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Abstract18

In this paper we consider the following sparse recovery problem. We have query access to a19

vector x ∈ RN such that x̂ = Fx is k-sparse (or nearly k-sparse) for some orthogonal transform20

F. The goal is to output an approximation (in an ℓ2 sense) to x̂ in sublinear time. This problem21

has been well-studied in the special case that F is the Discrete Fourier Transform (DFT), and a22

long line of work has resulted in sparse Fast Fourier Transforms that run in time O(k · polylogN).23

However, for transforms F other than the DFT (or closely related transforms like the Discrete Cosine24

Transform), the question is much less settled.25

In this paper we give sublinear-time algorithms—running in time poly(k log(N))—for solving the26

sparse recovery problem for orthogonal transforms F that arise from orthogonal polynomials. More27

precisely, our algorithm works for any F that is an orthogonal polynomial transform derived from28

Jacobi polynomials. The Jacobi polynomials are a large class of classical orthogonal polynomials29

(and include Chebyshev and Legendre polynomials as special cases), and show up extensively in30

applications like numerical analysis and signal processing. One caveat of our work is that we require31

an assumption on the sparsity structure of the sparse vector, although we note that vectors with32

random support have this property with high probability.33

Our approach is to give a very general reduction from the k-sparse sparse recovery problem34

to the 1-sparse sparse recovery problem that holds for any flat orthogonal polynomial transform;35

then we solve this one-sparse recovery problem for transforms derived from Jacobi polynomials.36

Frequently, sparse FFT algorithms are described as implementing such a reduction; however, the37

technical details of such works are quite specific to the Fourier transform and moreover the actual38

implementations of these algorithms do not use the 1-sparse algorithm as a black box. In this work39

we give a reduction that works for a broad class of orthogonal polynomial families, and which uses40

any 1-sparse recovery algorithm as a black box.41
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58:2 Sparse Recovery for Orthogonal Polynomial Transforms

1 Introduction48

In this paper, we consider the following sparse recovery problem. Suppose that we have query49

access to a vector x ∈ RN , which has the property that for a fixed orthogonal transform50

matrix F, x̂ = Fx is k-sparse (or approximately k-sparse, in the sense that x̂ is close in51

ℓ2 distance to a k-sparse vector). The goal is to recover an approximation ẑ to x̂, so that52

∥x̂ − ẑ∥2 is small with high probability, as quickly as possible.53

Variants of this problem have been studied extensively over several decades—we refer54

the reader to the book [16] for many examples and references. One particularly well-studied55

example is the sparse Fast Fourier Transform (sFFT)—see the survey [18] and the references56

therein. In this case, the matrix F is taken to be the Discrete Fourier Transform (DFT)57

and a long line of work has produced near-optimal results: algorithms with running time58

O(k polylog(N)) and sample complexity O(k log N) [8, 9, 19,23–27]– though not all of these59

works achieve both the claimed sample complexity and runtime at the same time.60

We study the sparse recovery problem for a more general class of transforms F called61

orthogonal polynomial transforms, and in particular those that arise from Jacobi polynomials,62

a broad class of orthogonal polynomials (OPs). Jacobi polynomials include as special cases63

many familiar families of OPs, including Gegenbauer and in particular Chebyshev, Legendre,64

and Zernike1 polynomials, and the corresponding OP transforms appear throughout numerical65

analysis and signal processing.66

Despite the progress on the sFFT described above, much remains unknown for general67

orthogonal polynomial transforms. As discussed more in Section 1.2 below, the sample68

complexity of the sparse recovery problem is well understood, and the ‘correct’ answer69

is known to be Θ(k polylog(N)) queries to x. However, the algorithmic results that go70

along with these sample complexity bounds result in poly(N) time algorithms. Our goal in71

this work will be sublinear time algorithms as well as sublinear sample complexity. There72

are sublinear-time algorithms available for the special cases of Chebyshev and Legendre73

polynomials that work by essentially reducing to the Fourier case [21]. For general Jacobi74

polynomials, such reductions are not available. We elaborate in the full version of the paper75

why reducing general Jacobi polynomials to the Fourier case does not seem easy. There are76

also algorithms based on Prony’s method, some of which work for quite general families of77

OPs [29]. However these general results require exact sparsity; to the best of our knowledge78

versions of Prony’s method that are provably robust to noise are restricted to classes of OPs79

similar to the Fourier transform.80

Results81

In this work, we give the first (to the best of our knowledge) sublinear-time algorithms with82

provable guarantees for the (approximately-)sparse recovery problem for general orthogonal83

transforms derived from Jacobi polynomials. We discuss our results in more detail in Section 384

and briefly summarize them here. Our algorithms run in time poly(k log(N)) and given85

query access to v = F−1v̂, can find approximations to v̂ when v̂ is approximately k-sparse of86

an appropriate form. More precisely, we can handle vectors v̂ = x̂ + ŵ where x̂ is k-sparse87

with a ‘spread-out’ support (made precise in Definition 2.3), and ŵ is an adversarial noise88

vector with sufficiently small ℓ2 norm. We obtain guarantees of the following flavor: for any89

such vector v, we can find ẑ such that ∥ẑ − x̂∥2 ≤ 0.01∥x̂∥2 with high probability.90

