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Abstract

Exparimental single-cell approaches are becoming widely usad for many purposes, nched-
ng investigation of fhie dynamic bebhevour of developing bickogical aysiems. Conseguenthy,
a large numbsr of computational methods forextracting dynamic infomation from such
data hiave besn developed. One exampls s ANA velocity analysis, inwhich spliced and
unspliced ANA sbundances are jonthy modseled in order to infer a *direction of chang e’ and
thereby a future state for eaach call inthe gens expression space. Maturally, the accuracy
and imterpretability of the inferred AN A velocities depand crucially on the comecinessofthe
estimaied abundances. Hane, we systematicalby compare five widshy used quantifica tion
tools, intotal yielding thirtesn diffe rent quantification approachs s, interms of their estmates
of spliced and unspliced AMNA abund ances in five expermental dropletscAMA-seqdata
sets. We show that thers are substantial differences betesen the guantfications obtaned
from different tools, and identify typical gene s for which such discrepancies are obsanved.
‘W furthar show fhatthese abundancs diflerences propagate to the dowmstream analysis,
and can have a large effect on estimated velocities a3 well a5 the biological interp retation.
Owrresults highlight that abundance quantification is a crucial aspect of the AMA velocity
anabysis workfiow, and that both the dafinition of fie genomicfeatures of nisrestand the
quanifification algorithm itss frequire careful consideration.

Author summary

Appliad tosingle-cell RMNA-s2q data, RNA velocity amlysis provides a way 1o estimate the
rate of dange of the gene expression level inindividual cells This, in tum, enasbles esti-
rmation of whatl the gene expression profile of esch cell will keok like a short time into the
future and e is researchers infer likely developme nial relatiombips among different types
of cellsin a tissve. An imporant first step in this type of analyvil comsisis of estimating the
expresaion levelsof unspliced pre- mEMA a8 well 3 matore mBENA ineach cell. Several
mezthods are available for this purpose, and in this study we perform a companson of
these tools and highlight respective advantages and dissdvantages. We envision that the
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resulis will be informative for researche s peforming RN A velocity analysis, as well a6 1o
guide future developmenis in te evalusted and newly proposed quantification methods

This isa PLOS Cosmputationa] Blology Benchmarking paper.

Introduction

Single-cell RNA-s2q {sc BN A-s2q) enables high-througlput profiling of gene expresion ana
transcriplome-wide scale in individml cells [1-5] The incresed resolu ton compared 1o bulk
BN A-seq, where only average expresion profikes scros popubstions of celk are oblained, pro-
vides vasily improved potential o study a vadety of biological questions. (e such question
conceris the dyimmics of bielogical systems, reflecied in, eg., cellular differentiation and
development [7]. While such dymamical processes would deally bestudied via repeated tran-
scriplome-wide expresion profiling of the same cellk over time, this is nol possible with cur-
reml scRKA-ieq prolocol. Existing analvai methods for so called rraectony befereice ane
i led applied o one or several snapslwts of a popubsition of calk, assumead to comprise all
slages of e trajeckory of interesl. Many com pulatiomn | metlod s for trajectory inference from
scPMA-seq love been presented in the lerature (reviewed by [8]). These methods typically
e e similarity of the gene expression profilesbetween celbs (o construct a { possibly branch-
i) path through the observed 32t of cells, representing the trajectory of inlerest. Prajecting
the call amto this path then provides an ordering of the celk by so called piend olime.

A different approsch to the investigation of developmen lal processesin scBMNA-seq dala
i lesd exploils the undedving molecubar dy s s, The feasibility of such an approsch is
besied on the observation that, with severl commonly wed library preparation protocols, not
only exonic, but also intronic and exonfintron boundary-spanning reads are oblained [9], and
the inaight thai considenng these incombination with the exonk resds would allow for direct
inferance of developmental relatiomhips among celk. Similar observations, coupled with 2
simple differen tial e quation maodel of transe dptioral dynamics, were previously wed for inves-
Ligation of pre-mBN A dynamics and tramseriptional and posi-transe dplional regulation of
gene expresion in exon armavs [10] and bulk BNA-seq [11], 2 well & estimation of tanscrip-
Lion, processing and degadation rates inbulk BN A-seq [12]. For s<BN A-seq, La Manno ef al
[4] wied the differential equation maodel of [10], deseribing the rate of change of umspliced pre-
BN A & well & spliced mRNA molecules, a3 basis for their investigationa. They defined the
BNA velocity for a given gene in agiven cell, ala given lime point, 25 the insianlaneous rate of
change of the spliced mBN A sbundance. Combining the BN A velocities with the estimated
BN A abunds noes e mables reconstroction of the state of each cell ata timepaoint in the near
future, With the inc reased populadty of BN A velocity applications inscBN A-seq stedies, sev-
eral compulationa] ok leve been developed, both for the preprocessing of the reads and for
the BNA velocily estimation The origiml velagers software [ 9] estimates velocities under 3
slesdy-slale ssumplion, and provides both Pyilson and B implementations. More recently,
Bergemer af [13] relased the steadv-siate assumption and conside red the full dyiamical model,
Usereby e mabling application of the RMNA velocily framework toa brosder sel of biolegical sys-
tems and states The dynamical model B implemented in their soVelo Pyilon package, which
also includes an efMicient impleme niation of the stesdy-siate model.

The input tobath velocyta and scleloe Mectively comsisis of two gene-by-cell count matri-
ced; one represenling mBENA Capliced™) abund ances and one representing pre-mBEN A
(Cumpliced ™) abundances. In practice, these two ypes of sbundances are ypically quantified
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i resds mapping o the exoni and intronic reglom of genes, respectively. [t B worth
podnting out tei this type of quantifics ton differs Fom the more commonly wed "gene
expression’ estimation, for which a range of tools are available [4, 14-21]. There, a single

i rix re presenting the abundance of mature mBENA s rtursed. Only a subset of the quantifi-
cation tools provide explicit modules or instructions for joint e tma ton of botly matune
mBEN A and pre-mBENA abundances, and Usose are the focus of the present study. Velacyro pro-
vides functions for parsing 3 BAM fik of aligned reads {oblained by other ook suc a5 Cell-
Banger [1] )and generating the two count matdees. AlsodnopBer [20] can be used to estimate
exonic and intronic counts from anexisting BAM file, eg., from CellFanger. Dedicated end-
ber-ered T tonality for estimation of spliced and urspliced abundances from raw scBMA-s2q
resds i3 avalbable within the ka0 s fo| Bt ool software suite [14, 15] and in STA Bk, e sin-
gle-cell mode of e STAR aligner [ 17]. Furihermore, asuming a properly specified sel of ref-
erence sequences, the required counts can also be oblained wing other general-purpose tools
foar que it e tion of doplel sl MA-saq data, suchasalewie [ 16].

To our keowledge, no critical evals tion of the charscteristic of the spliced and unspliced
ool e inces generated by these tools, and the effects an the dowmstream RRA veloc ity esti-
i tes, bows been perfmved to date. [n this stsdy, we therefore wed five public experimental
droplel scBM A-seq dala sels, generaled with the 10x Genom ics platform, tocompare spliced
and urspliced abundance estimates oblained by vaooeta, kallisto|bustoals, STA Raoly, dropEsr
and afeviie [ncluoding alie mative index definitions and parameter setlings, we analveed each of
the five expe dmental data st with 2 total of wp o thirteen different quan tication appmaches
(toal'pammeter/index combinations L We lastrate that the estimates of apliced and wspliced
abvuda oes can be stromgly affected by the dsoice of tool, &8 well asby the daline tion of
exonic and intronic regions; in particular, bow genomic regions thal are exomic in Some 2 nm-
tated tramseripl soforms and i tonde Tnothersane treated . Maoreover, we slwow that aboan-
darsce estimabion i3 a critical step of e analvsls workfow and that differences al this slage
canhave considerable effects onboth the BNA velocity estimates and subsequent biological
irberpretatio.

