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Abstract
This paper presents Penny, a compiler-directed resilience

scheme for protecting GPU register files (RF) against soft er-

rors. Penny replaces the conventional error correction code

(ECC) based RF protection by using less expensive error de-

tection code (EDC) along with idempotence based recovery.

Compared to the ECC protection, Penny can achieve either

the same level of RF resilience yet with significantly lower

hardware costs or stronger resilience using the same ECC

due to its ability to detect multi-bit errors when it is used

solely for detection. In particular, to address the lack of

store buffers in GPUs, which causes both checkpoint stor-

age overwriting and the high cost of checkpointing stores,

Penny provides several compiler optimizations such as stor-

age coloring and checkpoint pruning. Across 25 benchmark

applications, Penny causes only ≈3% run-time overhead on

average.

CCS Concepts: • Hardware → Error detection and er-
ror correction; • Software and its engineering→ Error
handling and recovery; Compilers.
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1 Introduction
Due to technology scaling and near-threshold computing [9,

18, 23, 55, 59], soft error resilience has become as impor-

tant as power and performance in any computing systems.

For example, when high-energy particles strike the circuit,

they might cause application crashes and even worse, silent

data corruptions (SDC) which corrupt the program output

without being detected. Near-threshold voltage and process

variation make it harder to predict the response of the cir-

cuits to a particle strike, thus making them more susceptible

to soft errors [5, 18, 23–25, 28, 48, 51, 55, 59].

With the popularity of GPUs, it is becoming more impor-

tant to protect them against soft errors [22, 56]. The GPUs

of all major supercomputers and data centers have already

adopted hardware support for soft error resilience. NVIDIA

GPUs from Fermi onwards use error correction code (ECC)

to protect their storage structures even including register

files (RFs). However, ECC-protected RFs do not only increase

the critical path of instruction execution but also often lead

to a longer clock cycle than ECC-free RFs [4, 39, 40, 57]. Due

to the increased delay and power [42], ECC-protected RF

consumes significantly more energy than ECC-free RF.

Another big concern for an ECC-protected RF is its area,

e.g., 22% overhead for a 32-bit register. The ECC overhead

becomes worse for multi-bit errors that commodity GPUs al-

ready report. Since they cannot be handled by conventional

single-bit error correction and double-bit error detection

(SECDED) ECC [63], much more bits should be paid to pro-

tect against such multi-bit errors. Along with the combina-

tional logic for encoding/decoding, ECC-protected RFs thus

occupy a significant amount of area that could otherwise be

used to enlarge RFs/caches thereby improving the perfor-

mance of GPUs. Given all this, there is a compelling need

for lightweight GPU RF protection.

With that in mind, we propose Penny, a new GPU RF

resilience scheme that combines recent advances in idempo-

tent recovery [13, 14, 21, 32, 34–36, 41] with error detection

code (EDC), e.g., single or multi-bit parity checking. Com-

pared to error correction code (ECC) which imposes high

bit-wise data redundancy, EDC [49] used by Penny intro-

duces less area overhead—because EDC only needs to detect
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errors. The reduced bit-redundancy reduces not only the

area overhead but also the access latency and static/dynamic

power consumption of RFs. Therefore, Penny achieves the

same level of resilience as ECC at a much lower cost.

Alternatively, by paying the same area overhead as ECC,

Penny guarantees to detect and correct wider multi-bit er-

rors, thus providing stronger resilience; when a 32-bit reg-

ister uses 7-bit ECC for 1-bit correction, Penny offers 3-bit

correction using the same 7-bits. Since they are used solely

for detection as EDC, Penny can detect 3-bit errors. Once

errors are detected, Penny’s idempotent recovery can correct

them no matter how many bits are corrupted.

A region (i.e., instruction sequence) of code is idempotent

if it can be re-executed many times and still result in the

same correct output [14]. Thus, the program can recover

from soft errors by simply restarting the idempotent region

where they occurred. Among the existing schemes, Bolt [35]

is particularly suitable for our needs, because it does not

require the RF to be protected by ECC for correct recovery,

unlike other idempotent schemes [12, 13, 15, 21, 32, 34, 36,

41]. To achieve correct soft error recovery without ECC, Bolt

checkpoints the live-out registers of idempotent regions.

However, naively applying Bolt to GPU faces several im-

portant challenges that must be overcome to achieve ECC-

free GPU RF protection. First, soft error detection must be

fast enough for correct recovery. The existing idempotent

recovery schemes require the enforcement of in-region de-

tection, i.e., errors must be detected within the same region

where they occurred. However, such a short detection latency

puts high pressure on the underlying detection mechanism.

In addition to reducing the hardware cost of ECC, Penny’s

EDC-based parity-checking has a unique virtue of not requir-

ing in-region error detection. We prove that even if errors on

registers are not detected within the region they occurred,

they can be safely recovered in any later region where they

are detected by with the help of parity-checking; a faulty reg-

ister is never propagated to other registers/memory because

the error is always detected at the register access time. This

obviates the need to use expensive detectors whose latency

is short enough to detect errors before a region ends.

Second, since Bolt was made for CPUs, there is no consid-

eration of GPU architectures. For example, the existence of

shared/global memories in GPUs demands the right check-

point storage to be chosen between them. Care must be taken

to allocate the resources to threads because the concurrency

(i.e., the occupancy of a streaming multiprocessor—SM) can

be limited by the resource contention between the threads.

Third, GPU lacks store buffers. Unfortunately, they are

required for idempotent recovery to correct soft errors [13,

15, 21, 34–36, 41]. The problem is that checkpointing the live-

out registers of a current idempotent region may overwrite

the checkpoints stored at some earlier region—which are live-

in registers of the current region and thus required for its re-

execution—thereby failing to recover from errors. This is not

an issue for CPUs because their store buffers can either hold

checkpointing stores of each region until its end where they

are released to memory or discard them on error detected.

Fourth, due to the lack of store buffers, GPUs cannot effec-

tively hide the store latency for a checkpoint, i.e., essentially

a store instruction. That is, the overhead of the checkpoint-

ing stores can be high, lengthening the critical path of the

GPU’s pipeline execution—which is not a problem for out-

of-order CPUs where stores are off the critical path most of

the time. For example, binomialOptions, a benchmark in the

CUDA toolkit [47], shows a 26.7% slowdown when only 2

checkpointing stores are added into the inner-most loop.

To overcome the above challenges, Penny proposes a new

GPU RF protection that can achieve correct yet performant

soft error resilience. As with Bolt, Penny uses compiler-

generated idempotent regions for recovery. However, un-

like Bolt, Penny does not require the in-region error detec-

tion that makes it impossible to use idempotent recovery

for lightweight RF protection. Also, we solve both the cor-

rectness and performance problems of Bolt due to the lack

of store buffers in GPUs. To ensure correct idempotent re-

covery, Penny leverages register renaming and checkpoint

storage coloring. They make it possible to correctly restore

all the checkpointed inputs to a faulty region upon recovery.

To solve the performance overhead of the checkpointing

stores, Penny carefully exploits GPU’s shared/global mem-

ories for the checkpoint storage in a way to maintain the

GPU performance. Furthermore, Penny leverages novel op-

timization techniques such as optimal checkpoint pruning

for unnecessary checkpoint removal without compromising

the recoverability. Following are our contributions:

• Penny is the first compiler-directed soft error resilience

scheme that protects GPU RFs without expensive ECC

protection. Penny provides equal or stronger reliability

guarantee with significantly reduced hardware cost.

• For the first time, we show that parity-checking (EDC)

can be integrated with idempotent recovery to achieve

low-cost GPU RF resilience. With parity-checking, Penny

safely recovers from errors without the restriction of the in-

region error detection. Any features of GPUs do not bound

this, and thus Penny is applicable to other architectures.

• Penny proposes a set of compiler optimizations that en-

sure the checkpoint correctness and reduce the perfor-

mance overhead in the absence of store buffers in GPUs.

• Penny incurs only ≈3% run-time overhead on average

across 25 benchmark applications.

Finally, we provide Penny’s limitation and our future work

in Section 9.1.

2 Background and Motivation
ECC uses more extra bits for error correction than EDC,

thereby imposing high area/latency/energy overheads. In

contrast, Penny leverages idempotent recovery to correct
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Table 1. Storage cost required by conventional ECC and

Penny for protecting a 32-bit register from 1-3 bits of errors;

(𝑛, 𝑘) means 𝑛-bits are required for encoding 𝑘-bits of data.

Error Conventional ECC Penny

1 bit SECDED (39,32) 21.9% Parity (33,32) 3.1%

2 bit DECTED (55,32) 71.9% Hamming (38,32) 18.8%

3 bit TECQED (60,32) 87.5% SECDED (39,32) 21.9%

detected errors, thus obviating the need for the redundant

information (bits) encoded in ECC for correction. Instead,

Penny uses single or multi-bit parity-checking
1
to detect an

error in RFs before it is propagated to other registers/memory.

The error detection coding (EDC) required for this is much

cheaper than ECC. That is because the number of error-bits

ECC can correct is smaller than what it can detect. That is,

with the same bit-redundancy budget, the number of error-

bits ECC can detect is smaller than what EDC can do.

Table 1 compares the required bit budgets of conventional

ECC protection and Penny for protecting a 32-bit register

from one to three bits of errors. For single-bit error cor-

rection, SECDED (39,32) coding [43] is required for ECC

protection—i.e., 21.9% bits overhead due to additional 7 bits—

whereas only 1 bit is needed for Penny incurring 3.1% over-

head. Although SECDED ECC can detect 2-bit errors, it can-

not correct them. Such detected unrecoverable errors (DUEs)

force program to be restarted from the beginning.

For a more error-prone environment that uses smaller

manufacturing technology—e.g., AMD uses a 7nm process

for recent Vega GPUs—or near-threshold computing
2
, the

demands for multi-bit error correction grow fast in the semi-

conductor industry. For ECC to correctly recover from 2-bit

errors, it must use DECTEC (55,32) [43] coding that requires

23 additional bits for every 32-bit chunk of data. In contrast,

Penny can detect 2-bit errors with 6-bit Hamming code [43]

and correct them by re-executing the idempotent region

where they occurred. For 3-bit error correction, ECC must

use TECQED (60,32) [43] coding that requires 28 additional

bits, while Penny can use SECDED (39,32) coding paying

only 7 bits to achieve the same correction.