1 To be more precise the radial component of a Zernike polynomial is a Gegenbauer and hence, a Jacobi
polynomial.
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We note that these results are weaker than the results for the sFFT: our sample complexity91

and running time are polynomially larger, and we need stronger assumptions on the sparse92

signals. However, we also note that the decade or so of work on the sFFT culminating in93

the results above began with similar results (see [17], for example, in which the dependence94

on k is an unspecified polynomial) and we hope that this work will similarly be a first step95

towards near-optimal algorithms for general orthogonal polynomial transforms.96

Techniques97

Our techniques follow the outline of existing algorithms for the sFFT, although as we98

elaborate on in Section 1.3, the situation for general Jacobi polynomials is substantially99

more complicated. More precisely, we first give a very general reduction, which reduces the100

k-sparse case to the 1-sparse case. The idea of such a reduction was implicit in the sFFT101

literature, but previous work has relied heavily on the structure of the DFT. Our reduction102

applies to a broad class of OPs including Jacobi polynomials. Next, we show how to solve103

the 1-sparse recovery problem for general Jacobi polynomials. The basic idea is to use known104

approximations of Jacobi polynomial evaluations by certain cosine evaluations [35] in order105

to iteratively narrow down the support of the unknown 1-sparse vector. We give a more106

detailed overview of our techniques in Section 1.3.107

Organization108

For the rest of the introduction, we briefly introduce orthogonal polynomial transforms,109

discuss previous work, and give a high-level overview of our approach. After that we introduce110

the formal notation and definitions we need in Section 2, after which we state our results111

more formally in Section 3. Due to space constraints, proofs of our main results are in the112

full version of the paper, including the reduction from k to 1-sparse recovery, the 1-sparse113

recovery algorithm for Jacobi polynomials, and the resulting k-sparse recovery algorithm for114

Jacobi polynomials.115

1.1 Orthogonal Polynomial Transforms116

Orthogonal polynomials (OPs) play an important role in classical applied mathematics,117

mathematical physics, and the numerical analysis necessary to simulate solutions to such118

problems. We give more precise definitions in Section 2; briefly, a family of orthogonal119

polynomials p0(X), p1(X), . . . is a collection of polynomials defined on an interval D of R,120

that are pairwise orthogonal with respect to a (non-negative) weight function w.121

Orthogonal polynomials naturally give rise to (discrete) orthogonal polynomial transforms.122

In particular, we define the transform as follows– F is an N × N matrix, with each column123

corresponding to an orthogonal polynomial p0, . . . , pN−1 and each row an evaluation point124

λ0, . . . , λN−1 in a suitable domain and suitably normalized so that it is an orthogonal matrix125

(Definition 2.1). A familiar example might be the DFT: in this language, the DFT matrix is126

defined by the polynomials 1, X, X2, . . . , XN−1, evaluated at points λj = ωj where ω is the127

Nth root of unity.2 Like the Fourier Transform, it is known that all OP transforms admit128

2 We note that in this work we consider a setting slightly different than this example, where D = [−1, 1]
rather than S1.

ICALP 2020



58:4 Sparse Recovery for Orthogonal Polynomial Transforms

‘fast’ versions, allowing matrix-vector multiplication in time O(N log2(N)) [15].3 Thus, our129

problem of sparse recovery for OP transforms is a natural extension of the sFFT problem,130

with applications to several areas mentioned below.131

In this work we study Jacobi polynomials (defined formally in Section 2), which are a very132

general class of orthogonal polynomials. These include Chebyshev polynomials, Legendre133

polynomials, Zernike polynomials and more generally Gegenbauer polynomials. These OP134

families show up in many places. For example, Zernike polynomials are a family of orthogonal135

polynomials on the unit disk that permit an analytic expression of the 2D Fourier transform136

on the disk. They are used in optics and interferometry [36]. They can be utilized to extract137

features from images that describe the shape characteristics of an object and were recently138

used for improved cancer imaging [39]. Different families of orthogonal polynomials give139

rise to different quadrature rules for numerical integration [12,33]. Specifically, Chebyshev140

polynomials are used for numerical stability (see e.g. the ChebFun package [3]) as well as141

approximation theory (see e.g. Chebyshev approximation [1]). Chebyshev polynomials also142

have certain optimal extremal properties, which has resulted in many uses in theoretical143

computer science, including in learning theory, quantum complexity theory, linear systems144

solvers, eigenvector computation, optimization, and more [28]. Further, Jacobi polynomials145

form solutions of certain differential equations [2].146

More recently, orthogonal polynomials and orthogonal polynomial transforms have found147

applications in various facets of machine learning. For example, Dao et al. [13] leverage the148

connection between orthogonal polynomials and quadrature to derive rules for computing149

kernel features in machine learning. The Legendre Memory Unit [38] augments recurrent150

neural networks by orthogonalizing the history of features on a sliding Legendre basis;151

mathematically, this is essentially an online update of the discrete Legendre Transform.152

More directly, Thomas et al. [37] apply parametrized families of structured matrices directly153

inspired by orthogonal polynomial transforms (De Sa et al. [14]) as layers in neural networks.154

