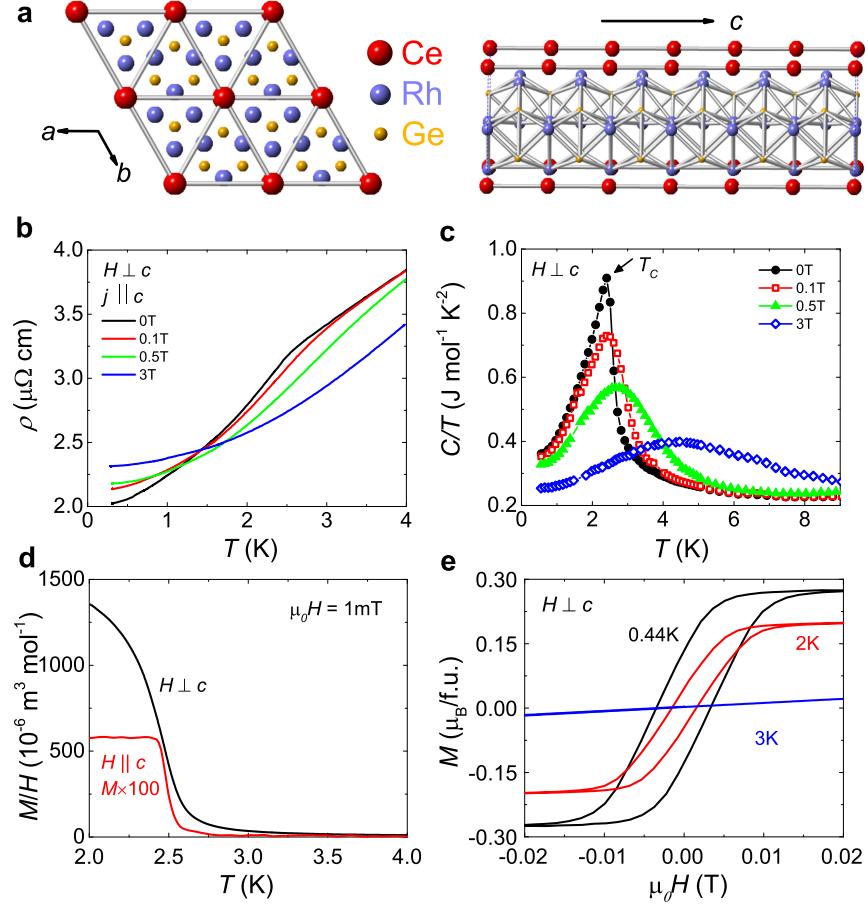
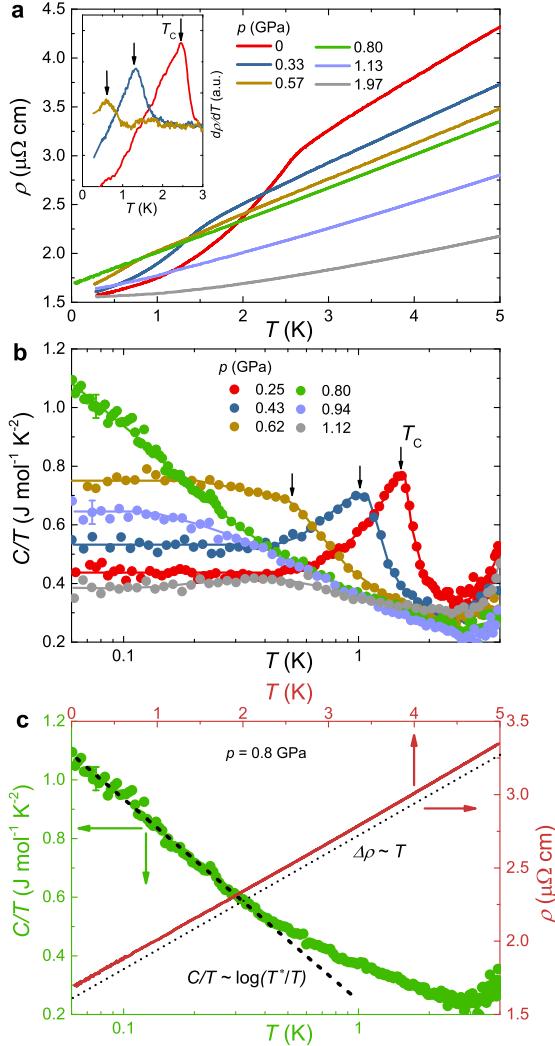
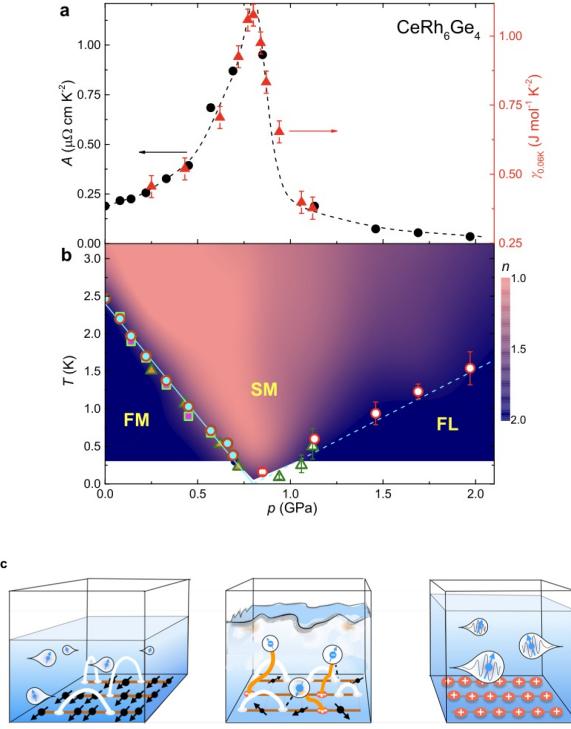