Note that when commodity GPUs, equipped with tradi-

tional SECDED (39,32) ECC, use Penny, they become capable

of correcting 3-bit errors as TECQED (60,32) ECC can but

without the high cost; as shown in Table 1, using the same

SECDED coding, Penny can correct 3-bit errors whereas

ECC can correct only 1-bit errors. Alternatively, for single-

bit error correction, Penny can replace the SECDED ECC in

commodity GPUs with 1-bit parity, thereby drastically sav-

ing the hardware cost without compromising the resilience

guarantee. The takeaway is that Penny can provide the same

level of RF resilience or stronger resilience under the same

coding with the significantly lower area, latency, and energy

overheads; Section 7.1 provides detailed measurements.

1
Parity-check is a general term used to signify the process of validating the

encoded data, regardless of the used coding scheme [43].

2
Multi-bit errors increase by 2.6X under near-threshold operations [48].

3 Idempotent Recovery and Challenges
3.1 Idempotent Recovery Overview
An idempotent region is a part of the program code that can

be freely re-executed and still generate the same correct

output. Thus, a program can recover from errors simply by

restarting the idempotent region where they occurred. For

this reason, researchers have used the side-effect-free re-

execution of idempotent regions for many different types

of recovery—including misspeculation handling, nonvolatile

memory crash consistency, context switching, and power

failure recovery [8, 26, 32, 35, 38, 41, 58]. For soft error re-

covery, Bolt [35] is the state-of-the-art idempotent recovery

scheme. Unlike others, Bolt does not require an ECC pro-

tected register file for correct recovery. As with Penny, Bolt

divides a program into a series of idempotent regions.

1:    r1 = 3

2:    ld …, [0x10]
. . .

3:    st [0x10], … 
4:    r2 = r1 + 5

5:    r1 = 7

. . .

6:    ld …, [0x10]

1:    r1 = 3

1C:  cp r1

2:    ld …, [0x10]

3:    st [0x10], … 
4:    r2 = r1 + 5

5:    r1 = 7

. . .

6:    ld …, [0x10]

ld r1, …
. . .

R2

Recovery

R1

(a) Original Code (b) Transformed Idempotent Code

Flow dependence Anti-dependence Error detected

Figure 1. Idempotent recovery.

1: r1 = …; cp r1
2: r3 = …; cp r3
3: r4 = …; cp r4

4: r4 =…; cp r4 5: … = r1
6: r1 = r3; cp r1

7: … = r3
8: … = r4

RB1

L

L

L

L

L

RB2

r = … : write to r
… = r : read of r
L      : LUP

…

…

Figure 2. Eager check-
pointing.

For a region of code to be idempotent, the inputs of the

region must not be overwritten, i.e., no anti-dependence [44]

on the inputs during the region execution; both memory and

register inputs must be preserved to assure the side-effect-

free re-execution. Figure 1 shows how idempotent recovery

works: (a) is a non-idempotent code that encounters a soft er-

ror, and (b) is the transformed idempotent regions. Suppose

an input value is passed via memory location 0x10, which is

overwritten at line 3 (memory anti-dependence), and the er-

ror is detected between lines 5 and 6. One could try to correct

it by restarting the code (a) as if it were idempotent, but the

value being loaded at line 2 would be different from the orig-

inal input value. As shown in Figure 1(b), we thus split the

code into 2 regions to break every memory anti-dependence,

ensuring that memory inputs are never overwritten [15].

Not only that, to guarantee correct re-execution from the

beginning of a region 𝑅2 where the error is detected, but we

should also preserve its input registers, e.g., 𝑟1 is a live-in

register of 𝑅2 in Figure 1(b). Bolt uses eager checkpointing to

save live-out registers of each region, which are basically live-

ins of some following regions. All last update points (LUP)

of live-out registers in each region are identified—e.g., line

1 for 𝑟1 in Figure 1(b)—and their corresponding checkpoint

instructions are inserted right after LUPs (line 1𝐶). As such,
eager checkpointing ensures that for each region being exe-

cuted, its live-in registers have already been checkpointed.

The checkpoint instruction ‘𝑐𝑝 𝑟1’ in the figure is essentially

a store instruction that saves the register 𝑟1 to a dedicated

checkpoint storage assigned for each register. When an error
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is detected in region 𝑅2, our recovery runtime first restores

the register from the checkpoint storage and then redirects

the program control to the beginning of the region
3
. That

way, correct recovery is assured though 𝑟1 is overwritten at

line 5 in the figure.

Figure 2 shows how the eager checkpointing works in the

presence of control divergence. As shown in the shaded part

of the figure, an idempotent region can include a conditional

branch. Note that a live-in register can have multiple LUPs

depending on the control path taken, e.g., 𝑟4’s values updated

at lines 3 and 4 both reach the same region boundary (entry)

𝑅𝐵2 in Figure 2. Similarly, an updated value at a point can

be live-out to multiple region entries, e.g., 𝑟3 in the figure.

3.2 Idempotent Recovery Challenges for GPUs
Unfortunately, all prior works including Bolt [35] cannot be

used for GPUs due to correctness/performance problems.

Checkpoint Overwriting: One issue with Bolt’s eager

checkpointing is that a checkpoint (i.e., store instruction) in

a region can overwrite previously saved checkpoint value

while it is still required until the end of the region. In Fig-

ure 2, the checkpoint of 𝑟1 at line 1 is an input to the region

beginning with a region boundary 𝑅𝐵1, but 𝑟1 is overwrit-

ten (at line 6) during the region execution. If an error is

detected after line 6 and before the region finishes at 𝑅𝐵2,

the re-execution starting from 𝑅𝐵1 cannot correct the er-

ror. That is because the original value of the region input

𝑟1—previously checkpointed at line 1—was overwritten and

cannot be restored.

To prevent checkpoint overwriting, Bolt relies on hard-

ware called a gated store buffer (GSB) that can hold the

checkpointing stores of each region until it finishes; they are

eventually merged to checkpoint storage in memory at the

region end, provided no error has been detected within the

region. Since GPUs lack store buffers, Penny proposes 2 soft-

ware schemes, i.e., register renaming and storage coloring.

Performance Overhead: The lack of store buffers also

has a significant impact on performance overhead of check-

points that are essentially stores for saving live-out registers.

Unlike the CPU where stores are off the critical path in gen-

eral, they can easily slow down the GPUwhen the warp-level

parallelism is not sufficient to hide the memory latency. This

often occurs due to resource limitations on register file and

shared memory, suppressing the number of active warps, i.e.,

occupancy. In reality, merely executing a few more stores

can significantly hurt the GPU performance. For example,

Bolt’s unvarnished adaptation to GPU, for which we only

3
More precisely for Penny, when parity mismatch is detected in the region,

the exception must be thrown and caught by Penny’s recovery runtime; this

is another requirement with EDC (parity checking) in GPU’s register file.

The runtime (1) executes the recovery block that restores live-in registers

of the region from checkpoint storage or recovery slice if their checkpoints

are pruned (Section 5), and (2) jumps back to the beginning of the region.

use Penny’s automatic assignment of checkpoint storage be-

tween shared and global memories, shows 39.0% run-time

overhead on average and up to 943.5% (Section 7.3).

Given that soft errors rarely occur (1/day in 16nm [16, 35]),

users are reluctant to adopt Bolt for such rare error correction

at the cost of paying the high-performance overhead all day.

The implication is two-fold from the perspective of Amdahl’s

law [2]: (1) Penny’s optimization should focus onminimizing

the fault-free execution time overhead, and (2) the impact

of the recovery procedure on the total execution time is

negligible due to the low error rate. Unlike Bolt, Penny can

effectively shift the run-time overhead of fault-free execution

to that of fault-recovery procedure.

4 Recovery without In-Region Detection
All prior idempotent recovery schemes require that errors

must be detected within the same region where they occur;

due to error propagation behaviors [20, 31], re-executing

some later region, where an error is detected, would fail—

because the region inputs might have been corrupted by

the error. In general, the in-region detection requirement

imposes the high cost of implementing the detector that

offers such a short detection latency, e.g., expensive software-

and hardware-based dual modulo redundancy [50].

However, we found out that when parity-based detection

is used for idempotent recovery, the in-region detection re-

quirement is unnecessary. Faulty execution can be safely

recovered by re-executing the region where the error is de-

tected, no matter how far the region is from the error occur-

rence. The reason is two-fold: (1) when parity-checking is

used, the corrupted register can never be propagated before

it is detected on the first access after corruption. (2) eager

checkpointing correctly saves the live-ins required for re-

executing the region, even in the presence of errors. The

detailed proof can be found in Appendix A. Note that the

error detection and recovery do not rely on any distinct fea-

ture of GPUs, i.e., our proposed technique can be applied to

other types of processors to protect their RF.

5 Overview of Compilation Phases
Penny takes GPU program in the form of PTX code, that is

a basis for necessary transformations, and performs several

analyses and optimization phases in the following order.

Region formation: Penny partitions the entire program

into idempotent regions by breaking every memory anti-

dependence to prevent their memory inputs from being

overwritten. Penny uses an alias analysis [44] to find all pos-

sible memory anti-dependences. For each anti-dependent

load/store pair, all execution paths from the load to the store

must include at least one region boundary. To minimize the

number of region cuts (boundaries), De Kruijf et al. [15] trans-

late the region formation problem into a hitting set problem

and use an approximate algorithm; we use it for comparison

992



Compiler-Directed Soft Error Resilience for Lightweight GPU Register File Protection PLDI ’20, June 15–20, 2020, London, UK

with GPU specifics in mind
4
. Once all region boundaries are

determined, Penny computes their live-in registers, each of

which discovers its last updated points (LUPs).

Preventing checkpoint overwriting: A checkpointed

register value can be overwritten before it is used for recov-

ery. To ensure that no necessary checkpoint is overwritten,

we introduce two techniques, i.e., register renaming and

2-coloring for storage alternation. Penny also provides an

auto-selection mechanism, that can choose the better of the

two for a given GPU kernel, by using an instruction-level

cost estimation model; Section 6.3 provides the details.