In this context, any form of structured matrix that admits fast operations is valuable, such155

as those considered in this work. Although not directly applied yet, all of these applications156

have a natural way of incorporating sparsity if the appropriate sparse transforms exist, which157

is a particular focus of modern ML in the face of sharply increasing trends in computation.158

1.2 Related Work159

As previously described, there has been a great deal of work on the sFFT; we refer the160

reader to the survey [18] for an overview. There has also been work on non-Fourier OP161

transforms. We break up our discussion below into discussion on the sample complexity162

(which as mentioned above is largely settled) and the algorithmic complexity (which remains163

largely open).164

3 We note that even though the work of [15] has in some sense solved the problem of computing any
OP transform in near-linear time, many practical issues still remain to be resolved and the problem
of computing OP transforms in near-linear time has seen a lot of research activity recently. We just
mention two recent works [6, 7] that present near-linear time algorithms for the Jacobi polynomial
transforms (and indeed their notion of uniform Jacobi transform corresponds exactly to the Jacobi
polynomial transform that we study in this paper). However, these algorithms inherently seem to
require at least linear-time and it is not clear how to convert them into sub-linear algorithms, which is
the focus of our work.
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Sample complexity165

The sample complexity of OP transforms F has been largely pinned down by the compressed166

sensing literature. For example, suppose that F ∈ RN×N is any orthogonal and sufficiently167

flat matrix, in the sense that none of the entries of F are too large. Then a result of Haviv168

and Regev (sharpening of results by Bourgain, and Rudelson and Vershynin) shows that169

m = O(k log2 k log N) samples suffice to establish that the matrix Φ ∈ Rm×N (which is made170

up of m sampled rows from FT ) has the Restricted Isometry Property (RIP) [5,20,34]. Finding171

x̂ = Fx from samples of F of corresponds to the problem of finding an (approximately)172

k-sparse vector x̂ from the linear measurements Φx̂, which is precisely the compressed sensing173

problem. It is known that if Φ satisfies the RIP, then this can be solved (for example with ℓ1174

minimization) in time NO(1). On the other hand, recent results by Błasiok et al. show that175

this is essentially tight when F are certain Fourier matrices over constant sized prime finite176

fields, such as the Hadamard matrix, in that O(k log k log N) queries (for a certain range of177

k) to x are needed to compute a k-sparse approximation of Fx [4].178

Foucart and Rauhut [16] show that if the orthogonal polynomials satisfy a Bounded179

Orthogonal System (BOS) that are suitably flat, then if the m evaluation points λj are180

chosen uniformly at random proportional to the weight function w, then the m × N matrix Φ181

defined by normalizing PN [i, j] = pj(λi) appropriately satisfies the RIP with high probability182

provided that m has an appropriate dependence on N, k, ϵ, and the flatness of the matrix,183

and this again gives an NO(1)-time algorithm to solve the sparse recovery problem.184

Rauhut and Ward [32] show that for Jacobi polynomial transforms if the evaluation185

points were picked according to the Chebyshev measure, then with O(k polylogN) random186

measurements, the corresponding matrix has the RIP (note that the Foucart and Rauhut187

sample the evaluation points according to the measure of orthogonality for the Jacobi188

polynomials, which in general is not the Chebyshev measure). This result again does not189

give a sub-linear time algorithm but was used in the result of [21] which we describe below.190

While these approaches can give near-optimal sample complexity, they do not give191

sublinear-time algorithms. In fact, it is faster to compute x̂ exactly by computing Fx, if we192

care only about the running time and not about sample complexity [15]. Thus, we turn our193

attention to sublinear-time algorithms.194

Sublinear-time algorithms for OP transforms195

There have been several works generalizing and building on the sFFT results mentioned196

above. One direction is to the multi-dimensional DFT (for example in [23, 27]). Another197

direction is to apply the sFFT framework to orthogonal polynomials with similar structure.198

One example is Chebyshev polynomials and the Discrete Cosine Transform (DCT). It was199

observed in [21] that this can be reduced to sFFT in a black box manner, solving the200

sparse recovery problem for Chebyshev polynomials and the DCT. A second example of OP201

transforms which can essentially be reduced to the sFFT is Legendre polynomials. Hu et202

al. [21] seek to recover an unknown k-term Legendre polynomial (with highest magnitude203

degree limited to be N/2), defined on [−1, 1], from samples. They give a sublinear two-phase204

algorithm: in the first phase, they reduce k-sparse-Legendre to sFFT to identify a set of205

candidate Legendre polynomials. The second phase uses the RIP result for BOS to produce206

a matrix that is used to estimate the coefficients of the candidate Legendre polynomials. We207

note that in this work the setting is naturally continuous, while ours is discrete.208

Choi et al. [10, 11] study higher dimensions and obtain sublinear-time algorithms for209

more general harmonic expansions in multiple dimensions. These results complement our210

