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Abstract: Transposable elements (TEs) are mobile elements capable of introducing genetic changes
rapidly. Their importance has been documented in many biological processes, such as introducing
genetic instability, altering patterns of gene expression, and accelerating genome evolution. Increasing
appreciation of TEs has resulted in a growing number of bioinformatics software to identify insertion
events. However, the application of existing tools is limited by either narrow-focused design of the
package, too many dependencies on other tools, or prior knowledge required as input files that may
not be readily available to all users. Here, we reported a simple pipeline, TEfinder, developed for
the detection of new TE insertions with minimal software and input file dependencies. The external
software requirements are BEDTools, SAMtools, and Picard. Necessary input files include the
reference genome sequence in FASTA format, an alignment file from paired-end reads, existing TEs
in GTF format, and a text file of TE names. We tested TEfinder among several evolving populations
of Fusarium oxysporum generated through a short-term adaptation study. Our results demonstrate
that this easy-to-use tool can effectively detect new TE insertion events, making it accessible and
practical for TE analysis.

Keywords: transposable elements; mobile element insertion events; next-generation sequencing
(NGS); genome evolution

1. Introduction

Transposable elements (TEs) are DNA sequences that move from one genomic location
to another and thus impact genome evolution and organism adaptation [1]. TE transpo-
sition can alter the genomic architecture, introduce structural polymorphisms, disrupt
coding sequences, and affect transcriptional and translational regulation. Additionally, TEs
are capable of changing eukaryotic gene expression by providing cis-regulatory elements
such as promoters, transcription factor binding sites, and repressive elements [2,3]. Ulti-
mately, TEs provide a wide array of genomic diversity, functional impact, and evolutionary
consequences that can be of notable interest to population genetics, host interaction, and
comparative genomics studies.

TEs comprise a significant portion of the genome of humans and many other or-
ganisms, due to their mobilization and accumulation throughout evolution [4]. While
some TEs are no longer active, certain TE families remain mobile and their transposition
contributes to genetic variation both at the individual and the population level. TEs play
important roles in many biological processes, such as cancer biology [5], neurodegenerative
diseases [6], or host-pathogen interactions [7]. Therefore, it is of high interest to identify
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transposon insertion polymorphisms (TIPs) for the detection of highly active TE families
and the understanding of their contribution to genome dynamics and organism adaptation.

Advancements in next-generation sequencing technologies have made in silico dis-
covery of transposon insertion events readily accessible. Two features commonly used
for the detection of TE insertions are the target site duplication (TSD) and discordantly
aligned reads. Upon insertion of certain transposons into a new genomic location, the
mechanism of integration results in the duplication of the target sequence at the integration
site, which is referred to as the TSD [4]. TSD length varies across superfamilies, and the
identification of this structural motif proves useful in determining true transposition events
within the genome [8]. Due to the nature of the transposon insertion, the TE sequence
should be mapped to existing TE locations within the genome, while the paired-end read
partner should be mapped to the unique sequence at the insertion site. This will result
in discordant reads, which can be recognized when two paired-end reads are placed in
different genomic locations or in a much greater distance that exceeds the expected insert
size of the sequencing library. The more discordant reads localized in a genomic region
(cluster), the higher the confidence to call it a new insertion site.

Although several bioinformatic tools that detect such events have been developed, the
broad application of these tools is limited by heavy external software or file dependencies.
For instance, ISMapper [9] can report insertion positions of bacterial insertion sequences
(ISs) when provided with paired-end short-read sequences, TE sequences as multi-FASTA
queries, and the reference genome sequence. However, this requires specific versions
of Python 3 and BioPython, which may not be readily available to all users and lead to
difficulties in running the software. Mobile Element Locator Tool (MELT) [10], a Java
software package originally developed as a part of the 1000 Human Genomes Project [11],
discovers, annotates, and genotypes mobile element insertions with the only requirement
of Bowtie2 [12]. The package is powerful in comprehensive TE analysis in human and
chimpanzee genomes. However, it requires gene annotations. For each TE, users need to
provide the consensus sequence and multiple files related to this particular transposon.
Users have to make sure only “ATGC” characters are present in the consensus FASTA
file. Such a high level of external file dependency makes it challenging for users who are
interested in TE analysis in non-model organisms that lack well-annotated genomes.

Encountering difficulties in applying available TE insertion detection tools, we de-
veloped a simple bash bioinformatics pipeline, TEfinder, to detect new insertion events
using tools that are commonly embedded in genomics variant calling workflows, including
BEDTools [13], SAMtools [14], and Picard [15]. Required input files include the reference
genome sequence, TE annotations of the reference genome sequence, alignment of paired-
end short-read sequencing data, and a list of TE names of interest. The pipeline reports new
insertion events based on the TE annotation of the reference genome sequence. The output
file can be in either BED or GTF format that captures all details and can be integrated
into the downstream analysis. Here we report the design of the pipeline, testing results
of its performance using short-read sequencing data derived from a short-term evolution
experiment in the filamentous fungus Fusarium oxysporum f. sp. lycopersici 4287 (Fol4287),
as well as a simulation dataset from chromosome 2 L of Drosophila melanogaster [16], and
two datasets from the Arabidopsis thaliana mobilome study [17,18].