Checkpoint scheduling: While Bolt [35] forces a check-

point to be placed right after the last update point (LUP) of a

register to save it, we found out that the restriction can be re-

laxed without compromising the recoverability (Section 6.2).

With that in mind, we perform a checkpoint scheduling to re-

duce the estimated cost of inserted checkpoints. We achieve

this in 2 steps: one after region formation and the other in

code generation. First, we conduct bimodal checkpoint place-

ment; a checkpoint is placed either immediately after the

LUP or right before the region end. The later step tunes the

bimodal schedule for better performance.

Checkpoint pruning: It is possible to remove a check-

point provided its value can be recomputed by using other

checkpointed values. This phase is to prune such an un-

necessary checkpoint whose values can be reconstructed at

recovery time by executing a series of other instructions, i.e.,

so-called recovery slice. In a sense, the problem of checkpoint

pruning can be formulated as that of finding the recovery
slice that can recompute the value of the pruned checkpoints.

We propose a near-linear-time optimal pruning algorithm

that significantly improves both the pruning quality and the

solution search time over Bolt’s basic pruning algorithm.

Storage assignment and code generation: To save check-

points, Penny uses two checkpoint storages that are already

protected by ECC in GPUs, i.e., shared and global memories.

Care must be taken for the storage assignment. Since the

low-latency shared memory has a limited size, assigning too

many checkpoints there can reduce the GPU occupancy. In

light of this, Penny carefully distributes its checkpoints to

the two storages, thereby reducing the run-time overhead.

Also, Penny leverages an appropriate storage layout with

coalesced memory accesses in mind. Finally, during the code

generation, Penny performs several compiler optimizations

to minimize the added instruction cost due to checkpoint-

ing stores and their address calculation. The optimizations

include local instruction scheduling, redundant code elimi-

nation, and loop invariant code motion, etc.

4
Penny treats GPU synchronization instructions, e.g., barriers, fences, locks,

atomics, as a region boundary, to handle inter-thread anti-dependence. This

ensures the correct recovery of data-race-free programs that Penny targets.

6 Performance Optimizations for GPU
6.1 Checkpoint Cost Estimation
Throughout the optimization process, Penny estimates the

cost of each live-out register checkpoint being placed in the

program to predict the impact of each optimization. Given

that checkpoints in loops lead to significant performance

degradation, we focus on removing such checkpoints, espe-

cially ones in the inner-most loops. With that in mind, we

model the cost of a checkpoint as 𝐶𝑑
, where 𝑑 is the nested-

depth of a loop, in which the checkpoint is placed, and 𝐶

is a constant; we use 64 to prioritize the elimination of a

checkpoint in a deeply-nested loop over many checkpoints

in a low-depth loop. For a given GPU kernel, we compute its

cost by accumulating all costs of checkpoints in the kernel.

6.2 Bimodal Checkpoint Placement
Bolt’s eager checkpointing imposes the restriction that all

live-out registers of a region must be checkpointed right

after their LUPs. However, we found that such a restriction

can be safely relaxed, i.e., each checkpoint can be delayed—

without compromising the recoverability guarantee—until

the region end (boundary). That is because the checkpointed

registers in a region are used as inputs to some later regions,

not the region itself. This insight allows Penny to schedule

checkpoints to minimize the run-time overhead.

However, due to many such possible points in diverse

execution paths between LUP and the region boundary, it is

indeed a complex problem to achieve the optimal checkpoint

scheduling. In light of this, Penny simplifies the scheduling

problem with two separate phases. First, for a given live-out

register, Penny’s bimodal checkpoint placement determines

where to place each checkpoint, i.e., either the LUP or the

region boundary. The goal of this phase is to identify those

checkpoints, that exist inside a loop, and pick them out of the

loop. The other phase is performed during code generation

to fine-tune the bimodal checkpoint schedule within a basic

block level that includes the LUP or the region boundary.

This local scheduling considers optimization objectives such

as increasing instruction reuse and reducing register usage.

Last Update Points

Region Boundaries

L1  r = …

L2  r = …

… = r

… = r

RB1 RB2

RB3

L1(1) L2(4) L3(2)

RB1(2) RB2(2) RB3(1)

(a) Example program

(b) Relation between LUPs 

and region boundaries

… = r
L3  r = …

Figure 3. Bimodal checkpoint placement.

In a sense, the bimodal placement is global scheduling

in that it picks the checkpoint location between the LUP

and the region boundary that can exist across basic blocks.

The placement algorithm covers all live-paths—where the
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checkpoint is used—within the region and minimizes the

estimated total cost of the checkpoint to be placed. Figure 3(a)

shows how this works with an example control flow graph

where a single register 𝑟 is used for simplicity. Here, 𝑟 is last

updated in 3 different LUPs, 𝐿1, 𝐿2 and 𝐿3.

Note that LUPs and region boundaries have a many-to-

many relationship, and thus a checkpoint can be shared

between them. For example, if a checkpoint is placed at 𝐿1,

neither 𝑅𝐵1 nor 𝑅𝐵2 needs a checkpoint there. Similarly, a

checkpoint placed at 𝑅𝐵3 can obviate both LUPs 𝐿2 and 𝐿3.

The relation between an LUP and a region boundary can be

modeled as a graph where they are represented as vertices.

As shown in Figure 3(b), each vertex is labeled by the cost of

the corresponding checkpoint. Penny calculates the cost by

2
𝑑
, where 𝑑 is the loop depth. If a register is lastly updated

at some LUP, then an edge is introduced from the LUP to the

beginning (boundary) of the region to which the register is

used as an input.

For each edge in the graph, at least one of the incident
verticesmust be chosen for checkpoint placement, and Penny

tries to minimize the total cost of the checkpoints chosen;

as shown in Figure 3(b), choosing 𝐿1, 𝑅𝐵1 and 𝑅𝐵3 gives

the minimum cost of 4. This problem can be modeled as

a weighted version of the vertex cover problem that is NP-

hard [11] in general cases. However, the problem can be

solved in polynomial time in case of a bipartite graph—where
vertices can be divided into two disjoint sets and all edges

connect a vertex from one set to another—as with graphs

in our problem. Interestingly, König’s theorem [10, 17, 27]

shows that the vertex cover problem for a bipartite graph is

equivalent to solving the maximum matching of the graph.

According to the weighted version of the theorem, Penny

uses a maximum-flow algorithm to solve our checkpoint

placement in polynomial time.

6.3 Preventing Checkpoint Overwriting

1 :   r1 = 5

1C:  cp r1

2 :   r2 = 0xc000

2C:  cp r2

3 :   ld r3, [r2]

8 :   st [r2+4], r1

4:    r4 = 7

5 :   st [r2], r1

6 :   r1 = r1 + r4

6C:  cp r1

7 :   ld r4, [r2+4]

1 :   r1 = 5

1C:  cp r1, K0

2 :   r2 = 0xc000

2C:  cp r2, K0

3 :   ld r3, [r2]

8 :   st [r2+4], r1

4 :   r4 = 7

5 :   st [r2], r1

6 :   r1 = r1 + r4

6C:  cp r1, K1

7 :   ld r4, [r2+4]

(c) Register renaming(a) Overwriting example (b) Storage alternation

R1 R1

R2

R3

R2

R3

12

5

ckpt

12

5

K0 K1

8 :   st [r2+4], r5

R1

R2

R3

ckpt Live-range 

of r1

Original

Extended

1 :   r1 = 5

1C:  cp r1

2 :   r2 = 0xc000

2C:  cp r2

3 :   ld r3, [r2]

4:    r4 = 7

5 :   st [r2], r1

6 :   r5 = r1 + r4

6C:  cp r5

7 :   ld r4, [r2+4]

Figure 4. Checkpoint overwriting pre-

vention.

cp r1, K1

cp r2, K0

cp r1, K0

cp r2, K0

cp r2, K1
cp r1, K1

cp r1, K0

cp r2, K1

BB1

BB2 BB3

BB4

Region boundary

BB5

Figure 5.A color-

ing conflict.

Due to the lack of store buffers in GPUs, a checkpoint

storage can be overwritten leading to incorrect recovery. For

the example code in Figure 4(a), the value stored in 𝑟1 at line

1 is a live-in to region𝑅2—since it is used at line 5—thus being

checkpointed at line 1C. However, the checkpointed value

5 is overwritten by a new checkpoint value 12 at 6C. Thus,

if an error occurs between line 6C and the end of 𝑅2, the

original live-in value of 𝑟1, which is required for restarting

𝑅2 from its beginning, cannot be restored.

To protect a checkpointed value from being overwritten

before it is used for recovery, we introduce 2 software tech-

niques: register renaming and storage alternation. The first

technique is to rename the register that causes the check-

point overwriting. As shown in Figure 4(c), 𝑟1 is renamed

to 𝑟5, i.e., its checkpoint does not overwrite 𝑟1’s. To achieve

this, Penny artificially extends the live-range of overwrit-

ten registers, e.g., Figure 4(c)’s 𝑟1, in each region until its

end
5
. Thus, they exclusively use physical registers, since

the register allocator respects the extended live range. This

renaming scheme is simple to implement and may save some

checkpoint storage spaces compared to storage alternation.

However, renaming is likely to increase the register pressure,

leading to performance degradation if the register usage

becomes the limiting resource of GPU’s warp occupancy.

Second, for each overwritten register, Penny maintains a

backup storage and alternates the 2 storages. For example,

in Figure 4(b), all checkpoints of 𝑟1 in region 𝑅1 are saved to

storage 𝐾0 while those in 𝑅2 are stored to the other storage

𝐾1, i.e., the value in 𝐾0 is not overwritten until the end of

𝑅2. To achieve this, we use a simple 2-coloring algorithm.

