Compiler-Directed Soft Error Resilience for
Lightweight GPU Register File Protection

Hongjune Kim Jianping Zeng Qingrui Liu
Seoul National University, Korea Purdue University, United States Annapurna Labs, United States
hongjune@aces.snu.ac.kr zeng207@purdue.edu gingrui@amazon.com
Mohammad Abdel-Majeed Jaejin Lee Changhee Jung
University of Jordan, Jordan Seoul National University, Korea Purdue University, United States
m.abdel-majeed@ju.edu.jo jaejin@snu.ac.kr chjung@purdue.edu

Abstract

This paper presents Penny, a compiler-directed resilience
scheme for protecting GPU register files (RF) against soft er-
rors. Penny replaces the conventional error correction code
(ECC) based RF protection by using less expensive error de-
tection code (EDC) along with idempotence based recovery.
Compared to the ECC protection, Penny can achieve either
the same level of RF resilience yet with significantly lower
hardware costs or stronger resilience using the same ECC
due to its ability to detect multi-bit errors when it is used
solely for detection. In particular, to address the lack of
store buffers in GPUs, which causes both checkpoint stor-
age overwriting and the high cost of checkpointing stores,
Penny provides several compiler optimizations such as stor-
age coloring and checkpoint pruning. Across 25 benchmark
applications, Penny causes only ~3% run-time overhead on
average.

CCS Concepts: « Hardware — Error detection and er-
ror correction; - Software and its engineering — Error
handling and recovery; Compilers.

Keywords: GPU, Resilience, ECC

ACM Reference Format:

Hongjune Kim, Jianping Zeng, Qingrui Liu, Mohammad Abdel-
Majeed, Jaejin Lee, and Changhee Jung. 2020. Compiler-Directed
Soft Error Resilience for Lightweight GPU Register File Protection.
In Proceedings of the 41st ACM SIGPLAN International Conference
on Programming Language Design and Implementation (PLDI "20),
June 15-20, 2020, London, UK. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3385412.3386033

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI °20, June 15-20, 2020, London, UK

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-7613-6/20/06...$15.00
https://doi.org/10.1145/3385412.3386033

989

1 Introduction

Due to technology scaling and near-threshold computing [9,
18, 23, 55, 59], soft error resilience has become as impor-
tant as power and performance in any computing systems.
For example, when high-energy particles strike the circuit,
they might cause application crashes and even worse, silent
data corruptions (SDC) which corrupt the program output
without being detected. Near-threshold voltage and process
variation make it harder to predict the response of the cir-
cuits to a particle strike, thus making them more susceptible
to soft errors [5, 18, 23-25, 28, 48, 51, 55, 59].

With the popularity of GPUs, it is becoming more impor-
tant to protect them against soft errors [22, 56]. The GPUs
of all major supercomputers and data centers have already
adopted hardware support for soft error resilience. NVIDIA
GPUs from Fermi onwards use error correction code (ECC)
to protect their storage structures even including register
files (RFs). However, ECC-protected RFs do not only increase
the critical path of instruction execution but also often lead
to a longer clock cycle than ECC-free RFs [4, 39, 40, 57]. Due
to the increased delay and power [42], ECC-protected RF
consumes significantly more energy than ECC-free RF.

Another big concern for an ECC-protected RF is its area,
e.g., 22% overhead for a 32-bit register. The ECC overhead
becomes worse for multi-bit errors that commodity GPUs al-
ready report. Since they cannot be handled by conventional
single-bit error correction and double-bit error detection
(SECDED) ECC [63], much more bits should be paid to pro-
tect against such multi-bit errors. Along with the combina-
tional logic for encoding/decoding, ECC-protected RFs thus
occupy a significant amount of area that could otherwise be
used to enlarge RFs/caches thereby improving the perfor-
mance of GPUs. Given all this, there is a compelling need
for lightweight GPU RF protection.

With that in mind, we propose Penny, a new GPU RF
resilience scheme that combines recent advances in idempo-
tent recovery [13, 14, 21, 32, 34-36, 41] with error detection
code (EDC), e.g., single or multi-bit parity checking. Com-
pared to error correction code (ECC) which imposes high
bit-wise data redundancy, EDC [49] used by Penny intro-
duces less area overhead—because EDC only needs to detect

https://doi.org/10.1145/3385412.3386033
https://doi.org/10.1145/3385412.3386033

PLDI 20, June 15-20, 2020, London, UK

errors. The reduced bit-redundancy reduces not only the
area overhead but also the access latency and static/dynamic
power consumption of RFs. Therefore, Penny achieves the
same level of resilience as ECC at a much lower cost.

Alternatively, by paying the same area overhead as ECC,
Penny guarantees to detect and correct wider multi-bit er-
rors, thus providing stronger resilience; when a 32-bit reg-
ister uses 7-bit ECC for 1-bit correction, Penny offers 3-bit
correction using the same 7-bits. Since they are used solely
for detection as EDC, Penny can detect 3-bit errors. Once
errors are detected, Penny’s idempotent recovery can correct
them no matter how many bits are corrupted.

A region (i.e., instruction sequence) of code is idempotent
if it can be re-executed many times and still result in the
same correct output [14]. Thus, the program can recover
from soft errors by simply restarting the idempotent region
where they occurred. Among the existing schemes, Bolt [35]
is particularly suitable for our needs, because it does not
require the RF to be protected by ECC for correct recovery,
unlike other idempotent schemes [12, 13, 15, 21, 32, 34, 36,
41]. To achieve correct soft error recovery without ECC, Bolt
checkpoints the live-out registers of idempotent regions.

However, naively applying Bolt to GPU faces several im-
portant challenges that must be overcome to achieve ECC-
free GPU RF protection. First, soft error detection must be
fast enough for correct recovery. The existing idempotent
recovery schemes require the enforcement of in-region de-
tection, i.e., errors must be detected within the same region
where they occurred. However, such a short detection latency
puts high pressure on the underlying detection mechanism.

In addition to reducing the hardware cost of ECC, Penny’s
EDC-based parity-checking has a unique virtue of not requir-
ing in-region error detection. We prove that even if errors on
registers are not detected within the region they occurred,
they can be safely recovered in any later region where they
are detected by with the help of parity-checking; a faulty reg-
ister is never propagated to other registers/memory because
the error is always detected at the register access time. This
obviates the need to use expensive detectors whose latency
is short enough to detect errors before a region ends.

Second, since Bolt was made for CPUs, there is no consid-
eration of GPU architectures. For example, the existence of
shared/global memories in GPUs demands the right check-
point storage to be chosen between them. Care must be taken
to allocate the resources to threads because the concurrency
(i-e., the occupancy of a streaming multiprocessor—SM) can
be limited by the resource contention between the threads.

Third, GPU lacks store buffers. Unfortunately, they are
required for idempotent recovery to correct soft errors [13,
15, 21, 34-36, 41]. The problem is that checkpointing the live-
out registers of a current idempotent region may overwrite
the checkpoints stored at some earlier region—which are live-
in registers of the current region and thus required for its re-
execution—thereby failing to recover from errors. This is not

990

H. Kim, J. Zeng, Q. Liu, M. Abdel-Majeed, . Lee, and C. Jung

an issue for CPUs because their store buffers can either hold
checkpointing stores of each region until its end where they
are released to memory or discard them on error detected.

Fourth, due to the lack of store buffers, GPUs cannot effec-
tively hide the store latency for a checkpoint, i.e., essentially
a store instruction. That is, the overhead of the checkpoint-
ing stores can be high, lengthening the critical path of the
GPU’s pipeline execution—which is not a problem for out-
of-order CPUs where stores are off the critical path most of
the time. For example, binomialOptions, a benchmark in the
CUDA toolkit [47], shows a 26.7% slowdown when only 2
checkpointing stores are added into the inner-most loop.

To overcome the above challenges, Penny proposes a new
GPU RF protection that can achieve correct yet performant
soft error resilience. As with Bolt, Penny uses compiler-
generated idempotent regions for recovery. However, un-
like Bolt, Penny does not require the in-region error detec-
tion that makes it impossible to use idempotent recovery
for lightweight RF protection. Also, we solve both the cor-
rectness and performance problems of Bolt due to the lack
of store buffers in GPUs. To ensure correct idempotent re-
covery, Penny leverages register renaming and checkpoint
storage coloring. They make it possible to correctly restore
all the checkpointed inputs to a faulty region upon recovery.
To solve the performance overhead of the checkpointing
stores, Penny carefully exploits GPU’s shared/global mem-
ories for the checkpoint storage in a way to maintain the
GPU performance. Furthermore, Penny leverages novel op-
timization techniques such as optimal checkpoint pruning
for unnecessary checkpoint removal without compromising
the recoverability. Following are our contributions:

e Penny is the first compiler-directed soft error resilience
scheme that protects GPU RFs without expensive ECC
protection. Penny provides equal or stronger reliability
guarantee with significantly reduced hardware cost.

e For the first time, we show that parity-checking (EDC)
can be integrated with idempotent recovery to achieve
low-cost GPU REF resilience. With parity-checking, Penny
safely recovers from errors without the restriction of the in-
region error detection. Any features of GPUs do not bound
this, and thus Penny is applicable to other architectures.

e Penny proposes a set of compiler optimizations that en-
sure the checkpoint correctness and reduce the perfor-
mance overhead in the absence of store buffers in GPUs.

e Penny incurs only ~3% run-time overhead on average
across 25 benchmark applications.

Finally, we provide Penny’s limitation and our future work
in Section 9.1.

2 Background and Motivation

ECC uses more extra bits for error correction than EDC,
thereby imposing high area/latency/energy overheads. In
contrast, Penny leverages idempotent recovery to correct

Compiler-Directed Soft Error Resilience for Lightweight GPU Register File Protection

Table 1. Storage cost required by conventional ECC and
Penny for protecting a 32-bit register from 1-3 bits of errors;
(n, k) means n-bits are required for encoding k-bits of data.

Error Conventional ECC Penny

1bit | SECDED (39,32) | 21.9% Parity (33,32) 3.1%
2bit | DECTED (55,32) | 71.9% | Hamming (38,32) | 18.8%
3 bit | TECQED (60,32) | 87.5% | SECDED (39,32) | 21.9%

detected errors, thus obviating the need for the redundant
information (bits) encoded in ECC for correction. Instead,
Penny uses single or multi-bit parity-checking' to detect an
error in RFs before it is propagated to other registers/memory.
The error detection coding (EDC) required for this is much
cheaper than ECC. That is because the number of error-bits
ECC can correct is smaller than what it can detect. That is,
with the same bit-redundancy budget, the number of error-
bits ECC can detect is smaller than what EDC can do.

Table 1 compares the required bit budgets of conventional
ECC protection and Penny for protecting a 32-bit register
from one to three bits of errors. For single-bit error cor-
rection, SECDED (39,32) coding [43] is required for ECC
protection—i.e., 21.9% bits overhead due to additional 7 bits—
whereas only 1 bit is needed for Penny incurring 3.1% over-
head. Although SECDED ECC can detect 2-bit errors, it can-
not correct them. Such detected unrecoverable errors (DUEs)
force program to be restarted from the beginning.

