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ABSTRACT

The high strength of the Tarim Basin (northwestern China) lithosphere, widely regarded as
a Precambrian craton, is evidenced by its resistance to Cenozoic deformation in the Himala-
yan-Tibetan orogen. However, Neoproterozoic suturing and early Paleozoic shortening within
the Tarim Basin suggest that its rigidity is a relatively recent phenomenon with unknown
cause. We reprocessed high-resolution magnetic data that show a 300—400-km-diameter radial
pattern of linear anomalies emanating from a central region characterized by mixed positive-
negative anomalies. We suggest that this pattern was generated by the previously hypothesized
Permian (ca. 300-270 Ma) plume beneath the Tarim Basin. Constrained by published geo-
chemical and geochronological data from plume-related igneous rocks, we propose that the
~30 m.y. Permian plume activity resulted in a more viscous, depleted, thicker, dehydrated,
and low-density mantle lithosphere. The resulting stronger lithosphere deflected strain from
the Cenozoic India-Asia convergence around Tarim Basin, including Pamir overthrusting
to the northwest and Altyn Tagh left-slip displacement to the northeast, thus shaping the

aeromagnetic data sets (e.g., Xiong et al., 2016).
Our reprocessed data reveal a 300—400-km-
diameter radial pattern of magnetic lineaments
that emanate from a central region character-
ized by mixed positive and negative anoma-
lies. Constrained by the existing geochemical
and geochronological data from the plume-
related igneous rocks, we argue that Tarim’s
mantle lithosphere was thickened, depleted, and
dehydrated by the Permian plume to transform
Tarim into a rigid craton-like continent in situ
through the development of a thick mantle keel
and input of mafic intrusions into the crust (e.g.,
Lee et al., 2011). Tarim’s stronger lithosphere

geometry of the Himalayan-Tibetan orogen.

INTRODUCTION

The interior of the Tarim Basin, northwestern
China, has remained undeformed during the
development of the Cenozoic Himalayan-
Tibetan orogen, expressed by flat-lying Cenozoic
strata (e.g., Jia, 1997). Although its rigidity has
been attributed to the presence of Precambrian
basement (e.g., Neil and Houseman, 1997),
this is inconsistent with the observation of an
early Paleozoic thrust belt developed across
the Tarim Basin (e.g., Yin and Nie, 1996; Jia,
1997; Carroll et al., 2001), which requires the
acquisition of greater strength to resist Cenozoic
deformation between the early Paleozoic and
end of the Mesozoic. Alternatively, the rigidity
of the Tarim lithosphere could have developed
via the presence of a Precambrian oceanic
plateau that was strengthened from below by a
Permian plume (e.g., Deng et al., 2017). This
model implies that Tarim was already strong
prior to the Phanerozoic, inconsistent with
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aforementioned Paleozoic shortening across
the basin. Because Early Permian (ca. 300—
270 Ma) mafic magmatism, interpreted to have
been derived from a plume (Yang et al., 1996;
Chen et al., 2006; Xu et al., 2014), was the
only regionally extensive event affecting the
Tarim Basin after the early Paleozoic (e.g., Jia,
1997; Carroll et al., 2001; Guo et al., 2005),
it is possible that plume-induced processes
profoundly strengthened the earlier Tarim
mantle lithosphere. Assessing this possibility
requires a sound knowledge of the root zone
of the plume, which is obscured by ~10 km of
overlying Mesozoic—Cenozoic strata (Jia, 1997;
Guo et al., 2005).

Aeromagnetic anomalies have proven to be
effective in locating and quantifying the geom-
etry and extent of mafic intrusions associated
with a mantle plume (e.g., Finn and Morgan,
2002). The success of this approach inspired
us to reexamine the aeromagnetic data across
Tarim. The extent of Permian intrusive rocks
beneath the Tarim cover sequence has never
been systematically determined before with

deflected strain from Cenozoic India-Asia con-
vergence around the Tarim Basin to shape the
deformation pattern of the Himalayan-Tibetan
orogen.