Applying storage alternation on all registers causes unnec-

essary storage and run-time overheads. Thus, our compiler

first identifies the registers that have at least one checkpoint

overwriting and feed them as inputs to 2-coloring for which

Penny visits basic blocks in a topological order and colors the

checkpoint storages of the input registers. More precisely, if

multiple checkpoints of a register exist in each region, which

is possible due to a branch in the region, Penny assigns the

same color for them. For a given register, Penny flips the

color in neighboring regions that checkpoint the same regis-

ter. Note that such regions are not necessarily consecutive;

they can be far away from each other.

The coloring may fail at a control-flow convergence point

if the colors from multiple incoming paths are not the same.

Figure 5 shows such an example; 𝑟1’s colors in the 2 paths

coming to 𝐵𝐵4 differ. This causes a coloring conflict. That

is, if a left path (𝐵𝐵2 to 𝐵𝐵4) is taken, 𝑟1’s checkpoint in

𝐵𝐵4 must be colored with 𝐾0 since 𝐵𝐵2 already used 𝐾1 for

𝑟1. However, taking the other path (𝐵𝐵3 to 𝐵𝐵4) demands

𝑟1’s checkpoint in 𝐵𝐵4 to be colored with 𝐾1, since 𝐾0 was

used for 𝑟1 in 𝐵𝐵1. Thus, the coloring solutions of the 2

paths do not agree with each other. To ensure the same color

at the convergence point no matter which path is taken,

Penny creates a new adjustment block, that has a dummy

checkpoint for a conflicting register, over one or more paths

to the point. The goal of a dummy checkpoint is to match

5
This is similar to what De Kruijf et al. [15] use to deal with register anti-

dependences. However, instead of renaming all anti-dependent registers,

we rename only live-out registers with anti-dependence. This is particularly

beneficial when an anti-dependent register is updated multiple times since

Penny only needs to checkpoint the last update, i.e., live-out value.
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the same color in other paths. Thus, the color of the dummy

checkpoint must be the opposite of the latest color used on

top of the new block. As shown in Figure 5, due to a new block

𝐵𝐵5, the colors in the 2 paths to 𝐵𝐵4 are both 𝐾1. Note that

the dummy checkpoints are likely to be pruned (Section 6.4),

and therefore the resulting overhead is not significant in the

majority of applications we tested (Section 7.5).

Also, Penny provides an automatic selection module to

choose the better between the register renaming and the

2-coloring based storage alternation. We compile an appli-

cation using both techniques and estimate their costs in a

similar way to the one in Section 6.1 to pick the best.

6.4 Optimal Checkpoint Pruning
Bolt [35] introduced checkpoint pruning. The insight is that a
large number of checkpoints can be safely pruned (removed)

without compromising the recoverability guarantee if they

can be reconstructed from other checkpointed values avail-

able at recovery time. In light of this, Bolt builds the recovery

slice (i.e., a series of instructions) of each region to recon-

struct its live-in registers whose checkpoints are pruned. Bolt

uses a random search to find a possible pruning solution—

that tells which checkpoints can be removed. However, the

search space dramatically increases as the number of check-

point increases; the number of possible solutions for 𝑛 check-

points is 2
𝑛
, i.e., there are 2

𝑛 𝑛-bit strings where each bit

tells if the corresponding checkpoint can be pruned or not.

Thus, instead of validating all possible solutions, Bolt simply

finds any first valid solution encountered during the random

searches, each of which preconceives a random 𝑛-bit string

solution. The valid solution found is not necessarily optimal

in that it is validated as long as the checkpoints correspond-

ing to its set-bit positions can be all pruned. In fact, Bolt ends

up leaving many unnecessary checkpoints committed, thus
causing a significant slowdown in GPUs.

To this end, Penny proposes a novel pruning algorithm

that can find an optimal solution with the least estimated

cost in polynomial time. Unlike Bolt’s search-based approach,

Penny validates individual checkpoints by analyzing their de-

pendence from scratch without preconceiving their pruning

eligibility, meaning that Penny does not require all pruning

decisions to be fixed before validation. Overall, Penny’s prun-

ing takes 2 phases. The first phase filters out trivial (obvious)
checkpoints whose pruning decision turns out to be either

valid or invalid without referring to others. The pruning

decision here holds during the entire algorithm, so the next

phase simply focuses on the remaining checkpoints whose

pruning decision is not finalized by the first phase; we call

them non-trivial checkpoints. In the second phase, Penny

figures out their dependence order, i.e., which checkpoint

must be decided before others’ pruning decisions due to the

dependence. Penny validates the non-trivial checkpoints in

the order imposed by the decision dependence to finalize

their pruning decisions.

2: r4 = 8

3: rp = …
4: br rp, …

5: r5 = r3 + 2

6: r1 = r5 * 4

7: ld r3, [A]

8: r1 = r3 + r4

9: r5 = …
10: r2 = r1 + 5c10

data dep

pred dep

c5

11: r5 = r2 + …

c9

12:  st [A], …
13: … = r2 + …c11

live-in

RB1

RB2
RB3

RB4 RB5

c6

Cn
Checkpoint 

after line n

1: r3 = r3 + 1

cv 

Figure 6. Example of a check-

point validation.

SCC A (7)

3

65

4

13

SCC B (10)

9 11

2

16

8

14

151

12

Decision dependence

CP w/o decision dep.

CP with decision dep.

Figure 7. Decision depen-

dence graph.

6.4.1 Phase 1: Filtering Trivial Checkpoints. To iden-

tify trivial checkpoints, Penny should validate them first. We

use the 𝑐𝑣 to refer to a checkpoint being validated and the

following rule for its validation.

Rule 1. For 𝑐𝑣 to be valid (removable), all the values it de-

pends on must remain the same at the endpoints of all the

regions where 𝑐𝑣 is used no matter which path is taken to

reach the endpoints.

That is because the values must be used for the regions’

recovery slice to recompute the value of 𝑐𝑣 if it is pruned. In

a sense, validating 𝑐𝑣 can be understood as building its recov-

ery slice. The validation process requires tracking the nec-

essary dependences over the program’s control flow graph.

In addition to data dependences [44], Penny considers a

new type of dependence called predicate dependence. This
is necessary when the value on which 𝑐𝑣 depends is differ-

ently recomputed at control flow paths, e.g., in Figure 6, 𝑐𝑣
depends on 𝑟1 whose value differs across the paths of the

branch. Hence, 𝑐𝑣 ’s recovery slice has to include the branch

and its predicate, e.g., 𝑟𝑝 at line 4 in the figure where we say

𝑟1 is predicate-dependent on 𝑟𝑝 . More precisely, for a value

that is defined on multiple paths, it is predicate-dependent
on the predicates of the branches on which its definitions

are control-dependent [44]. We represent predicate and data

dependences in a graph and call it PDDG (predicate/data

dependence graph).

As shown in Figure 8, Penny validates each checkpoint (𝑐𝑣)

by traversing the PDDG starting from 𝑐𝑣 in depth-first search

(DFS). The DFS continues by following the dependence chain

over the PDDG and terminates at the node whose value

can be either safely used at recovery time or dangerous

to be used; we call the node a terminal. For example, if a

register is assigned a constant loaded from GPU’s read-only

memory, the recovery slice can safely use not only the value

by reloading it
6
but also others that only depend on such a

valid value. Thus, the validation state of a PDDG node, i.e.,

whether its value can be used at recovery time, is determined

by those that it depends and their validation state.
6
GPU memory is protected by ECC, and Penny ensures that register file

errors never propagate to memory (See Appendix A).

995



PLDI ’20, June 15–20, 2020, London, UK H. Kim, J. Zeng, Q. Liu, M. Abdel-Majeed, J. Lee, and C. Jung

With that in mind, on the way back to 𝑐𝑣 where DFS is

started, Penny determines the validation state of the PDDG
nodes visited marking them with one of 3 labels: valid (𝜙𝑉 ),

invalid (𝜙𝐼 ), and undecided (𝜙𝑈 ). That is, once terminal nodes
are marked with either 𝜙𝑉 or 𝜙𝐼 , the validation state is prop-

agated to their dependent nodes, if necessary, being merged

with other states as shown in Figure 8. In particular, when 𝜙𝐼
is propagated to a checkpoint node, Penny changes the state

to 𝜙𝑈 (i.e., undecided). That is because we do not know the

pruning decision of the checkpoint yet—if it is committed,

the recovery slice could use it. Thus, we simply defer its

validation state determination to the next phase and mark it

and its dependents with 𝜙𝑈 .

Algorithm 1Marking validation states

1: Φ(𝑠) : Validation state of a PDDG node 𝑠 .

2: MaxPriority(𝜙𝑎 , 𝜙𝑏 ): Higher priority in the order of 𝜙𝐼 > 𝜙𝑈 > 𝜙𝑉 .

3: CheckMemOW(𝑠 , 𝑐𝑣 ):𝜙𝐼 if 𝑠 is overwritten until the endpoints of regions where

𝑐𝑣 is used, otherwise 𝜙𝑉 .

