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Scientific high throughput computing needs are growing dramatically with time and
public Clouds have become an attractive option for occasional bursts, due to their
ability to be provisioned with minimal advance notice. The available capacity of both
compute and networking is however not well understood. This article presents the
results of several production runs of the IceCube collaboration that temporarily
expanded its batch system environment with GPU-providing compute instances from

the three major Cloud providers, namely Amazon Web Services, Microsoft Azure, and the
Google Cloud Platform. The aim of these Cloud bursts was to push the limits of Cloud
compute, with a particular emphasis on GPU-providing instances. On the compute side,
we showed that it is possible to reach peaks of over 380 fp32 PFLOPS using all available
GPU-providing instance types and integrate over 1fp32 EFLOP hour in a single workday
by using only the most cost-effective ones. On the network side, we showed intra-Cloud
network throughputs of over 1 Tbps, and 100 Gbps throughputs toward on-prem storage

both using shared peering arrangements and dedicated network links.

C loud computing has become mainstream in
many commercial environments, but it is still
marginal in scientific high throughput computing
(HTC). There are obviously many reasons for this situa-
tion, but one important aspect is the lack of understand-
ing of the available compute and networking capacity in
commercial Clouds. While there have been some recent
large scientific computing runs in the Clouds,’ none
attempted to maximize the provisioned amount of
resources across all the major Cloud providers concur-
rently, namely Amazon Web Services (AWS), Microsoft
Azure, and Google Cloud Platform (GCP).

We decided to focus on GPU resources, due to both
their high performance and their relative scarcity in the
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scientific on-prem compute environments. And since
large-scale HTC is expensive, both on-prem and in the
Clouds, we used a production scientific workload for
most of the exploration work to maximize return on
investment. The selected workload was IceCube's pho-
ton propagation simulation, used for its detector simula-
tion, both for scientific reasons (high impact science)
and their experience with GPU-based HTC.2™*

We initially explored the available compute capa-
bilities of the Cloud providers, by picking the most
compute-intensive subset of IceCube’s workload and
keeping most of the network traffic inside the Cloud
networking domain. This work has been widely dis-
seminated over the past year,>® but we provide a sum-
mary of the procedure and the results in the next
section for completeness.

However, most scientific applications are data-
driven, so our recent activity has focused on charac-
terizing the available Cloud networking, with an
emphasis on cost-effective dedicated network links.
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We selected a much more data-intensive subset of
IceCube’s workload and moved the data synchro-
nously to and from on-prem storage systems, as is the
norm when using on-prem compute resources. The
procedure and results are presented in the second
half of this article.

Cloud providers like to publicize the elastic nature of
their Cloud infrastructure, with an implied suggestion
that they can accommodate an infinite amount of
computing work. This is impossible, so we set out to
measure just how large the available capacity is. We
were particularly interested in GPU-providing instance
types, due to their high performance, and were happy
to use resources located anywhere on the planet.

As mentioned in the introduction, we used Ice-
Cube’s production workload during this exploration
step, although we did limit ourselves to only the most
compute-intensive subset of it. IceCube’s production
setup uses HTCondor” as the batch system, with the
compute resources coming partially from local on-
prem infrastructure and partially from remote sys-
tems, dynamically provisioned through the Open
Science Grid (0SG).2° Extending the provisioning to
Cloud resources was thus just a minor operational
change; we opted to host a separate batch queue
mostly due to the order of magnitude higher scale.

IceCube normally does not run on Cloud resour-
ces, so we did not have an existing provisioning in-
frastructure in place. Given the exploratory nature of
the exercises, we thus provisioned the resources
directly using the native Cloud mechanisms. After cre-
ating the base virtual machine (VM) images using the
standard OSG-provided worker node software, the
actual large-scale provisioning was delegated to
native group provisioning mechanisms, namely Fleets
on AWS, VM scale sets (VMSS) on Azure, and Instance
Groups on GCP. Note that while the three Cloud pro-
viders use different implementations, the operational
semantics is quite similar among the three. It should
also be noted that each region in each Cloud provider
is essentially independent, so we had to set up
and operate this infrastructure in 28 independent
environments.