ICALP 2020
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work. More precisely, that work shows how to use any algorithm for a univariate polynomial211

transform (the work in [11] needs these algorithms to have certain specific properties) to design212

an algorithm for a multi-variate polynomial transform where the multi-variate polynomials213

are products of univariate polynomials in the individual variables. Thus our improvements214

for univariate polynomial transforms can (potentially) be used with [10,11].215

Finally, there are sparse OP transforms based on Prony’s method. The work [29] extends216

Prony’s method to a very general setting, including Jacobi polynomials, and gives an217

algorithm that requires only O(k) queries to recover exactly k-sparse polynomials. However,218

these general results work only for exact sparsity and are in general not robust to noise.219

There has been work extending and modifying these techniques to settings with noise (for220

example, [22,30]), but to the best of our knowledge the only provable results for noise are221

for either the sFFT or closely related polynomial families. We note that [31] presents a222

Prony-like algorithm for Legendre and Gegenbauer polynomials and demonstrates empirically223

that this algorithm is robust to noise, although they do not address the question theoretically.224

1.3 Technical overview225

Our technical results have two main parts. First, inspired by existing approaches to the226

sFFT, we provide a general reduction from the k-sparse recovery problem to the 1-sparse227

recovery algorithm, which works for any family of OPs that is sufficiently ‘flat’: that is, no228

entry of the matrix F is too large. Second, we provide a 1-sparse recovery algorithm for229

Jacobi polynomials. We give an overview of both parts below.230

For what follows, let F be an orthogonal matrix. For simplicity in this overview we will231

assume that there is no noise. That is, we want to compute the exactly k-sparse x̂ = Fx232

given query access to x. However, we note that our final results do work for approximately233

k-sparse vectors v̂ = x̂ + ŵ provided that ∥ŵ∥2 is sufficiently small.234

1.3.1 Reduction to one-sparse recovery235

We give a general reduction from the k-sparse recovery problem to the one-sparse recovery236

problem, which works for a broad class of OP families defined on a finite interval.4 At a high237

level, the idea is as follows. Suppose that x̂ = Fx is k-sparse and b ∈ RN is a ‘filter’: at238

this stage it is helpful to think of it like a boxcar filter, so b is 1 on some interval I and zero239

outside of that interval. If we choose this interval randomly, we might hope to isolate a single240

‘spike’ of x̂ with b: that is, we might hope that Dbx̂ is one-sparse, where Db is the diagonal241

matrix with b on the diagonal. Suppose that this occurs, so y = Dbx̂ is one sparse. In242

order to take advantage of this with a black-box solution to the one-sparse recovery problem243

ŷ = Fy, we would need query access to the vector y = F−1Dbx̂ = F−1DbFx, while what244

we have is query access to x. Thus, we would like to design b so that F−1DbF is row-sparse.245

This would allow us to query a position of y = F−1Dbx̂ using only a few queries from x.246

One of our main technical contributions is showing how to design such a vector b, so that247

b approximates a boxcar filter and so that F−1DbF is row-sparse for any OP transform F.248

Then, given this filter, we can iteratively identify and subtract off ‘spikes’ in x̂ until we249

have recovered the whole thing. Of course, the actual details are much more complicated250

than the sketch above. First, the one-sparse solver might have a bit of error, which will get251

propagated through the algorithm. Second, in our analysis the vector x̂ need not be exactly252

4 We note that our results do not (yet) work for the case when the orthogonality is defined over an infinite
interval. In particular, our reduction does not work for the Hermite and Laguerre polynomials.
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k-sparse. Third, b will only approximate a boxcar filter, and this is an additional source of253

error that needs to be dealt with. Complete details are in the full version of the paper.254

For the reader familiar with the sFFT, this approach might look familiar: most sFFT255

algorithms work by using some sort of filter to isolate single spikes in an approximately sparse256

signal. Below, we highlight some of the challenges in extending this idea beyond the Fourier257

transform. Some of these challenges we have overcome, and one we have not (yet) overcome.258

We mention this last open challenge both because it explains the assumption we have to259

make on the sparsity structure of x̂, and also because we hope it will inspire future work.260

Challenge 1: Choice of filter261

One key difficulty in extending sFFT algorithms to general orthogonal polynomials is that262

the filters used in the sFFT approach are very specific to the Fourier transform. Indeed,263

much of the progress that has been made on that problem has been due to identifying better264

and better choices of filter specialized to the Fourier transform. In order to find filters that265

work for any OP family, we take a different approach and construct a filter out of low-degree266

Chebyshev polynomials. Then we use the orthogonality properties of the OP family to267

guarantee that F−1DbF has the desired sparsity properties.268

Challenge 2: Explicit black-box reduction269

Because our goal is generality (to as broad a class of OPs as possible), we give an explicit270

reduction that uses a 1-sparse solution as a black box. To the best of our knowledge, existing271

work on the sFFT does not explicitly do this: a reduction of this flavor is certainly implicit272

in many of these works, and even explicitly given as intuition, but we are not aware of an273

sFFT algorithm which actually uses a 1-sparse recovery algorithm as a black box.274

Challenge 3: Equi-spaced evaluation points.275

The evaluations points in DFT and the DCT are equispaced (in the angular space). This276

fact is crucially exploited in sFFT algorithms (as well as the reduction of DCT to DFT—see277

the full version of this paper for more details on the reduction). Unfortunately, the roots278

of Jacobi polynomials are no longer equally spaced. However, it is known that the roots of279