GEOLOGICAL SETTING

The Precambrian basement of the Tarim
Basin consists of continental blocks that amal-
gamated along the Neoproterozoic central
Tarim suture zone (Guo et al., 2005; Yang et al.,
2018). The margins of the Tarim Basin were
affected episodically by arc development and
arc-continent collision throughout the Paleo-
zoic during the development and closure of the
Paleo-Asian oceans to the north (i.e., present
southern Tian Shan; e.g., Yin and Nie, 1996;
Xiao et al., 2005), and the Tethyan oceans to the
south (i.e., present Tibetan Plateau; e.g., Yin and
Harrison, 2000; Wu et al., 2016). The subduc-
tion polarity of the Carboniferous—Permian arc
systems is enigmatic due to poor exposure and
Cenozoic modification, but based on correla-
tive subduction systems to the east (e.g., Xiao
et al., 2003; Wu et al., 2016), there is a strong
possibility that both subduction systems dipped
beneath the Tarim continent.
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Figure 1. Topographic and tectonic map of the Tarim Basin (northwestern China). Early Paleozoic thrusts are after Jia (1997) and Yin and Nie (1996).

The Tarim Basin’s interior was affected
by two regional events in the Phanerozoic.
The first occurred in the early Paleozoic,
expressed by reactivation of the Neoprotero-
zoic suture zone as evidenced by thrusting
and folding (Fig. 1; Jia, 1997; Carroll et al.,
2001; Guo et al., 2005), which was coeval
with the closure of the Qilian and Kunlun
oceans in northern Tibet (Wu et al., 2016).
The second event occurred during the Early
Permian (300-270 Ma), expressed as wide-
spread igneous activity, defining a large igne-
ous province (LIP), possibly induced by a
mantle plume from below (Chen et al., 2006;
Xu et al., 2014). The full extent of the LIP is
obscured by a >~10 km section of sedimentary
cover, but its wide distribution is indicated by
surface exposures, subsurface samples, and
extrapolation of these findings by analysis
and interpretation of available seismic reflec-
tion profiles (Fig. 2A; e.g., Xu et al., 2014).
The Permian plume-head location has been
variably assigned to the Tian Shan and south-
western or northern Tarim (Chen et al., 2006;
Li et al., 2014; Liu et al., 2016; Cheng et al.,
2018). Subsequent Cenozoic India-Asia con-
vergence resulted in concentrated shortening
along the margins of Tarim Basin, including
thin-skinned thrust belts in the north and west
and strike-slip faulting in the southeast (Fig. 1;
Yin et al., 1998; Guo et al., 2005).

PERMIAN PLUME HEAD

Data used in this study are mainly from the
aeromagnetic data set of China (Xiong et al.,
2016) with a 1 km x 1 km grid spacing and 1 km
datum, supplemented by the Earth Magnetic
Anomaly Grid Version 2 (EMAG2; Maus et al.,
2009; see also Fig. S1A in the Supplemental

Material'). The combined data set was first
processed by reduction to pole (Fig. S2; e.g.,
Arkani-Hamed, 1988) and next by analytical
signal transformation (Fig. S3; see details in
the Supplemental Material; Roest et al., 1992).
A series of high-amplitude, long-wavelength
anomalies are superimposed by four variably ori-
ented, short-wavelength, positive linear anoma-
lies across the northwestern Tarim Basin (e.g.,
the Bachu Uplift; i.e., L1-L4 in Fig. S2). High-
amplitude, long-wavelength magnetic anoma-
lies have previously been correlated to signals
derived from the Tarim Precambrian crystalline
basement (e.g., Xiong et al., 2016; Yang et al.,
2018). The final reprocessed result (Fig. 2A)
reveals a radial pattern of linear anomalies: L1
lineaments trend southeast, .2 lineaments trend
east and southeast, L3 lineaments trend east, and
L4 lineaments trend northeast (Fig. 2A; Fig. S3),
converging near Bachu City (~39.8°N, ~78.6°E).

The radial linear anomalies overlap the
Permian volcanic field (Fig. 2A). They converge
beneath the observed ca. 300 Ma kimberlite com-
plex, which are the oldest Permian intrusive rocks
in Tarim Basin that are proposed to be associated
with, and derived from, the plume head (Fig. 2A;
e.g., Chenetal., 2006; Xu et al., 2014). This spa-
tial correlation led us to interpret the linear mag-
netic anomalies to represent a giant dike swarm
with arms radiating ~150-200 km outward from
the center interpreted as the Permian plume head.
Additionally, isolated magnetic highs dispersed

'Supplemental Material. Geochemical compilation
and details for magnetic data processing, plume-head
restoration, and rheological profiles. Please visit
https://doi.org/10.1130/GEOL.S.12869684 to access
the supplemental material, and contact editing@
geosociety.org with any questions.

