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16 Abstract: 

17 The filamentous fungus Fusarium oxysporum is a soil-borne pathogen of many cultivated species 

18 and an opportunistic pathogen of humans. F. oxysporum f. sp. matthiolae is one of three formae 

19 speciales that are pathogenic to crucifers, including Arabidopsis thaliana, a premier model for 

20 plant molecular biology and genetics. Here, we report a genome assembly of F. oxysporum f. sp. 

21 matthiolae strain PHW726, generated using a combination of PacBio and Illumina sequencing 
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22 technologies. The genome assembly presented here should facilitate in-depth investigation of F. 

23 oxysporum-Arabidopsis interactions and shed light on the genetics of fungal pathogenesis and 

24 plant immunity.
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31 Strains of the filamentous fungus Fusarium oxysporum, a notorious plant pathogen, can infect 

32 hundreds of cultivated species and at the same time have distinct host-specificity (Kistler 1997; 

33 Michielse and Rep 2009; Ma et al. 2013). This host-specificity is used to classify F. oxysporum into 

34 formae speciales, and a forma specialis typically represents one to a few monophyletic clonal 

35 lineages that cause disease in a narrow range of taxonomically related plants (Kistler 1997). At 

36 the genomic level, host-specificity corresponds to the presence of lineage-specific chromosomes 

37 (Ma et al. 2010). However, little is known about molecular mechanism involved in these host-

38 specific plant-fungal interactions. One of the three formae speciales that are pathogenic to the 

39 crucifer Arabidopsis thaliana (Diener and Ausubel 2005; Provart et al. 2016), the genome 

40 sequence of F. oxysporum forma specialis matthiolae will enable the genetic analysis of fungal 

41 pathogenesis and host immunity using the model plant Arabidopsis thaliana.

42
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43  Phylogenic analyses indicate that Fom isolates form a single clonal lineage (Bosland and Williams 

44 1987; O’Donnell et al. 2009; Kistler and Benny 1989; Kistler et al. 1987; Kistler et al. 1991), 

45 although two races of Fom are distinguished by the differential susceptibility of varieties of M. 

46 incana (Bosland and Williams 1988). Natural variation of immunity is observed among wild 

47 accessions or ecotypes of A. thaliana toward Fusarium wilt (Diener and Ausubel 2005). 

48 Quantitative trait loci (QTLs) mapping in offspring of crosses between resistant and susceptible 

49 ecotypes has identified three RESISTANCE TO F. OXYSPORUM (RFO) genes, one receptor-like 

50 protein gene (RFO2) and two receptor-like kinase (RLK) genes (RFO1 and RFO3) from different 

51 RLK gene subfamilies (Diener and Ausubel 2005; Diener 2013; Shen and Diener 2013; Cole and 

52 Diener 2013). As receptor-mediated immunity is reported to be the major determinant of disease 

53 resistance to Fom (Cole and Diener 2013), investigation of the interaction of Fom and A. thaliana 

54 should lead to a fundamental understanding of receptor-mediated plant immunity, especially 

55 against fungal pathogens. The genome sequence described here comes from DNA purified from 

56 Fom race 2, isolated from wilted garden stock (Matthiola incana), a cultivated plant in the crucifer 

57 or mustard (Brassicaceae) family, prized for its colorful flowers (Baker 1948; Tatsuzawa et al. 