For a more error-prone environment that uses smaller
manufacturing technology—e.g., AMD uses a 7nm process
for recent Vega GPUs—or near-threshold computing?, the
demands for multi-bit error correction grow fast in the semi-
conductor industry. For ECC to correctly recover from 2-bit
errors, it must use DECTEC (55,32) [43] coding that requires
23 additional bits for every 32-bit chunk of data. In contrast,
Penny can detect 2-bit errors with 6-bit Hamming code [43]
and correct them by re-executing the idempotent region
where they occurred. For 3-bit error correction, ECC must
use TECQED (60,32) [43] coding that requires 28 additional
bits, while Penny can use SECDED (39,32) coding paying
only 7 bits to achieve the same correction.

Note that when commodity GPUs, equipped with tradi-
tional SECDED (39,32) ECC, use Penny, they become capable
of correcting 3-bit errors as TECQED (60,32) ECC can but
without the high cost; as shown in Table 1, using the same
SECDED coding, Penny can correct 3-bit errors whereas
ECC can correct only 1-bit errors. Alternatively, for single-
bit error correction, Penny can replace the SECDED ECC in
commodity GPUs with 1-bit parity, thereby drastically sav-
ing the hardware cost without compromising the resilience
guarantee. The takeaway is that Penny can provide the same
level of RF resilience or stronger resilience under the same
coding with the significantly lower area, latency, and energy
overheads; Section 7.1 provides detailed measurements.

!Parity-check is a general term used to signify the process of validating the
encoded data, regardless of the used coding scheme [43].
2Multi-bit errors increase by 2.6X under near-threshold operations [48].

991

PLDI 20, June 15-20, 2020, London, UK

3 Idempotent Recovery and Challenges
3.1 Idempotent Recovery Overview

An idempotent region is a part of the program code that can
be freely re-executed and still generate the same correct
output. Thus, a program can recover from errors simply by
restarting the idempotent region where they occurred. For
this reason, researchers have used the side-effect-free re-
execution of idempotent regions for many different types
of recovery—including misspeculation handling, nonvolatile
memory crash consistency, context switching, and power
failure recovery [8, 26, 32, 35, 38, 41, 58]. For soft error re-
covery, Bolt [35] is the state-of-the-art idempotent recovery
scheme. Unlike others, Bolt does not require an ECC pro-
tected register file for correct recovery. As with Penny, Bolt
divides a program into a series of idempotent regions.

! = »Flow dependence - -» Anti-dependence = Error detected | L T witetor |

L
1 r1=3 R1l g =3 .
2: Id.., [0x10] 1C: cprl
1 C
S 2: 1d ‘..,JOxIO] Recovery

v s 4
3 st [0x10], ... R2| 3. st [0x10], ... ldri, .. L|4ird=;cpra
4: r2=r1+5 4: r2‘=,|’1+5 L
5 rl=7 5. r1=7
6: Id.., [0x10] 6: Id.., [0x10] R RB2

(a) Original Code (b) Transformed Idempotent Code 8:..=

Figure 1. Idempotent recovery.
pointing.

For a region of code to be idempotent, the inputs of the
region must not be overwritten, i.e., no anti-dependence [44]
on the inputs during the region execution; both memory and
register inputs must be preserved to assure the side-effect-
free re-execution. Figure 1 shows how idempotent recovery
works: (a) is a non-idempotent code that encounters a soft er-
ror, and (b) is the transformed idempotent regions. Suppose
an input value is passed via memory location 0x10, which is
overwritten at line 3 (memory anti-dependence), and the er-
ror is detected between lines 5 and 6. One could try to correct
it by restarting the code (a) as if it were idempotent, but the
value being loaded at line 2 would be different from the orig-
inal input value. As shown in Figure 1(b), we thus split the
code into 2 regions to break every memory anti-dependence,
ensuring that memory inputs are never overwritten [15].

Not only that, to guarantee correct re-execution from the
beginning of a region R2 where the error is detected, but we
should also preserve its input registers, e.g., r1 is a live-in
register of R2 in Figure 1(b). Bolt uses eager checkpointing to
save live-out registers of each region, which are basically live-
ins of some following regions. All last update points (LUP)
of live-out registers in each region are identified—e.g., line
1 for r1 in Figure 1(b)—and their corresponding checkpoint
instructions are inserted right after LUPs (line 1C). As such,
eager checkpointing ensures that for each region being exe-
cuted, its live-in registers have already been checkpointed.
The checkpoint instruction ‘cp r1’ in the figure is essentially
a store instruction that saves the register r1 to a dedicated
checkpoint storage assigned for each register. When an error

PLDI 20, June 15-20, 2020, London, UK

is detected in region R2, our recovery runtime first restores
the register from the checkpoint storage and then redirects
the program control to the beginning of the region®. That
way, correct recovery is assured though r1 is overwritten at
line 5 in the figure.

Figure 2 shows how the eager checkpointing works in the
presence of control divergence. As shown in the shaded part
of the figure, an idempotent region can include a conditional
branch. Note that a live-in register can have multiple LUPs
depending on the control path taken, e.g., r4’s values updated
at lines 3 and 4 both reach the same region boundary (entry)
RB2 in Figure 2. Similarly, an updated value at a point can
be live-out to multiple region entries, e.g., 73 in the figure.

3.2 Idempotent Recovery Challenges for GPUs

Unfortunately, all prior works including Bolt [35] cannot be
used for GPUs due to correctness/performance problems.

Checkpoint Overwriting: One issue with Bolt’s eager
checkpointing is that a checkpoint (i.e., store instruction) in
a region can overwrite previously saved checkpoint value
while it is still required until the end of the region. In Fig-
ure 2, the checkpoint of 71 at line 1 is an input to the region
beginning with a region boundary RB1, but r1 is overwrit-
ten (at line 6) during the region execution. If an error is
detected after line 6 and before the region finishes at RB2,
the re-execution starting from RB1 cannot correct the er-
ror. That is because the original value of the region input
r1—previously checkpointed at line 1—was overwritten and
cannot be restored.

To prevent checkpoint overwriting, Bolt relies on hard-
ware called a gated store buffer (GSB) that can hold the
checkpointing stores of each region until it finishes; they are
eventually merged to checkpoint storage in memory at the
region end, provided no error has been detected within the
region. Since GPUs lack store buffers, Penny proposes 2 soft-
ware schemes, i.e., register renaming and storage coloring.

Performance Overhead: The lack of store buffers also
has a significant impact on performance overhead of check-
points that are essentially stores for saving live-out registers.
Unlike the CPU where stores are off the critical path in gen-
eral, they can easily slow down the GPU when the warp-level
parallelism is not sufficient to hide the memory latency. This
often occurs due to resource limitations on register file and
shared memory, suppressing the number of active warps, i.e.,
occupancy. In reality, merely executing a few more stores
can significantly hurt the GPU performance. For example,
Bolt’s unvarnished adaptation to GPU, for which we only

3More precisely for Penny, when parity mismatch is detected in the region,
the exception must be thrown and caught by Penny’s recovery runtime; this
is another requirement with EDC (parity checking) in GPU’s register file.
The runtime (1) executes the recovery block that restores live-in registers
of the region from checkpoint storage or recovery slice if their checkpoints
are pruned (Section 5), and (2) jumps back to the beginning of the region.

992

H. Kim, J. Zeng, Q. Liu, M. Abdel-Majeed, . Lee, and C. Jung

use Penny’s automatic assignment of checkpoint storage be-
tween shared and global memories, shows 39.0% run-time
overhead on average and up to 943.5% (Section 7.3).

Given that soft errors rarely occur (1/day in 16nm [16, 35]),
users are reluctant to adopt Bolt for such rare error correction
at the cost of paying the high-performance overhead all day.
The implication is two-fold from the perspective of Amdahl’s
law [2]: (1) Penny’s optimization should focus on minimizing
the fault-free execution time overhead, and (2) the impact
of the recovery procedure on the total execution time is
negligible due to the low error rate. Unlike Bolt, Penny can
effectively shift the run-time overhead of fault-free execution
to that of fault-recovery procedure.

4 Recovery without In-Region Detection

All prior idempotent recovery schemes require that errors
must be detected within the same region where they occur;
due to error propagation behaviors [20, 31], re-executing
some later region, where an error is detected, would fail—
because the region inputs might have been corrupted by
the error. In general, the in-region detection requirement
imposes the high cost of implementing the detector that
offers such a short detection latency, e.g., expensive software-
and hardware-based dual modulo redundancy [50].

However, we found out that when parity-based detection
is used for idempotent recovery, the in-region detection re-
quirement is unnecessary. Faulty execution can be safely
recovered by re-executing the region where the error is de-
tected, no matter how far the region is from the error occur-
rence. The reason is two-fold: (1) when parity-checking is
used, the corrupted register can never be propagated before
it is detected on the first access after corruption. (2) eager
checkpointing correctly saves the live-ins required for re-
executing the region, even in the presence of errors. The
detailed proof can be found in Appendix A. Note that the
error detection and recovery do not rely on any distinct fea-
ture of GPUs, i.e., our proposed technique can be applied to
other types of processors to protect their RF.

5 Overview of Compilation Phases

Penny takes GPU program in the form of PTX code, that is
a basis for necessary transformations, and performs several
analyses and optimization phases in the following order.

Region formation: Penny partitions the entire program
into idempotent regions by breaking every memory anti-
dependence to prevent their memory inputs from being
overwritten. Penny uses an alias analysis [44] to find all pos-
sible memory anti-dependences. For each anti-dependent
load/store pair, all execution paths from the load to the store
must include at least one region boundary. To minimize the
number of region cuts (boundaries), De Kruijf et al. [15] trans-
late the region formation problem into a hitting set problem
and use an approximate algorithm; we use it for comparison

Compiler-Directed Soft Error Resilience for Lightweight GPU Register File Protection

with GPU specifics in mind*. Once all region boundaries are
determined, Penny computes their live-in registers, each of
which discovers its last updated points (LUPs).

Preventing checkpoint overwriting: A checkpointed
register value can be overwritten before it is used for recov-
ery. To ensure that no necessary checkpoint is overwritten,
we introduce two techniques, i.e., register renaming and
2-coloring for storage alternation. Penny also provides an
auto-selection mechanism, that can choose the better of the
two for a given GPU kernel, by using an instruction-level
cost estimation model; Section 6.3 provides the details.

Checkpoint scheduling: While Bolt [35] forces a check-
point to be placed right after the last update point (LUP) of a
register to save it, we found out that the restriction can be re-
laxed without compromising the recoverability (Section 6.2).
With that in mind, we perform a checkpoint scheduling to re-
duce the estimated cost of inserted checkpoints. We achieve
this in 2 steps: one after region formation and the other in
code generation. First, we conduct bimodal checkpoint place-
ment; a checkpoint is placed either immediately after the
LUP or right before the region end. The later step tunes the
bimodal schedule for better performance.

Checkpoint pruning: It is possible to remove a check-
point provided its value can be recomputed by using other
checkpointed values. This phase is to prune such an un-
necessary checkpoint whose values can be reconstructed at
recovery time by executing a series of other instructions, i.e.,
so-called recovery slice. In a sense, the problem of checkpoint
pruning can be formulated as that of finding the recovery
slice that can recompute the value of the pruned checkpoints.
We propose a near-linear-time optimal pruning algorithm
that significantly improves both the pruning quality and the
solution search time over Bolt’s basic pruning algorithm.