Geological Society of America | GEOLOGY | Volume 49 | Number 1 | www.gsapubs.org

Downloaded from http://pubs.geoscienceworld.org/gsa/geology/article-pdf/49/1/96/5204680/96.pdf
bv niversity of Nevada Reno user

across Tarim Basin may have been related to
plume-induced mafic intrusions (Fig. 2A).

To assess whether the linear anomalies are
related to Permian intrusions, we compiled
25,643 detailed rock-magnetic susceptibility
measurements from within and around the Tarim
Basin (Table S1). The measured susceptibilities
concentrated in the Permian igneous suites range
from ~27 x 1075 to ~11,700 x 107 SI, with high
mean values (>5300 x 107> SI; Fig. S1B). The
high values of Permian intrusions show that the
radial pattern of the positive linear anomalies
can indeed be explained by Permian mafic intru-
sions, corroborated by surface exposures and
drill core (Fig. S4).

Although radially trending dikes should be
distributed symmetrically around a plume center
(Ernst and Buchan, 2003), our observed radial
magnetic lineaments appear to occur only on
the east side of the interpreted plume head. We
note that the interpreted plume head is close
to the southern Cenozoic Tian Shan thrust belt
(Figs. 2B and 2C), which could have obscured
the projected radial dikes northwest of the
inferred plume head. To test this possibility, we
schematically restored 20%—30% crustal short-
ening across the southern Tian Shan thrust belt
and 10% shortening across the Tarim Basin (Fig.
S5; e.g., Yin et al., 1998). This simple exercise
yielded a magnetic anomaly pattern consistent
with a radial dike swarm around the interpreted
central plume head (Figs. 2C and 2D).

The impact and extent of the interpreted
Permian plume have been constrained by the
Carboniferous-Permian unconformity in the
Tarim Basin (Figs. 3A and 3B; Chen et al., 2006;
Li et al., 2014; Xu et al., 2014). The extent of
this unconformity overlaps our interpreted region
affected by the plume. Because the aeromagnetic
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image of the plume is the integrated effect of
intrusions in the Tarim crust, whereas the uncon-
formity occurred over the life span of plume
activity, this spatial coincidence of the two pat-
terns suggests a relatively simple plume structure
expressed by a center with a radial dike swarm
that was relatively stationary, at least within the
resolution of the two data sets. Within this resolu-
tion, a minor shift of the plume head is permis-
sible (Fig. 2; Lietal., 2014), possibly facilitated
by the plume exploring a preexisting weakness
in the Tarim lithosphere (Liu et al., 2016). The
300-400 km plume-head diameter observed in
the middle-upper crust (above the Curie surface;
Fig. 2) is consistent with a plume that flattened
with a >500 km diameter at the base of the litho-
sphere (Ernst and Buchan, 2003).
Carboniferous—Triassic inward-dipping sub-
duction along Tarim’s northern and southern
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margins (e.g., Xiao et al., 2005; Wu et al.,
2016) was contemporaneous with plume activ-
ity (Fig. 3). The temporal and spatial overlap
of subduction and the plume suggests a com-
plex causal relationship, possibly involving
flow through or around slab windows/tears, as
has been hypothesized for Yellowstone and the
backarc of the Patagonian Andes (e.g., Gorring
etal., 1997; Kincaid et al., 2013). The exact con-
nection between the plume and these subduction
systems remains to be explored.

LITHOSPHERE STRENGTHENING BY
PLUME ACTIVITY

Plume-lithosphere interactions may either
destroy strong cratons (e.g., Hu et al., 2018) or
strengthen the mantle lithosphere by develop-
ing a craton-like mantle keel (Lee et al., 2001,
2011). The low heat flow and resistance to

Cenozoic deformation in the Tarim Basin may
be explained by plume-induced lithospheric
strengthening. Here, we argue that the Perm-
ian plume transformed Tarim into a stable cra-
ton-like continent in situ (Lee et al., 2011) by
simultaneously building a strong mantle keel
beneath Tarim and adding voluminous strong
mafic rocks to the lower crust.