58 2012). This strain was previously deposited in American Type Culture Collection (ATCC 16603) by 

59 GM Armstrong and subsequently designated by PH Williams as PHW726 (Kistler et al. 1987).

60

61 The pipeline for genome assembly was adapted from Ayhan et al. 2018. Genomic DNA was 

62 purified from the mycelium of PHW726, and then sequenced by Illumina MiSeq and PacBio RS II 

63 platforms with 119× and 21× coverage, respectively. We used MiSeq paired-end sequencing with 

64 150 cycles. The maximum size of the PacBio RS II reads was 59 kb while the mean size was 8.5 kb. 
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65 Trimmomatic version 0.32 (Bolger et al. 2014) was used to remove adaptors and trim ends of 

66 Illumina reads (parameters: ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3 

67 SLIDINGWINDOW:4:15 MINLEN:36). FastQC (version 0.11.5) 

68 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to check the quality of 

69 all reads. SPAdes version 3.9.1 (Antipov et al. 2016, using default parameters) was used to 

70 combine PacBio subreads and trimmed Illumina reads into an initial hybrid assembly. BWA 

71 version 0.7.12 (Li and Durbin 2009) was used to map the Illumina reads to the assembly. Further 

72 cleaning, fixing, and sorting of mapping reads was done with Picard version 2.0.1 

73 (http://broadinstitute.github.io/picard/) and Samtools version 1.3 (Li et al. 2009). A structural 

74 variant (SV) caller, GRIDSS version 1.4.1 (Cameron et al. 2017) was used to identify links between 

75 scaffolds in the initial assembly. A custom script (available at github.com/d-

76 ayhan/tools/scaffolding.m) was used for scaffolding. Minimap2 version 2.17 (Li 2018) was used 

77 to map PacBio subreads to new scaffolds, and links were manually inspected and, if necessary, 

78 fixed. Further polishing was performed by re-mapping Illumina reads to the assembly, during 

79 which FreeBayes v0.9.10-3-g47a713e (Garrison and Marth 2012) was used to identify base 

80 variants between reads and the assembly (specially, 70% support of minimal 10 alternate counts, 

81 with a minimal base mapping-quality greater than q30). Identified variants were used to correct 

82 the assembly by a custom script (available at github.com/d-ayhan/tools/FASTAeditWithVCF.m). 

83 RepeatMasker 4.0.5 (Tarailo-Graovac and Chen 2009) was used to screen the repeats. Mummer 

84 3.22 (Kurtz et al. 2004) was used to align the assembly with the reference genome assembly for 

85 the tomato pathogen F. oxysporum f. sp. lycopersici Fol4287 (Ma et al. 2010).
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86 As summarized in Table 1, the final assembly was 57.3 Mb in total length and comprised of 583 

87 scaffolds with an N50 value of 0.77 Mb. The largest scaffold size was 3.6 Mb. The GC content was 

88 47.4%. The size of total interspersed repeats was 3.1 Mb, which accounted for 5.4% of the 

89 assembly. A comparison with Fol4287 assembly (Ayhan et al. 2018) suggested a larger assembly 

90 size and higher interspersed repeat content of PHW726. The size of sequence mapped to the 

91 core chromosomes of Fol4287, which including 66 scaffolds (defined as core scaffolds), was 43.8 

92 Mb. The assembly also included a scaffold of 52,365 bp that captured the entire mitochondrial 

93 DNA. This Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the 

94 accession WJXY00000000. The version described in this paper is version WJXY01000000. This 

95 assembly for the genome of PHW726 should facilitate future molecular genetics and genomic 

96 studies. Candidate Fom genes that promote pathogenesis or elicit immune response in A. 

97 thaliana and M. incana can now be predicted, subcloned and genetically characterized. 

98
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194 Table 1. Summary of the F. oxysporum f. sp. matthiolae strain PHW726 genome assembly and a 

195 comparison with Fol4287 (Ayhan et al. 2018)

StatisticsVariables     
PHW726 Fol4287

Assembly size (bp) 57,270,650 53,912,367

Core sequence size (bp) 43,818,233 42,239,438

Number of scaffolds 583 499

Number of core scaffolds 66 55

Size of largest scaffold (bp) 3,557,637 5,733,288

Interspersed repeat content 5.35% 4.21%

N50 (bp) 774,050 1,338,693

N90 (bp) 47,752 49,310

L50 (bp) 18 11

GC content 47.44% 47.68%

196
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