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Testing how plant restoration influences animal taxonomic and functional diversity can shift restoration projects
beyond mainly plant community considerations. We incorporated multi-trophic interactions into restoration by
describing an ongoing functional trait-based restoration experiment in Hawaiian lowland tropical wet forest
(Liko Nā Pilina Experiment), where litter arthropods are examined from a functional perspective thereby linking
plants and higher trophic levels.We hypothesized that (1) communitieswith greater plant functional trait diver-
sity would have cascading effects through food webs, increasing animal diversity and network complexity, and
(2) increases in animal species and network complexity would be stronger for restoration efforts in plant com-
munities with more complementary functional traits than those with more redundant traits. We examined ex-
perimental treatments of planted communities with the same species richness but with different plant
functional trait profiles based on (1) rates of expected carbon turnover (slowormoderate), and (2) the similarity
of their functional trait measurements (redundant or complementary), as determined by functional dispersion
calculations. Initial data on arthropod communities and leaf litter decomposition rates revealed linkages between
plant functional traits and arthropod community diversity. Overall, we argue that a more comprehensive evalu-
ation of restoration accounts for both functional diversity and themulti-trophic nature of animal and plant com-
munities. Developing restoration projects based on plant functional traits that influence both plant and
invertebrate species provides a new paradigm, and the incorporation of both native and non-native (but non-
invasive) plants shows promise in restoring ecosystem function in disturbed lowland tropical forests.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction—the value of incorporating multi-trophic interac-
tions into restoration planning

Traditionally, restoration ecologists have assumed that “if you build
it, they will come,” and thus have focused on manipulating plant com-
munity structure. However, a recent call is to shift restoration planning
toward considerations beyond the plant community (Fraser et al.,
2015), encouraging testing basic hypotheses of how plant restoration
influences animal species and their functions. Wright et al. (2009)
argue for a biodiversity and ecosystem function approach to restoration,
in which there is some aspect of waiting for species to colonize on their
own along with planned species additions. This paper highlights the
value of incorporating multi-trophic interactions into restoration plan-
ning for twomajor reasons. First, plant diversity is important in creating
species-rich animal communities (Scherber et al., 2010; Rzanny and
Voigt, 2012). Also, restored systems are often less complex than natural
systems, at least in the early stages of development, and therefore it can
be easier to examine multi-trophic interactions in restored areas,
allowing for new insights and experimental tests that could be better
controlled than in natural systems (Vander Zanden et al., 2006).

The literature relating biodiversity and ecosystem function suggests
twopotentialmechanisms for promoting functional ecosystems. The di-
versity hypothesis proposes that with greater species diversity (in the
general sense), there are greater opportunities for complementary use
of resources (niche complementarity), and ultimately greater ecosys-
tem productivity and stability (Tilman et al., 2006; Allan et al., 2011;
Craven et al., 2016). Experimental approaches designed to examine
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the relationship between diversity and productivity have been varied
but generally have been restricted to primary producers (Schuldt
et al., 2019). Alternatively, the mass ratio hypothesis (Grime, 1998)
predicts that it may not be total plant species diversity, but rather the
dominant biomass contributors that most influence ecosystem-level
processes such as productivity and nutrient cycling. Several empirical
studies support this hypothesis (Garnier et al., 2004; Díaz et al., 2007;
Fortunel et al., 2009; Laughlin, 2011), but again these experiments
have focused mainly on the plant community.

Empirical studies identifying interactions among different trophic
levels (e.g., Qian, 2007; Hertzog et al., 2016) suggest two conclusions:
(1) changes in plant diversity affect higher trophic levels, where diverse
plant communities lead to species-rich animal communities
(e.g., Haddad et al., 2001), and (2) the effect of plant diversity is not the
same for all the trophic levels and is generally strongest for herbivores
(Scherber et al., 2010; Schuldt et al., 2011). However, theoretical studies
suggest that the increase in animal species diversity through the trophic
pyramid may be more related to differences in plant functional diversity
than to plant species richness per se (Cardinale et al., 2011; Devoto
et al., 2012). While functional diversity can have many different mean-
ings, in this paper it is based onwhat organisms do in terms of their inter-
actions with other species and with the abiotic components of the
environment (Petchey and Gaston, 2006). From a practical sense, func-
tional diversity often refers to a suite of measurements that quantify a
species role in the ecosystem, based on the set of functional traits chosen
to bemeasured. Functional diversity represents the suite of these metrics
and can include functional richness, functional evenness, functional diver-
gence, and functional dispersion (Villéger et al., 2008). To date, there are
only a few studies that have used the approachof linking functional diver-
sity to multi-trophic interactions (Schittko et al., 2014; Deraison et al.,
2015; Lefcheck and Duffy, 2015; Kuppler et al., 2016; Schuldt et al.,
2019), yet they can reveal how interactions among species will vary by
ecosystem type and across trophic levels (Schuldt et al., 2019). Also,
multi-trophic interaction studies are lacking in restoration projects
(Fraser et al., 2015).