Storage assignment and code generation: To save check-
points, Penny uses two checkpoint storages that are already
protected by ECC in GPUs, i.e., shared and global memories.
Care must be taken for the storage assignment. Since the
low-latency shared memory has a limited size, assigning too
many checkpoints there can reduce the GPU occupancy. In
light of this, Penny carefully distributes its checkpoints to
the two storages, thereby reducing the run-time overhead.
Also, Penny leverages an appropriate storage layout with
coalesced memory accesses in mind. Finally, during the code
generation, Penny performs several compiler optimizations
to minimize the added instruction cost due to checkpoint-
ing stores and their address calculation. The optimizations
include local instruction scheduling, redundant code elimi-
nation, and loop invariant code motion, etc.

4Penny treats GPU synchronization instructions, e.g., barriers, fences, locks,
atomics, as a region boundary, to handle inter-thread anti-dependence. This
ensures the correct recovery of data-race-free programs that Penny targets.

993

PLDI 20, June 15-20, 2020, London, UK

6 Performance Optimizations for GPU
6.1 Checkpoint Cost Estimation

Throughout the optimization process, Penny estimates the
cost of each live-out register checkpoint being placed in the
program to predict the impact of each optimization. Given
that checkpoints in loops lead to significant performance
degradation, we focus on removing such checkpoints, espe-
cially ones in the inner-most loops. With that in mind, we
model the cost of a checkpoint as CY, where d is the nested-
depth of a loop, in which the checkpoint is placed, and C
is a constant; we use 64 to prioritize the elimination of a
checkpoint in a deeply-nested loop over many checkpoints
in a low-depth loop. For a given GPU kernel, we compute its
cost by accumulating all costs of checkpoints in the kernel.

6.2 Bimodal Checkpoint Placement

Bolt’s eager checkpointing imposes the restriction that all
live-out registers of a region must be checkpointed right
after their LUPs. However, we found that such a restriction
can be safely relaxed, i.e., each checkpoint can be delayed—
without compromising the recoverability guarantee—until
the region end (boundary). That is because the checkpointed
registers in a region are used as inputs to some later regions,
not the region itself. This insight allows Penny to schedule
checkpoints to minimize the run-time overhead.

However, due to many such possible points in diverse
execution paths between LUP and the region boundary;, it is
indeed a complex problem to achieve the optimal checkpoint
scheduling. In light of this, Penny simplifies the scheduling
problem with two separate phases. First, for a given live-out
register, Penny’s bimodal checkpoint placement determines
where to place each checkpoint, i.e., either the LUP or the
region boundary. The goal of this phase is to identify those
checkpoints, that exist inside a loop, and pick them out of the
loop. The other phase is performed during code generation
to fine-tune the bimodal checkpoint schedule within a basic
block level that includes the LUP or the region boundary.
This local scheduling considers optimization objectives such
as increasing instruction reuse and reducing register usage.

Last Update Points

(1) || @ || B@
RB1(2) | | RB2(2) | | RB3(1)

Region Boundaries

(b) Relation between LUPs
and region boundaries

Figure 3. Bimodal checkpoint placement.

(a) Example program

In a sense, the bimodal placement is global scheduling
in that it picks the checkpoint location between the LUP
and the region boundary that can exist across basic blocks.
The placement algorithm covers all live-paths—where the

PLDI 20, June 15-20, 2020, London, UK

checkpoint is used—within the region and minimizes the
estimated total cost of the checkpoint to be placed. Figure 3(a)
shows how this works with an example control flow graph
where a single register r is used for simplicity. Here, r is last
updated in 3 different LUPs, L1, L2 and L3.

Note that LUPs and region boundaries have a many-to-
many relationship, and thus a checkpoint can be shared
between them. For example, if a checkpoint is placed at L1,
neither RB1 nor RB2 needs a checkpoint there. Similarly, a
checkpoint placed at RB3 can obviate both LUPs L2 and L3.
The relation between an LUP and a region boundary can be
modeled as a graph where they are represented as vertices.
As shown in Figure 3(b), each vertex is labeled by the cost of
the corresponding checkpoint. Penny calculates the cost by
24, where d is the loop depth. If a register is lastly updated
at some LUP, then an edge is introduced from the LUP to the
beginning (boundary) of the region to which the register is
used as an input.

For each edge in the graph, at least one of the incident
vertices must be chosen for checkpoint placement, and Penny
tries to minimize the total cost of the checkpoints chosen;
as shown in Figure 3(b), choosing L1, RB1 and RB3 gives
the minimum cost of 4. This problem can be modeled as
a weighted version of the vertex cover problem that is NP-
hard [11] in general cases. However, the problem can be
solved in polynomial time in case of a bipartite graph—where
vertices can be divided into two disjoint sets and all edges
connect a vertex from one set to another—as with graphs
in our problem. Interestingly, Kénig’s theorem [10, 17, 27]
shows that the vertex cover problem for a bipartite graph is
equivalent to solving the maximum matching of the graph.
According to the weighted version of the theorem, Penny
uses a maximum-flow algorithm to solve our checkpoint
placement in polynomial time.

6.3 Preventing Checkpoint Overwriting

Live-range
of r1

ckpt ckpt
Kok1 |1:
cprl, KO 5
R1|2: r2=0xc000
cpr2 2C: cpr2, KO s cpr2
3: 1dr3,[r2] : 1dr3, [r2] 3: 1dr3,[r2]
| [|
4 r4=7 :r4=7 r4=7
5: st[r2],rl :ost[r2],rl :ost[r2),r1
R2[6: rl=rl+r4 | | R2|6: rl=rl+r4 s=ri+rd ||
6
7

1:rl=5
cprl 5
r2 = 0xc000

1:r1=5
1c:

ri=5
s cprl
r2 = 0xc000

[="="="Region boundary |

Original

w

C: cprl C: cprl, K1 Extended
- 14, [r2+4] : 1d ra, [r2+4] ‘

C: cpr5
: 1d r4, [r2+4]

NGRS

cprl, K1

r3[8: stira+al r1 | | ma[8: stir2+al,r1 | | R3[8: stir2+a),r5 |

BB4

cp rl, KO
(a) Overwriting example (b) Storage alternation cpr2, K1

Figure 4. Checkpoint overwriting pre- Figure 5. A color-
vention. ing conflict.

(c) Register renaming

Due to the lack of store buffers in GPUs, a checkpoint
storage can be overwritten leading to incorrect recovery. For
the example code in Figure 4(a), the value stored in r1 at line
1isalive-in to region R2—since it is used at line 5—thus being
checkpointed at line 1C. However, the checkpointed value
5 is overwritten by a new checkpoint value 12 at 6C. Thus,
if an error occurs between line 6C and the end of R2, the

994

H. Kim, J. Zeng, Q. Liu, M. Abdel-Majeed, . Lee, and C. Jung

original live-in value of r1, which is required for restarting
R2 from its beginning, cannot be restored.

To protect a checkpointed value from being overwritten
before it is used for recovery, we introduce 2 software tech-
niques: register renaming and storage alternation. The first
technique is to rename the register that causes the check-
point overwriting. As shown in Figure 4(c), r1 is renamed
to r5, i.e., its checkpoint does not overwrite r1’s. To achieve
this, Penny artificially extends the live-range of overwrit-
ten registers, e.g., Figure 4(c)’s r1, in each region until its
end °. Thus, they exclusively use physical registers, since
the register allocator respects the extended live range. This
renaming scheme is simple to implement and may save some
checkpoint storage spaces compared to storage alternation.
However, renaming is likely to increase the register pressure,
leading to performance degradation if the register usage
becomes the limiting resource of GPU’s warp occupancy.

Second, for each overwritten register, Penny maintains a
backup storage and alternates the 2 storages. For example,
in Figure 4(b), all checkpoints of r1 in region R1 are saved to
storage K0 while those in R2 are stored to the other storage
K1, i.e., the value in KO0 is not overwritten until the end of
R2. To achieve this, we use a simple 2-coloring algorithm.
Applying storage alternation on all registers causes unnec-
essary storage and run-time overheads. Thus, our compiler
first identifies the registers that have at least one checkpoint
overwriting and feed them as inputs to 2-coloring for which
Penny visits basic blocks in a topological order and colors the
checkpoint storages of the input registers. More precisely, if
multiple checkpoints of a register exist in each region, which
is possible due to a branch in the region, Penny assigns the
same color for them. For a given register, Penny flips the
color in neighboring regions that checkpoint the same regis-
ter. Note that such regions are not necessarily consecutive;
they can be far away from each other.

The coloring may fail at a control-flow convergence point
if the colors from multiple incoming paths are not the same.
Figure 5 shows such an example; r1’s colors in the 2 paths
coming to BB4 differ. This causes a coloring conflict. That
is, if a left path (BB2 to BB4) is taken, r1’s checkpoint in
BB4 must be colored with K0 since BB2 already used K1 for
r1. However, taking the other path (BB3 to BB4) demands
r1’s checkpoint in BB4 to be colored with K1, since K0 was
used for r1 in BB1. Thus, the coloring solutions of the 2
paths do not agree with each other. To ensure the same color
at the convergence point no matter which path is taken,
Penny creates a new adjustment block, that has a dummy
checkpoint for a conflicting register, over one or more paths
to the point. The goal of a dummy checkpoint is to match

SThis is similar to what De Kruijf et al. [15] use to deal with register anti-
dependences. However, instead of renaming all anti-dependent registers,
we rename only live-out registers with anti-dependence. This is particularly
beneficial when an anti-dependent register is updated multiple times since
Penny only needs to checkpoint the last update, i.e., live-out value.

Compiler-Directed Soft Error Resilience for Lightweight GPU Register File Protection

the same color in other paths. Thus, the color of the dummy
checkpoint must be the opposite of the latest color used on
top of the new block. As shown in Figure 5, due to a new block
BB5, the colors in the 2 paths to BB4 are both K1. Note that
the dummy checkpoints are likely to be pruned (Section 6.4),
and therefore the resulting overhead is not significant in the
majority of applications we tested (Section 7.5).

Also, Penny provides an automatic selection module to
choose the better between the register renaming and the
2-coloring based storage alternation. We compile an appli-
cation using both techniques and estimate their costs in a
similar way to the one in Section 6.1 to pick the best.

6.4 Optimal Checkpoint Pruning

Bolt [35] introduced checkpoint pruning. The insight is that a
large number of checkpoints can be safely pruned (removed)
without compromising the recoverability guarantee if they
can be reconstructed from other checkpointed values avail-
able at recovery time. In light of this, Bolt builds the recovery
slice (i.e., a series of instructions) of each region to recon-
struct its live-in registers whose checkpoints are pruned. Bolt
uses a random search to find a possible pruning solution—
that tells which checkpoints can be removed. However, the
search space dramatically increases as the number of check-
point increases; the number of possible solutions for n check-
points is 2", i.e., there are 2" n-bit strings where each bit
tells if the corresponding checkpoint can be pruned or not.
Thus, instead of validating all possible solutions, Bolt simply
finds any first valid solution encountered during the random
searches, each of which preconceives a random n-bit string
solution. The valid solution found is not necessarily optimal
in that it is validated as long as the checkpoints correspond-
ing to its set-bit positions can be all pruned. In fact, Bolt ends
up leaving many unnecessary checkpoints committed, thus
causing a significant slowdown in GPUs.