2. Materials and Methods
2.1. Requirements

TEfinder is a bash pipeline for detecting TE insertions using paired-end sequencing
data. The overall objective is to identify new TE insertion events in a given sample that
are different from ones captured in the reference genome sequence. For this, an assembled
genome and pair-end sequencing of the sample is required.

Software required to run this tool include BEDTools 2.28.0 or later [13], SAMtools
1.3 or later [14], and Picard 2.0.1 or later [15]. The four user input files are a FASTA file of
the reference genome sequence, a file of paired-end read alignments (BAM or SAM), TEs
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3.  GTFfile of TE annotation in the reference genome sequence.

This file captured genomic locations of all TEs that were present in the reference
genome sequence. This file could be GFF2/GTF or GFF3. To generate it, a library of TE
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dantReads.bam” file in the working directory (Figure 1B, middle panel). This file could
be used to visualize the events on genome browsers such as Integrative Genomics Viewer
(IGV) [26]. If the GTF output option was selected, the GTF file reported the additional
information as attributed in the ninth column.

2.3. Testing Dataset and Processing

The performance of TEfinder was tested using a model Fusarium oxysporum, a soil-
inhabiting ascomycete fungus that causes devastating losses in more than a hundred
different crops and disseminated infections in immunocompromised humans [27,28]. One
interesting genomic feature of the F. oxysporum species complex is the compartmentalization
of its genome, where conserved core regions carry essential house-keeping functions while
lineage-specific accessory regions are enriched for TEs and associated with host-specific
pathogenicity [28,29].

The pipeline was used to identify new TE insertion events among five populations, Y1-
Y5, evolved under laboratory conditions. Briefly, the ancestor strain (WT) of Fol4287, which
was previously used to generate the reference genome assembly [30], was subjected to suc-
cessive transfers on yeast peptone dextrose agar plates. After 10 passages with 5 indepen-
dent biological replicates (Y1-Y5), genomic DNA was extracted from the final mixed popu-
lations and sequenced using Illumina HiSeq 2500 platform with 2 x 71 cycles. The whole-
genome shotgun sequencing reads are available at NCBI under project PRINA682786 and
datasets SRR13203443, SRR13203444, SRR13203445, SRR13203446, and SRR13203447.

To assess the sensitivity, we performed random sampling of the alignments in the
Y2 population using Picard [15] and reduced the coverage to 50%, 30%, 20%, and 10% of
the initial read coverage and repeated the analysis.

A small subset of simulation data from chromosome 2 L of the Drosophila melanogaster
reference genome sequence (dm3), used for testing TEMP [16] software available on GitHub
at (https://github.com/JialiUMassWengLab /TEMP, accessed on 28 January 2021), was
also used to evaluate TEfinder.

To test TEfinder on identifying new insertion events in 2 Arabidopsis thaliana acces-
sions [17], Alst-1 (SRR492202) and Benk-1 (SRR492214) whole-genome paired-end se-
quencing data were mapped to the TAIR10 reference genome (ftp://ftp.arabidopsis.org/
home/tair/Genes/TAIR10_genome_release) with BWA [19]. The median sequencing
coverage for Alst-1 and Benk-1 were 36 and 40, respectively. TAIR10 TE annotation
GTF was obtained using RepeatMasker [24] and the TAIR10 transposon library avail-
able at (ftp:/ /ftp.arabidopsis.org/home/tair/Genes/TAIR10_genome_release/TAIR10_
transposable_elements/, accessed on 28 January 2021). Non-reference insertion events
for these accessions, reported in an A. thaliana mobilome analysis [18], were used for
benchmarking.

2.4. Experimental Validation

Thirteen reported TE insertion events were validated by PCR. Genomic DNA was ex-
tracted from mycelia of the F. oxysporum reference strain, evolved populations, or of single
spore (SS) isolates obtained from the experimentally evolved lines, using the Cetyltrimethy-
lammonium Bromide method [31]. PCR was performed in a thermocycler using the
thermostable DNA polymerase of the Expand High Fidelity PCR System (Roche Diagnos-
tics, Mannheim, Germany). Each PCR reaction contained 300 nM of each primer, 2.5 mM
MgCl,, 0.8 mM dNTP mix, 0.05 U/ pL polymerase, and 5-10 ng/pL genomic DNA. PCR
cycling conditions were as follows: An initial step of denaturation (5 min, 94 °C); 35 cycles
of 35 s at 94 °C, 35 s at the calculated primer annealing temperature, and 1 min/1.5 kb
extension at 72 °C (or 68 °C for templates larger than 3 kb); and a final extension step of
10 min at 72 °C (or 68 °C). For each predicted TE insertion event, a pair of specific primers
flanking the insertion site was designed.