Jacobi polynomials are ‘spread out’ (in a sense made below precise in Definition 2.2), and we280

show that this property is enough for our reduction. In fact, our reduction from k-sparse281

recovery to 1-sparse recovery works generally for any ‘flat’ OP family with ‘spread out’ roots.282

(Open) Challenge 4: Permuting the coordinates of x̂283

In the approach described above, we hoped that an interval I would ‘isolate’ a single spike.284

In the sFFT setting, this can be achieved through a permutation of the coordinates of x̂. In285

our language, in the sFFT setting it is possible to define a random (enough) permutation286

matrix P so that Px̂ has permuted coordinates, and so that F−1DbPF is row-sparse—this287

argument crucially exploits the fact that the roots of unity are equispaced in the angle space.288

This means that not only can we sample from the one-sparse vector Dbx̂, but also we can289

sample from DbPx̂, and then there is some decent probability that any given spike in x̂ is290

isolated by b. However, we have not been able to come up with (an approximation to) such291

a P that works in the general OP setting. This explains why we require the assumption that292

the support of x̂ be reasonably ‘spread out,’ so that we can hope to isolate the spikes by b.293

This assumption is made precise in Definition 2.3. We note that if such a P were found in294

ICALP 2020



58:8 Sparse Recovery for Orthogonal Polynomial Transforms

future work, this would immediately lead to an improved k-sparse recovery result for Jacobi295

polynomials, which would work for arbitrary sparse signals x̂.296

1.3.2 A one-sparse recovery algorithm for Jacobi polynomials297

With the reduction complete, to obtain a k-sparse recovery algorithm for general Jacobi298

polynomials we need to solve the one-sparse case. We give an overview of the basic idea299

here, with full details in the full version of the paper. First, we note that via well-known300

approximations of Jacobi polynomials [35], one can approximate the evaluation of any Jacobi301

polynomial at a point in (−1, 1) by evaluating the cosine function at an appropriate angle.302

Using some standard local error-correcting techniques (for example, computing cos(A) via303

cos A = cos(A+B)+cos(A−B)
2 cos B for a random B), we reduce the 1-sparse recovery problem to304

computing some unknown value θ, corresponding to the index of the spike, from noisy values305

of cos(wθ) for some integers w ≥ 1, corresponding to evaluations of the Jacobi polynomials306

for this index. Since the reduction is approximate, some care has to be taken to handle some307

corner cases where the approximation does not hold. In particular, we have to figure out for308

which real numbers y ∈ [0, N) does its orbit ⟨xy⟩ for x ∈ ZN have small order. We give a309

result to handle this, which to the best of our knowledge (and somewhat surprisingly) seems310

to be new.5 With this out of the way, our algorithm to compute the value of θ from the311

evaluations cos(wθ) is based on the following idea. Assuming we already know cos(θ) up312

to ±ϵ, we get a noisy estimate of θ (which lives in the range arccos(cos(θ) ± ϵ)) and then313

use the evaluations at w > 1 to ‘dilate’ the range where we know θ lies, reducing ϵ. We314

proceed iteratively until the region of uncertainty is small enough that there are only O(1)315

possibilities remaining, which we then prune out using the fact that F is orthogonal and flat,316

in the sense that none of its entries are too large. (We note that proving F is flat needs a317

bit of care. In particular, we need a sharper bound on Jacobi polynomials (than the cosine318

approximation mentioned above) in terms of Bessel functions to prove that all entries of F319

are small.) Similar ideas have been used for 1-sparse recovery for the DFT (for example,320

in [19]), although our situation is more complicated than the DFT because working with321

cosines instead of complex exponentials means that we lose sign information about θ along322

the way (though it is similar in spirit to the one-sparse recovery algorithm for DFT in [19]).323

2 Background and Preliminaries324

2.1 Notation325

We use bold lower-case letters (x, y) for vectors and bold upper-case letters (P, F) for326

matrices. Non-bold notation x, y, U is used for scalars in R. In general, if there is a given327

transform F we are considering, then the notation x̂ ∈ RN indicates F · x. We use the328

notation x[i] or X[i, j] to index into a vector or matrix, respectively. All of our vectors and329

matrices are 0-indexed, i.e. the entries of a vector x ∈ RN are x[0], . . . , x[N − 1]. We use [N ]330

to denote the set {0, . . . , N − 1}. Given a subset S ⊂ [N ], we will denote the complement331

set (i.e. [N ] \ S) by Sc.332

Given a vector x ∈ RN and an integer 1 ≤ s ≤ N , we define large(s, x) to be the333

magnitude of the sth largest value in x (by absolute value).334

5 We thank Stefan Steinerberger for showing us a much simpler proof than our original more complicated
proof, which also gave worse parameters.
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For any vector u ∈ RN , we define Du ∈ RN×N as the diagonal matrix with u on its335

diagonal. For a diagonal matrix D, and any real α we denote Dα to denote the diagonal336

matrix with the (i, i) entry being (D[i, i])α. Given a vector x ∈ RN and set S ⊆ [N ], xS337

denotes the vector x where all entries out of S are masked to 0. For x ∈ RN , supp(x) ⊆ [N ]338

denotes the support (i.e. the set of non-zero positions) of x.339

We use x ± h to refer to either the interval [x − h, x + h] or a point in this interval,340

whichever is clear from context. Similarly, if S is an interval [a, b] then S ± h is the interval341