Methods
Diata

[in thais study, we wed five public single-cell BN A-seq datasets, generated by different laborato-
ries waing popular drople -based protocols fram 10x Genomici Three of the five datasels
(Pancress, Dentate gyres and Spe malogenesis) com prise cells from dymami cally developing
syatemns, while the remaining two (PECand OldBrain) contain differentiated cells from adult
mouse brain and were dwsen & negalive control dats sels, asumed to not bafbor astrong
dyramic sigral

» The Pamcreas data set [22] stems from astedyof endocrine development in mowse, and was
scquired with the 1ix Cenomics Chmom o m platform, using v2 chem iy, We downlosded
thse FASTO) files containing te resds from tse cells al stage E15.5 from (e Gene Expression
O ibis, sccession mumber GRE132188. The BNA resd kengil is 151 nl A subse {of this
data sel was wied for ilhsstrationby [13], and is ind eded 25 an example data sel in the Vel
pesc bpe . Adter the respective quantifications, we retained only the cells that are abio included
inn the woVely example data set, from which we abo retrieved cell type libels. The fimal pro-
ceised data sel used for our analvies conlain 3686 cella

¢ Thse Drenlate gyrusdata sel [23] considers the developing mowe denbile gyrs, and was
soquired witl 1ik Cremomics v1 chemistry. The ind vidusl FASTO) files for cells from P12
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aind P35 were downlosded from the Crene Exprestion O minibuos, saocession mumber
CAES5315, and e reads from each lime point were combined ina single pair of FASTO)
files, with cell barcodesand UM sequences ln one e and the read sequeance in the oiler
The BNA read lengil is 98 n L Simikarly to the Pancrexs data sel, the Dentale gyros datasel is
also available a6 anesample data set in scl’ela, and was wsed for il tration by [15]. Only
celbs that were also studied in e scleln paper were retained Brour analysis, and cell type
babeks were ob tained from the o Velo exmple data sel. CellBuviger, velacyro and dropEsr were
reis ran o this dala se i since the downloaded FASTO) files were not in e formai expecied
by theese tosols The final processed data set used for our analyses containg 2,914 cells

# The Spermatogenesis data set [24] comsists of slesdy-stale spermatogenic cells from an adult
moisie, and wan processed with 1 Crenomics Chromium v2 chemistry. The submuitied
Bar file was downlosded from the Gene Expression O ib s, scoession mam ber
CRENMNES (sample socession mumber CGEMI928341), and converted to FBASTO) fommnal
wiiing the Barrfofrarg wility (v1.1.2) from Jke Crenomuies (B peUsupporl] agen amios comy)
docibamielaigl The BMNA read kength is W nL Cell type labels were obtained from the
correspanding loupe browser file provided by the authors, downbadad from Bitips-7 dala
mendeley. comtdatmetsbods My ptds/ 1. Only cells that were also indludad in this file were
retaimed for furiler analyai after quan tification. The fral procesied data sel wed for our
analyies containg 1L,E29 cells

o The PEC daiasel [25] conslsis of cells from the pre fronial cortex of an sdull mowse, and was
generated wing 1x Crenom ks Chromivm v2 chemistry. Since only limited dymamics i
expecied in this datasel, it is wed bere asa negative control The submitted BAM file was
dovwenllosded From the Gene Expression Cunn s, socession number GSE124952 (sample
sccenion CEM355970), and converted 1o FASTO) formal using barfofasty. The BN A
resd kenngih 1398 nL Only cellsannotated to "PEC sample 2" were wed, and cell type labek
wisigmed by the data generators were oblained from the GEO record metsdata The Gnal pro-
cessed dataset used for our analyvses contaim 1,267 cells

o The OldBrain datasel [ 25] conmsisls of cells from the diBsociated brin ofa 21-22 maonths
ol mouse, and was gene miled using 10x Gesom ics Chromdum 2 chemistry. Simdarly to
thse PEC dalasel, it s wed a5 a negative control. The submitied BAM file was downlosded
Fromt v Creme Expression Omnibus, accession momber GSE129788 (sample accession
CEMIT22108), and converted Lo FASTO) format using Barirofasry. The RMA resd kengih is
57 ok Oaly cells annotated to " sample 37 were wed, and cell type bibeb assigned by the data
g rerators were oblained from the GEO record metadata The lmal procesed data sel mad
foor our analyies conlaing 1,823 cells

Feature sequence extraction

All analvaes are based on reference files from Crencode, mouse release M21 [27]. The desired
oulput from each quantification metlod isa pair of count matrices one conlaining spliced’ or
“exonk” counts, and the other containing "unspliced’ or intronic’ counts foreach gere in cach
cell. For simplicity, in the remainder of this paper, the terms Spliced” and “exonic” will be used
interchangeably o refer (o the counls represanting the processed mBENA abundances, and
‘unspliced” and “in tronic” counts will similady refer Lo e counls representing e unprocesed
pre- A abuandances.

To erable this type of quan tification withy alevin and kallisto|bustools (2 opposed Lo the
more standard, gene-level expression quantification), te Gencode reference files were
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Table 1. Summary of relerence FASTA files oon i ining esonic and ininon b sequences. Only (s generaled by
ek K woere nsed for cneatbon of guantificalien ind kex

FASTA file name Seayi an L8 @ X0 ac kn . It ol ol s

H L% aBe. o ara e . B S e . It roires et o s arately frorn aac b o v migt Eodorm
B L% afse. c ol Bl S pa fae It enmracted afer aollapsing ol ranssripes of a gene
i R-separat e . ekt . It ewerac el separat ey drom each wna e i keod orm
i - ool e chight | Tmtrwres exmraced adfer ool pesing ol sramscnipes of a gene

e il ol 00l 37 poaareall pe 1 CCREGSEE5 A0

processed as folkows (ako summanzed in Table 1) First, we used the BUSpaRae B Bioco nduc-
boor e b v 1R [ 28] o extiract rarseripl and inlron ssquences from (e genome sequeance
and the Gencode anmotation GTE e While the definition of the transeripls B umbigeous,
thse BUSpaRze package suppors two ways of defining the introns (see 51 Fig fora schematic)
Thee “separate’ ap proach corsiders exch tramseripl separately when extracting the inlronic
regions (and thes, an intron can ovedap with an exonic region of analtermate transedpt),
while the "collapse’” approsch st collapses the isofrms of a gene (aking the union of all the
exanic region ) before defining the intronsas amy regions of the ge e loous that are sol exonic
imamy of e ansolaled transcpl isofrms of the gene. [nefect, the “separaie’” ap prosch (s
conside s exonk and inlronic reglom on an equal fooling, while the collapse” approsch repre-
sents a prior beliel that an ambigoow resd is more lkely lo come from an exon an fom an
intron & Manking sequence of length L-1 {wlhsere Lis the BNA resd kength of the respective
study s sdded on each side of esch intron to sccount for reads mapping scross exon//inlron
boundaries. Foroomparison, we also relmplemeanted the extrac ton of transeript amd intmon
sequences [Byrboth the separate’ and “collapse” approsches ) directly wing functions from the
CrenriiscFeatiures and Bigename B Bloconduc tor paclages [249, 30, For convenlence, code
wied toextract e featureshas been included in the ela® BY Bioconductor package (liiips )/
wwrwt biocond uwelororg peckages/ela B In each case, the extracted tramseript and intron
sequences were wrillen Loajoinl FASTA file, summanzed in Table 1 Upon oo parian of
the two im ple mentations, we noticed that the BUSpaRse relexe verdion at the time (v1000F)
retursed erroneowms fealure sequences for mult-exonic transe dpls and coresponding introms
on the megative strand. This was partly corrected ina bier release (vIL22) (52 Figh However,
for this reason, e features extracied by BUSpalse were nol wied for furiher amalyses

Reference index generation

The combined transcdptand intron FASTA fileswere wed Lo build the following quantifica-
L indlices (summanzed inTable 2k

v a joinl tramse i plamd iniron indes for Sl (vLRG [31]

v an index for Salman, comidering the transcnpls a6 the features of interest and providing the
inLrons a8 decoy sequences [32]

o an index for Salvion, comsidering the introns & (e features of inlerest and providing the
Lrameripls o decoy sequences

o @ jolnt transcdpt and intron index for kallisno (A6 [33]

[ addition to the indices based on trameripls and Dntrons, we bulll ooe Salsion index oo
Use orginal Cencode FASTA file with the anmotated transepis, and one Safmon index from a
FASTA file combining the annotated transeapls and fully unspliced wemiom of all tameripls.
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Table T Summaryof reference indices. The foll index name s oonsirocied by concalenating fe indexiype fo fhe FASTA (e name, eg sl mon join szl e paraie
reders o ihe sl mon-joint indexbu il for the sogquences in dhe eisal separaie FASTA k.