4: functionMarkValidationStates(𝑐𝑣 )

5: return Marking(𝑐𝑣 , {𝑐𝑣 }, 𝑐𝑣 )
6: functionMarking(𝑐𝑣 ,𝑉𝑖𝑠𝑖𝑡𝑒𝑑 , 𝑠)

7: if 𝑠 ∈ 𝑉𝑖𝑠𝑖𝑡𝑒𝑑 then return Φ(𝑠) ← 𝜙𝐼 ⊲ Cyclic dependence found

8: if 𝑠 is a constant value then return Φ(𝑠) ← 𝜙𝑉

9: if 𝑠 is a load from read/write memory then
10: return Φ(𝑠) ← CheckMemOW(𝑠 , 𝑐𝑣 )

11: 𝜙𝑚𝑒𝑟𝑔𝑒𝑑 ← 𝜙𝑉 ⊲ Initialize validation state before merging

12: 𝐷 ← GetPredDataDeps(𝑠) ⊲ For all predicate/data dependences

13: for ∀𝑠𝑑 ∈ 𝐷 do
14: 𝜙𝑑𝑒𝑝 ←Marking(𝑐𝑣 ,𝑉𝑖𝑠𝑖𝑡𝑒𝑑 ∪ {𝑠 }, 𝑠𝑑 )
15: 𝜙𝑚𝑒𝑟𝑔𝑒𝑑 ←MaxPriority(𝜙𝑚𝑒𝑟𝑔𝑒𝑑 , 𝜙𝑑𝑒𝑝 ) ⊲ Merge validation states

16: if 𝜙𝑚𝑒𝑟𝑔𝑒𝑑 = 𝜙𝐼 and 𝑠 ∈ C then ⊲ C: set of all checkpoints
17: 𝜙𝑚𝑒𝑟𝑔𝑒𝑑 ← 𝜙𝑈

18: return Φ(𝑠) ← 𝜙𝑚𝑒𝑟𝑔𝑒𝑑

19: function GetPredDataDeps(𝑠) ⊲ 𝑠 Collect dependences on control flow graph

20: 𝐷𝑑𝑎𝑡𝑎 ← {𝑠𝑑 |𝑠
𝑑𝑎𝑡𝑎−−−−→ 𝑠𝑑 } ⊲ 𝑠 has a data dependence on 𝑠𝑑

21: 𝐷𝑝𝑟𝑒𝑑 ← {𝑠𝑝 |𝑠
𝑝𝑟𝑒𝑑
−−−−→ 𝑠𝑝 } ⊲ 𝑠 has a predicate dependence on 𝑠𝑑

22: return 𝐷𝑑𝑎𝑡𝑎 ∪𝐷𝑝𝑟𝑒𝑑

Algorithm 1 details the validation state propagation pro-

cess. MarkValidationStates takes a PDDG node 𝑐𝑣 as

input and calls Mark which performs the depth-first search

(DFS) of the PDDG starting from 𝑐𝑣 .

DFS terminal condition: The traversal stops at a ter-

minal node and starts to backtrack toward 𝑐𝑣 . There are 3

types of terminals: First, the value of the node is constant,

i.e., literal or what is loaded from GPU’s read-only memory

(line 8 in the algorithm). Since it can be retrieved safely, it is

marked 𝜙𝑉 . Second, any node found in a cyclic dependence

chain (line 7), e.g., a loop carried dependence, is terminal,

and it is marked 𝜙𝐼 due to the difficulty of recomputing the

value. Third, a value loaded from memory is also terminal

(lines 9-10), and it is valid if it satisfies Rule 1; if the mem-

ory value can be used for the recovery of the region where

𝑐𝑣 ’s checkpointed register is used, to reconstruct it, then the

PDDG node is marked 𝜙𝑉 which is otherwise marked 𝜙𝐼 . For

example, in Figure 6, 𝑐𝑣 checkpoints 𝑟2 at line 10, and it de-

pends on the memory value loaded from address 𝐴 at line 7

through the data dependence chain. Here, the memory value

must not be overwritten until 𝑅𝐵4 and 𝑅𝐵5 because 𝑟2 is

used in the regions ending with these boundaries. However,

the intervening store at line 12 overwrites the memory value

due to the alias in the address 𝐴, and thus the PDDG node

of the memory value is marked 𝜙𝐼 .

cv: φV

φV

φV
φV

φV

cd: φV

φV φV

cv: φI

φI

φV φI

φV

cd: φV

φV φV

cv: φU

φU
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φU

cd2: φU

φU

cd1: φU

φI

Non-Checkpoint
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checkpoint

(b) Committed

checkpoint

(c) Undecided 

checkpoint

Predicate/data 
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Examples of 

validation state 

propagation

P1

P2

Figure 8.Merging validation states in PDDG.

DFS backtracking and state merging: Once terminal

nodes are encountered (lines 7-10 in the algorithm), DFS

triggers the backtracking to propagate the validation state of

non-terminal nodes being visited to their descendant (lines

11-18). For a non-terminal node, Penny collects all nodes

it depends on (line 12) and visits them (lines 13-14). The

validation state of the dependent node is determined by

merging the state it depends on (line 15), i.e., picking the

highest with the precedence of 𝜙𝐼 > 𝜙𝑈 > 𝜙𝑉 . The intuition

is that for a PDDG node to be valid, all the nodes it depends
must be valid (Rule 1) as shown in Figure 8(a). In contrast,

propagation path 𝑃1 in Figure 8(b) shows that the decision

of 𝑐𝑣 is dictated by a single terminal node with 𝜙𝐼 .

Finally, for a checkpoint node visited, line 16 of the algo-

rithm checks if its input state is 𝜙𝐼 ; if so, the state is lowered

to 𝜙𝑈 (line 17). Figure 8(c) shows such an example; on the

propagation path 𝑃2, 𝜙𝐼 becomes 𝜙𝑈 through the intervening

checkpoint 𝐶𝑑1. A more concrete example is found in the

control flow graph of Figure 6. Although 𝑟3 in line 1 is in-

valid (𝜙𝐼 ) due to the loop-carried dependence, Penny marks

the state of its dependent 𝑟5 (at line 5) with 𝜙𝑈 . In this way,

Penny leaves a chance for 𝑟5’s checkpoint, if committed, to

be used to reconstruct 𝑐𝑣 rather than giving it up by marking

the state with 𝜙𝐼 .

Once all validation states are merged backed to 𝑐𝑣 , Penny

uses the resulting state of 𝑐𝑣 to decide its pruning decision as

one of three: 𝜏𝑃 (pruned) if it is in𝜙𝑉 , 𝜏𝐶 (committed) if it is in

𝜙𝐼 , and 𝜏𝑈 (undecided) if it is in 𝜙𝑈 . The pruning decisions of

𝜏𝑃 and 𝜏𝐶 are final, and thus only undecided (𝜏𝑈 ) checkpoints

move onto the next phase. Our evaluation shows that the

first phase can finalize the pruning decisions of the majority

of checkpoints, so the second phase only needs to deal with

a small number of the remaining undecided checkpoints.

6.4.2 Phase 2: Handling Undecided Checkpoints.
Penny first discovers the dependence between undecided

(𝜏𝑈 ) checkpoints. If the pruning decision of one checkpoint

is subject to that of another, we say they have decision depen-
dence and call its graph representation a decision dependence
graph (DDG). Then, Penny visits each DDG node (i.e., 𝜏𝑈
checkpoint) in a topological order, finalizing their pruning

decision.
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Note that the decision dependence naturally imposes an

order on the pruning decision between the checkpoints. To

guarantee all prerequisite decision results are available be-

fore validating a checkpoint, Penny follows the order im-

posed by the decision dependence to validate and deter-

mine the pruning decisions of the remaining checkpoints—

starting from the node that only depends on trivial check-

points whose pruning decisions are already made.

Analyzing Decision Dependence. Suppose the register
value stored by 𝑐𝑑 can be used for the reconstruction of check-

point 𝑐𝑣 . To realize such a dependence, the 2 conditions have

to be satisfied: (1) 𝑐𝑑 is committed and (2) all checkpoints

that can possibly overwrite 𝑐𝑑 until the endpoints of all the

regions where 𝑐𝑣 ’s register value is used must be all pruned;

see Rule 1. For example, in Figure 6, for 𝑐10, that depends on

𝑐5, to be safely pruned, 𝑐5 must be committed, and 𝑐9 and

𝑐11, that overwrite 𝑐5, must be pruned. That is, in order to

validate 𝑐𝑣 , the pruning decisions of 𝑐5, 𝑐9, and 𝑐11 must be

computed beforehand.

Algorithm 2 Computing decision dependences

1: 𝑇 (𝑐) : Pruning decision of a checkpoint 𝑐 .

2: OWCkpts(𝑐 , 𝑐𝑣 ): Checkpoints possibly overwriting 𝑐 until the endpoints of re-

gions where 𝑐𝑣 is used.

3: function CollectDecisionDeps(𝑐𝑣 )

4: return GetDecisionDeps(𝑐𝑣 , {𝑐𝑣 }, 𝑐𝑣 )
5: function GetDecisionDeps(𝑐𝑣 ,𝑉𝑖𝑠𝑖𝑡𝑒𝑑 , 𝑠)

6: if 𝑠 ∈ 𝑉𝑖𝑠𝑖𝑡𝑒𝑑 then return {} ⊲ Stop if a cyclic dependence is found

7: if 𝑠 ∈ C and𝑇 (𝑠) = 𝜏𝐶 then ⊲ For a committed (𝜏𝐶 ) checkpoint

8: return OWCkpts(𝑠 , 𝐸𝑥𝑝𝑒𝑛𝑑 (𝑐𝑣 ))
9: 𝐹 ← {} ⊲ Set of nodes 𝑐𝑣 has decision dependences on

10: if 𝑠 ∈ C and𝑇 (𝑠) = 𝜏𝑈 then ⊲ For an undecided (𝜏𝑈 ) checkpoint

11: 𝐹 ← 𝐹 ∪ {𝑠 }∪ OWCkpts(𝑠 , 𝐸𝑥𝑝𝑒𝑛𝑑 (𝑐𝑣 ))
12: 𝐷 ← GetPredDataDeps(𝑠) ⊲ From Algorithm 1

13: for ∀𝑠𝑑 ∈ 𝐷 do
14: 𝐹 ← 𝐹∪ GetDecisionDeps(𝑐𝑣 ,𝑉𝑖𝑠𝑖𝑡𝑒𝑑 ∪ {𝑠 }, 𝑠𝑑 )
15: return 𝐹

Algorithm 2 details the dependence analysis. Collect-

DecisionDeps collects all decision dependences of 𝑐𝑣 by

traversing the PDDG by following the dependence chain

until a committed (𝜏𝐶 ) checkpoint is encountered (lines 7-

8). For each committed (𝜏𝐶 ) checkpoint 𝑐𝑑 , Penny adds to 𝐹

(𝑐𝑣 ’s dependence set) all the checkpoints possibly overwrit-

ing 𝑐𝑑 until the endpoints of the regions where 𝑐𝑣 is used

(OWCkpts in the algorithm), according to Rule 1. Note that

𝑐𝑑 does not have to be included in the decision dependence

because its pruning decision (𝜏𝐶 ) is already made. Pruned

checkpoints (𝜏𝑃 ) do not have checkpointed values to use,

so they are ignored and Penny advances to the next PDDG

dependence. For undecided (𝜏𝑈 ) checkpoints 𝑐𝑑 , Penny con-

servatively considers decision dependence for either case

of the checkpoint being pruned/committed. Penny adds the

undecided checkpoint 𝑐𝑑 and the checkpoints overwriting it

(OWCkpts) to 𝑐𝑣 ’s dependence set 𝐹 at line 11 and continues

the depth-first search to encounter a committed checkpoint.