[a − h, b + h].342

When stating algorithms, we use superscript notation to denote query access. That is343

A(x)(z) takes input z and has query access to x.344

We use the notation f(n) ≲ g(n) to mean that there is some constant C so that, for345

sufficiently large n ≥ n0, f(n) ≤ Cg(n).346

The notation J□ means Jj for all indices j.347

2.2 Orthogonal Polynomials348

For the remainder of this paper, we consider polynomials p0(X), p1(X), . . . that form a349

normalized orthogonal polynomial family with respect to some compactly supported measure350

w(X). By suitably scaling and translating X, we can ensure that the orthogonality is on351

[−1, 1].6 In particular deg(pi) = i and for any i, j ≥ 0,352 ∫︂ 1

−1
pi(X)pj(X)w(X)dX = δi,j , (1)353

where δi,j = 1 if i = j and 0 otherwise.354

Then for given N evaluation points λ0, . . . λN−1, define the orthogonal polynomial trans-355

form PN as follows. For any 0 ≤ i, j < N , we have356

PN [i, j] = pj(λi).357

In other words, the rows of PN are indexed by the evaluation points and the columns are358

indexed by the polynomials.359

For the rest of the paper, assume λ0 ≤ λ1 ≤ · · · ≤ λN−1 are the roots of pN (X). Then it360

is well-known (see e.g. [35]) that361

The roots lie in the support of the measure (i.e. λi ∈ [−1, 1]) and are distinct (i.e.362

λ0 < λ1 < · · · < λN−1).363

There exists Gaussian quadrature weights wℓ = 1∑︁N−1
j=0

pj(λℓ)2 , i = 0, . . . , N − 1 such that364

for any polynomial f(X) of degree at most 2N − 1,365 ∫︂ 1

−1
f(X)w(X)dX =

N−1∑︂
ℓ=0

f(λℓ) · wℓ. (2)366

We are now ready to define the orthogonal matrix corresponding to PN that we deal367

with in this paper:368

▶ Definition 2.1. Let p0(X), . . . , pN−1(X), . . . be an orthogonal polynomial family, λ0, . . . , λN−1369

be the roots of pN (X), and w0, . . . , wN−1 be the Gaussian quadrature weights. Define Dw370

to be the diagonal matrix with w0, . . . , wN−1 on its diagonal, and371

FN = D
1
2
wPN .372

6 See footnote 4.
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Note that by (1) and (2),373

FT
N FN = PT

N DwPN = IN ,374

so FN is an orthogonal matrix. In particular,375

PT
N DwPN [i, j] =

N−1∑︂
k=0

pi(λk)wkpj(λk) =
∫︂ 1

−1
pi(X)pj(X)w(X) dX = δi,j .376

Note that since FN is orthogonal, by definition we have377

F−1
N = FT

N .378

2.2.1 Jacobi Polynomials and Special Cases379

In this section we define Jacobi Polynomials, our main object of interest, and point out a few380

special cases. We note that families of named orthogonal polynomials {pi(X)} are sometimes381

defined through different means, hence are normalized differently up to constants. The382

corresponding discrete orthogonal polynomial transform (e.g. Discrete Legendre Transform)383

frequently refers to multiplication by P instead of F. In these cases, the transform satisfies384

PT
N DwPN = D for a diagonal matrix D corresponding to the normalization. The transform385

FN = D
1
2
wPD− 1

2 we consider (note that this matrix is indeed orthogonal) is thus equivalent386

up to diagonal multiplication.387

2.2.1.1 Jacobi polynomials388

Jacobi polynomials are indexed by two parameters α, β > −1 and these are polynomials389 {︂
P

(α,β)
j

}︂
j≥0

that are orthogonal with respect to the measure390

w(α,β)(X) = (1 − X)α · (1 + X)β
391

in the range [−1, 1]. This definition is not normalized, in the sense that we have PT
N DwPN =392

D, where393

D[j, j] = 2α+β+1

2j + α + β + 1 · Γ(j + α + 1)Γ(j + β + 1)
Γ(j + 1)Γ(j + α + β + 1)394

(see [35, Pg. 68, (4.3.3)]).395

We record three well-known special cases: Chebyshev polynomials (of the first kind) are396

special case of α = β = − 1
2 and Legendre polynomials are the special case of α = β = 0 (up397

to potentially a multiplicative factor that could depend on the degree j). Another notable398

special case of Jacobi polynomials are the Gegenbauer or ultraspherical polynomials (α = β).399