Indew fype Il 5 b il i

i - oo it | Kahian |
sl - s o] - el el | Sahnon

sl - sped o] oy Sahnon

sl - i e - e oy | Sahnon

i - i 1 dadlbide

o ranger | il e gty

wur STAR

e da o 0 3 1 ol pe ) QDRSS MO0

Iripa pefemen ce files | Takde 1} . Targel saquenos b iy il & 2%
e lzall- separate, e H- ool pre :s.*_:q'_ined PN s and i Rores -g:em.me
PGt T Ciree sapitice o e rescri s @ T e
-:rnr:cc:.?::-:nn'-: + i Lo erareorip s :s.*_:q'_'-:\:d arcl iregpdi cacl @ran sorips -E;u-:u'n:
il wepara e, et H-oolla e sapitice o e reecri s i s b @i
-e.i:a}l-s.e_:-nm:r_e':c.nu-m'_'n::u I.m'n:mc. -s.'_-.'-'_i:\:d PG SO S o @ TR
¢ b sepanate, e Kool pre spioe o wrareoni pes and ind o MWIA
-g;mnm: ancl GTF file wiole @ N e | MWIA
genonie and GTF file | whade gencame (KA

For all Salrain indices, the complete genome sequence was provided & a decoy sequence [32],
witl the aim o exclude resds coming from intergenic regions of the genome. Across data sels
and reference specifications, this e heded between bess than 1 and 2.5% of the reads from the
quantification For the quantification based on spliced-only transedpis, in which e genome
decoy would abo caplure urambiguously intronic resds, this number was belween 2 and 109
Finaally, we built an index for CollRager (v302) [4] and one for STAR [v2.73a) [17] kesed on
e reference genome and GTE fik from Gencode. The splice junsc tion database overlang in
e STAR indesx was set to 150, which & at keastas bongas the read kength moins one for all
ok b3 5218 considerad bere.

Tor investigate e effect of tie chokce of Mank lengtly in the intron definition, we further
buill Sadreicse indices [using the separaie’ intron definiton) with Rank lengihs equal Lo e
resd lengih minos 21bp, and the resd lengih mims 41bp. Weabobuilt an indes for Ealls o

Bresronls wsing the kB-python wrapper [15, 33], which wes the “separate” intron definition and
sets the Mank kength to 30 bp.

Sequence uniqueness estimation

Firaally, toaid in the inlerpre ation, we estimated the sequence unkjuenes for each gene, rela-
Live toall other genes, separately for each FASTA file gene rated a5 deseribed absowve { Talle 1)
Thee ge e unique ness wis defined o the fraction ol unique k-mers in e gene, that is, te frac-
Lion of the comstituent k-mers that are not found inany othergene For esch datasel, the k-
mer lergils was sl to e equal tothe BNA read length mins 1. The saquence uniqgise ness for a
gene wa caleulated in two different waya In esch case, the full FASTA file witl transcpl and
InLroi s end e wad wsaed 28 dnpul Firat, we 25t i bed soparate wniquoen es valses for the
exonic and intronie partsof agene, by smsigning the transeripls and introm of 2 gene to dis-
et gene [D% o the unkuenes cakubtions With this approsch, k-mers that are exonic in
one ramseripl and intronike inasoiber (even if these are isoforms o the same gene) are clasi-
fied a3 non-unkjue, and this the uniquee ness score of an exon sharing some of (15 sequence
willy an introm of another ranseripl from s same gene i3 reduced Second, we eslimaled an
overall geme uniuenes, by spain considering all (exonic and intronic) sequences, bul mot
penaling shared sequence belween introms and exons of the same gene

Cruan L ca Lion

alevin. For esch of the Salmion indices described above, we mmalen (w1000 [14] 1o esti-
it b2 exonie and intronic abusdances for eschansotaled gene. [ s wortls moting el for
abuinda ice s obial ned with the sl o -spliced-urplicad Dndes, "esoonlc” and "atron e’
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abundsnces refer directly 1o spliced mBM A and unspliced pre-mBENA abundance estimates,
respectively, while for all other indices, " exonic’ abundances refer o exonic regloms and "intro-
i abundances o intronie regions This affects, for example, bow reads al igning completely
witliin am exon are used inthe quantification For the sl mon-spliced-umpliced 1mdex, sucha
resd could stem from either the spliced or the unspliced tmmscript (since ko the latber con-
L the e ) and could contribute to the abundance of either for Botls) of tsem, whila with
the ather indices, it will be considerad “eoomic’.

B tlse alevedin queanitifica tions, the trameripisand nirom (or umspliced transcripis) from
e same gene were manually annotated with different gene [D%, in order o oblain separate
exanic and intronic genelevel abundances despite estimating them jointly. For the indicss
with decovs, the exonic geme counls were defined a6 the counts obiained wlhsen quamtifying
apairsl the tramseripl index (with intrors a3 decoys) and the intronic gene counls were simi-
barly obviaired by queantifying sgainst the intron indes (with tameripis as decovs). Henee, for
Uhese approsches, it is possible Bra resd that maps equally well toan exonke and an intronie
saquence 1o be bncloded in both the exonie and the intmoomic count matrices, and thos b
aou iled twice.

kallisto|bustools. For esch of the kalisto indices, we applied kallisto |bustools (v A6.0)
[14,15] tev gemerate 3 BUS file. Barcodes were corrected wing the lst of available cell barcodes
frosm Like Cremoam ks for the appropriate chem By version, and the BUS fik was sorted wing
EaMista| bustoals. Mext, the BUS file vas subset with the capture command of killisno|Bus-
fovals Lo generate separate BUS fles tobe vsed for the quantification of exonk and intronic fea-
tures, respectively. The genelevel exonic and intronk counis were subsequently oblained
i the count command. The capiure was performed wsing two diffene sl approscses

o “imclude’, where the features of interest for the quantification at land are provided to kals o]
Buastools. [ other words, the transeript [Ds are provided as the - c argument 1o quantify the
exonic abundances, and the intron [Ds are provided (o quantify e intronk shusdssces. [n
praciice, this means that reads in equivalence classes containing at lest one transeriptane
retained for e exonic quantification, and resds in equivalence classes conlaining ai keast
o intramane retaised for the intronk quantification. Hence, equivalence clasies com laining
bevtls exanie and intronike features will be provided to both the exonke and intronic quantifi-
bl sbepd

o Ceclude’, whhere the features thatl are ot of inlerast for e quantification at lasd are poo-
vided to kallis fof Bustook, and subseque nily excluded. [n otler words, intron [Ds are pro-
vided & e - cargument o quantify the exonic abundances, and the tramseript [Ds are
provided 1o quantify the intronic sbundances, and inaddition the -x Mag & vsed o indicate
theat thee provided [Ds represent sequences Lo be excluded. In practice, this means that only
resds i equivalence dasses that don't oo ain gy Dntrors will be retained for the aconic
quan ification, and only reads inequivalence dasses thal don'l contain any ramseripls will
e retained for the intronie quantification. Hence, equivalence chses containing both
exgiie ard it nic faatures will be exclodad in both stepa

Ly s dlition to the e moal applicathon of Ral s ol Busioels a8 deseribed above, we applied the
kb pythan wrapper e g uan Uification based on the corresponding indes. With iis defauli sei-
Lirggs, it calls Ealliero | Bustools with the "exclude” caplure approsch.