The diversity of plant communitiesmay affect not only animal species
diversity (Junker et al., 2013), but also the way species interact with each
other (i.e., the interaction networks) among different trophic levels
(Haddad et al., 2009). Plant species diversity is known to affect the struc-
ture of the interaction networks linking plants with herbivores, carni-
vores, and detritivores (Rzanny and Voigt, 2012; Junker et al., 2013),
and functional diversity may have similar effects. Changes in the organi-
zation of the interactions may have important consequences for ecosys-
tem functioning (Montoya et al., 2006; Thébault and Fontaine, 2010).
For example, using simulations, several studies have identified that
some non-random organizations of the interactions among species lead
to more stable and robust communities (e.g., nestedness in plant-animal
mutualistic interactions, Rohr et al., 2014). However, besides the increas-
ing literature on the relationship between species diversity and interac-
tion structure (Rzanny and Voigt, 2012; Junker et al., 2013), very little is
known about the multi-trophic changes in the structure of the interac-
tions driven by plant functional diversity (but see Kuppler et al., 2016).

2. Plant functional diversity—the first step to consider in restoration
design

Species choice is one of the most difficult decisions involved in the
restoration process (Rayome et al., 2019). When the plant species to
be used in restoration can be chosen deliberately (see Ostertag et al.,
2015), the concept of plant functional diversity can be incorporated,
encompassing metrics that focus on the magnitude, variation, and dis-
similarity in species' functional traits (Schleuter et al., 2010). Consider-
ing functional diversity rather than species diversity may be a more
promising approach to address questions of how species influence the
structure and function of ecosystems (Laureto et al., 2015), community
assembly (Bhaskar et al., 2014), and restoration (Fig. 1).
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Several studies support that increases in animal species diversity may
be related to differences in plant functional diversity (Fig. 1). For example,
Gillison et al. (2013) found that plant functional diversity was the best
predictor of termite diversity in Sumatra. Likewise, Dinnage et al.
(2012) identified that plant phylogenetic diversity (which is highly re-
lated to functional diversity) strongly predicted the diversity of arthro-
pods at higher trophic levels and suggested that phylogenetically
distant species occupy different functional roles in the community. High
plant functional trait diversity may also promote functionally diverse an-
imal communities as niche opportunities expand in the higher trophic
levels (Fig. 1). For example, Chillo et al. (2017) found that after a human
disturbance the functional diversity values of both animal and plant com-
munity decreased, while ŠipoŠ et al. (2017) found a similar trend in the
functional diversity metrics between vascular plants and spiders after
canopy thinning. However, this link between plant and animal functional
diversity is not universal (Spake et al., 2016) and the number of studies
addressing the cascading effects of functional diversity at different trophic
levels is still small.
3. Case study—incorporation of plant functional diversity into food
web restoration

The application of functional trait theory in restoration andmanage-
ment is an exciting new approach that can be used to understand the
persistence of species and ecosystems and to build model communities
with desired ecosystem functions. We have an ongoing functional trait-
based restoration experiment in a lowland tropicalwet forest inHawai'i.
Only a small fragmented portion of Hawaiian lowland wet forest re-
mains due to agricultural clearing and development. The remaining
habitat is heavily invaded by non-native plants and animals, and previ-
ous attempts tomaintain these forests as all-native species assemblages
was unsustainable in terms of labor, logistics, and cost (Ostertag et al.,
2009; Cordell et al., 2016).