Ordering and Finalizing PruningDecision. Penny now
navigates the decision dependence graph (DDG) obtained

from Algorithm 2 in a topological order. Figure 7 shows an

example DDG; the colored nodes represent trivial check-

points, whose pruning decision is already decided in the first

phase, and therefore they do not have decision dependence

on others.

Except for the nodes with a cyclic dependence, Penny

can determine the pruning decisions of all the other nodes

by following the reverse order of the decision dependence.

Penny uses Tarjan’s algorithm [54] to sort the DDG in a

topological order along with identifying strongly connected

components (SCCs) in a traversal. As shown in Figure 7,

Penny then visits and validates DDG nodes in the resulting

topological order (i.e., shown as increasing numbers in the

figure) to determine their pruning decision; again, such a

decision-order-preserving traversal ensures that when each

checkpoint 𝑐𝑣 is visited, all the necessary validation states of

other checkpoints on which 𝑐𝑣 depends have already been

available.

To validate each checkpoint, Algorithm 1 can be used to

traverse the checkpoint’s PDDG and obtain a final decision.

However, Penny skips the redundant validations by only

checking the validity of the nodes in the dependence set of

the checkpoint (i.e., 𝐹 of Algorithm 2).

For an SCC that has a cyclic dependence, which makes

the dependence-order-preserving traversal improper, Penny

treats all the nodes within each SCC as a single DDG node.

This implies that Penny needs to make a pruning decision

for all the nodes within an SCC before moving to the next

DDG node in the topological order. To find the best combi-

nation of the pruning decisions for the nodes within an SCC,

Penny performs a brute-force search using the cost model

(Section 6.1); we found no SCC in our evaluation. In the

absence of SCCs, our overall pruning algorithm has 𝑂 (𝑚𝑛)
time complexity where𝑚 is the code size and𝑛 is the number

of checkpoints in the code.

6.5 Automatic Checkpoint Storage Assignment
To achieve better performance, Penny automatically assigns

committed checkpoints to storages by considering bothmem-

ory access latency and thread-level parallelism in a balanced

manner. For checkpoint storages, Penny uses shared mem-

ory (in SRAM) and global memory (in DRAM but cached)

that are both protected by ECC in GPUs [46]. Shared mem-

ory is shared between threads in a thread block and has a

limited size. Although shared memory has a significantly

lower latency compared to global memory, allocating shared

memory over a certain limit can hurt the performance due to

diminished warp-level parallelism, i.e., low occupancy [46].

With that in mind, Penny first figures out how much shared

memory can be used without reducing the occupancy.

Then, Penny scores the live-out registers—whose check-

points are committed—with the sum of all their checkpoint

costs over the entire program (Section 6.1). By taking into ac-

count the resulting cost, Penny can prioritize a frequently ac-

cessed register over others to allocate it into the low-latency
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shared memory. That is, Penny tries to assign as many reg-

isters as possible to the shared memory before it reaches the

occupancy-preserving limit, and then the rest of the registers

are assigned to the global memory.

It is important to note that Penny’s 2-coloring based stor-

age alternation does not significantly increase memory foot-

print. The reason is two-fold. First, Penny’s 2-coloring only

assigns an additional storage into those checkpoints that are

overwritten; only a small number of registers (25% on aver-

age) require the storage alternation, and it is further reduced

by checkpoint pruning. Second, Penny allocates storages

only for those registers whose checkpoints are committed at

least once. As a result, the average storage size required for

each register is only 0.75. That is because Penny’s optimal

pruning removes the vast majority of checkpoints.

6.6 Low-Level Optimizations and Code Generation
After the checkpoint pruning, Penny performs several low-

level optimizations to further reduce the run-time overhead

of committed checkpoints. In GPUs, calculating the effective

address of the checkpoint storage requires multiple instruc-

tions. To reduce the instruction count, Penny conducts a vari-

ant of common subexpression elimination, loop invariant

code motion (LICM), and induction variable optimization.

Finally, Penny performs local checkpoint scheduling to

improve the decision made by the bimodal checkpoint sched-

uling (Section 6.2). The local scheduling works in a basic

block level by pushing down the LUP checkpoints toward

the region boundary and pushing up the region boundary

checkpoints toward LUP. That is, LUP checkpoints can be

placed between their LUP and the end of their correspond-

ing basic block, while region boundary checkpoints can be

inserted at any point from their region boundary up to the

beginning of the basic block that includes the boundary. In

particular, Penny evaluates each possible point to find the

best that can maximize the reuse of previously calculated

checkpoint address and minimize the register usage.

7 Evaluation
This section evaluates Penny with 2 different ways: (1) hard-

ware logic synthesis and (2) GPU architecture simulation.

7.1 Hardware Cost Evaluation with Logic Synthesis

Table 2. Hardware overheads comparison across RF coding

schemes required by ECC protection and Penny (per bank).

Conventional ECC Penny

Err. Coding Area Acc. Acc. Leak. Coding Area Acc. Acc. Leak.

bits lat. energy pow. lat. energy pow.

1b SECDED 21.9% 25.6% 21.1% 20.7% Parity 3.1% 3.5% 3.0% 3.0%

2b DECTED 40.6% 49.2% 39.2% 38.4% Hamming 18.8% 21.8% 18.1% 17.7%

3b TECQED 87.5% 74.3% 84.5% 82.7% SECDED 21.9% 25.6% 21.1% 20.7%

To make a strong case for Penny’s production, we de-

signed several register file (RF) coding schemes required for

both conventional ECC-based protection and Penny using

22nm with CACTI 6.5 [60]. Our designs assume that the RF

is 256KB, and it is divided into 16 banks. We also used Syn-

opsys design compiler [53] to synthesize the built designs

for their evaluation. Table 2 shows the overhead of each

coding scheme compared to the baseline RF that has no pro-

tection; according to synthesis results, the baseline RF has

an area of 0.105𝑚𝑚2
, access latency of 1.01𝑛𝑠 , energy-per-

access of 9.64𝑝 𝐽 , and leakage power of 4.7𝑛𝑊 for each bank.

For a single-bit error recovery, SECDED ECC protection

incurs 21.9% area overhead while Penny’s single parity-bit

solution incurs only 3.1% overhead. We observe that the

overheads of access latency/energy and leakage power show

similar trends, and Penny’s low-cost hardware benefits be-

come larger when multi-bit errors should be corrected.

Table 3. Applications used for evaluation.

Suite Application Abbr. Suite Application Abbr.

GPGPU-

Sim

bench

[3]

Coulombic potential CP

Parboil

2-point angular

TPACF

Libor Monte Carlo LIB correlation

Laplace transform LPS

Rodinia

[6]

SP Matrix

SGEMM

Neural network NN multiplication

N Queen NQU Back propagation BP

CUDA

toolkit

samples

[47]

Binomial options BO Breadth-first search BFS

Black-Scholes BS Gaussian Elimination GAU

Convolution separable CS Hotspot HS

Scalar product SP Molecular Dynamics MD

Sobol filter SQ Needleman-Wunsch NW

Fast Walsh transform FW Pathfinder PF

Matrix transpose MT Speckle reducing

SRAD
Parboil

[52]

Sparse matrix-vector

mult.

SPMV anisotropic diffusion

Jacobi stencil STC stream cluster SC

7.2 GPU Architecture Simulation Setup
The idempotent recovery should be aware of physical regis-

ter names to ensure the live-in values of regions are safely

preserved. Unfortunately, there is no publicly available CUDA

toolchain for modifying the register-allocated assembly code

and executing it on real GPUs. Thus, simulators such as

GPGPU-Sim [3] use PTX code as a basis for the cycle-level

simulation, and tools such as CRAT [62] conduct register

allocation on PTX code and run it on GPGPU-Sim to study

the performance impact of allocated registers. As with CRAT,

we allocate physical registers on the PTX code and then ap-

ply Penny’s transformations on the code. The resulting PTX

code is then executed on top of GPGPU-Sim that complies

with our register allocation. As the target simulation model,

we use Tesla C2050 GPU based on Fermi architecture; the

GPU is equipped with ECCs in the RF/cache/memory. Table 3

shows benchmark applications used in our simulations.

7.3 Overall Performance Overheads
This section highlights Penny’s low performance overhead

compared to prior works. We only show the fault-free exe-

cution time overhead since the low soft error rate renders

the impact of the recovery procedure on total execution time

negligible (see Section 3.2). The following schemes are tested.

• iGPU This is De Kruijf et al. [15]’s iGPU [41] that uses

anti-dependent register renaming instead of live-out reg-

ister checkpointing. Note that iGPU requires full ECC-

protection for correct recovery.
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• Bolt This is our GPU adoption of Bolt [35] with the orig-

inal checkpoint pruning based on a random search. Al-

though most of Penny’s optimizations are disabled, Bolt

uses our storage alternation to ensure correct recoverywith-

out a store buffer. Two versions of Bolt are tested with or

without Penny’s automatic checkpoint storage assignment.

• Penny This is the fully optimized execution of Penny.

Checkpoint storages are automatically distributed to shared

and global memories by default.
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Figure 9. Fault-free execution time overhead.

Figure 9 represents the normalized fault-free execution

time overheads of Penny and others compared to the baseline

that is the original program with no modification. iGPU
shows 2.3% of overhead on average, and up to 26.6%. The

slowdown originates from increased register pressure from

register renaming, leading to register spills to memory or

diminished occupancy. Nevertheless, it would be a mistake

to take this to mean that iGPU can be used to replace ECC.

Again, unlike Penny, iGPU requires both ECC protection

and en(de)coding logic hardening for correct recovery, and

therefore such a lower overhead can only be achieved by at

the cost of the considerable hardware complexity.