Velocyto, dropBst and STARsolo. CellRanger (v302) [4] and velocyfo (WL17) [9] were
runm with default settings o gene e exonic and intronic counts based on e Cell Baeger
imdex Ako dropBsr (WEE6) [20] was run on the BAM files outpul by CellRanger, specifying
the = flag to instroct dropEsl to relum exonmie, inironic 2md exon-intromn s pannng UM
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count matrces The intronic and exon-intron spanning UM counts were summed and vsed
b represent the urspliced UM count. STA Raaky (v2.7 320 [17] was run wsing the STAR index,
apecifying the SOLOLsatures argument to generale Velocily™ (exonic and intromic), "Cene’
(regular exonic gene expression ) and "CGeneFull’ [reads with amy overlap with the ge ne locus)
coils. Baged om these count matioes, we oblaised avonie and intromle counl malricss n Dwo
different wavs. First, we directly wed the Welocity' count matrices x5 exoni and intronic
ool [bebow referred 1o a8 starsolo ) Second, we vsed e Crene’ counl matrix a3 the exonie
counts, and the difference between the "GeneE ull” ard "Ceene’ counts a5 the intranie counts
(hebow referred to o starsaks_ayf) Por geneswhere the "Cene’ counts were higher than the
CremeFull’ counts, the intronic count was sl Lo zero. This can lappen, for example, for a gene
kocated in the intronolamother gene. In the CrenePull” quantification, resds mapping tosuch
a geneare considered ambiguow and therefore discarded. However, ey maybe ssigned in
e "Crene’ quan tification, iF they are compatible with the anmotated gene model Anoverview
of the evaluated quan tification ap proaches is provided in Table 3.

Cell filter ing and data processing. Por esch quan tification, we generated a Single CellEx-
periment object [3] conbining e exonicand intronic counts. Only cells and genes included
Ty all e thods were retained for furthe r amalysis. Bor the Pancress and Dentate gyrus datasels,
we further subsel the objects 1o only the cells analyveed by [13], for the PEC datawe kept only
celbs annotated to PEC sample 2, for the Ol Brain data only cells anmotated to sample 37, and
Tor the Spe rmatogenesis data setonly cellk with an asaigned cell type label provided by the daia
pene mlon were relained. For visumlization purpodes, we cakoulsted a single low-dimensional
representation based on the alevin quantification of only the spliced mBN As (wing e origi-
el transcriptome FASTA file from Cremcode). After mo malization with scarer (v1 14.6) [35],
i Use library sizes to define siee Baclors, we extrac ted 30 priscipal composenis from e
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bog-tramsformed normal med count values. The scater package was then used to apply UMAP
[36] with default parameters o the PCA ouipul to oblain a two-dimensional represe ntation
theat wias wsed for vismlization of sstimated velocities

Visualization
Lin oorder bo visualize the coverage patlern of resds within genomic regions, we subsel the BAM
file generated by CelBanger to only the reads sssigned to the retained cell barcodes, wing the
siebser_Bar tool (VI from W Genomics (itp s/ fgith ub.com 10X Cenomic S ubset-bam )
Rest, we wed BEDToals (v2.27.1) [ 37] tocakeulbste the coverage along the ge nome, separately
for resds an the positive and negative strand. The bedGraphTaBWigsenpl from Eenl Tools
(w2 90212} [38] was wed Lo converl the resulting bedCeraph file o bigwig formal

Coverape patleris, loge ther with annotated gene models, were visualized wing the Gueiz RS
Biocond uclor package (v1303) [39]. In these figures, e annotated gene modelsare visual bed
by theeir genomic coordimates, toge ther with coverape tracks of reads aligred 1o the positive
and negative strand of the gemome. The alignmenis are aggregated across all the retained cells
i the data sel. Allalignments contained in the BAM fileare incdluded; bence, moultimapping
resdsare represented inall the reporied mapping ksation. Moreover, no UMI ded uplication
is performed and ths the number of resds reported in the coverage racks are often higher
U the total UMI count returned by any of the counting methods [0 is also impodant b nole
U £ wlaike the gene modebs and coverage tracks are represented with respect 1o a genomic ref-
erence for ease of interpretation, both alevie and kalliste| Besfoals pedorm the quantifcation
heried an mapping o mmcoriplomic faatures, sol alignment o the genome. This, these plots
are nol Dnte nded to provide an exact corresponde nee belwean mapped reads and astimatad
UM counts, bul milser serve a8 llustrations toald in the understanding of the cames of differ-
arnced hetwean the counts oo te variows meitlods.

RMNA velocily eslimalion
SingleCellExpe dment objects with exonic and intronie gene-level UM counts were converted
to AnnDatsobjects [40] wing the andataZel package v L0 Bitps-) github com) telsbby/
anrsdatalol). The soVelr package (wh1.24) [ 13] was then wed to sormalize the counts and
select tlse 2,000 mast lighly variable geres sepamiely for each quantification approsch, after
excluding all genes with less than 20 assigned resd s scross the exonic and inlronic componenis
[only summing acros cells with nomeens exonic and intronic count). Mote thal by defauli,
seVely selects highly variable genes based o the spliced counts only. BNA velocity estimates
were oblained wing the dyramical model implemented in wVely. For compadson, we also
performed dowmstream amalysis and vEwmlization of the BEMNA velocily wing only the genes
theat were sekected (and for which wVelo retursed a finite velocity value) by Vel witls all the
quen it feation approscheas

The scVely analysis relurns a gene-by-cell matrix of estima led velocities, &5 well & corre-
spond ing matrices of pormalized (spliced and urspliced ) abundances. Based on these malri-
ces, we eslima bed both gerne- and cell-wise Spearman correbitionsbe tween the different types
of abundances, o wellasbetween the abundances and the velocity estimates. For exch gene,
we alio At alinear model withoul interceptwith e mormalized spliced abundance as the pre-
dictor and the nomualized unspliced sbundance as the response, and estimated the B for the
model, simibady tothe £it 2 valoe currently returmed by wlela A bige B valve ind icates
thea @ most celks lie chose to a dizgonal line in the spliced-unspliced abundance space, suggesting
thea b thee gene is in a steady slateacros the majorly of the celli. We used this to contrast the
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odala sels where we do nol expect muoch sysiematic dynamics o those where we do, expecting a
shifi towards birger B values in ihe former. Bor esch cell, soVeln Furilser provides am estimate
of e velocity confidence (representing e average correlation of te velocity veckor of the cell
and those of its neighbor L [Uis worlh moting that the velocity calculations are perfsrmed sepa-
rately ko esch inpul gene, and the resulting valuesare therefore independent of which other
genesare included in the data sel (under the msumplion el the sormalized sbundance values
slay unclanged)

Low-dimensional embedding of velocities

All veloscity estimates were embedded into the same kow-dimensioml representation, calou-
lated from the spliced-only abundance quanti feation byalei o descibed above. Based on
thse e tine ted velocity vectors and the differences between the expresion profiles of different
celks, seVelo caleulates a cosine correlation (ny) for each pair ol neighboring’ cells A high
value of ry; indicates that the velocily vector of cell fpoinis in the direction from cell o cell §
ingene expression space. The kw-dimenmsionml embedded velocity vector for cell § caleulated
by scVieks, is given by

w]:r&r-&f':1 i5 the tramsition probability from cell § Lo cell { (derived from e cosine correlation
rl:,_‘,:l.ﬂ i the mamber of cells, and

i i
L R

is the normalized difference of the coordimies of cells fand | in the low-dimensional embed -
oirg. The fact IJ:uL;‘iII i rwormalized Dmplies that the lengih of ¥ indicates to wlat extent the
cells towlhiich cell (has high tramition probabdities are all kocated in the same direction from
cell in the bow-dimee s o mal representa ton. [ furtlser implies that the embedded veboc ities are
potentally more com parable s mas methods tan the onginal velocity veclors, since the mag-
mitudes of the litter depend on the sormalized abundance keveb of the genes, and since ihe
veloo ity vectors will only be direc iy comparable belween me fods i ey are based on the
same sl of inpul genes. [norder 1o compare the velocity embeddings across me theods, we cal-
culate a concordance scome for each cell The scome For cell § s defined a3 the mi between the
ke g th of the sum of the e mbedd ed velocity vectors for cell facros all quantification metho ds,
and the sum of the lengils of the individual embedded welscity vecios. [n otler waords, the
soore for cell 1is given by

P>l
CELE

wihere the sum i taken over all methods m, and ™ i3 the embedded veloc ity vector For cell |
witly method ra. [T all e mbsedd ed velocity vectors for cell { podn @ in e same direc ton inthe
bvwe-di el oral representation, this mbo willbe dose to 1, while if there i3 less concordance
betweean the different quantification methods, e i will e koeer than 1L
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Results
The total UMI counl varies belween melhods