To this end, Penny proposes a novel pruning algorithm
that can find an optimal solution with the least estimated
cost in polynomial time. Unlike Bolt’s search-based approach,
Penny validates individual checkpoints by analyzing their de-
pendence from scratch without preconceiving their pruning
eligibility, meaning that Penny does not require all pruning
decisions to be fixed before validation. Overall, Penny’s prun-
ing takes 2 phases. The first phase filters out trivial (obvious)
checkpoints whose pruning decision turns out to be either
valid or invalid without referring to others. The pruning
decision here holds during the entire algorithm, so the next
phase simply focuses on the remaining checkpoints whose
pruning decision is not finalized by the first phase; we call
them non-trivial checkpoints. In the second phase, Penny
figures out their dependence order, i.e., which checkpoint
must be decided before others’ pruning decisions due to the
dependence. Penny validates the non-trivial checkpoints in
the order imposed by the decision dependence to finalize
their pruning decisions.

995

PLDI 20, June 15-20, 2020, London, UK

live-in

| —> Decision dependence !
1 @ CPw/odecision dep. !
i QO cp with decision dep. 1

— datadep

2:r4=8
37rp =

3 br?g,
i

--+ pred dep
¢ Checkpoint
" after line n

Figure 6. Example of a check- Figure 7. Decision depen-
point validation. dence graph.

6.4.1 Phase 1: Filtering Trivial Checkpoints. To iden-
tify trivial checkpoints, Penny should validate them first. We
use the ¢, to refer to a checkpoint being validated and the
following rule for its validation.

Rule 1. For ¢, to be valid (removable), all the values it de-
pends on must remain the same at the endpoints of all the
regions where c, is used no matter which path is taken to
reach the endpoints.

That is because the values must be used for the regions’
recovery slice to recompute the value of ¢, if it is pruned. In
a sense, validating ¢, can be understood as building its recov-
ery slice. The validation process requires tracking the nec-
essary dependences over the program’s control flow graph.
In addition to data dependences [44], Penny considers a
new type of dependence called predicate dependence. This
is necessary when the value on which ¢, depends is differ-
ently recomputed at control flow paths, e.g., in Figure 6, c,
depends on r1 whose value differs across the paths of the
branch. Hence, c,’s recovery slice has to include the branch
and its predicate, e.g., rp at line 4 in the figure where we say
r1is predicate-dependent on rp. More precisely, for a value
that is defined on multiple paths, it is predicate-dependent
on the predicates of the branches on which its definitions
are control-dependent [44]. We represent predicate and data
dependences in a graph and call it PDDG (predicate/data
dependence graph).

As shown in Figure 8, Penny validates each checkpoint (c,)
by traversing the PDDG starting from c, in depth-first search
(DFS). The DFS continues by following the dependence chain
over the PDDG and terminates at the node whose value
can be either safely used at recovery time or dangerous
to be used; we call the node a terminal. For example, if a
register is assigned a constant loaded from GPU’s read-only
memory, the recovery slice can safely use not only the value
by reloading it® but also others that only depend on such a
valid value. Thus, the validation state of a PDDG node, i.e.,
whether its value can be used at recovery time, is determined
by those that it depends and their validation state.

®GPU memory is protected by ECC, and Penny ensures that register file
errors never propagate to memory (See Appendix A).

PLDI 20, June 15-20, 2020, London, UK

With that in mind, on the way back to ¢, where DFS is
started, Penny determines the validation state of the PDDG
nodes visited marking them with one of 3 labels: valid (¢v),
invalid (¢y), and undecided (¢¢7). That is, once terminal nodes
are marked with either ¢y or ¢y, the validation state is prop-
agated to their dependent nodes, if necessary, being merged
with other states as shown in Figure 8. In particular, when ¢;
is propagated to a checkpoint node, Penny changes the state
to ¢y (i.e., undecided). That is because we do not know the
pruning decision of the checkpoint yet—if it is committed,
the recovery slice could use it. Thus, we simply defer its
validation state determination to the next phase and mark it
and its dependents with ¢y .

Algorithm 1 Marking validation states

1: ®(s): Validation state of a PDDG node s.
2: MAXPRIORITY(¢)q, Pp): Higher priority in the order of ¢ > ¢y > ¢y
: CHECKMEMOW(s, ¢,): ¢y if s is overwritten until the endpoints of regions where
¢y is used, otherwise ¢y .
: function MARKVALIDATIONSTATES(Cy)
return MARKING(Cy, {Cp }, Co)

w

if s € Visited then return ®(s) «— ¢y
if s is a constant value then return ®(s) « ¢y

4

5

6: function MARKING(cy, Visited, s)
7: > Cyclic dependence found
8

9: if s is a load from read/write memory then

10: return ®(s) « CHECKMEMOW(s, ¢y)

11: Pmerged — PV > Initialize validation state before merging
12: D < GETPREDDATADEPS(S) > For all predicate/data dependences
13: for Vsq € D do

14: Pdep < MARKING(C,, Visited U {s}, sq)

15: Pmerged < MAXPRIORITY(Pmerged> Pdep) > Merge validation states
16: if pmerged = ¢1and s € C then > C: set of all checkpoints
17: ¢merged — ¢U

18: return ®(s) < Pmerged

19: function GETPREDDATADEPS(s) > s Collect dependences on control flow graph

data
20: Dgata < {sals — sa} > s has a data dependence on sy

pred .
21: Dprea < {spls —— sp} > s has a predicate dependence on sg
22: return Dgarqa YU Dpred

Algorithm 1 details the validation state propagation pro-
cess. MARKVALIDATIONSTATES takes a PDDG node ¢, as
input and calls MARK which performs the depth-first search
(DFS) of the PDDG starting from c,,.

DFS terminal condition: The traversal stops at a ter-
minal node and starts to backtrack toward c,. There are 3
types of terminals: First, the value of the node is constant,
i.e., literal or what is loaded from GPU’s read-only memory
(line 8 in the algorithm). Since it can be retrieved safely, it is
marked ¢y. Second, any node found in a cyclic dependence
chain (line 7), e.g., a loop carried dependence, is terminal,
and it is marked ¢ due to the difficulty of recomputing the
value. Third, a value loaded from memory is also terminal
(lines 9-10), and it is valid if it satisfies Rule 1; if the mem-
ory value can be used for the recovery of the region where
cy’s checkpointed register is used, to reconstruct it, then the
PDDG node is marked ¢y which is otherwise marked ¢;. For
example, in Figure 6, ¢, checkpoints 72 at line 10, and it de-
pends on the memory value loaded from address A at line 7
through the data dependence chain. Here, the memory value
must not be overwritten until RB4 and RB5 because r2 is

996

H. Kim, J. Zeng, Q. Liu, M. Abdel-Majeed, . Lee, and C. Jung

used in the regions ending with these boundaries. However,
the intervening store at line 12 overwrites the memory value
due to the alias in the address A, and thus the PDDG node
of the memory value is marked ¢;.

|

!

| ‘

| !

} Checkpoint }

|

} Predicate/data |

| > dependence }

} Examplesof |

| wme=p validation state |

I propagation }

(a) Prunable (b) Committed (c) Undecided } |
checkpoint checkpoint checkpoint ~ TTTTTTTTT T 4

Figure 8. Merging validation states in PDDG.

DEFS backtracking and state merging: Once terminal
nodes are encountered (lines 7-10 in the algorithm), DFS
triggers the backtracking to propagate the validation state of
non-terminal nodes being visited to their descendant (lines
11-18). For a non-terminal node, Penny collects all nodes
it depends on (line 12) and visits them (lines 13-14). The
validation state of the dependent node is determined by
merging the state it depends on (line 15), i.e., picking the
highest with the precedence of ¢; > ¢y > ¢y. The intuition
is that for a PDDG node to be valid, all the nodes it depends
must be valid (Rule 1) as shown in Figure 8(a). In contrast,
propagation path P; in Figure 8(b) shows that the decision
of ¢, is dictated by a single terminal node with ¢;.

Finally, for a checkpoint node visited, line 16 of the algo-
rithm checks if its input state is ¢p; if so, the state is lowered
to ¢y (line 17). Figure 8(c) shows such an example; on the
propagation path P,, ¢ becomes ¢y through the intervening
checkpoint C4;. A more concrete example is found in the
control flow graph of Figure 6. Although 73 in line 1 is in-
valid (¢r) due to the loop-carried dependence, Penny marks
the state of its dependent r5 (at line 5) with ¢;. In this way,
Penny leaves a chance for r5’s checkpoint, if committed, to
be used to reconstruct ¢, rather than giving it up by marking
the state with ¢y.

Once all validation states are merged backed to c,, Penny
uses the resulting state of ¢, to decide its pruning decision as
one of three: 7p (pruned) if it is in ¢y, 7c (committed) if it is in
¢1, and 7y (undecided) if it is in ¢y. The pruning decisions of
7p and 7¢ are final, and thus only undecided (ry7) checkpoints
move onto the next phase. Our evaluation shows that the
first phase can finalize the pruning decisions of the majority
of checkpoints, so the second phase only needs to deal with
a small number of the remaining undecided checkpoints.

6.4.2 Phase 2: Handling Undecided Checkpoints.
Penny first discovers the dependence between undecided
(rv) checkpoints. If the pruning decision of one checkpoint
is subject to that of another, we say they have decision depen-
dence and call its graph representation a decision dependence
graph (DDG). Then, Penny visits each DDG node (i.e., 7y
checkpoint) in a topological order, finalizing their pruning
decision.

Compiler-Directed Soft Error Resilience for Lightweight GPU Register File Protection

Note that the decision dependence naturally imposes an
order on the pruning decision between the checkpoints. To
guarantee all prerequisite decision results are available be-
fore validating a checkpoint, Penny follows the order im-
posed by the decision dependence to validate and deter-
mine the pruning decisions of the remaining checkpoints—
starting from the node that only depends on trivial check-
points whose pruning decisions are already made.

Analyzing Decision Dependence. Suppose the register
value stored by ¢4 can be used for the reconstruction of check-
point c,. To realize such a dependence, the 2 conditions have
to be satisfied: (1) ¢4 is committed and (2) all checkpoints
that can possibly overwrite ¢y until the endpoints of all the
regions where c,’s register value is used must be all pruned;
see Rule 1. For example, in Figure 6, for ¢y, that depends on
cs, to be safely pruned, ¢s must be committed, and ¢y and
c11, that overwrite ¢s, must be pruned. That is, in order to
validate c,, the pruning decisions of cs, ¢, and ¢;; must be
computed beforehand.