The Liko Nā Pilina Experiment located in Hilo, Hawai'i (19°42.15N,
155°2.40W) selected species with a broad range of functional traits
(i.e., high functional divergence) (Ostertag et al., 2015; Rayome et al.,
2018). The experiment was designed to examine how different
combinations of functional traits planted in experimental communities
may preclude exotic species from invading (Funk et al., 2008; Hooper
and Dukes, 2010). The setup provides a unique opportunity to study
how functional trait-based restoration can promote diverse species
assemblages using species not originally found at the site—including
non-native but non-invasive species (Ewel and Putz, 2004; Schlaepfer
et al., 2011). The non-native but non-invasive species were combined
with natives to fill ecological roles that may have been lost or altered
through human disturbance. In the Liko Nā Pilina Experiment (Fig. 2),
the experimental treatments were planted communities (e.g., consisting
of outplants) along with any previous native stems. Each treatment had
the same species richness of outplanted trees (n = 10 outplant species
per plot) but with different functional trait profiles (i.e., positions of spe-
cies in trait space) based on two factors: (1) rates of expected carbon
turnover (slow or moderate) because one objective of the restoration is
to lower rates of invasion by decreasing carbon cycling rates (Hughes
et al., 2014), and (2) the similarity of species in their functional trait mea-
surements (redundant or complementary, as determined by functional
dispersion calculations; Ostertag et al., 2015). The design resulted in
four treatments (experimental communities): slow carbon redundant
traits, moderate carbon redundant traits, slow carbon complementary
traits, and moderate carbon complementary traits (Fig. 3). These treat-
ments represent four experimental communities, each a combination of
different management objectives. Each treatment had four replicate
20 × 20 m plots with a 5 m perimeter buffer, arranged in a randomized
block design. A total of 20 species were incorporated into the experiment
andwere carefully chosenbasedon their expressionof 15 functional traits
(e.g., leaf C:N, maximum plant height, seed mass; see Table 1 in Ostertag



Fig. 1. A conceptual figure representing hypothesized mechanisms for how restoration using a functional trait approach can influence food webs by bottom-up effects. Different plant
shapes represent species with a different combination of functional traits. Arrows link individuals from a trophic level that consume individuals from another trophic level. We
represent food webs with three trophic levels: primary producers, primary consumers, and secondary consumers. Restoration efforts that increase the diversity of plant functional
traits should have cascading effects on the food web, increasing animal diversity and network complexity. The increases in animal species and network complexity are expected to be
stronger for restoration efforts using plants with complementary functional traits than those using plants with redundant traits.
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et al. (2015)) and their non-invasive nature as determined by the Hawai'i
Weed Risk Assessment (Daehler et al., 2004; Ostertag et al., 2015).

We examined the leaf litter arthropod community to address the hy-
potheses shown in Fig. 1. The young volcanic substrate (750–1500 yr) at
the site has limited soil development, and previous research has shown
that most nutrient cycling occurs through the leaf litter (Ostertag et al.,
2009). Thus,we expected aboveground terrestrial foodwebs to be dom-
inated by arthropods that can directly affect litter decomposition
through comminution of plant material and grazing on bacteria and
fungi (Seastedt, 1984; Moore et al., 1988). The initial data on leaf litter
Fig. 2. A plot in the Liko Nā Pilina experiment after initial planting (left) and after 3.5 years o
outplants. The rocky, volcanic substrate can be seen.

3

arthropod communities and leaf litter decomposition rates at the site
suggest links between the plant species and arthropod community
composition and diversity. Litterfall has been collected (n = 20 litter
trays per plot) monthly since the Liko Nā Pilina experiment's monitor-
ing phase was initiated in 2014. We sorted and weighed by species to
calculate outplant species contributions to changes in litterfall rates
over time. Overall, between treatment comparisons were also made.
In 2016, we conducted a decomposition experiment using litterfall col-
lected on-site.We focused on both single species decomposition aswell
as mixed-litter (i.e., experimental community mix) decomposition.
f growth (right). In the background are existing canopy trees and in the foreground are
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Fig. 3. The four experimental treatments of the Liko Nā Pilina restoration and community assembly experiment on Hawai'i Island. Each species position in ‘trait space’ was determined
using principal components analysis. The core species were chosen from a previous principal components analysis that showed a distinct separation of species in terms rates of carbon
turnover, and was primarily based on the following traits; leaf mass per area, carbon:nitrogen ratio, and foliar nitrogen concentrations. We selected core species to be either species
with slow carbon turnover (i.e., associated with higher carbon storage) or moderate carbon turnover. Two native and two non-native core species were chosen for each treatment.
Once these core species were designated (green diamonds), six additional species for each treatment (gray circles) were chosen to be near (redundant) or far (complementary) from
the core species, based on calculations of the centroid.
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Litter bags were constructed of 1 mm mesh fiberglass window screen,
filled with 5 g of litter, and placed in the field sites. Bags (n=10 per pe-
riod per species andmixed litter treatments) were collected at intervals
of 4 and 12 months. Decomposition rate constants (k values) were
calculated for the single species and mixed litter treatments. Litterfall
rates varied greatly (0–12.3 g/m2/mo), as did decomposition rates
(0.63–3.5 k) across individual plant species (Fig. 4a and b). At the exper-
imental community level, litterfall rates were greater for the moderate
redundant treatment than the two slow treatments with the moderate
complementary treatment intermediate (ANOVA F(3,16) = 7.54, P =
0.0043; Fig. 4c). In comparison, decomposition rates were greater at
the moderate complementary treatment than the moderate redundant
treatment, with the two slow treatments intermediate (ANOVA F
(3,36) = 4.04, P = 0.0149; Fig. 4d). All statistical results were evaluated
with the criterion of P < 0.05.