With the aim of charscterizing global differences between the counting methods, we fist
directly compared the total UMIcount sssigned toexonic and intronic targets by esch of the
methods. Wesummed up the countsacross all cells, either across all genes or within gene sub-
sels atratifed by saquence uniquee ness (Fig 1, Pancreas data; 54 Fig, OMBrain data). There are
coniide mble differences in the assigned U MI counts between the metlods. Moreaver, these
differences are nol confined o asmall number of susceptible genes, bul can be seenacrons 3
barge fraction of the expressed genes (55 Figl

Owverall, dropest gave the highest total UM counts, mostly resulting from higher counts for
gemeswitha bow degree of sequence uniquensss. This effect B stronger in (e data sets with a
higher degree of multi-mapping such & the OM Brain data set (54 Fig). We vpotbeszed that
this effect is due o imulfickent UM colapsing, resulting from ihe we of anly the alignments
designated o primary alignments in the BAM fles outpul by CelBanger. This reporied pri-
i 1yl b el can vary between different resds stem ming from the same under] ving tran-
script moelecule. [nsuch cxes, the corresponding UM could contribuie Lo the count for
multiple different genes. Among e other ap proaches, sasolo_diffand e alevin-Tased quan-
Lification ap prosches besed on transcriptfintron anmotations gave the bighest total U ML
cotants, mainly driven by higher counts for the exonic targels Ao lsene, the affect i3 predoni-
rearlly driven by genes witls alow fraction of unique k-mes. alavn incdudes mul G- map ping
resds in the quantification, thus incressing e counts for hese targeis This is incontrast to
karllister| Bustoals, velocyto and starsalo, which by default exclude ambiguows resds that map to
vl tiple g s from e quantifica tion.

Velncyta and starsals_diff gave the highest UMI counts frgenes whose transeripts are all
shaorter than the resd leaglh (genes in the "WA" categoryin Fig 1, for which no unkquensss
coukld be calcubsled since all tramseripls were shorter than the emploved k-mer ke ngil). How-
ever, velnoeia cordidered most of these reads Lo be exonic, while starsals_dif assigned them to
Use iniromic features This belaviour of starsofo_diff & lkely due to e generation of te intn-
e counts by subtraction of the exonic count Fom the full gene loows count. A resd which
partly overlaps the gene locus bul B nol consistent with the ansotated gene model would e
included in the CreneF ull” count bul not in the Cene’ coun t, and thu considered an intromic
read, regardless of whe ther or not the gene actmlly contaim any introms. Simdarly, stasalo
diff assigned higher counts than both velooyio and the default " Velocity” counting of sfarsolo,
foar Bl e xonic and intronde features.

As expected, the alevin-based approsches where exonie and Do tronde Fealures are quantifed
separalely, x5 wellas the indude’ caplure made of the kst s el app oadses, tend 1o
give ligher total UMIcount than quantifiing exonic and intronic features jpointly with alevi
or runn irg kallisto|Bestoals in “exclude’ caplure mode, especially for the "separate’ intron defi-
mition. This & Lkely due to double-counting of some reads that map equally well toan exon
annd an introas. The dife e noe betwesn the "Include” and e el ude” capiure a pprosches 5 smaller
for the “collapse’ annotation, since in sl case, mo genomic regions are anm b led &5 both
intronic amd exonic for the same gene. The same i3 troe Tor the difference between e alevin
queantifications emploving pint and separate quantification. [0 s wartl soting st ihe lengih
of Use Manking region clwsen when constrocting tse intron i features for the quantification
also influenees the counts (53 Figl A shorer Dank kength typically leads 1o a kower unspliced
count, since alarger fraaction of e resd must overbap e intron for e resd tobe comsidered
poten Lially intronic
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Ly sl dition Lo e absolule counis, abo e factionof UME ssigned o umpliced targeis
varks belween methods, with the largest Faction of intronk counts oblained by alonin_splize-
el _tespliced_gir. This was expected, given that for this metlwed, e “intronic” Batures are the
full pre-mBERN A molecules and thus contain both exonke and intronke sequences. Hence, alo
reads Elling in exons may be maigned o the unspliced Ratures.

Individual genes exemplify methodological differences

Rext, we aimed 1o find individiml genes wlose count patierns exemplify the main methodo-
kogical differences among the countingstrategies First, we restricted the sel of gemes 1o those
Ut were sebected a5 highly varable by soVelo, and this wed for velocity estimation, for at
keast one counting method Motably, while a birge fraction of these genes were selected scroas
all quantification methods, there were mon-negligible differences between the setsof selected
genes (56 Figl In particular, alewn_spliced_unspliced_grr gave the largest number of unkjue
highly variable gemes, folkowed by the srasals variants and alevin_sep grrdepending on the
dalasel For esch of the retained genes, we calculated the fraction of the total counts tal were
wsigned 1o umpliced Features (summarized scrodsall cells ) Mext, we calculated the standard
deviation, acrods the quanti eation methods, of these intronie count Fractions and selected
e top 1096 of e genes based on this measure. These genes were partitioned into 10 custers
based on the Paarson correlation dissim larity [ /2T — p] where p i the Pearson correlation)
between the fraction of intron-ssiigned counts acros methods, wiing hierarchical chustering
with complete Inkage (Fig 21 The gene dusiers reveal typical cases where the methods vield
different exonicandlorintronk counts. Bepresentative genes for each duster, selected among
e ge s with the highest correltion with the dster centraid, are discwsed below and illus-
trated in 57 and 55 Figs.

Creies with ambiguous regions. [(clusters 1, 2, 3, exemplified by Tapan3, Srl and Alg2 in
57 Figh. For genes in which many of the base positions are annotated Lo both exons and introm
(i oli e pent dsodorma ), the duoiee of low to define introns Coepamie’ va “collypse’ approaches)
b a major effect on the quantifications. [Fexons are collapsed before the introms are defined,
reads falling in ambiguows regiom are comsidered exonic, leading to a higher exonic anda
kv r i brondc oot than with tee Separate’ intron definition This effect can beseen in
approsimately el fof e gemes with e highest vardability in the fraction of unspliced counls
(Fig 20, and manifests iself viaa bow fraction of unspliced reads for the alevii and kallisro|bus-
fovals a pprosches bosed on anso latio s expliciily oblained with the collapse’ iniron definition
approach, & well & dropesr. Abo starsolo_diff Bllsin this category, since the intronic regiom
are nol comsidered when the exonic countsare estimated (via the "Gene’ count), and thus any
resd thsal i compatible with at lest one tramseripl mod el 5 conside red exonic.

Witls tse “separate’ intron definiton, ronning alasdowith decovs or kalifof bustools with
U "Il ude” capiure double-counts many resds falling completely inambiguous regioms, giv-
irng huigh values ol both e xonic and intronk counis Conmversely, runming kallisio| bustoals with
“exclude’ capture discards many resds in ambiguows regions, since they will typically be
amagned o equivalence chsses containing both exonic and intronk targets, and this counting
atrategy therefore often returm kw counts for both tvpes of features. Whike these effecis can
e seen in e absolule counts, they do nol necessarily affect the ratio of spliced and unspliced
oo iats (57 Flﬁ:l.
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For genes with many ambiguow regions, welacyts often returns a relatively low mumber of
spliced counis, and comsequently a barge fraction of unspliced counts {clusters 1, 2). This likely
follows fromm tee defaul £ "pe m Bsive’ counting logic where, essentially, a resd contibutes to
the spliced count anly if it 5 comsistent with the exonic region ofa transeripl model, bul does
i L rip b an inlranic region oran exonfintron boundary of any other transeript model Ako
starsoky often asigns 3 bow lolal count Brthi group of genes.

Crenies overlapping (introns of) other gemes. [(clusters 4,5, 8,9, 10, exemplified by Rasfl,
Crn2 19483, Chkb, Crobd and Trmem]1 20 in 58 Figl Overlaps between genes can take many diF
ferent shapes; exons of one gene can ovedap either introm or exonsol otler genes, and (he
averkap can be ontle same or on oppodile strands. Reads falling inanexson of one gene and in
an intron of anotler geme on the same strand are considered ambigoows, and are therefore dis-
canded, by kallisrof bustonls, velooero and starsols. [n contrast, dropest and alevin do not dicard
such reads. dropess preferentally asigns the resds to the exonke region, while alevi instesd
often distribules the reads betwee n the two Features. Ths, alevin tends 1o give a higher fraction
of unspliced counts, and in many cases aboa higher total count, for genes with other genes in
thseir intrans {cluster 9, exe mplified by Crooté in 58 Figl. [t B worth observing that alevie will
often also asign resds o the gene located within the intron (Gm12191 in 55 Fig, which & the
gene in the intron ol Cools) As for e previow calegory of genes, alevie with the decoy
approach double-counts reads mapping equally well to an exon and an introas, regardless of
wheether or mol the exon and the intronbelong to the same gene.