Algorithm 2 Computing decision dependences

1: T(c): Pruning decision of a checkpoint c.
: OWCKkPTS(c, ¢p): Checkpoints possibly overwriting ¢ until the endpoints of re-
gions where ¢, is used.
: function CoLLECTDECISIONDEPS(c,)
return GETDECISIONDEPS(cy, {Co }, Co)

oo

3

4

5: function GETDECISIONDEPS(c,, Visited, s)

6: if s € Visited then return {} > Stop if a cyclic dependence is found
7 if s € Cand T(s) = 7¢ then > For a committed (z¢) checkpoint
8 return OWCKPTS(S, EXpena (o))

o Fe {}

> Set of nodes ¢, has decision dependences on
10: if s € Cand T(s) = 7y then > For an undecided (777) checkpoint
11: F « F U {s}U OWCKPTS(S, EXpena(co))

12: D « GETPREDDATADEPS(S)

13: for Vsg € D do

14: F « FU GETDECISIONDEPS(C,, Visited U {s}, sg)
15: return F

> From Algorithm 1

Algorithm 2 details the dependence analysis. COLLECT-
DEcis1oNDEPs collects all decision dependences of ¢, by
traversing the PDDG by following the dependence chain
until a committed (z¢) checkpoint is encountered (lines 7-
8). For each committed (z¢) checkpoint ¢y, Penny adds to F
(co’s dependence set) all the checkpoints possibly overwrit-
ing ¢y until the endpoints of the regions where c, is used
(OWCKkPTs in the algorithm), according to Rule 1. Note that
cq does not have to be included in the decision dependence
because its pruning decision (z¢) is already made. Pruned
checkpoints (zp) do not have checkpointed values to use,
so they are ignored and Penny advances to the next PDDG
dependence. For undecided (zy7) checkpoints ¢y, Penny con-
servatively considers decision dependence for either case
of the checkpoint being pruned/committed. Penny adds the
undecided checkpoint ¢; and the checkpoints overwriting it
(OWCkPrTS) to ¢,’s dependence set F at line 11 and continues
the depth-first search to encounter a committed checkpoint.

Ordering and Finalizing Pruning Decision. Penny now
navigates the decision dependence graph (DDG) obtained
from Algorithm 2 in a topological order. Figure 7 shows an

PLDI 20, June 15-20, 2020, London, UK

example DDG; the colored nodes represent trivial check-
points, whose pruning decision is already decided in the first
phase, and therefore they do not have decision dependence
on others.

Except for the nodes with a cyclic dependence, Penny
can determine the pruning decisions of all the other nodes
by following the reverse order of the decision dependence.
Penny uses Tarjan’s algorithm [54] to sort the DDG in a
topological order along with identifying strongly connected
components (SCCs) in a traversal. As shown in Figure 7,
Penny then visits and validates DDG nodes in the resulting
topological order (i.e., shown as increasing numbers in the
figure) to determine their pruning decision; again, such a
decision-order-preserving traversal ensures that when each
checkpoint ¢, is visited, all the necessary validation states of
other checkpoints on which ¢, depends have already been
available.

To validate each checkpoint, Algorithm 1 can be used to
traverse the checkpoint’s PDDG and obtain a final decision.
However, Penny skips the redundant validations by only
checking the validity of the nodes in the dependence set of
the checkpoint (i.e., F of Algorithm 2).

For an SCC that has a cyclic dependence, which makes
the dependence-order-preserving traversal improper, Penny
treats all the nodes within each SCC as a single DDG node.
This implies that Penny needs to make a pruning decision
for all the nodes within an SCC before moving to the next
DDG node in the topological order. To find the best combi-
nation of the pruning decisions for the nodes within an SCC,
Penny performs a brute-force search using the cost model
(Section 6.1); we found no SCC in our evaluation. In the
absence of SCCs, our overall pruning algorithm has O(mn)
time complexity where m is the code size and n is the number
of checkpoints in the code.

6.5 Automatic Checkpoint Storage Assignment

To achieve better performance, Penny automatically assigns
committed checkpoints to storages by considering both mem-
ory access latency and thread-level parallelism in a balanced
manner. For checkpoint storages, Penny uses shared mem-
ory (in SRAM) and global memory (in DRAM but cached)
that are both protected by ECC in GPUs [46]. Shared mem-
ory is shared between threads in a thread block and has a
limited size. Although shared memory has a significantly
lower latency compared to global memory, allocating shared
memory over a certain limit can hurt the performance due to
diminished warp-level parallelism, i.e., low occupancy [46].
With that in mind, Penny first figures out how much shared
memory can be used without reducing the occupancy.
Then, Penny scores the live-out registers—whose check-
points are committed—with the sum of all their checkpoint
costs over the entire program (Section 6.1). By taking into ac-
count the resulting cost, Penny can prioritize a frequently ac-
cessed register over others to allocate it into the low-latency

PLDI 20, June 15-20, 2020, London, UK

shared memory. That is, Penny tries to assign as many reg-
isters as possible to the shared memory before it reaches the
occupancy-preserving limit, and then the rest of the registers
are assigned to the global memory.

It is important to note that Penny’s 2-coloring based stor-
age alternation does not significantly increase memory foot-
print. The reason is two-fold. First, Penny’s 2-coloring only
assigns an additional storage into those checkpoints that are
overwritten; only a small number of registers (25% on aver-
age) require the storage alternation, and it is further reduced
by checkpoint pruning. Second, Penny allocates storages
only for those registers whose checkpoints are committed at
least once. As a result, the average storage size required for
each register is only 0.75. That is because Penny’s optimal
pruning removes the vast majority of checkpoints.

6.6 Low-Level Optimizations and Code Generation

After the checkpoint pruning, Penny performs several low-
level optimizations to further reduce the run-time overhead
of committed checkpoints. In GPUs, calculating the effective
address of the checkpoint storage requires multiple instruc-
tions. To reduce the instruction count, Penny conducts a vari-
ant of common subexpression elimination, loop invariant
code motion (LICM), and induction variable optimization.
Finally, Penny performs local checkpoint scheduling to
improve the decision made by the bimodal checkpoint sched-
uling (Section 6.2). The local scheduling works in a basic
block level by pushing down the LUP checkpoints toward
the region boundary and pushing up the region boundary
checkpoints toward LUP. That is, LUP checkpoints can be
placed between their LUP and the end of their correspond-
ing basic block, while region boundary checkpoints can be
inserted at any point from their region boundary up to the
beginning of the basic block that includes the boundary. In
particular, Penny evaluates each possible point to find the
best that can maximize the reuse of previously calculated
checkpoint address and minimize the register usage.

7 Evaluation

This section evaluates Penny with 2 different ways: (1) hard-
ware logic synthesis and (2) GPU architecture simulation.

7.1 Hardware Cost Evaluation with Logic Synthesis

Table 2. Hardware overheads comparison across RF coding
schemes required by ECC protection and Penny (per bank).

Conventional ECC
Coding Area Acc. Acc. Leak.
lat. energy pow.
SECDED 21.9% 25.6% 21.1% 20.7%
DECTED 40.6% 49.2% 39.2% 38.4%
TECQED 87.5% 74.3% 84.5% 82.7%

Penny
Err. Coding Area Acc.
bits
1b
2b

3b

Acc. Leak.
lat. energy pow.

Parity 3.1% 3.5% 3.0% 3.0%
Hamming 18.8% 21.8% 18.1% 17.7%
SECDED 21.9% 25.6% 21.1% 20.7%

To make a strong case for Penny’s production, we de-
signed several register file (RF) coding schemes required for
both conventional ECC-based protection and Penny using
22nm with CACTI 6.5 [60]. Our designs assume that the RF

998

H. Kim, J. Zeng, Q. Liu, M. Abdel-Majeed, . Lee, and C. Jung

is 256KB, and it is divided into 16 banks. We also used Syn-
opsys design compiler [53] to synthesize the built designs
for their evaluation. Table 2 shows the overhead of each
coding scheme compared to the baseline RF that has no pro-
tection; according to synthesis results, the baseline RF has
an area of 0.105mm?, access latency of 1.01ns, energy-per-
access of 9.64p], and leakage power of 4.7nW for each bank.
For a single-bit error recovery, SECDED ECC protection
incurs 21.9% area overhead while Penny’s single parity-bit
solution incurs only 3.1% overhead. We observe that the
overheads of access latency/energy and leakage power show
similar trends, and Penny’s low-cost hardware benefits be-
come larger when multi-bit errors should be corrected.
Table 3. Applications used for evaluation.

Suite | Application Abbr. | Suite | Application Abbr.
GPGPU Cpulombic potential CP Parboil 2-point fmgular TPACF
Sim Libor Monte Carlo LIB correlatl'on
bench Laplace transform LPS SP Matl"lx) SGEM
[3] Neural network NN multiplication i
N Queen NQU Back propagation BP
Binomial options BO Breadth-first search | BFS
CUDA | Black-Scholes BS | Rodinia| Gaussian Elimination | GAU
toolkit | Convolution separable | CS | [6] Hotspot HS
samples| Scalar product Sp Molecular Dynamics | MD
[47] Sobol filter SQ Needleman-Wunsch | NW
Fast Walsh transform | FW Pathfinder PF
Matrix transpose MT Speckle reducing SRAD
Parboil | Sparse matrix-vector | SPMV| anisotropic diffusion
[52] | mult.
Jacobi stencil STC stream cluster SC

7.2 GPU Architecture Simulation Setup

The idempotent recovery should be aware of physical regis-
ter names to ensure the live-in values of regions are safely
preserved. Unfortunately, there is no publicly available CUDA
toolchain for modifying the register-allocated assembly code
and executing it on real GPUs. Thus, simulators such as
GPGPU-Sim [3] use PTX code as a basis for the cycle-level
simulation, and tools such as CRAT [62] conduct register
allocation on PTX code and run it on GPGPU-Sim to study
the performance impact of allocated registers. As with CRAT,
we allocate physical registers on the PTX code and then ap-
ply Penny’s transformations on the code. The resulting PTX
code is then executed on top of GPGPU-Sim that complies
with our register allocation. As the target simulation model,
we use Tesla C2050 GPU based on Fermi architecture; the
GPU is equipped with ECCs in the RF/cache/memory. Table 3
shows benchmark applications used in our simulations.

7.3 Overall Performance Overheads

This section highlights Penny’s low performance overhead

compared to prior works. We only show the fault-free exe-

cution time overhead since the low soft error rate renders

the impact of the recovery procedure on total execution time

negligible (see Section 3.2). The following schemes are tested.

e iGPU This is De Kruijf et al. [15]’s iGPU [41] that uses
anti-dependent register renaming instead of live-out reg-
ister checkpointing. Note that iGPU requires full ECC-
protection for correct recovery.

Compiler-Directed Soft Error Resilience for Lightweight GPU Register File Protection

e Bolt This is our GPU adoption of Bolt [35] with the orig-
inal checkpoint pruning based on a random search. Al-
though most of Penny’s optimizations are disabled, Bolt
uses our storage alternation to ensure correct recovery with-
out a store buffer. Two versions of Bolt are tested with or
without Penny’s automatic checkpoint storage assignment.

e Penny This is the fully optimized execution of Penny.
Checkpoint storages are automatically distributed to shared
and global memories by default.

Bolt/Auto_storage

Lo ‘

LR
Figure 9. Fault-free execution time overhead.

3.25
W
iGPU

w
=)

-— mmm Bolt/Global

‘L

Penny

0

il
=

N
«

-
«

Normalized Execution Time
N
o

-
=)

")
T

STC mmp—

NQU s
TPACF F

GEMM

———
o
£z

Bof—
cs =

spf—

O
@

LIB 4

a oz
-4
o 4 =z

SPMV famm

gmean 4

Figure 9 represents the normalized fault-free execution
time overheads of Penny and others compared to the baseline
that is the original program with no modification. iGPU
shows 2.3% of overhead on average, and up to 26.6%. The
slowdown originates from increased register pressure from
register renaming, leading to register spills to memory or
diminished occupancy. Nevertheless, it would be a mistake
to take this to mean that iGPU can be used to replace ECC.
Again, unlike Penny, iGPU requires both ECC protection
and en(de)coding logic hardening for correct recovery, and
therefore such a lower overhead can only be achieved by at
the cost of the considerable hardware complexity.