The first Cloud burst® was executed in November
2019, using all available GPU-providing instance types
from the three Cloud providers and using a mix of on-
demand, spot, and preemptible pricing, as recom-
mended by the respective capacity planning teams.
We were able to reach a peak of about 52k GPUs in
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FIGURE 1. Number of GPU instances over time (in minutes)
during the first Cloud burst ramp-up period. (Used, with per-
mission, from.®)

about 2 hours (see Figure 1), using eight different GPU
types for an equivalent theoretical compute through-
put of about 380 fp32 PFLOPS (see Figure 2).

A follow-on Cloud burst® was executed in February
2020, with a longer sustained plateau and using only
the most cost-effective Cloud instances in spot mode,
which kept the Cloud costs at under $60,000 (note:
We are not authorized to disclose the cost of the first
Cloud burst). The peak value reached was of course
lower, about 180 fp32 PFLOPS (see Figure 3), but we
still integrated approximately 1 fp32 EFLOP hour.
Looking at the science output, we produced about
50% more files than in the first run. In the process, we
also measured the amount of preemption incurred
using spot instances, which was under 10% even at
such high scales (see Figure 4).

Between the two Cloud bursts, we demonstrated
that large scale HTC in Clouds is possible, and can
greatly benefit compute-intensive science computing,
when there is a need for additional resources not
available on-prem.

FIGURE 2. GPU composition in the first Cloud burst at peak.
The inner circle shows the number of instances, the outer cir-
cle the fp32 PFLOPS contribution. (Used, with permission,
from.5)

January/February 2021

Authorized licensed use limited to: University of Wisconsin. Downloaded on February 22,2021 at 20:58:47 UTC from IEEE Xplore. Restrictions apply.



PFLOP32s by GPU Type

H Tesla T4
mm Tesla P40
B Tesla V100

150

100 B On Prem Misc
50

0

09:45 11:45 13:45 15:45 17:45

Time of day

FIGURE 3. Provisioned Cloud resources in the second Cloud
burst, alongside on-prem resources. (Used, with permission,
from.%)
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FIGURE 4. Difference between provisioned GPUs in spot
mode and jobs that ran to completion during the second
Cloud burst. (Used, with permission, from.)

AVAILABLE NETWORK
RESOURCES

Many scientific computing problems are data-driven,
which implies that one needs excellent network perfor-
mance in order to make full use of the compute hard-
ware. In preparation for the first Cloud burst,’® we
verified that networking inside Cloud provider's infra-
structure was more than adequate, measuring in
excess of 1 Tbps in a single region (see Figure 5) and at

Observed peak throughput vs number of compute instances

v

& 1000 w-@=AWS
800 —&—Azure
600 —.—Ge
400

0 200 400 600 800 1000 1200 1400

FIGURE 5. Peak throughput observed in a Cloud region while
downloading from a local object storage instance. (Used,
with permission, from."°)
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Data-intensive IceCube Job Runtime, in seconds
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FIGURE 6. Average runtime of the data intensive IceCube
photon propagation simulation jobs, per instance type. The
output file size was on average 2.3 GB in all cases.

least 200 Gbps between major regions. We now wanted
to demonstrate that the same was possible when
accessing data in on-prem storage from the Clouds.

IceCube’s main storage system is located at the
University of Wisconsin-Madison (UW). The storage
system is configured as a distributed Lustre filesys-
tem, with several gateway nodes for wide area net-
work (WAN) connectivity. UW is connected to the
Cloud through a 100 Gpbs research WAN link, while
the theoretical throughput of the storage system is
significantly higher than that, making networking
alone the bottleneck.