[ cases ol exonic overkip between genes on the same strand (clusters 5 and &, exemplified
by Grmi2 1983 and Chikb in 55 Figh, all metlseds exc epl alevin consider the correspond ing resds
ambiguous and discard them, lesding to alarge difference in the total counts (Fig 20 The main
difference belween many genes in cusiers 5 and & is tatin cusier & e gene of inlerest over-
baps partly withan intron of e other gene, and the resds in the overlapping region may be
counted by e "Crene’ approach of starsoly_diffand by dropest. In duster 5, the gene of interest
overbps only with exoms of he other gene in the region

Reads falling inoverkpping regions of genes an oppasife siraads are nol comsiderad ambig-
o T e strarded mess of the resds i3 taken inio acooun L. However, nol sccounting for the
strandednes (illusirated Bere by e beloviowr of kalistof bustools and dnopesr) implies treating
such overlaps similarly to same-strand overlaps. Foresample, for a gene located imside the
intron of anotlser gene on the op posile strand, all resds nol map ping 3cross an exo n-exon
Jue tion will map equeadly well Lo the two genes and thusbe discarded (duster 10, exemplified
by Trem1 200 in 55 Figl As before, dropest tends to give preference to exonic overbaps, while
e resds Falling in e intronk regions in the two overlapping genes are often discarded.
Exomic overlips belween genes on oppodite strands abo leads 1o a decrease in the number of
ansiged resds if the stranded mess 3 not taken into sccount [exemplified by Basafl in 58 Figh
Thee assigned count canabio increase by perform ing e quantification in an unstranded man-
e r For exam ple, resds mapping (o the negative strand, not overlipping any Feature the re but
averlipping a gene an e positive strand, can be asignad to the latier. Intronk reads resulling
from discordant priming from paly-T sequences, a5 observed by [49], would alio be incorpo-
rated witl an strand-sgeostic coun ling approsch. The obse rvation of [4] could be reprod veed
imour data sels (59 Figh, and the incorporation of opposite-sirand resdsby kalli rof bustosk
and dropest is e xemplified by Sarl and Brak2 in 57 Fig

Crenes with reads only partlyoverlapping the genebody. (custerd, exemplified by
1IBMHNAD 21 Rik in 57 Figl In some cases, resd extend oulside the anmolated gene bady. The
sfatrsaky_aiff Grene Full count incorporates these reads, while the "Gene’ count from ihe same
method does mol, since tseyane mol compatible with e ansolaled gene model Asanefla,
Use differemee belween them (which b used a8 the intromic count) can be high, even in cases
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wlheere the gene does nol contain intro s, and the tolal count assigned by srarsofa_diffis higher
Uy st of the other methods Veloopfo and, For some genes in the duster, the Ealliso|bus-
fovals e theods, viel ahigh spliced count, while e alacin methods, dropest and starsolo return
Boww 1 vl s

Reads falling in purely exonic regions.  Across the dusiten, alevin_s pliced_wsphoed_grr
often showsa different read asignment compared Lo the otler metleds As previowly noted,
tsere b & fundamen tal diffe remoe between the reference wed foralevn_spliced_wspliced_grr
[which considers full spliced and wrapliced transeripis) and those wed for the other metlods
(which consider transcdpts and introns). This implies that resds Blling completely in exonic
regians, from the point of view af alevie_sploed_wespliced_grr, are equally likely to come from
a apliced as an urspliced molecule, while the other metlods comsider siuch reads unambigu-
owsly exonic In practice, tis can lesd Lo alower exonic counl and 3 more even exonic/iniro-
e count ratio for alevi_splioed_uwespliced_grr than for the other me thods. This i exemplified
h:.' Map]h [claster 10k 111 57 l'l_i_\'..

Large differences in inferred velocities be tween quantification meth ods

[ thse previoim sactions we showed that there are noticeablea differences betwean the quantifi-
cation methods, s temnsof e total mumber o f UMD eoun s a3 well a5 the distribu o of these
betweenspliced and urspliced targets. Next, we mked whetler these differences could be seen
also dn the velocity estimates from soVelr, and in the embedding of these in alow-dime mional
represantation of the celk, which isaguably the most widely wed way of inlerpreting BENA
vekoo ity estimales. For our analyses, we provided selelo with raw spliced and umspliced UMI
count matnces These were then Miered ard normalized by sclelo, and the BMNA velocily was
estimated for exch inpul geneand exch cell Velocities were estimated for either the individ wl
sels of 200 highly variable genes from each quantification method, or fhe sel of genes that
were selected by o Velo (and obtained a valid velocity value) with all the quantifications.

[mberestingly, the estimated velocities comslently showed a lower correlation between
methods than the mormalized (spliced, unapliced or aggregated ) abundances, when cakoubated
acnas elller cells or genes (510 Figl. Within acell, there was also a relatively sirong correlation
between the tolal gene abundsnce and the absolute value of the velocity (511 Figd. This should
be Bolored in when comparing absolute velocilies scross genes, and iL may abo suggest that
veboo ity estimates are pol direcily compaable scrossquantification metlseds if the number of
aisigned resdsare very different. For a given gene, the fraction of unspliced counts was ako
mod e lely poditivelv comelated with the estimaied velocity. The spliced and urapliced abun-
dances were positively correliied for all quantification methods, sugpesting that the inlmonic
sigraal is indeed real and of polential biological relevance, ratber than just the resull of, &g,
conlamime tion by genomic DNA. Firally, we noliced a moderate positive correlation belwee n
e abundance ofagene and the lkelilsood of tee velocity Gt in fourof the fve data sels (exem-
plified by the Panc reas dala setin512 Fig), while it was substantially lower in the Dentate
gyrus dataset (513 Figh

The velocily estimales were visualized by e mbedding them into a UMAT represen tation
based on the alevin_spliced_grr quantification [sote that the alevin_spliced_grr counts are not
wied toestimate the velscily, since mo intronke counis are estimated ). The UMAP e mbedding
wis compared o other types of embeddings (PCA, (SNE, UMAP besed on aggregated abun-
daces, umspliced abundances only or spliced and urspliced aburdances concatenated ), in
berma of the kengih of the embeddad velocity vectors as well a5 the averge distance belwean
thse veloscity vec lor of escls cell and §15 10 nearest meighbors. These compadsons suggesied that
Use diffe e moes be tween embeddings were reltively minor, bul that UMAP often provided a
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slightly more interpretable representation (514 and 515 Figs). Embeddings based solely on
unspliced abundances were the lest interpretable from avelocily perspective.

Differences in velocily estimales directly affect biological inlerpretation
From the UMAP vimlizations it is immediatelvapparent that the differences in the estimated
abumds nees belween the quantification methods directly influence inte rpretation, e g, indi-
cated by streamlines pointing in different directions in certain regioms of the plots [(516-518
Figs). These differencesane mol caplured by the velocity confidence estimates retumed by
soVely for an individ sl method, which are often high for all the cells [(519-521 Bigs), suggest-
i theat the differences betwee n metlods are systematic rather than just the resull of random
Muctustionsorumceainly in the velocity estina ton. The sim darity among the low-dimen-
sional velocity embeddings bosed on different quantification medods increased somewlat
wheen ey were derved from the set of shared genes (Fig 31 However, conside rable differences
were sUll seen, indicating thal the quantification does mol only influence e welecity interpre-
Lation via the selection of genes.