Our results hold for all Jacobi polynomials with α, β ≥ − 1
2 , which include pretty much all400

named special cases of Jacobi polynomials used in practice.401

2.2.1.2 Chebyshev polynomials of the 1st kind402

The Chebyshev polynomials of the 1st kind are orthogonal with respect to the weight measure403

w(X) = (1 − X2)− 1
2 .404

The normalized transform FN has the closed form405

FN [i, j] =

⎧⎨⎩
√︂

1
N j = 0√︂
2
N · cos

[︁
π
N j

(︁
i + 1

2
)︁]︁

j = 1, . . . , N − 1.
406
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This is a variant of the Discrete Cosine Transform (DCT-III, or the inverse DCT). It is407

well-known that the DCT-III can be ‘embedded’ into a DFT of twice the dimension, and we408

work out some of the details of how to use the sparse FFT to compute a sparse DCT in the409

full version of the paper.410

2.2.1.3 Legendre polynomials411

Legendre polynomials are orthogonal with respect to the uniform measure i.e. w(X) = 1412

and play a critical role in multipole expansions of potential functions (whether electrical413

or gravitational) in spherical coordinates. They are also important for solving Laplace’s414

equation in spherical coordinates.415

2.2.2 Roots of Orthogonal Polynomials416

Since λi ∈ [−1, 1] for all i, there is a unique θi ∈ [0, π] such that λi = cos θi. Our reduction417

holds for orthogonal polynomials that have roots that are ‘well-separated’ in this angle space:418

▶ Definition 2.2. Let 0 < C0 < C1. A family of orthogonal polynomials p0(X), p1(X), . . . is419

(C0, C1, γ0)-dense if for all large enough d, the following holds.420

Let λ0, . . . , λd−1 be the roots of pd, and θi = arccos λi. Then for any i ∈ [d], for any421

γ ≥ γ0/d:422

C0γd ≤
⃓⃓⃓
{θ0, . . . , θd−1} ∩

[︂
θi − γ

2 , θi + γ

2

]︂⃓⃓⃓
≤ C1γd.423

It turns out that any family of Jacobi polynomials has the required property: their roots424

are spaced out such that θℓ is close to ℓπ/N .425

2.3 Sparse Recovery Problem426

We will consider approximately k-sparse vectors v̂ = x̂ + ŵ, where x̂ is k-sparse and ∥ŵ∥2 is427

sufficiently small. We will require that x̂ has a ‘spread out’ support, defined as follows.428

▶ Definition 2.3. Let k ∈ [N ] and 0 ≤ σ < 1. We say that a vector x ∈ RN is (k, σ)-sparsely429

separated if there are k non-zero locations in x and any two non-zero locations are more than430

σN indices apart.431

It is not hard to see that a vector x with random support of size k is, with constant432

probability,
(︁
k, Ω

(︁ 1
k2

)︁)︁
-sparsely separated.433

In our reduction, we will reduce the k-sparse recovery problem to the special case of434

k = 1. Next, we define some notation for the 1-sparse case.435

▶ Definition 2.4. We say that the matrix FN has an (N, ϵ, δ, µ) one-sparse recovery algorithm436

with query complexity Q(N, ϵ, δ, µ) and time complexity T (N, ϵ, δ, µ) if there exists an437

algorithm A with the properties below:438

For all y so that ŷ = FN y can be decomposed as439

ŷ = ỹ + w,440

where ỹ = v · eh is 1-sparse and441

∥w∥2 ≤ ϵ |v| ,442

we have:443

1. A makes at most Q(N, ϵ, δ, µ) queries into y = F−1
N (v · eh + w).444

2. With probability at least 1 − µ, A outputs ṽ · eh with |v − ṽ| ≤ δ |v| in time T (N, ϵ, δ, µ).445
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Pre-processing time446

Our algorithm requires some pre-processing of FN . Our pre-processing step involves447

computing the roots λ1, . . . , λN of pN and storing them in an appropriate data structure, and448

additionally forming and storing some matrices that we will use in our algorithm. Finding449

the roots and creating the data structure can be done in time poly(N), and the rest of the450

pre-processing step also takes time poly(N). We note that this is an up-front cost that needs451

to be only paid once.452

Precision453

We note that we need to make certain assumptions on size of the entries in v̂ since otherwise454

we would not even be able to read coefficients that are either too large or too small and need455

Ω(log N) bits to represent. Towards this end we will make the standard assumption that456

∥v̂∥2 = 1. In particular, this allows us to ignore any coefficients that are smaller than say 1
N457

since their contribution to ∥v̂∥2 is at most 1√
N

, which will be too small for our purposes.7 In458

particular, this implies that we only have to deal with numbers that need O(log N) bits and459

as is standard in the RAM model, basic arithmetic operations on such numbers can be done460

in O(1) time. We will implicitly assume this for the rest of the paper (except in the proof of461

one lemma, where we will explicitly make use of this assumption).462

3 Results463

In this section we state our main results. These results follow from more detailed versions464

which are stated in the full version of the paper.465

We start off with our main result for Jacobi polynomials. We state an informal version466

here, and refer the reader to the full version of the paper for the formal result.467

▶ Theorem 3.1 (General Sparse Recovery for Jacobi Polynomial Transform, Informal). Fix468

arbitrary parameters α, β≥ − 1
2 for Jacobi polynomials and let J(α,β)