These litter differences provided a template to investigate the litter ar-
thropod community, of both microarthropods and macroarthropods.
Microarthropods were the mites (Acari) and entognathids (primarily
Collembola, but also Protura and Diplura), while macroarthropods in-
cluded all arthropods not within these groups. In February 2019, we
4

collected single leaf litter samples under canopies of 19 studied plant spe-
cies to examinemacroarthropod populations. This collectionwas the first
of eight collections to be conducted quarterly and rotated across the four
blocks twice. Collections per species were standardized by volume
(i.e., one approximately 27 cm × 27 cm bag per species) and distributed
spatially as evenly as possible across individuals planted per species in
the four plots per block; small collections were made from beneath at
least two individuals per species when possible. We identified 74
macroarthropod morphospecies, ranging between 17 and 35 per plant
species. We also performed microarthropod collections as part of a
June–July 2017 pilot study focusing on oribatidmites. Litter was collected
from 11 tree species.We used four 25 cm2 quadrats placed on the ground
underneath the plant canopies and found 13 morphospecies of mites.

We investigated relationships among the arthropod community (both
micro- and macroarthropods) and the plant functional traits using Re-
dundancy Analyses (RDA) in R version 3.6.3 (2020-02-29) on an
x86_64-apple-darwin15.6.0 (64-bit) platform (R Development Core,
2018). RDA ordinates invertebrate species using axes that are constrained
to be linear combinations of the plant functional traits, in such a way that
the relationship between the invertebrate species and theplant functional
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Fig. 4. The outplants in the experiment are diverging in ecosystem-level indices of litterfall and decomposition at both the individual species (A, B) and experimental community level (C,
D). Planted species have been listed based on outplant litterfall (g/m2/month) contributions in descending order as follows: TECA (Terminalia catappa), ARAL (Artocarpus altilis), PEAM
(Persea americana), RHSA (Rhus sandwicensis), SYMA (Syzygium malaccense), ALMO (Aleurites moluccana), PATE (Pandanus tectorius), MOCI (Morinda citrifolia), POHA (Polyscias
hawaiensis), CAIN (Calophyllum inophyllum), SASA (Samanea saman), MAIN (Mangifera indica), PRBE (Pritchardia beccariana), CIGL (Cibotium glaucum), PSOD (Psydrax odorata), THPO
(Thespesia populnea), PIAL (Pipturus albidus), CONU (Cocos nucifera), MYLE (Myrsine lessertiana), and ANPL (Antidesma platyphyllum). Planted communities have been listed as follows;
SLOW RED (slow carbon redundant traits), MOD RED (moderate carbon redundant traits), SLOW COMP (slow carbon complementary traits), and MOD COMP (moderate carbon
complementary traits). Values are means ± standard error. Differing letters indicate significant differences resulting from ANOVA followed by Tukey's multiple comparisons test.
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traits can be seen. We started with the 15 functional traits data that were
used to design the experimental treatments (Ostertag et al., 2015) and
then ran a Variance Inflation Factor (VIF) analyses to look for collinearity.
We eliminated all variables with a VIF > 10. Functional trait variables in-
cluded in the RDA were foliar C and P concentrations, foliar δ13C (a mea-
sure of integrated water-use efficiency), maximum plant height, seed
mass, altitudinal range (a measure of habitat breadth), and shade ratio
(a measure of the canopy architecture). While the taxonomic details of
the arthropod data sets are still being worked out, RDA shows that the
macroarthropod (Fig. 5a) and microarthropod (Fig. 5b) communities de-
pend on the functional traits of the plant species and thus that primary
consumers' functional traits affect the arthropod community. For
macroarthropods, C concentration was the only significant variable
(P = 0.002), which was tested by the distribution-free Monte Carlo test
(999 permutations), in which the distribution of the test statistics under
the null hypothesis is generated by random permutations of cases. For
microarthropods, only height was significant (P = 0.026) and shade
ratio was not significant but potentially important (P= 0.098).