The lack of unambiguom grousd truth complicates a direct evalution of the sccurscy of
veboo ity estimates from the difle rent quantification metheds. In sddition, the typical way of
interpreting velocily estimates by means of embedded stream lines in alow-dimensional space
provides a relatively coarse-grained mesure. Neveriheless, Fig 5 and 516 Fig suggest that for
e Parcreas dats, the brgest differencesbetween melbodsappear in the differentialed Alpha,
Beta, Deltaand Epsilon cell types (left). Here, alevin_sep_decoy_grr, dropest and the kallizro|
Bigs metlseds induce (parly or fullv) & "beck-fow”, with streamline armws pointing fom the
differentiated calls back towards the pre-smdocine cell. A& similar observation can be made
foor arleviv_splical _unspliced_grr and kalisto|bus_sep_ied for the pre-endocrine celk. The
cycling rature of the ductal cells & visible in the embeddings o Mvelocities from mosl g Lifi-
cation methods, with the exceplion of alevie_splical_unspliced_gir, alevin_sep_decay,_gir, kal-
fistof bus_coll_irecl, and kallisro|bus_sep_ned.

Ak far the Spermatlogenesis data (Fig 3 and 517 Figh, the largest differe mces between meth-
oxki are seen towards the end of the developme nial trajectory. Again, mamy metlssds (with the
exceplion of alevie_sep_grr and kalirobus_sep_excl) induce a back-fow, with streamline
arrows polnling from e bie rousd spermatids towards the mid round spermatid cluster. [n
sl cases, s back-Mlow continues through (part of) the mid round spermatid cluster o well

Ly thee Drenlate gyrusdata (518 Figh, the lowest concordance belween velocities based on diF-
ferent quantifications & seen for the cells in the granule cell lineage (middle partl While some
sueartifeations indicate s direction largely from seumblsis o granule cells (eg, alevimn
sep_gtr, kalbsro|bus_coll_ied), others indicate a sirong movement in the opposite direction
(&g alevin_sep_decoy_gir, kallisro|bus_sep_lnel). All methods excep t kallisto|bus_call_ssxcl,
kallisto|bus_sep_exclard kallisto|bus_ooll_iecl shoow a strong dynamic Sow within the mature
gramule cells, and there & furthe r dsagreeme nt within the astrocyte cell cluster. Owverall, the
resulls from these three datasets highlight that the biological interpretation can be stromgly
affecied by the caice of quantifc tion me ld

Negative control data

Thee PEC ared OldBrain data s2is were used 1o compare the methods in terms of the ir pedfior-
i rvoe an ”egative control data seis, that is, datasels wlere no stong sysbe matic dynamics
are expected. While it i3 intrinsically bard to God a living biological svstem withoul dyramics,
we expecied to find a birger fraction of genes in asiesdystate, inwhich the expresion leveks
are maintained atacomstant kevel over Ume Under the asumplion of & conslant degrada tion
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andsplicing rate lora gene acrss cells, we would s expectalivear relationship between (e
observed spliced and unspliced abundance for a gens, across all calla Similarly 1o xVels, we
serefare fita zero-lnlercepl Une for the unspliced v spliced pormalized abundance for each
gene across #ll cells, and estimate the B for this line. A high value suggesis that the gene isina
slexdy siale acrod 5 birge fraclion of e cells 1o the dala sel Indeed, all metlwods showed go -
erally i:ig]mrk" values for the negalive conlrol dala sets {Fig 4), with a soaller differe nee seen
foor atlevine, splicad g rspliced_gre, kallisto|bus_coll inciand kallista|buws sep_nd. The three

e nbification metlssds thal deiecied the stromgest differences between poailive and negatlve
comtio] dabasels were alevin_all_prr, alevin_sep gtrand starsala

Discussion and conclusions
Ly thuis study, we have compared differen | counling siralegies for oblalning ihe pliced and
unispliced count mairices required for BMNA veloclly analvik. Using live experimental] droplel
SCAMA-seq daid sels, we leve shown that there are consldemble difle renoes be tweeen tlbe ¢ ounl
matrices oblained by different methods et are widely used In Use e, and that these difer-
ences directly infleence the downsiream analwizand interpretation of the st maled velocibies:
This eflect 15 mead led partly by an impect o e genes thal are selected for 1ndmsion by
seVels, bul differe nces sffecting Use inlerpretstion remain even when e same sel of games s
uded derods all methods
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Criven the relative imma turily of the BN A velocity leld, and the ek of a generally sccepted

method for gene mlng realistic, sim b ted data with known ground rals for this application,

itk challenging to mok e guantification methods i lerms ol shaolu ke performance. How-
ever, sonte clear theres e mergs from our amlyvis, and are sum markzed below and in Table 4
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Table A Summaryof e evaloated qoan il bon metbode The first gron p ol melbod s are: racommended for uee wiilk dooplel sl XA seg d ala, owing o iheir good
perlermance on e eperimental data sots need in this siudy The ks group of metheds ane nel recommendad Tor nee wilh dropled s B8 A-seqdata. We emphasize
that ihistable provides o snap dbod of the capabilli ties of the evall mted vermion of ihe respective methsde In addition, the relatne per o mance may be diflerent for
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Firsl, counting exonicand inironic resds separately, withoul consideration of whether the
rexd could have resulied from the other type of feature [exemplified lere mainby by alevi_
sep_decay_gtr and kalisto|bus_sep_incl) leads to dovble-counting of reads, and veloci ties that
apree lesswell with expectations

Second, mol comidenng the strand edness of the resds from 10x Genomics (here exempli-
fed by the Kaflisro|fustoals variants, dropest, and by explicitly ronning alevin in unstranded
masd el implies that many resds in regions where genes on different sirands ovedap esch otler
{exonically or intronically) are conside red amb iguows. Depending on the metlod, these resds
may comequenily be excluded from ihe quantifications. However, at e same time it provides
Use ability to include resds resulting from dBcordant inte mal priming

Third, deriving the inimnic resds by sublracting the "Gene” count from 5TA Fsala from the
correpand ing GeneFull' count (here demoted starsaks_aff) sometimes has unexpected conse-
quences, since e ‘CreneFull” counling conside s all reads thal ove dap the gene koo, while
e "Creme’ counting requires thatl the reads are comsistent with the trameript model Ths, 2
gerne can oblain a noreers intronic” count despite comple tely lacking anno lated introns.
Maoreover, geneslocated within introns of other genes will often obtain a nomimlly negative
intronic UM count since non-junclion-spanning resds mapping o e former will be consid-
ered ambiguoms and dicarded in the "Gene Full’ counting,

Fourth, for 37 lag dalasech & tse s Cenomics dats we bave comsidered in thisstedy,
quantifving e spliced and unspliced transe dpts (rather than spliced tramseripis and introm
only ) implies Usat for alarge fraction of the resds, it & difficull 1o resolve wheilser they stem
fromm the spliced orumpliced target. Ths, this type of reference may be more suitable for full-
le gl scBM A-seq protocols, wlsere resds are sampled across ihe entire lengih of the transe npl

Among the counting strategies contrasted in this manserpt, alevin_sep_gir, kallisto|fbus_
sep_exel, stavsalo and alevine_coll_gir provided velocity embeddings most inline with
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expecbilionm in the three real data se . The methods are also relatively similar in terms of run
Lime, and considerably Bter than running CellRanger+velocyto. However, even among these
well-performing methods, thereare birge differences in the msigned counts o wellas in the
Farsdling of ambiguows reads and genom ke regions

Croing forward, we expect thal improvemenis in counting sirtegies for scBN A-seq data,
specifically tailored for BNA velocity preprocessing, will ikely come alongside an increased
understanding of the read generation proces and fe bixes underlying specific scBEMA-seq
library preparation protocels, and that differe ol counting strategies may be opLmal for differ-
enl types of sc BMA-seq data. An incressed und erstanding of the resd gese mtion process will
also emable ralistke smubition of sets of spliced and vnspliced scRMA-seq reads, which in turn
will provide an improved phthorm for objec tive evalmtion of the performance of counling

slralegies.