N be the N × N orthogonal469

matrix that arises from it as in Definition 2.1. Then there is an algorithm Recover that470

does the following. Let v = x + w where x̂ = J(α,β)
N x is (k, C1/k2)-sparsely separated, and471

suppose that ∥ŵ∥2 ≲ δ minh∈supp(x̂) |x̂[h]|. Then with probability at least 0.99, Recover472

outputs ẑ such that473

∥x̂ − ẑ∥2 ≲ δ∥x̂∥2,474

with poly
(︂

k log N
δ

)︂
queries and running time poly

(︂
k log N

δ

)︂
.475

▶ Remark 3.2. The requirement on the noise term might be bad if one entry of x̂ is extremely476

small compared to the rest. However in this case we can decrease k and add the very small477

entries of x̂ to the noise term ŵ resulting in a potentially better guarantee. We note that478

our algorithm iteratively finds the large components of x̂ and in fact has a mechanism for479

stopping early when all of the ‘large-enough’ entries have been found.480

▶ Remark 3.3. The (k, O(1/k2))-sparsely separated requirement is chosen to reflect the481

separation of a random k-sparse vector (c.f. comment below Definition 2.3). Smaller amounts482

of sparse separation are acceptable, which translate accordingly into the query and time483

complexity. The full dependence is in the complete result in the full version of the paper.484

7 More generally, we can ignore smaller coefficients as long as they are polynomial sized in N .
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To prove the above result, we first reduce the k-sparse recovery problem to 1-sparse485

recovery problem, in the presence of a small amount of noise. Next, we present an informal486

statement of our reduction.487

▶ Theorem 3.4 (Main Reduction, Informal). Let p1, . . . , pN be a (C0, C1, γ0)-dense orthogonal488

polynomial family, and let FN be the N × N orthogonal matrix that arises from it as in489

Definition 2.1. Suppose that |F−1
N [i, j]| ≲ 1/

√
N for all i, j ∈ [N ]. Suppose that for some490

sufficiently small δ > 0, FN has a
(︁
N, O(δ), δ, O(C0/k2)

)︁
one-sparse recovery algorithm with491

query complexity Q and running time T .492

Then there is an algorithm Recover that does the following. Let v = x + w where493

x̂ = FN x is (k, C1/k2)-sparsely separated, and suppose that ∥ŵ∥2 ≲ δ minh∈supp(x̂) |x̂[h]|.494

Then with probability at least 0.99, Recover outputs ẑ so that495

∥x̂ − ẑ∥2 ≲ δ∥x̂∥2,496

with poly(k/δC0)Q queries and running time poly(k/δC0)T .497

The final algorithmic piece missing from the result above is the algorithm for 1-sparse498

recovery. We provide this missing piece for Jacobi polynomials:499

▶ Theorem 3.5 (1-Sparse Recovery for Jacobi Transform, Informal). There exists a universal500

constant C such that the following holds. Consider the Jacobi transform for any fixed501

parameters α, β≥ − 1
2 . There exists an (N, ϵ, C · ϵ, γ) 1-sparse recovery algorithm for the502

Jacobi transform that makes poly
(︂

log
(︂

N
γ

)︂
· 1

ϵ

)︂
queries and takes time poly

(︂
log

(︂
N
γ

)︂
· 1

ϵ

)︂
.503

4 Open Questions504

To conclude, we list a few questions left open by our work.505

1. First, it is natural to try and improve our k-sparse recovery algorithm to work for arbitrary506

k-sparse support, rather than ‘well-separated’ supports. One natural way to do this is to507

address the fourth (open) challenge in Section 1.3 for a general class of OPs.508

2. Second, we could hope to handle a more general class of noise ŵ than we currently do.509

One could hope to handle any vector v, with an error guarantee that degrades smoothly510

with the ℓ2 norm of the ‘tail’ of v. There is a long list of work on ‘de-noising’ the511

contribution of the ‘head’ to the ‘tail’ in the sFFT literature that could potentially be512

useful here [23–27].513

3. Third, we would like to extend our results to hold for OPs defined over infinite intervals514

(e.g. Hermite and Laguerre polynomials).515

4. Fourth, we would like to solve the sparse recovery for FT (where F is as in Definition 2.1):516

i.e. given query access to x figure out a good k-sparse approximation to FT x (recall that517

F−1 = FT ). (Note that this problem can be equivalently stated as follows: given query518

access to Fy, compute a good k-sparse approximation to y.) Currently our results do519

not solve this problem since we cannot show that the existence of a filter b such that520

FDbFT is row-sparse. Note that this is not an issue for DFT since it is symmetric.521

5. Finally, we would like to reduce the exponent on k in our final runtime. In particular,522

for the case of random k-sparse support, the dependence on k in the runtime for Jacobi523

transform is k8. We note that we have not tried too hard to optimize the constants524

though we believe even getting a quadratic dependence on k with our framework would be525

challenging. We would like to stress that the majority of the work in the sFFT literature526
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has been to make the dependence on k be linear and for such results, it seems very527

unlikely that a generic reduction from k-sparse recovery to 1-sparse recovery would work.528

In other words, using the knowledge about the 1-sparse recovery algorithm for DFT seems529

necessary to get a overall k-sparse FFT with running time kpoly(log n).530
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