We tested 2 versions of Bolt; Bolt/Global stores all check-
points to global memory while Bolt/Auto_storage distributes
the checkpoints to shared/global memories by using Penny’s

automatic checkpoint storage assignment. Both versions

show significant overhead. That is because unpruned (i.e.,

committed) checkpointing stores in a loop stall the GPU

pipeline significantly. Meanwhile, Bolt/Auto_storage (38.5%
overhead) outperforms Bolt/Global (66.5%), which highlights
the benefit of Penny’s automatic storage assignment.

Finally, Penny reduces Bolt’s overhead to 3.3% on average.

Most of the applications incur less than 8%; the only excep-

tion is STC (19.0%) where loop-carried data-dependences in

inner-most loops prevent the checkpoints from being pruned.

This is inevitable since the dependences are originated from

program semantics that prohibits Penny’s checkpoint prun-

ing and bimodal checkpoint placement.

7.4 Impact of Penny’s Optimizations
This section investigates the performance impact of Penny’s

optimizations. To see if they are synergistic, we applied

Penny’s optimizations one at a time incrementally. That

is, each bar of Figure 10 shows the run-time overhead of

accumulated optimizations without those in the next bars.

For example, the +BCP bar depicts the overhead of apply-

ing bimodal checkpoint placement (BCP) along with the prior
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Figure 10. Impact of Penny optimizations accumulated.

automatic storage assignment optimization (ASAO), the over-
head of which is represented in the +Auto_storage bar. Simi-

larly, the +Opt_pruning bar depicts the overhead of applying
optimal checkpoint pruning in combination with prior opti-

mizations (i.e., BCP and ASAO), while the +Low_opts bar
shows the overhead of fully-optimized Penny when combin-

ing low-level optimizations (Section 6.6) such as LICM with

all other prior optimizations. We found out that although

individual optimization is sometimes not beneficial by itself,

e.g., enabling BCP in PF and FW, its combinations with other

optimizations have a synergistic effect. For example, enabling

all optimizations (3.3% on average) always outperforms all

other combinations of the optimizations.

7.5 Assigning Checkpoint Storage and Its Integrity
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Figure 11. Storage assignment and overwrite prevention.

This section provides sensitivity analysis results on differ-

ent checkpoint storage assignment schemes and checkpoint

overwriting prevention schemes. In Figure 11, the first 4 bars

describe the run-time overhead of possible combinations of

bimodal storage assignment (Shared/Global) and overwrit-

ing prevention, i.e., RR (register renaming) and SA (storage

alternation). In the next bar (5th), Auto_storage/Auto_select
corresponds to the use of both Penny’s automatic storage

assignment—that distributes the storages to shared and global

memories in a way to maintain the GPU occupancy—and

automatic selection of the best between RR and SA. In

particular, the 6th bar of the figure shows the overhead of

Auto_storage without protecting the checkpoint storage. As

shown, the heights of the last 2 bars are almost the same ex-

cept for LIB and LPS. Thus, Penny’s checkpoint overwriting
prevention does not incur a noticeable run-time overhead.

7.6 Impact of Optimal Checkpoint Pruning
This section studies the statistics of our optimal checkpoint

pruning—that can significantly reduce Penny’s run-time

overhead, as shown in Section 7.4 in comparison to Bolt’s

naive pruning. We broke down the total number of check-

points to 3 parts, the portions of which are described in
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Figure 12. Checkpoints removed by basic/optimal pruning.
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Figure 13. Performance impact of basic/optimal pruning.

Figure 12: (1) Basic corresponds to the checkpoints elimi-

nated by Bolt’s basic pruning while (2) Additional to those

checkpoints that can further be eliminated only by Penny’s

optimal pruning. Finally, (3) Committed is the remaining

checkpoints after Penny performs the optimal pruning. On

average, basic and optimal pruning schemes eliminate the

total number of checkpoints by 30% and 75%, respectively.

The eliminated checkpoints translate to the run-time over-

head reduction. As shown in Figure 13, when no pruning is

enabled, the average overhead becomes 56.2% with a 3.8x

slowdown in the worst case. Bolt’s basic pruning reduces

the overhead down to 29.5%. However, applications like LPS,
SGEMM, STC, PF, and FW still cause a large slowdown (up

to 274.3% overhead). In contrast, Penny’s optimal pruning

can handle the applications by removing a checkpoint in

their loops, achieving a 5.7% run-time overhead on average.

7.7 Energy Impact on a Register File
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Figure 14. Energy consumption of RF.

In addition to the hardware synthesis (Section 7.1), we

evaluated Penny’s RF energy benefit over SECDED-ECC us-

ing simulation. To measure the actual energy savings on

RF for the single-bit error protection, we applied the syn-

thesis data in Table 2 to GPGPU-Sim’s power simulator, i.e.,

GPUWatch[29]. Figure 14 shows the resulting RF energy con-

sumption for each benchmark. It turns out that Penny only

consumes 7.0% more energy compared to the baseline RF

that has no protection, while the SECDED-ECC RF consumes

22.4% more energy. Additional discussions on the total GPU

energy consumption are deferred to Section 9.1.
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Figure 15. Performance comparison on Titan V.

7.8 Performance Overhead on Volta Architecture
For an architecture sensitivity analysis, this section pro-

vides additional simulation results of running Penny on the

modern Volta [1] architecture based Titan V GPU. For this

purpose, we used an experimental version of GPGPU-sim.

However, due to the version incompatibility of CUDA SDK

required for the new architecture, we were not able to run

a few applications on the GPGPU-sim. Figure 15 shows the

fault-free execution time overheads of iGPU, Bolt, and Penny.

Although Volta architecture is equipped with much larger

caches, it shows almost the same trend observed in the re-

sults of old architecture (see Figure 9). Overall, the run-time

overhead of Penny is only 3.6% on average.

8 Other Related Work
Recently, researchers have leveraged idempotence for recov-

ery from soft errors [15, 21]. Also, Liu et al. [35] advanced

the state of the art with checkpoint pruning, which serves

to remove checkpoint operations that can be reconstructed

from other checkpoints in the event of a soft error. Liu et

al. [34, 36, 37] also extend the original idempotent processing

in the context of sensor-based soft error detectors to ensure

complete recovery. More recently, the energy-harvesting

systems [7, 8] have started using idempotent processing to

recover from the frequent power failures that occur in sys-

tems without batteries [33, 58, 61]. Significantly, all of these

projects target CPUs, where store buffers exist.

For GPUs, error resilience studies have focused on system-

atically evaluating and understanding the impact of errors

in GPGPU applications [19, 20, 31, 45]. The most closely-

related work is iGPU that leverages idempotent recovery for

exception handling, context switching, and timing specula-

tion [41]. However, since iGPU requires the ECC-protected

registers and their hardened en(de)coding logic to ensure

correct recovery, it cannot be used for achieving ECC-free

register file (RF) protection in GPUs. Despite this wealth of

related work, Penny is, to the best of our knowledge, the

first system to use idempotence to achieve lightweight RF

protection without the cost of full ECC-protection.

9 Conclusion
We presented Penny, a compiler-directed resilience scheme

for protecting GPU register files against soft errors. To avoid

the hardware cost of conventional ECC protection, Penny

uses cheaper error detection code (EDC) and idempotent

1000



Compiler-Directed Soft Error Resilience for Lightweight GPU Register File Protection PLDI ’20, June 15–20, 2020, London, UK

recovery. Penny guarantees correct recovery by preventing

checkpoints from being overwritten and significantly re-

duces their overhead by removing many of them without

compromising the recoverability. Across 25 benchmarks,

Penny only causes ≈3% run-time overhead on average. The

upshot is that Penny allows GPU architects to design their

register file (RF) without the ECC cost for equal resilience or

achieve stronger resilience using the same ECC cost.

9.1 Limitation and Future Work
Since RF’s portion in the total GPU energy consumption

might not be dominant, Penny could increase the total en-

ergy consumption. Thus, we save the claim on Penny’s ben-

efits of the total energy reduction for our future work that

will conduct more design space exploration and performance

optimization to fully realize the benefits. Apart from that,

it is still critical to reduce the RF energy itself. The reason

is that a register file (RF) determines the GPU’s nominal

voltage (Vdd) that must be set high enough to handle the

worse-case voltage demand [30]. In fact, RF’s burst accesses

originated by GPU’s massive parallelism often cause large

voltage swings in the power delivery, which must be guarded

by sufficiently-high Vdd. If Penny is used to reduce the RF en-

ergy, GPU architects can lower the operating voltage, thereby

improving the entire GPU’s energy-efficiency.

A Correctness of Penny’s Recovery
This section proves that when EDC (parity) based detection

is combined with Penny’s idempotent recovery, RF error can

be safely recovered even without enforcing the in-region

detection required for all prior idempotent recovery schemes.

A.1 Prevention of Error Propagation
We first show that when EDC is used to detect errors in

RF, they are never propagated to any other location (regis-

ter/memory) before their register corruption is first detected.

Axiom 1. Given instruction execution, if register is corrupted,
parity error is detected at the moment of the register access.

Following two theorems are to prove the impossibility

of error propagation for a single error and multiple errors,

respectively, in the presence of parity checking.

Theorem A.1. If register 𝑟 is corrupted and then detected at

a point 𝑃 for the first time, the corrupted value has not yet

been propagated to other locations before 𝑃 .

Proof. We use proof by contradiction. Suppose the argument

is false, meaning that the corruption had been propagated

since some point before 𝑃 . For 𝑟 ’s corrupted value to be

propagated, 𝑟 must be first read as a source operand of an

instruction. At the point of the instruction execution, 𝑟 ’s

corruption must be detected by its parity checking (Axiom 1).

This contradicts the fact that 𝑃 is the first point to recognize

that 𝑟 is corrupted. □

Theorem A.2. If 𝑟 ’s corruption is detected at a point 𝑃 for

the first time and other corrupted registers have not been

detected before 𝑃 , then they have not been propagated to

other locations.