Supporting information

51 Fig. Schematic of the intron definition with the “collapse’ and “separate’ approaches.
Withs thee “collapse” approsch, the annobiled Boforms of ageneare first collapsed before i
introns ane defined a8 any pon-exonk reglon of the gene locus. With the separie’ approach,
introms are separately defined For each isoform. Afler extracting the intronk reglons, a lanking
region is sdded to each side of the introns o sccommedate reads ovedapping exon/intron
Teviam s,

[PDIE)

52 Fig. Comparison of feature extraction tools. A. The number of transcripls extracied by
BUSpaRee and ebal that have the correct or incomrect sequence, respectively, x dete mined
by comparing Lo the rameriplome fsia ik downbaded from Crencode. Trameripls are siaati-
fied by whether or mot they are multi-exonic, and by the strand. B The number of transcripts
foor wihicls the lengihs of the introms inferred by BUSpaRse and eiai® are correct or incorrect,
respectively, a8 determined by comparng to the introns extracted by the intronsByTran-
script function fom e GenoricFeatunes Bioco nductor paclkage [separate’ intron defini-
Lo 40 The mumbe rof single -transeapt genes for which the kengihs of te ntnomns inferred by
BUSpaRse ard ebal are correct or incorrect, respectively, o determined by com paring Lo the
introms extracted by the intronsByTranscript funeton from the GenorleFeatures Bio-
conductor package Ceollapse’ intron definition).

[FDE )

53 Fig. Evaluation of the impact of changing the fank length in the intron estraction, as
well as running alevin _sep gir in unstranded mode, in the Spermatoge mesis data set. [n
each case, the methodsare compared Lo the methodologically most similar among e me thods
discuised inthe main text alevin_sep [Tk LXX_gre, with XX sel to either 20000 40, corne-
apands to munning alevie with introns defined wsing the “separate’ approach, and wing a Mank
le g il equeal oo the resd lengtly muims (30413, The alevin_sep_gir method corresponds to set-
Lirgg XX = ik Furilser, afevin_sep_grr_uwnsrranaded correspo nds 1o running alevnin umsiranded
iesd e, The EB-pyrhai wrapper wes the same type of intron definition and caplune approach as
kallisto|bus_sep_excl, bul lxes the Mank leng th 1o 30p, whereas for kalisto|bus_sep_excl, the
resd kength minus was vsed Top rows scatter plotof the total spliced and unspliced count
amaiged 1o genes with the diferent methads. Bottom row, lefi: Spearman correlation between
abvu s oes and velocities for esch pair of me thods. Bottom row, aghi: A chasical muol tdi-
mensional scaling (MDS) plot based on the Euclidean dilances among velocily values fbrihe
sel of shared genes. The variow modiflications o the methods bave an impact on the derived
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vebo ities; however, the modified methods stll duster choge to the comesponding base method.
[PDE)

54 Fig. Total UMI count across genes and cells. The bas correspond to the total UM count,
and the split of these inlo counls for exonic and intronic argets, for each quan tification
method in the OkBrain data set In addition to the overall count [ lop row), the figure shows
Use tolal countafler siratifying genesby the overall fraction of unigque k-mers (using the "col-
bapae’ annotation), indicated in the vertical panel hesders together with the number of genes in
e category. The genes for which no uniqueness informaton could be caleulated [ the "HA°
catepory hare twse for which all transeripts are shorter than the dhosen k-mer krgth (which
was 32l o the resd lengih minos omes bere S6mi).

[FDE )

55 Fig. Stratification of genes based on whether or not they obtain the same (spliced/
unspliced, respectively) count with different counting methods. For escly pair of me tods,
e figure slhwows the fraction of genes thal oblain the same counbwith the two methods otk
overall and after excluding the genes msigred a count of Bwith both methods) a5 well a5 (he
fraction of genes where the diference between the asignad counts 15 non-em, greater tean
5% (of the average count asignad by the two methods ) or greater than 10%.

(PDE )

56 Fig. Owverlaps among the sets of highly variable genes selected by s Velo based omn the dif-
ferent quant ficat ion approaches. Bach column comesponds to the mumber of genes shared
by & partiubarset of methods {indicated by black dots).

[PDE)

57 Fig. Examples of genes illustrating major d iffere nces among the guantification meth-
ods The coverage tracks show e number of resds ovedapping esch base position, on e pos-
ithve [Blue ) or negative [red) strand. The boforms of the main gene in Bew of esch panel are
similarly shown in blue [positive strand) or red (negative strandl Any overbapping features
froom other genes are shown in the bottom annotation track, colored in muted Blue or red,
deperding on the anmolated strand. The botiom panek slow the total exonic asd intronic
UMI count asigned to the displaved gens by the different quan tification methods, a3 well
Use fractionof umspliced counts, and the fraction of unique k-mers in e gene overall, x5 well
a5 i e exoas arsd inbroe.

[PDIE)

58 Fig. Additional examples of genes illustrating major differences among the quant ifica-
tiom methods. The coverage tracks show the mumber of resd s overlapping each bese position,
o the paditive (blue) or negative (red ) stramd. The isoforms of the main gere in fooms of eadh
pearsel are similarly shown in Bloe (positive sirand) or red {negative strnd). Anyoverlpping
Features from other genesane shown in the bollom ansotation track, colored inmuled blue or
red, depe nding on the annolated strand. The bottom panels show e total exonic and intronic
UM countasigred to the displaved gene by the different quan tification me tsods, a5 well s
the fractionof urepliced counts, and the fraction of unkjue k-mers in the gene overall, &5 well
a5 i e exoms and inbrom.

[PDIE)

59 Fig. Average coverage of genomic regions around poly ASpolyT stretches. Comidered
polvA/polyT strelches are atkeast 15 nl, with al most one mismatcl per 15 ol in introms of
gemeson the forwand and reverse strands. Simiarly to [9], we observe combilent coverage
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arpund d Beordant intemal priming reglom.
[PDE)

510 Fig. Cell- and gene-wise Spearman correlations of spliced, unspliced and total normal-
iped abundance, as well as velocity estimates, between each pair of quantification methods
[PDIE)

511 Fig. Spearman correlation between total normalized abundance (from scVelo) and
et imat ed velocity, and between spliced amnd wnspliced mormalized abundances, either by
geme or by cell, for all quantification methods

(PDE)

512 Fig. Spearman correlation et ween average total normalized abundance across cells
{from & Velo) aml estimated likelilsood of the velocity fit, for all quantificat bon meet lds
(Pamcreas data).

(PDE)

513 Fig. Spearman correlation between average total normalized abundance across cells
[ fromm s Velo) and estimabed likelilwsod of the veloc ity fit, for all quantificatbon metlwods
[ Dentate gyrus data).

[FDE )

514 Fig. Distribution of the length of the embedded velocity vectors based on different quan-
tification mwethods {panels), in different redsced dime nsion re presentat oas, for the Pan-
creas data set. Since e displacement vectons in the low-di memsional representation are

ol ired before & welghited average is taken to determine de velocity embedding for a given
cell, the kengih of the velocity embedd ing indicates 1o wlat extent the celb 1o which acell i lasa
high transition probability are all keated in the same direction from cell ©in the low-d imensional
represen brlisn. Consequently, tse lengih of the embedded velocity vector provides ome way of
e uring low inte rpretable the low-dine rsional represen tation 15, from 3 velocily podnt of
view. Wihile ove rall only small diffe rences are see n belween dimension reduc toms, UMAP gener-
ally showed asmall improvement in interpretability compared to PCA and TSNE, and wsing
anly the umspliced counts a5 the bas i for the embed ding was typically less informative.

[PLIF)

515 Fig. Distribution of the average similarity (dot product) between embedded velocity
vectors among me ighboring cells across a range of reduced dinse nsion representations, for
the Pancreas data set. A high simibarty suggests thal velocity streamlines in the reduced
dimension representation are more exily interpretable, since thevare designed Lo summarize
thse diy rantics across neghbounng cells

[FDE )

516 Fig. Inferred velocities inthe Pancress data set, visualized on top of the same UMAP
e et ta i,
[PDE)

517 Fig. Inferred velocities inthe Spermatogenesis dataset, visualized on top of the same
UMAP rejprese ntat bom
[PDIE)

518 Fig. Inferred velocities inthe Dentate gyrus data set, visualized on top of the same
UMAP rejorese it at b,
[PDE)
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514 Fig. Velocity confide nee estimates [similarity between the estimated velocities for a
cell and those of its peighlsors) obtained by scVelo, for the Pancreas data set.
{PDFE)

520 Fig. Velocity confide noe estimates (similarity between the estimated velocities for a
cell and those of its meighbors) obtained by saoVelo, for the Spermatogenesis data set.
{PDE}

521 Fig. Velocity confide nee estimates (similarity between the estimated velocities for a
cell and those of its peighlsors) obtained by scVelo, for the Dentate gyrus data set
{PDE)
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