https://github.com/JialiUMassWengLab/TEMP
ftp://ftp.arabidopsis.org/home/tair/Genes/TAIR10_genome_release
ftp://ftp.arabidopsis.org/home/tair/Genes/TAIR10_genome_release
ftp://ftp.arabidopsis.org/home/tair/Genes/TAIR10_genome_release/TAIR10_transposable_elements/
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3. Results
3.1. Data Preparation

The Fol4287 reference genome assembly was 53.9 MB in 499 scaffolds [30]. The
sequencing reads were mapped to the reference using BWA [19] with >99% mapping and
median coverages ranging from 67 to 94 (Table 1). RepeatMasker [24] was used to identify
the known TEs in the genome with a curated TE library [27,28] which included 69 TE
families. Approximately 4.5% of the entire genome was identified as repetitive sequence,
with 3.98% of the genome comprised of transposable elements. Accessory sequences
included 74% of all TEs in the genome [27].

Table 1. Sample sequencing and mapping summary statistics.

Sample Total Reads Discordant Mate Percent Reads Median
Mapping Quality > 5 Mapping to Reference Coverage
Y1 62,015,365 475,966 99.41 67
Y2 85,688,005 600,267 99.38 94
Y3 83,109,424 578,959 99.44 92
Y4 70,322,907 475,591 99.42 78
Y5 76,034,020 567,823 99.37 83

3.2. Total TE Insertion Events Detected

On a high-performance computing cluster with a memory request of 3 cores x 50,000 MB,
the trial runs took an average of 4.7 h to complete with the minimum time being 3.6 h across
the samples. Three threads were provided for SAMtools multithreading. The maximum
heap memory for Java was set to 25,000 MB to enhance the run time when filtering the
alignment to only include discordant reads.

TEfinder detected 502 to 570 insertion events across whole genome sequencing data
from 5 evolved Y1-Y5 populations. Details for each individual sample are summarized in
Table 2 (Supplementary File). The TIPs had varying allele frequencies depending on the
population structure. As expected, many insertion events were detected among complex
repetitive regions that captured most transposons. In fact, the number of new TE insertions
reported in each sample population was approximately one-third of the insertions detected
in known repeat regions. Additionally, there were filtered out events because of the low
read count (“weak evidence”). Furthermore, almost half of the detected events had strand
bias as estimated by a power function. The constants for this function were determined
arbitrarily for the datasets tested in this study. The users could utilize the reported forward
and reverse read counts for their data if the need arose.

Table 2. Number of transposable element (TE) insertion events reported by TEfinder in evolved

populations of Fol4287.
Weak Strand PCR-
Sample All Events  In Repeat Evidence Bias PASS Verified
Y1 502 397 11 256 55 1/1
Y2 566 449 9 281 63 1/1
Y3 570 455 8 264 60 1/1
Y4 565 446 10 278 60 3/3
Y5 544 423 10 272 64 6/7

The BAM output file format was intended for visual inspection. Figure 1B captures
a new insertion event of the TE small Hornet (TIR/hAT) that reached fixation in the
Y3 population visualized in IGV. The confidence level for calling this new insertion event
was high, with a total of 415 supporting reads spanning a 1114-bp insertion region in
a dataset with 92x median coverage. Of these supporting discordant reads, 223 reads
were grouped in the plus strand cluster and 192 in the minus strand cluster. Since the
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while chromosome-level assembly was accomplished for most core regions. Importantly,
TEfinder was able to capture the events in both types of regions. TEfinder depends on read
placement within a genome. Ambiguity exists in such processes especially when placing a
read into a highly repetitive region, which may result in lower confidence level in calling a
TIP. Such insertion events, as well as nested TEs, might still be detected and reported by
TEfinder with a tag “in repeat”, to differentiate them from TIP events with high confidence.

As with other variant calling software, the output files need to be filtered before further
analysis. Users can utilize the internal filter tags and reported forward, reverse, and total
read count values according to their needs. The output BAM file is also useful to do visual
confirmations. One feature missing from the output is the allele frequency of the events.
However, the read counts and insertion region positions can be used to estimate allele
frequencies. We were able to experimentally verify some of the events. Although we are in
the early phase of understanding the functional impact of these TIPs, the ability to detect
these events with high confidence enables hypothesis generation and establishment of
targeted functional studies. Testing of the TEfinder pipeline in evolved fungal populations
further confirmed the effectiveness of this tool in identifying TE insertion events in non-
reference eukaryotic genomes.

5. Conclusions

TEfinder is a tool for detecting new TE insertions in fungal, plant, or animal genomes
via paired-end resequencing data. TEfinder has a small number of external software
requirements and input files, making it an easy-to-use and accessible tool for the detection
of new TE insertions events.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com /2073-442
5/12/2/224/s1; the TEfinder pipeline is available on GitHub at https:/ /github.com/VistaSohrab/
TEfinder, accessed on 28 January 2021 (doi:10.5281/zenodo0.4446970). Supplementary File: Zipped
TEfinder BED outputs of evolving populations (Y1-Y5), the reduced coverage sample sets of Y2 pop-
ulation, and the simulation data with dm3 chromosome 2 L sequence.
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