In order to evaluate the feasibility of real data-
intensive IceCube photon simulation workloads, we
picked the appropriate subset in its production
queues and measured the compute runtimes and
data sizes of a modest sample on Cloud resources. We
observed that runtimes varied between approximately
20 and 45 minutes, depending on GPU used (see
Figure 6), with an average input of 300 MB and output
of 2.3 GB, which yields an average network throughput
of about 10 Mbps per GPU. We would thus need
approximately 10,000 GPUs to reach a sustained 100
Gbps network flow, which seemed achievable.

PFLOPS by network link
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FIGURE 7. Provisioned Cloud resources in the data-intensive
Cloud burst.
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FIGURE 8. Screenshot of the UW research WAN link monitoring Web page.

We demonstrated a 100-Gbps file transfer between
UW and the Cloud providers in February 2020, with
short data transfer bursts using simple test instan-
ces." Similar tests also demonstrated 100-Gbps file
transfer capabilities to other on-prem systems but
also confirmed the high cost of egress network traffic
using the standard peering routes, at over $80/TB.
That would make standard egress costs significantly
higher than compute costs for T4-providing instances
during a production run, at approximately $0.18 vs
$0.11 per job in pre-emptible mode.

To keep egress network costs reasonably low, we
thus decided to provision dedicated links for the data-
intensive Cloud burst; Cloud providers charge signifi-
cantly lower per-TB cost on dedicated links, for a fixed
per hour fee. In the USA, the Internet2’s Cloud Con-
nect service'? acts as a network provider for all three
major Cloud providers, namely AWS, Azure, and GCP,
with a fixed set of physical links in place for routing
toward supported research networks. This allows vari-
ous academic institutions to dynamically provision
logically dedicated network links, with the associated
reduced costs, without the need to change the physi-
cal infrastructure. The process does however still
need the involvement of on-prem network engineers.

We executed the data-intensive Cloud burst in
November 2020, by first provisioning 22 dedicated net-
work links and subsequently provisioning approxi-
mately 100 fp32 PFLOPS of compute from the Cloud
providers (see Figure 7). The run lasted about 6 hours,
during which we integrated about 220 PFLOP hours of
compute and produced 130 TB of data. The total net-
work cost for the day was approximately $6000, which
is about half of what we would have paid if we went
the normal routing path.
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On the networking side, we reached approximately
100 Gbps between the Clouds and on-prem storage,
with about 80 Gbps going to UW and the rest to stor-
age provisioned at University of California San Diego.
At peak, the UW research WAN link was over 90% full
(see Figure 8); while we did not use all of the band-
width, we were responsible for the vast majority of it.

The main challenge in this last exercise was appro-
priately spreading the load over the 22 provisioned
links, most of which were 5 Gbps, with five 10 Gbps
and six 2 Gbps links. This was particularly challenging
due to the spiky nature of the IceCube workload,
where the whole output is uploaded to on-prem stor-
age immediately after the compute is finished. Given
the unpredictable nature of spot Cloud resource avail-
ability, we had to ramp up slowly to randomize as
much as possible the upload times. This strategy
proved successful, as seen in relatively smooth band-
width use in the second part of the run.

By executing three independent production Cloud
bursts in support of IceCube science mission, we dem-
onstrated that it is possible to provision large amounts
of compute capabilities from the commercial Cloud
providers in rapid and/or cost-effective manner. While
running compute-intensive high throughput work-
loads is certainly easier, data-intensive workloads are
also feasible and can be executed in a cost-effective
way with some additional setup.

While Cloud resources are not infinitely elastic, we
were able to provision over 375 fp32 PFLOPS of GPU
compute. Cloud computing is also not free, but we
showed that $60,000 can buy 1 fp32 EFLOP hour of
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useful compute. Finally, data-intensive applications
can easily scale to 100 Gbps data transfer rates, but
egress-focused applications should consider dedi-
cated links to minimize the network-related costs.

Our work shows that Cloud computing can be
appealing for scientific endeavors that have tight dead-
lines, as it allows for much quicker time to solution,
albeit likely at a higher cost than spreading the compute
over longer periods of time on on-prem equipment.®
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