We tested 2 versions of Bolt; Bolt/Global stores all check-
points to global memory while Bolt/Auto_storage distributes
the checkpoints to shared/global memories by using Penny’s
automatic checkpoint storage assignment. Both versions
show significant overhead. That is because unpruned (i.e.,
committed) checkpointing stores in a loop stall the GPU
pipeline significantly. Meanwhile, Bolt/Auto_storage (38.5%
overhead) outperforms Bolt/Global (66.5%), which highlights
the benefit of Penny’s automatic storage assignment.

Finally, Penny reduces Bolt’s overhead to 3.3% on average.
Most of the applications incur less than 8%; the only excep-
tion is STC (19.0%) where loop-carried data-dependences in
inner-most loops prevent the checkpoints from being pruned.
This is inevitable since the dependences are originated from
program semantics that prohibits Penny’s checkpoint prun-
ing and bimodal checkpoint placement.

7.4 Impact of Penny’s Optimizations

This section investigates the performance impact of Penny’s
optimizations. To see if they are synergistic, we applied
Penny’s optimizations one at a time incrementally. That
is, each bar of Figure 10 shows the run-time overhead of
accumulated optimizations without those in the next bars.
For example, the +BCP bar depicts the overhead of apply-
ing bimodal checkpoint placement (BCP) along with the prior

999

PLDI 20, June 15-20, 2020, London, UK

'S

4

(°o

5.

o

3.98
T

@ L
E NN No_opt BEm +Auto_storage B +BCP +Opt_pruning N +Low_opts
53
E
S
]
o
- 2
N
R E .] e 1[; s b ;l; ARy i - JlJlJLJ Jl
a mwv =z D > 0w awnwowuo “ 00 wvuoown @ £ c
ujgzggzagmgéxgglémmmmuémzg
oI [) £
o

@

Figure 10. Impact of Penny optimizations accumulated.
automatic storage assignment optimization (ASAO), the over-
head of which is represented in the +Auto_storage bar. Simi-
larly, the +Opt_pruning bar depicts the overhead of applying
optimal checkpoint pruning in combination with prior opti-
mizations (i.e., BCP and ASAQ), while the +Low_opts bar
shows the overhead of fully-optimized Penny when combin-
ing low-level optimizations (Section 6.6) such as LICM with
all other prior optimizations. We found out that although
individual optimization is sometimes not beneficial by itself,
e.g., enabling BCP in PF and FW, its combinations with other
optimizations have a synergistic effect. For example, enabling
all optimizations (3.3% on average) always outperforms all
other combinations of the optimizations.

7.5 Assigning Checkpoint Storage and Its Integrity

3.08

o
E225 M Shared/RR =mm Global/RR M Auto_storage/Auto_select
5 2.00 BN Shared/SA Global/SA Bl Auto_storage/No_protection
é
2 1.75
|
E 1.50 [‘
2125 i [‘ | | |
2 1.00 - il | lll i 1[- ll " l.' h‘ln P Ll A w lll o l. 1‘[- i lll
&%g% Uk&w:m‘:gu—‘:%ggg@i&g

<

2 = 2

F O ow T o

gEEV’A Y s z
o v =4

SRAI
gmean

Figure 11. Storage assignment and overwrite prevention.
This section provides sensitivity analysis results on differ-
ent checkpoint storage assignment schemes and checkpoint
overwriting prevention schemes. In Figure 11, the first 4 bars
describe the run-time overhead of possible combinations of
bimodal storage assignment (Shared/Global) and overwrit-
ing prevention, i.e., RR (register renaming) and SA (storage
alternation). In the next bar (5th), Auto_storage/Auto_select
corresponds to the use of both Penny’s automatic storage
assignment—that distributes the storages to shared and global
memories in a way to maintain the GPU occupancy—and
automatic selection of the best between RR and SA. In
particular, the 6th bar of the figure shows the overhead of
Auto_storage without protecting the checkpoint storage. As
shown, the heights of the last 2 bars are almost the same ex-
cept for LIB and LPS. Thus, Penny’s checkpoint overwriting
prevention does not incur a noticeable run-time overhead.

7.6 Impact of Optimal Checkpoint Pruning

This section studies the statistics of our optimal checkpoint
pruning—that can significantly reduce Penny’s run-time
overhead, as shown in Section 7.4 in comparison to Bolt’s
naive pruning. We broke down the total number of check-
points to 3 parts, the portions of which are described in

PLDI 20, June 15-20, 2020, London, UK

1.00

mm Committed mmm Additional Basic
0.754
0.50 1
| T
0.00

HHHHHHHHHHHHHHHHHHH

SC Z
BS_Z
SQ,
BO,
Cs,
Cs,
FW.
FW.
FW.
SP_:
MT_.
MT_Z.
MT, Z

o

Figure 12. Checkpoints removed by basic/optimal pruning.

3.0 3.63 3.74

mmm No_pruning mmm Basic_pruning s Opt_pruning

Normalized Execution Time

a mwn z D a o wvw Ao w U Vv oo wn o
033239 m;gls?l 28338 F6E

GEMM

> O
z b
@

TPACF
SRAD
gmean

)

Figure 13. Performance impact of basic/optimal pruning.

Figure 12: (1) Basic corresponds to the checkpoints elimi-
nated by Bolt’s basic pruning while (2) Additional to those
checkpoints that can further be eliminated only by Penny’s
optimal pruning. Finally, (3) Committed is the remaining
checkpoints after Penny performs the optimal pruning. On
average, basic and optimal pruning schemes eliminate the
total number of checkpoints by 30% and 75%, respectively.
The eliminated checkpoints translate to the run-time over-
head reduction. As shown in Figure 13, when no pruning is
enabled, the average overhead becomes 56.2% with a 3.8x
slowdown in the worst case. Bolt’s basic pruning reduces
the overhead down to 29.5%. However, applications like LPS,
SGEMM, STC, PF, and FW still cause a large slowdown (up
to 274.3% overhead). In contrast, Penny’s optimal pruning
can handle the applications by removing a checkpoint in
their loops, achieving a 5.7% run-time overhead on average.

7.7 Energy Impact on a Register File

=
o

o
«n

EE ECC

B Parity/Penny

Energy consumption

o
o

a @ vz 2 > o a v o w o=z L Q0
O 5 a Z = o @Log T a g v o n o U
= g ; 5 & 3 P g z

SGEMM

w
o
<
o
&

Figure 14. Energy consumption of RF.

In addition to the hardware synthesis (Section 7.1), we
evaluated Penny’s RF energy benefit over SECDED-ECC us-
ing simulation. To measure the actual energy savings on
RF for the single-bit error protection, we applied the syn-
thesis data in Table 2 to GPGPU-Sim’s power simulator, i.e.,
GPUWatch[29]. Figure 14 shows the resulting RF energy con-
sumption for each benchmark. It turns out that Penny only
consumes 7.0% more energy compared to the baseline RF
that has no protection, while the SECDED-ECC RF consumes
22.4% more energy. Additional discussions on the total GPU
energy consumption are deferred to Section 9.1.

H. Kim, J. Zeng, Q. Liu, M. Abdel-Majeed, . Lee, and C. Jung

794 419

T
N iGPU mmm Bolt/Global

IS

Bolt/Auto_storage Penny

w

N

Normalized Execution Time

-

noow (SN n o e
T o mmgUEV‘E

CcP
NN
NQU

5 ¢ 2
& 3

SGEMM
SPMV
TPACF
SRAD
gmean

Figure 15. Performance comparison on Titan V.
7.8 Performance Overhead on Volta Architecture

For an architecture sensitivity analysis, this section pro-
vides additional simulation results of running Penny on the
modern Volta [1] architecture based Titan V GPU. For this
purpose, we used an experimental version of GPGPU-sim.
However, due to the version incompatibility of CUDA SDK
required for the new architecture, we were not able to run
a few applications on the GPGPU-sim. Figure 15 shows the
fault-free execution time overheads of iGPU, Bolt, and Penny.
Although Volta architecture is equipped with much larger
caches, it shows almost the same trend observed in the re-
sults of old architecture (see Figure 9). Overall, the run-time
overhead of Penny is only 3.6% on average.

8 Other Related Work

Recently, researchers have leveraged idempotence for recov-
ery from soft errors [15, 21]. Also, Liu et al. [35] advanced
the state of the art with checkpoint pruning, which serves
to remove checkpoint operations that can be reconstructed
from other checkpoints in the event of a soft error. Liu et
al. [34, 36, 37] also extend the original idempotent processing
in the context of sensor-based soft error detectors to ensure
complete recovery. More recently, the energy-harvesting
systems [7, 8] have started using idempotent processing to
recover from the frequent power failures that occur in sys-
tems without batteries [33, 58, 61]. Significantly, all of these
projects target CPUs, where store buffers exist.

For GPUs, error resilience studies have focused on system-
atically evaluating and understanding the impact of errors
in GPGPU applications [19, 20, 31, 45]. The most closely-
related work is iGPU that leverages idempotent recovery for
exception handling, context switching, and timing specula-
tion [41]. However, since iGPU requires the ECC-protected
registers and their hardened en(de)coding logic to ensure
correct recovery, it cannot be used for achieving ECC-free
register file (RF) protection in GPUs. Despite this wealth of
related work, Penny is, to the best of our knowledge, the
first system to use idempotence to achieve lightweight RF
protection without the cost of full ECC-protection.

9 Conclusion

We presented Penny, a compiler-directed resilience scheme
for protecting GPU register files against soft errors. To avoid
the hardware cost of conventional ECC protection, Penny
uses cheaper error detection code (EDC) and idempotent

Compiler-Directed Soft Error Resilience for Lightweight GPU Register File Protection

recovery. Penny guarantees correct recovery by preventing
checkpoints from being overwritten and significantly re-
duces their overhead by removing many of them without
compromising the recoverability. Across 25 benchmarks,
Penny only causes ~3% run-time overhead on average. The
upshot is that Penny allows GPU architects to design their
register file (RF) without the ECC cost for equal resilience or
achieve stronger resilience using the same ECC cost.

9.1 Limitation and Future Work

Since RF’s portion in the total GPU energy consumption
might not be dominant, Penny could increase the total en-
ergy consumption. Thus, we save the claim on Penny’s ben-
efits of the total energy reduction for our future work that
will conduct more design space exploration and performance
optimization to fully realize the benefits. Apart from that,
it is still critical to reduce the RF energy itself. The reason
is that a register file (RF) determines the GPU’s nominal
voltage (Vdd) that must be set high enough to handle the
worse-case voltage demand [30]. In fact, RF’s burst accesses
originated by GPU’s massive parallelism often cause large
voltage swings in the power delivery, which must be guarded
by sufficiently-high Vdd. If Penny is used to reduce the RF en-
ergy, GPU architects can lower the operating voltage, thereby
improving the entire GPU’s energy-efficiency.