As outlined above, the Tarim lithosphere was
not strong prior to Permian plume impingement.
Permian volcanic rocks were initially derived
from volatile-rich metasomatized mantle
lithosphere (Zhang et al., 2013; Cheng et al.,
2018), which may reflect Tarim’s pre-Mesozoic
subduction history (e.g., Guo et al., 2005). How-
ever, the subtle arc-subduction signature in the
plume-derived melts diminished in both time,
after initial ca. 300 Ma impingement, and space,
moving toward the plume center (see Fig. S6
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for geochemical compilation). For example, Nb
depletion tracked inversely by Nb/Yb ratios,
commonly associated with subduction-zone
influence, diminishes moving toward the plume
center (Nb/Yb = 5-10 to ~20-40; Fig. S6). We
interpret this trend to reflect more direct plume-
derived mantle melts above the plume-head cen-
ter, as opposed to mixed-source melts. At a given
regional location, Nb/Yb increases through time
from ca. 300 (Nb/Yb ~7) to ca. 270 Ma (Nb/Yb
~20-40; Fig. S6), which may reflect progressive
dehydration/modification of the mantle litho-
sphere that removed the subduction-influenced
signature to yield more classic ocean-island
basalt (OIB) geochemistry.

Hot plume activity (zircon saturation tem-
peratures >800 °C; Xu et al., 2014) affected the
Tarim Basin for ~30 m.y. (Fig. 3), and the high
heat flux would have led to high-degree partial
melting, devolatilization, and thickening of the
mantle lithosphere (Fig. 3C; Fig. S7). Specifi-
cally, chemical-melt depletion (e.g., Fe relative
to Mg) lowered mantle density and facilitated
growth of the mantle lithosphere into thickened
buoyant mantle (Lee et al., 2001). Water is highly
incompatible during melting, and plume magma-
tism dehydrated the mantle lithosphere, generat-
ing hydrated flood basalts (5 wt% H,O; Selway
etal., 2014; Liu et al., 2017). This process would
have greatly strengthened the mantle lithosphere,
given the inverse dependence of mantle viscosity
on water content (Hirth and Kohlstedt, 1996).
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Dehydration and chemical depletion together
intrinsically strengthened the mantle keel. Injected
and underplated mafic intrusions in the lower crust
further increased crustal strength (Liu and Furlong,
1994). The flattened plume head may have been
>500 km in diameter (Ernst and Buchan, 2003),
and isolated signal highs across the basin (Fig. 2A)
suggest a greater area was affected by the plume.
With minor plume migration, as discussed above,
most of the Tarim Basin may have experienced the
thermal pulse associated with this plume.

These integrated contributions built Tarim
into a rigid craton-like continent in the Permian
(Fig. 3C). Prior to the Cenozoic, much of Tibet
and the Pamirs involved arc subduction and col-
lisional systems between various terranes (Yin

'
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Figure 3. Model of the
Tarim Permian mantle
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process modified crustal
strength, with mafic
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ing, and the mantle via
mantle dehydration and
melt depletion. Mantle
lithosphere was thick-
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constructing Tarim as a
strong low-heat-flow con-
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the surface temperature
(T,) to fixed lithosphere-
asthenosphere boundary
(LAB) temperature (T, ,z;
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plemental Material [see
footnote 1]).

Strength

Depth

/x

Ts TLAE
Temperature

Strength

Depth

T, T,
Temperature

and Harrison, 2000; Wu et al., 2016) that led to
broad-scale hydrologic weakening of most of
the region. This explains why deformation was
distributed thousands of kilometers inboard of
the collisional front shortly after collision (Chen
and Gerya, 2016). The stronger Tarim craton-like
lithosphere deflected strain from Cenozoic India-
Asia convergence around the Tarim Basin, includ-
ing Pamir overthrusting to the northwest and
Altyn Tagh left-slip displacement to the northeast.

The Sichuan Basin also behaved rigidly
within the Pamir-Tibet orogen, and the region
experienced hydrated LIP volcanism (24 wt%
H,O; Liu et al., 2017) associated with a mantle
plume at ca. 260 Ma that may have dehydrated,
melt-depleted, and strengthened Sichuan’s
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Figure 4. Sketch showing
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uan Basins may have
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Permian plumes. Suture
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Yin and Harrison (2000)
and Wu et al. (2016).
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mantle. Voluminous mafic intrusions and under-
plating would have simultaneously strengthened
the lower/middle crust. Accordingly, rheologi-
cal conditioning by Permian mantle plumes may
have exerted a first-order control on strain par-
titioning between deformed Tibetan lithosphere
and the stronger Tarim and Sichuan Basins, which
acted as conjugate rigid buttresses, thus shaping
the geometry of the Tibetan Plateau (Fig. 4).
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