4. Research questions that can take advantage of restoration
projects

Given the importance of plant nutrient cycling in developing resto-
ration projects, there are a variety of multi-trophic questions that
could be investigated. Under a given climate or disturbance regime,
5

factors most strongly controlling leaf litter decomposition are litter
quality (a combination of physical and chemical traits) and soil fauna
(Heneghan et al., 1998; Powers et al., 2009; Meyer III et al., 2011;
Paudel et al., 2015), and these two factors may interact with each
other. For example, in a temperate forest, when plant litter diversity
and soil animals were manipulated, the presence of soil fauna had a
larger effect on decomposition rates for the more rapidly decomposing
plant species (Hättenschwiler and Gasser, 2005). Plant species that ex-
hibit leaf quality characteristics associated with faster decomposition
rates (e.g., thinner leaves, lower C:N)may lead to greater rates of nutri-
ent cycling during restoration. This higher nutrient availability is ex-
pected to influence arthropod density and biomass, as demonstrated
in aHawaiianmontane forest study (Gruner, 2004). Thus, it is important
to understand how decomposition rates affect consumers, in both less
disturbed systems and during restoration.

Another opportunity formulti-trophic research occurswhen consid-
ering plant community assembly. Functional complementarity could
maximize the number of functional niches occupied, leading to in-
creased diversity in available resource use and efficiency (Northfield
et al., 2010). In contrast, functional redundancy will confer higher resil-
ience to the community because the function of one species that is lost
can be covered by redundant species (Walker, 1992, 1995). However,
the principalmechanisms affecting complementary vs. redundant com-
munities are still unclear (Tylianakis and Morris, 2017). A testable hy-
pothesis is that for an equal number of species, plant communities



Fig. 5.Redundancy (RDA) analyses ordinating plant functional traits againstmacroarthropod
(A) and microarthropod (B) morphospecies collected from leaf litter samples placed
underneath plant species canopies that are planted in the Liko Nā Pilina experiment during
periods of relative environmental similarity. Individual morphospecies are denoted as S1,
S2, etc. and the vectors show the plant functional traits in the analysis. Arthropod abundance
datawere square-root transformed and all the plant functional traitswere scaledbefore anal-
ysis. In (A), 74 morphospecies of macroarthropods were collected beneath 19 plant species
and analyzed against the functional traits foliar C and P concentrations, foliar δ13C (ameasure
of integrated water-use efficiency), maximum plant height, seed mass, altitudinal range (a
measure of habitat breath), and shade ratio (ameasure of the canopy architecture). C concen-
tration was the only significant variable (P=0.002). In (B), 13 microarthropodmorphospe-
cieswere analyzed against foliar C andN concentrations, instantaneouswater-use efficiency,
leafwater content,maximumplant height, shade ratio, leafmass per area, stem specific grav-
ity, and stature (vertical position in the canopy). Only height was significant (P=0.026) and
shade ratio was marginally significant (P= 0.098).
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with complementary traits (low niche overlap) providemore ecological
niches for the higher trophic levels than those where some of the traits
are redundant (high niche overlap) (Junker et al., 2015). The Liko Nā
Pilina experiment has the design to provide a direct test of this hypoth-
esis.More ecological niches can also beusedbymore functionally differ-
ent animal species, increasing both animal diversity and functional
diversity and our experimental design can also test this hypothesis, al-
though it is dependent on which animal functional traits are quantified.
6

Also, plant, animal, and functional diversity values are likely to change
over time, and the long-term temporal perspective is a linchpin of suc-
cession and restoration studies.