A Correctness of Penny’s Recovery

This section proves that when EDC (parity) based detection
is combined with Penny’s idempotent recovery, RF error can
be safely recovered even without enforcing the in-region
detection required for all prior idempotent recovery schemes.

A.1 Prevention of Error Propagation

We first show that when EDC is used to detect errors in
RF, they are never propagated to any other location (regis-
ter/memory) before their register corruption is first detected.

Axiom 1. Given instruction execution, if register is corrupted,
parity error is detected at the moment of the register access.

Following two theorems are to prove the impossibility
of error propagation for a single error and multiple errors,
respectively, in the presence of parity checking.

Theorem A.1. If register r is corrupted and then detected at
a point P for the first time, the corrupted value has not yet
been propagated to other locations before P.

Proof. We use proof by contradiction. Suppose the argument
is false, meaning that the corruption had been propagated
since some point before P. For r’s corrupted value to be
propagated, r must be first read as a source operand of an
instruction. At the point of the instruction execution, r’s
corruption must be detected by its parity checking (Axiom 1).
This contradicts the fact that P is the first point to recognize
that r is corrupted. O

1001

PLDI 20, June 15-20, 2020, London, UK

Theorem A.2. If r’s corruption is detected at a point P for
the first time and other corrupted registers have not been
detected before P, then they have not been propagated to
other locations.

Proof. We use proof by contradiction. Suppose the argument
is false, e.g., some other corrupted register r2 had been prop-
agated since some point before P. For r2’s corrupted value
to be propagated, r2 must be first read in which case the
corruption must be detected momentarily (Axiom 1). This
is another contradiction from the premise that P is the first
point to detect r’s corruption. O

The lack of error propagation implies that at the point
of the parity error detection in a region R, we can trust all
register values saved in Penny’s checkpoint storages that
are protected by ECC in GPU cache/memory.

A.2 Proof of Correct State Recovery

This section shows that Penny correctly recovers the re-
quired memory and RF state—even in the presence of multi-
ple corrupted registers. Let’s define Val, Reg, and Loc as a
set of values, registers, and memory locations, respectively.
To describe program execution states at a given program
point P, we use a 3-tuple (RF(P), MEM(P),CP(P)) where
RF(P) : Reg — Val corresponds to the state of the regis-
ter file while MEM(P) : Loc — Val to the memory state
excluding the checkpoint storage state that is described by
CP(P) : Reg — Val.

We introduce a few functions to be used in our proof:
MEM(P1) |1ive(r) and RF(P1)|jive(r) signify the subset of mem-
ory and register states (values) at a program point P; which
consists of only the locations and registers live at the begin-
ning of a region R. Similarly, CP(P) jigein(r) gives the subset
of checkpoint storages at a point P which consists of only the
live-in registers of a region R. Also, RF(P)[CP(P)liivein(r)]
represents updating the register file state RF(P) with the
checkpointed values of R’s live-in registers at a point P, i.e.,
restoring input registers of the region using its checkpointed
live-in registers for recovery.

At the core of our proof, we compare two execution sce-
narios shown as n and e in Figure 16—normal execution with
no error (n) and errant one (e) where errors can be detected
and corrected by Penny—and show both executions result
in the same program execution states.

For errant execution (e), an error occurred in P, and it is
detected at P; within region R—the 2 points can be far apart
separated by multiple regions while undetected errors could
exist (e.g., Pr) if they have not been read yet. P, depicts the
entry point of the region R; we also use Py to represent the
re-execution of the entry after the error detection.

For normal execution (n), at P, we trigger the re-execution
of the region R which is preceded by the restoration of live-in

PLDI 20, June 15-20, 2020, London, UK

Ex. w/o Ex. with

rl=1; cp ri; error (n) error (e)

r2 = 4; cp r2;
2

P.| ri <- err

r4 = 2; cp r4;

[]

P, R v

Pyl r4 = r4 + 5;

Pan Pge

v

Figure 16. Safely recovering from errors across regions
registers, for comparison to errant execution (e). To differ-
entiate program execution states between the 2 executions,
their program points use 2 suffixes .e and .n, respectively.

To show both executions (n and e) generate the same
program state, i.e., (RF(P), MEM(P), CP(P)), we first prove
that live register values at R’s entry in n are identical to those
in e when Penny restarts R.

Lemma A.3. Live register values at P, in normal execution n
are the same as the restored register values at Py, i.e., when
the region R is re-executed for error recovery.

Proof.

RF (Pp.n) l1ive(R) = RF (Pa.n) [CP(Pa.n) ltivein(R) 1 l1ive(R) (1)

RF<Pd.n) [CP(Pa'.n) Ilivein(R)] Ilive(R) = RF(Pd.e) [CP(Pd.e) |livein(R)] |live(R)
()
RF(Pg.c) [CP(Py.c) llivein(R) Hiive(R) = RF (Ppr) l1ive(R) 3)

Equation 1 implies that live register values at the region
entry point Py, can be safely restored at Py, by loading
the checkpointed values corresponding to live-in registers
of R. This must be true because of 2 reasons: (1) Penny’s
checkpoint scheduling ensures that all live-out registers of
a region are checkpointed before the region ends, thus all
live register values at P, have already been checkpointed
before entering the region R, and (2) Penny’s overwriting
prevention technique preserves the checkpointed register
values until the end of the region R. Equation 2 states that
although registers are corrupted in errant execution (e), the
restored live register values must be the same as those in
normal execution (n). This is true because corrupted regis-
ter values can never be propagated to anywhere else, thus
checkpoint storages remain intact (Theorem A.1, A.2). Lastly,
Equation 3 tells that these restored register values are used
in R’s re-execution for error recovery. This is true by the
definition of idempotent recovery (Section 3.1). O

Now we prove that memory values are identical in n, e.

Lemma A.4. Live memory values at Pp in normal execution
n are the same as those at Py, i.e., when the region R is
re-executed for error recovery.
Proof.
MEM (Pp 1) l1ive(r) = MEM(Pa.n) l1ive(R) (4)
MEM(Pg.n) l1ive(r) = MEM(Pg.c) live(R) (5)
MEM(Pg.c) l1ive(R) = MEM(Py ¢) l1ive(R) (6)

H. Kim, J. Zeng, Q. Liu, M. Abdel-Majeed, . Lee, and C. Jung

Equation 4 states that in normal execution n, live memory
values at region entry P, , are not overwritten at P ,,, which
is true because idempotent region formation ensures no
memory anti-dependences in each region. Equation 5 then
tells that despite the errors, live memory values at Py in er-
rant execution e is the same as those in normal execution.
This must be true because, due to the error propagation pre-
vention of parity checking (Theorem A.1, A.2), all memory
values remain intact, i.e, MEM(P;,) = MEM(P,.), regard-
less of errors. Finally, Equation 6, i.e., the live memory values
remain the same between the error detection and R’s re-
execution, must be true since Penny’s recovery block never
updates memory. O

Finally, we prove checkpoint storages are identical in n, e.

Lemma A.5. Checkpointed values of R’s live-in registers at
Py, in normal execution n are the same as those at Py, i.e.,
when the region R is re-executed for error recovery.

Proof. Penny’s checkpoint overwriting prevention ensures
that CP(Py.p)liivein(r) Should remain the same during R’s ex-
ecution. Due to Theorem A.1, A.2, an error cannot change
any of checkpointed values. In addition, since Penny’s recov-
ery block on an error does not change them, it is true that

CP(PbAn)llivein(R) = CP(Pb’.e)|livein(R)' a

We have proven that all live memory/register/checkpoint
states of errant execution (e) upon recovery are equivalent
to those of normal execution (n). Consequently, Penny’s
recovery is correct though it does not enforce the in-region
detection. Note that other undetected errors in RF, e.g., one at
P!, are spontaneously corrected at the same recovery time at
which all live-in register values are restored by loading their
checkpointed values. Corruptions in non-live-in registers
may remain but do not affect program correctness because
they will never be read before being written.

Acknowledgment

We appreciate PLDI reviewers and our shepherd Sriram Kr-
ishnamoorthy for their constructive comments. At Purdue
University, this work was supported by NSF grants 1750503
(CAREER) and 1814430. At Seoul National University, this
work was supported in part by the National Research Founda-
tion of Korea (NRF) grants (No. NRF-2016 M3C4A7952587 and
No. NRF-2019M3E4A1080386), by the BK21 Plus program for
Pioneers in Innovative Computing (Dept. of Computer Sci-
ence and Engineering, SNU, No. 21A20151113068) through
NRF, and by the Institute for Information & communica-
tions Technology Promotion (IITP) grant (No. 2018-0-00581,
CUDA Programming Environment for FPGA Clusters), all
funded by the Ministry of Science and ICT (MSIT).

Compiler-Directed Soft Error Resilience for Lightweight GPU Register File Protection PLDI 20, June 15-20, 2020, London, UK

22 autista Gomez, Franck Cappello, Luigi Carro, Nathan DeBardeleben,
References [22] LBautista G Franck Cappello, Luigi Carro, Nathan DeBardeleb
[1] 2017. NVIDIA Tesla V100 GPU Architecture. Technical Report. Nvidia. Bo Fang, Sudhanva Gurumurthi, Karthik Pattabir:?manj Paolo Rech,
[2] Gene M Amdahl. 2013. Computer architecture and amdahl’s law. and M Sonza Reorda. 2014. GPGPUs: how to combine high computa-
Computer 46, 12 (2013), 38-46. tional power with high reliability. In Proceedings of the conference on
[3] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Design, Automation and Test in Europe. 341.
Tor M Aamodt. 2009. Analyzing CUDA workloads using a detailed [23] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia
GPU simulator. In ISPASS’09. Ailamaki. 2011. Toward Dark Silicon in Servers. In MICRO 31.

[24] Jorg Henkel, Lars Bauer, Nikil Dutt, Puneet Gupta, Sani Nassif, Muham-

[4] Rajeev Balasubramonian, Sandhya Dwarkadas, and David H Albonesi.
mad Shafique, Mehdi Tahoori, and Norbert Wehn. 2013. Reliable On-

2001. Reducing the complexity of the register file in dynamic super-

scalar processors. In MICRO 34. chip Systems in the Nano-era: Lessons Learnt and Future Trends. In
[5] Shekhar Borkar. 2013. Exascale Computer-a fact or a fiction. Keynote DAC 2013.))

address: IEEE International Parallel and Distributed Processing Sympo- [25] Himanshu Kaul, Mark Anders, Steven Hsu, Amit Agarwal, Ram Krish-

sium (2013). namurthy, and Shekhar Borkar. 2012. Near-Threshold Voltage (NTV)
[6] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Design: Oppo'rtunities and‘ Challerhlges. In DAC’IZ'

Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark [26] Seon Wook Kim, Chong-Liang Ooi, Rudolf Eigenmann, Babak Falsafy,

suite for heterogeneous computing. In IISWC 2009. and T. N. Vijaykumar. 2006. Exploiting Reference Idempotency to

Reduce Speculative Storage Overflow. In TOPLAS 06.

[7] Jongouk Choi, Hyunwoo Joe, Yongjoo Kim, and Changhee Jung. 2019.
[27] Denés Konig. 1931. Grafok és matrixok. Matematikai és Fizikai Lapok.