FIG. 1. **Crystal structure and physical properties of CeRh₆Ge₄ at ambient pressure.**
a, Crystal structure of CeRh₆Ge₄, where the red, blue and yellow atoms denote Ce, Rh, and Ge respectively. Left panel shows the structure perpendicular to the *ab*-plane, where the Ce atoms have a hexagonal arrangement, while the right side displays perpendicular to the chain direction (*c*-axis). The **b**, resistivity $\rho(T)$, and **c**, specific heat as C/T vs T of CeRh₆Ge₄ are also displayed, in both zero-field and various fields applied within the *ab* plane. **d**, Temperature dependence of the magnetization of CeRh₆Ge₄ as M/H in a field of 1 mT applied both along the *c* axis and in the *ab* plane. **e**, Low field magnetization loops for fields within the *ab*-plane at three temperatures. Below T_C , these exhibit hysteresis loops typical of FM order, while at 3 K no hysteresis is observed.

FIG. 2. Pressure evolution of ferromagnetism in CeRh_6Ge_4 and strange metallic behavior at the quantum critical point. **a**, Resistivity of CeRh_6Ge_4 under various hydrostatic pressures. The FM transition is suppressed by pressure, and is no longer observed at $p_c = 0.8 \text{ GPa}$ (green line). The inset shows the derivative of $\rho(T)$ at lower pressures, where the peak position corresponds to T_C . **b**, Specific heat of CeRh_6Ge_4 under hydrostatic pressures, where the bulk FM transition is suppressed with pressure, as indicated by the vertical arrows showing the position of T_C . For clarity, not all the data points are displayed. The error bars shown are representative of the scattering of the data at low temperature. A crossover to FL behavior at low temperatures can be observed either side of p_c , where $C(T)/T$ flattens. **c**, $\rho(T)$ and $C(T)/T$ at $p_c = 0.8 \text{ GPa}$. $\rho(T)$ exhibits linear behavior extending from 5 K, down to at least 40 mK (dotted line), while $C(T)/T$ continues to increase with decreasing temperature, exhibiting a $\sim \log(T^*/T)$ dependence (dashed line).

FIG. 3. Phase diagram of CeRh_6Ge_4 under pressure. **a**, Pressure dependence of the A -coefficient of the T^2 term from the resistivity and Sommerfeld coefficient γ (as C/T at 60 mK), which show a pronounced maximum near the QCP. The error bars for the A -coefficient are smaller than the symbols. For γ , the errors correspond to the scattering of the low- T data. **b**, $T - p$ phase diagram of CeRh_6Ge_4 , where the open circles, triangles and squares denote T_C derived from the resistivity, specific heat (dc method), and ac heat capacity (Fig. S5), respectively. The corresponding solid symbols mark T_{FL} , the temperature below which FL behavior occurs. The FM transition is suppressed by pressure until the system reaches a QCP at $p_c \approx 0.8$ GPa. Below T_C , and at higher pressures below T_{FL} , FL ground states develop. The colors denote the exponent of $\rho(T)$ calculated as $n = d\log(\rho - \rho_0)/d\log T$, where the FL states with $n \approx 2$ are dark blue color, while the SM phase near the QCP with $n \approx 1$ is pink. **c**, Schematic representation of different phases. In the ordered phase (left), most of the spins are ordered in the plane, whereas some have RVB bonds. The Fermi surface is small, as represented by the volume of the conduction sea. In the PM FL phase (right), all the spins are 'ionized' to form heavy-electrons that expand the Fermi sea. A background of positively charged singlets are left behind. At the QCP (center), the system is in dynamical critical equilibrium, where the moments are fluctuating and the Kondo screening by the conduction electron competes with RVBs for the entanglement. In this region, critical fluctuations strongly scatter the conduction electrons.