Proof. We use proof by contradiction. Suppose the argument

is false, e.g., some other corrupted register 𝑟2 had been prop-

agated since some point before 𝑃 . For 𝑟2’s corrupted value

to be propagated, 𝑟2 must be first read in which case the

corruption must be detected momentarily (Axiom 1). This

is another contradiction from the premise that 𝑃 is the first

point to detect 𝑟 ’s corruption. □

The lack of error propagation implies that at the point

of the parity error detection in a region 𝑅, we can trust all

register values saved in Penny’s checkpoint storages that

are protected by ECC in GPU cache/memory.

A.2 Proof of Correct State Recovery
This section shows that Penny correctly recovers the re-

quired memory and RF state—even in the presence of multi-

ple corrupted registers. Let’s define 𝑉𝑎𝑙 , 𝑅𝑒𝑔, and 𝐿𝑜𝑐 as a

set of values, registers, and memory locations, respectively.

To describe program execution states at a given program

point 𝑃 , we use a 3-tuple ⟨𝑅𝐹 (𝑃), 𝑀𝐸𝑀 (𝑃),𝐶𝑃 (𝑃)⟩ where
𝑅𝐹 (𝑃) : 𝑅𝑒𝑔 → 𝑉𝑎𝑙 corresponds to the state of the regis-

ter file while 𝑀𝐸𝑀 (𝑃) : 𝐿𝑜𝑐 → 𝑉𝑎𝑙 to the memory state

excluding the checkpoint storage state that is described by

𝐶𝑃 (𝑃) : 𝑅𝑒𝑔→ 𝑉𝑎𝑙 .

We introduce a few functions to be used in our proof:

𝑀𝐸𝑀 (𝑃1) |𝑙𝑖𝑣𝑒 (𝑅) and𝑅𝐹 (𝑃1) |𝑙𝑖𝑣𝑒 (𝑅) signify the subset ofmem-

ory and register states (values) at a program point 𝑃1 which

consists of only the locations and registers live at the begin-

ning of a region 𝑅. Similarly,𝐶𝑃 (𝑃) |𝑙𝑖𝑣𝑒𝑖𝑛 (𝑅) gives the subset
of checkpoint storages at a point 𝑃 which consists of only the

live-in registers of a region 𝑅. Also, 𝑅𝐹 (𝑃) [𝐶𝑃 (𝑃) |𝑙𝑖𝑣𝑒𝑖𝑛 (𝑅) ]
represents updating the register file state 𝑅𝐹 (𝑃) with the

checkpointed values of 𝑅’s live-in registers at a point 𝑃 , i.e.,

restoring input registers of the region using its checkpointed

live-in registers for recovery.

At the core of our proof, we compare two execution sce-

narios shown as 𝑛 and 𝑒 in Figure 16—normal execution with

no error (n) and errant one (e) where errors can be detected

and corrected by Penny—and show both executions result

in the same program execution states.

For errant execution (𝑒), an error occurred in 𝑃𝑐 and it is

detected at 𝑃𝑑 within region 𝑅—the 2 points can be far apart

separated by multiple regions while undetected errors could

exist (e.g., 𝑃𝑐′) if they have not been read yet. 𝑃𝑏 depicts the

entry point of the region 𝑅; we also use 𝑃𝑏′ to represent the

re-execution of the entry after the error detection.

For normal execution (𝑛), at 𝑃𝑑 , we trigger the re-execution

of the region 𝑅 which is preceded by the restoration of live-in
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r1 = 1; cp r1;

r2 = 4; cp r2;

r1 <- err

r4 = 2; cp r4;

r4 <- err

r4 = r4 + 5;

R

Ex. w/o 

error (n)

Ex. with 

error (e)

Pb.n Pb’.n Pb.e Pb’.e

Pd.n Pd.e

. . .

. . .

Pd

Pb

Pc

Pc’

Figure 16. Safely recovering from errors across regions

registers, for comparison to errant execution (𝑒). To differ-

entiate program execution states between the 2 executions,

their program points use 2 suffixes .𝑒 and .𝑛, respectively.

To show both executions (𝑛 and 𝑒) generate the same

program state, i.e., ⟨𝑅𝐹 (𝑃), 𝑀𝐸𝑀 (𝑃),𝐶𝑃 (𝑃)⟩, we first prove
that live register values at 𝑅’s entry in 𝑛 are identical to those

in 𝑒 when Penny restarts 𝑅.

Lemma A.3. Live register values at 𝑃𝑏 in normal execution 𝑛

are the same as the restored register values at 𝑃𝑏′ , i.e., when

the region 𝑅 is re-executed for error recovery.

Proof.
𝑅𝐹 (𝑃𝑏.𝑛) |𝑙𝑖𝑣𝑒 (𝑅) = 𝑅𝐹 (𝑃𝑑.𝑛) [𝐶𝑃 (𝑃𝑑.𝑛) |𝑙𝑖𝑣𝑒𝑖𝑛 (𝑅) ] |𝑙𝑖𝑣𝑒 (𝑅) (1)

𝑅𝐹 (𝑃𝑑.𝑛) [𝐶𝑃 (𝑃𝑑.𝑛) |𝑙𝑖𝑣𝑒𝑖𝑛 (𝑅) ] |𝑙𝑖𝑣𝑒 (𝑅) = 𝑅𝐹 (𝑃𝑑.𝑒 ) [𝐶𝑃 (𝑃𝑑.𝑒 ) |𝑙𝑖𝑣𝑒𝑖𝑛 (𝑅) ] |𝑙𝑖𝑣𝑒 (𝑅)
(2)

𝑅𝐹 (𝑃𝑑.𝑒 ) [𝐶𝑃 (𝑃𝑑.𝑒 ) |𝑙𝑖𝑣𝑒𝑖𝑛 (𝑅) ] |𝑙𝑖𝑣𝑒 (𝑅) = 𝑅𝐹 (𝑃𝑏′ .𝑒 ) |𝑙𝑖𝑣𝑒 (𝑅) (3)

Equation 1 implies that live register values at the region

entry point 𝑃𝑏.𝑛 can be safely restored at 𝑃𝑑.𝑛 by loading

the checkpointed values corresponding to live-in registers

of 𝑅. This must be true because of 2 reasons: (1) Penny’s

checkpoint scheduling ensures that all live-out registers of

a region are checkpointed before the region ends, thus all

live register values at 𝑃𝑏 have already been checkpointed

before entering the region 𝑅, and (2) Penny’s overwriting

prevention technique preserves the checkpointed register

values until the end of the region 𝑅. Equation 2 states that

although registers are corrupted in errant execution (𝑒), the

restored live register values must be the same as those in

normal execution (𝑛). This is true because corrupted regis-

ter values can never be propagated to anywhere else, thus

checkpoint storages remain intact (Theorem A.1, A.2). Lastly,

Equation 3 tells that these restored register values are used

in 𝑅’s re-execution for error recovery. This is true by the

definition of idempotent recovery (Section 3.1). □

Now we prove that memory values are identical in 𝑛, 𝑒 .

Lemma A.4. Live memory values at 𝑃𝑏 in normal execution

𝑛 are the same as those at 𝑃𝑏′ , i.e., when the region 𝑅 is

re-executed for error recovery.

Proof.
𝑀𝐸𝑀 (𝑃𝑏.𝑛) |𝑙𝑖𝑣𝑒 (𝑅) = 𝑀𝐸𝑀 (𝑃𝑑.𝑛) |𝑙𝑖𝑣𝑒 (𝑅) (4)

𝑀𝐸𝑀 (𝑃𝑑.𝑛) |𝑙𝑖𝑣𝑒 (𝑅) = 𝑀𝐸𝑀 (𝑃𝑑.𝑒 ) |𝑙𝑖𝑣𝑒 (𝑅) (5)

𝑀𝐸𝑀 (𝑃𝑑.𝑒 ) |𝑙𝑖𝑣𝑒 (𝑅) = 𝑀𝐸𝑀 (𝑃𝑏′ .𝑒 ) |𝑙𝑖𝑣𝑒 (𝑅) (6)

Equation 4 states that in normal execution 𝑛, live memory

values at region entry 𝑃𝑏.𝑛 are not overwritten at 𝑃𝑑.𝑛 , which

is true because idempotent region formation ensures no

memory anti-dependences in each region. Equation 5 then

tells that despite the errors, live memory values at 𝑃𝑑 in er-

rant execution 𝑒 is the same as those in normal execution.

This must be true because, due to the error propagation pre-

vention of parity checking (Theorem A.1, A.2), all memory

values remain intact, i.e.,𝑀𝐸𝑀 (𝑃𝑑.𝑛) = 𝑀𝐸𝑀 (𝑃𝑑.𝑒 ), regard-
less of errors. Finally, Equation 6, i.e., the live memory values

remain the same between the error detection and 𝑅’s re-

execution, must be true since Penny’s recovery block never

updates memory. □

Finally, we prove checkpoint storages are identical in 𝑛, 𝑒 .

Lemma A.5. Checkpointed values of 𝑅’s live-in registers at

𝑃𝑏 in normal execution 𝑛 are the same as those at 𝑃𝑏′ , i.e.,

when the region 𝑅 is re-executed for error recovery.

Proof. Penny’s checkpoint overwriting prevention ensures

that𝐶𝑃 (𝑃𝑏.𝑛) |𝑙𝑖𝑣𝑒𝑖𝑛 (𝑅) should remain the same during 𝑅’s ex-

ecution. Due to Theorem A.1, A.2, an error cannot change

any of checkpointed values. In addition, since Penny’s recov-

ery block on an error does not change them, it is true that

𝐶𝑃 (𝑃𝑏.𝑛) |𝑙𝑖𝑣𝑒𝑖𝑛 (𝑅) = 𝐶𝑃 (𝑃𝑏′.𝑒 ) |𝑙𝑖𝑣𝑒𝑖𝑛 (𝑅) . □

We have proven that all live memory/register/checkpoint

states of errant execution (𝑒) upon recovery are equivalent

to those of normal execution (𝑛). Consequently, Penny’s

recovery is correct though it does not enforce the in-region

detection. Note that other undetected errors in RF, e.g., one at

𝑃 ′𝑐 , are spontaneously corrected at the same recovery time at

which all live-in register values are restored by loading their

checkpointed values. Corruptions in non-live-in registers

may remain but do not affect program correctness because

they will never be read before being written.
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