Plant functional trait composition can affect not only the species di-
versity but also the complexity of the interaction networks that are
formed among the groups of species in the different trophic levels
(Rzanny and Voigt, 2012). The study of interaction networks allows re-
searchers to understand the dynamics and the mechanisms underlying
community processes (Montoya et al., 2006; Thébault and Fontaine,
2010). It can be hypothesized that a greater number of ecological niches
or greater nutrient availability may benefit the presence of specialized
groups of species in plant communities with complementary traits, in-
creasing the interaction diversity and specialization, and decreasing
the connectance (i.e., proportion of realized interactions) of the net-
work (Rzanny and Voigt, 2012).

Another interesting perspective is the quantification of the diversity
of arthropod functional traits that are responsive to environmental
drivers. For example, the body size of microarthropods is a significant
indicator of environmental factors suggestive of climate change, such
as warming temperature (Bokhorst et al., 2012) and drying of forest
floors (Lindo et al., 2012). Similarly, oribatid mite and collembola com-
munities have been shown to assemble differentially based on trophic
position, reproductive strategy, and mobility following forest manage-
ment practices differing in intensity (Farská et al., 2014). Litter arthro-
pods can be examined from a functional perspective during
restoration (Cole et al., 2016), linking plants and higher trophic levels.
While traditional diversity measurements (e.g., species richness, diver-
sity indices) are often informative in arthropod studies, the addition of
trait-basedmetrics into community-level research will increase the an-
alytical power needed to identifymany subtle but important responses.

Finally, hypotheses can be developed that explore the interaction
between nutrient availability and functional diversity. Meta-analysis
has shown that leaf litter mixtures often decompose in a non-additive
manner, either faster (synergistically) or slower (antagonistically)
than expected (Gartner and Cardon, 2004). As with primary productiv-
ity, the number of plant species does not always correlate to the decom-
position rate (Srivastava et al., 2009), suggesting that a functional
diversity approach may be more informative. Litter mixtures that con-
tain species more functionally dissimilar in physical and chemical traits
are hypothesized to have synergistic effects (Schindler and Gessner,
2009; Lecerf et al., 2011). For example, Lecerf et al. (2011) found evi-
dence for niche complementarity explaining differences in litter decom-
position rate among litter mixtures in stream studies. Accordingly, the
Resource Specialization Hypothesis (Hutchinson, 1959) suggests that
increases in consumer diversity when plant diversity is high are caused
by more plant species providing a greater quantity of resources and
niches for the consumers (Haddad et al., 2009; Scherber et al., 2010;
Schuldt et al., 2015). Because restoration ecologists often design exper-
iments in such a way that resource availability will change over time
(e.g., plantings that lead to shading, bird visitation, or increased soil
water), planning for functionally diverse litter inputs could become an
important management strategy.

5. Broadening the concept of functional restoration

Developing restoration projects based on plant functional traits that
influence both plant and invertebrate species provides a new design par-
adigm. It encourages going one step further from restoring biodiversity to
restoring ecosystems where lost ecological functions are reintroduced.
However, long-term restoration efforts add much to our knowledge
about the stability, resilience, or interspecific interactions, of restored eco-
systems (Allsopp et al., 2008; Martín-López et al., 2014; Ma et al., 2016).
Most of the terrestrial biodiversity and ecosystem function experiments
and higher-level trophic studies to date have been in simplified systems
—mainly grasslands (Koricheva et al., 2000). However, restoration needs
are global and varied. Forest ecosystems are understudied, partly due to
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the logistical challenges and time needed for manipulating large woody
species (Zavaleta et al., 2001). Also, in some places, such as the Liko Nā
Pilina Experiment in Hawai'i, restoration creates hybrid ecosystems
(i.e., that contain both native and non-native but non-invasive plants,
Hobbs et al., 2014). The rationale for this approach is that it is not feasible
to return to a previous state for reasons that include the lack of reference
sites or historical baseline conditions, irreversible climate change, and col-
onizationbynon-native species that cannot practically or economically be
removed (Zedler et al., 2012; Hobbs et al., 2014). An important consider-
ation is that hybrid ecosystem restorationwill likely containmore animal
inhabitants that are non-native, providing an opportunity for new types
of species interactions, such asmutualisms (Ewel and Putz, 2004), leading
to broader philosophic discussions of native and non-native species and
human impacts (Robbins and Moore, 2013). Overall, shifting from the
“if you build it, they will come” strategy toward a functional restoration
approach that affects the entire food web can provide greater insights
about how to improve outcomes. Long-term restoration projects, from
grasses to trees, which consider new types of community assemblages
when the original ones cannot be recovered could be valuable in restora-
tion efforts.
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