Achieving stagnation-free intermittent computation with boundary-

free adaptive execution. In 2019 IEEE Real-Time and Embedded Tech- [28] Lingbo Kou. 2014. Impact of Process Variations on Soft Error Sensitivity
nology and Applications Symposium (RTAS). IEEE, 331-344. of 32-nm VLSI Circuits in Near-threshold Region. Master’s thesis.

[8] Jongouk Choi, Qingrui Liu, and Changhee Jung. 2019. CoSpec: Com- [29] Jingwen Leng, Tayler H. Hetherington, Ahmed ElTantawy, Syed Zo-
piler directed speculative intermittent computation. In Proceedings of haib Gilani, Nam Sung Km'1, Tor M. Aamo'dt,'and' Vlja}’ Janapa Reddi.
the 52nd Annual IEEE/ACM International Symposium on Microarchitec- 2013" GPUWattch: enabling energy optimizations in GPGPUs. In
ture. 399-412. L?CA 13.) '

[9] Cristian Constantinescu. 2003. Trends and Challenges in VLSI Circuit [30] Jingwen Leng, Yazhou Zu, and Vijay Janapa Reddi. 2015. GPU voltage
Reliability. In MICRO 36. noise: Characterization and hierarchical smoothing of spatial and

[10] WJ. Cook, W.H. Cunningham, W.R. Pulleyblank, and A. Schrijver. 2011. temporal voltage noise interference in GPU architectures. In HPCA’15.
Combinatorial Optimization. Wiley. [31] Guanpeng Li, Karthik Pattabiraman, Chen-Yong Cher, and Pradip Bose.

[11] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford 201’6' Understanding Error Propagation in GPGPU Applications. In
Stein. 2009. Introduction to Algorithms, Third Edition (3rd ed.). The sc’1s.
MIT Press. [32] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L Scott, Sam H

[12] Marc de Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. 2010. Nf’h’ and Changhe'e Jung. 2018. iDO: Compiler-Directed Failure Atom-
Relax: An Architectural Framework for Software Recovery of Hard- icity for Nonvolatile Memory. In MICRO 51.
ware Faults. In ISCA’10. [33] Qingrui Liu and Changhee Jung. 2016. Lightweight Hardware Support

[13] Marc de Kruijf and Karthikeyan Sankaralingam. 2013. Idempotent code for Transpar ent. Consistency-Aware Checkpointing in Intermittent
generation: Implementation, analysis, and evaluation.. In CGO’13. Ex'ler gyTHafrvestxng systems. In NVMSA 2016. o

[14] Marc A. De Kruijf. 2012. Compiler Construction of Idempotent Regions [34] Qingrui Liu, Changhee Jung, Déngy00}1 Lee, and DCVCS.h. Tiwari.
and Applications in Architecture Design. Ph.D. Dissertation. Madison, 2015. Clover: Compiler Directed Lightweight Soft Error Resilience. In
WI, USA. Advisor(s) Sankaralingam, Karthikeyan. L(_:TES _15 .(Portland, OR, USA). o

[15] Marc A. de Kruijf, Karthikeyan Sankaralingam, and Somesh Jha. 2012. [35] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2016.
Static Analysis and Compiler Design for Idempotent Processing. In Compiler-Directed Lightweight Checkpointing for Fine-Grained Guar-
PLDI 2012. anteed Soft Error Recovery. In SC’16.

[16] James C. Dehnert, Brian K. Grant, John P. Banning, Richard John- [36] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2016.
son, Thomas Kistler, Alexander Klaiber, and Jim Mattson. 2003. The Compiler Directed Soft Error Detection and Recovery to Avoid DUE

and SDC via Tail-DMR. TECS’16 (2016).
[37] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2016.

Proceedings of the International Symposium on Code Generation and Op- Low-Cost Soft Error Resilience with Unified Data Verification and

timization: Feedback-directed and Runtime Optimization (San Francisco, Fine-Grained Recovery. In MICRO 49.
California, USA). 15-24. [38] Scott A. Mahlke, William Y. Chen, Wen-mei W. Hwu, B. Ramakrishna

Rau, and Michael S. Schlansker. 1992. Sentinel Scheduling for VLIW

Transmeta Code Morphing&Trade; Software: Using Speculation, Re-
covery, and Adaptive Retranslation to Address Real-life Challenges. In

[17] Jeno Egervary. 1931. Matrixok kombinatorius tulajdonsagairol. Matem-

atikai és Fizikai Lapok 38, 1931 (1931), 16-28. and Superscalar Processors. In ASPLOS V. .

(18] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankar- [39] Gok}}an Memik, _MaSL_‘d H Chowdh.ury, Ar{ndfi.rn Mallik, and Yehea I
alingam, and Doug Burger. 2011. Dark Silicon and the End of Multicore Ismail. 2005. Engineering over-clocking: Reliability-performance trade-
Scaling. In ISCA’11. offs for high-performance register files. In DSN’05.

[19] B.Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi. 2014. GPU- [40] Gokh.an Menﬁk, M‘ahmut T Kandemir, a‘nd Ozcan Ozturk. 2005. In-
Qin: A methodology for evaluating the error resilience of GPGPU creasing Register File Immunity to Transient Errors. In DATE.
applications. In ISPASS’14. IEEE. [41] Jaikrishnan Menon, Marc De Kruijf, and Karthikeyan Sankaralingam.

[20] Bo Fang, Karthik Pattabiraman, Matei Ripeanu, and Sudhanva Gu- 2012. iGPU: Exception Support and Speculative Execution on GPUs.
rumurthi. 2016. A systematic methodology for evaluating the error In ISCA"12.) o))
resilience of GPGPU applications. IEEE Transactions on Parallel and [42] Pablo Montesinos, Wei Liu, and Josep Torrellas. 2007. Using register
Distributed Systems 27, 12 (2016), 3397-3411. lifetime predictions to protect register files against soft errors. In

[21] Shuguang Feng, Shantanu Gupta, Amin Ansari, Scott A Mahlke, and DSN’07.

David I August. 2011. Encore: low-cost, fine-grained transient fault [43] Todd K Moon. 2005. Error correction coding: mathematical methods
recovery. In MICRO 44. and algorithms. John Wiley & Sons.

1003

PLDI 20, June 15-20, 2020, London, UK

[44] S.S. Muchnick. 1997. Advanced Compiler Design and Implementation.
Morgan Kaufmann Publishers.

Bin Nie, Lishan Yang, Adwait Jog, and Evgenia Smirni. 2018. Fault Site
Pruning for Practical Reliability Analysis of GPGPU Applications. In
MICRO 51. IEEE.

(45]

[46] Nvidia 2007. CUDA Programming Guide. Nvidia.
http://developer.download.nvidia.com/compute/cuda.
[47] Nvidia 2013. CUDA Toolkit 5.5. Nvidia.

https://developer.nvidia.com/cuda-toolkit-55-archive.

Robert Pawlowski. 2015. Measurement and Analysis of Soft Error Vul-
nerability of Low-Voltage Logic and Memory Circuits. Ph.D. Dissertation.
Corvallis, OR, USA.

William Wesley Peterson and EJ Weldon. 1972. Error-correcting codes.
MIT press.

George A Reis, Jonathan Chang, Neil Vachharajani, Shubhendu S
Mukherjee, Ram Rangan, and David I August. 2005. Design and
evaluation of hybrid fault-detection systems. In 32nd International
Symposium on Computer Architecture (ISCA’05). IEEE, 148-159.
Muhammad Shafique, Siddharth Garg, Jérg Henkel, and Diana Mar-
culescu. 2014. The EDA Challenges in the Dark Silicon Era: Tempera-
ture, Reliability, and Variability Perspectives. In DAC ’14.

John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-
Wen Chang, Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu.
2012. Parboil: A revised benchmark suite for scientific and commercial
throughput computing. Technical Report IMPACT-12-01 127 (2012).
Synopsys. 2001. Compiler, Design and User, RTL and Guide, Modeling.
(2001). http://www. synopsys. com.

Robert Tarjan. 1972. Depth-first search and linear graph algorithms.
SIAM journal on computing 1, 2 (1972), 146—-160.

(48]

[49

—

(50]

(51]

[52

—

(53

—

[54

flan)

1004

H. Kim, J. Zeng, Q. Liu, M. Abdel-Majeed, . Lee, and C. Jung

[55] Michael B. Taylor. 2012. Is Dark Silicon Useful?: Harnessing the Four
Horsemen of the Coming Dark Silicon Apocalypse. In DAC’12 (San
Francisco, California).

[56] D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai, D.
Oliveira, D. Londo, N. DeBardeleben, P. Navaux, L. Carro, and A. Bland.
2015. Understanding GPU errors on large-scale HPC systems and the
implications for system design and operation. In HPCA ’15. IEEE.

[57] Marc Tremblay and Yu Tamir. 1989. Support for fault tolerance in
VLSI processors. In Circuits and Systems, 1989., IEEE International
Symposium on. IEEE, 388-392.

[58] Joel Van Der Woude and Matthew Hicks. 2016. Intermittent com-
putation without hardware support or programmer intervention. In
OSDr’e.

[59] Liang Wang and Kevin Skadron. 2013. Implications of the Power Wall:

Dim Cores and Reconfigurable Logic. IEEE Micro (2013), 40-48.

S.J.E. Wilton et al. 1996. CACTI: An enhanced cache access and cycle

time model. JSSC’96 (May 1996).

Mimi Xie, Mengying Zhao, Chao Pan, Jingtong Hu, Yongpan Liu, and

Chun Xue. 2015. Fixing the Broken Time Machine: Consistency-Aware

Checkpointing for Energy Harvesting Powered Non-Volatile Processor.

In DAC’15.

Xiaolong Xie, Yun Liang, Xiuhong Li, Yudong Wu, Guangyu Sun, Tao

Wang, and Dongrui Fan. 2018. CRAT: Enabling Coordinated Register

Allocation and Thread-Level Parallelism Optimization for GPUs. TC’08

(2018).

Doe Hyun Yoon and Mattan Erez. 2009. Memory Mapped ECC: Low-

cost Error Protection for Last Level Caches. In ISCA’09 (Austin, TX,

USA).

[60]

[61]

[62]

[63]

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Idempotent Recovery and Challenges
	3.1 Idempotent Recovery Overview
	3.2 Idempotent Recovery Challenges for GPUs

	4 Recovery without In-Region Detection
	5 Overview of Compilation Phases
	6 Performance Optimizations for GPU
	6.1 Checkpoint Cost Estimation
	6.2 Bimodal Checkpoint Placement
	6.3 Preventing Checkpoint Overwriting
	6.4 Optimal Checkpoint Pruning
	6.5 Automatic Checkpoint Storage Assignment
	6.6 Low-Level Optimizations and Code Generation

	7 Evaluation
	7.1 Hardware Cost Evaluation with Logic Synthesis
	7.2 GPU Architecture Simulation Setup
	7.3 Overall Performance Overheads
	7.4 Impact of Penny's Optimizations
	7.5 Assigning Checkpoint Storage and Its Integrity
	7.6 Impact of Optimal Checkpoint Pruning
	7.7 Energy Impact on a Register File
	7.8 Performance Overhead on Volta Architecture

	8 Other Related Work
	9 Conclusion
	9.1 Limitation and Future Work

	A Correctness of Penny's Recovery
	A.1 Prevention of Error Propagation
	A.2 Proof of Correct State Recovery

	References

